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Multi-Dimensional Semantics
for Modal Logics

MAARTEN MARX

Abstract Weshow that every modal logic (with arbitrary many modalities of
arbitrary arity) can be seen as a multi-dimensional modal logic in the sense of
Venema. This result shows that we can give every modal logic a uniform “con-
crete” semantics, as advocated by Henkin et al. This can also be obtained using
the unravelling method described by de Rijke. The advantage of our construc-
tion is that the obtained class of frames is easily seen to be elementary and that
the worlds have a more uniform character.

1 Introduction Multi-dimensional (MD) modal logics are the topic of Venema
[10]. We intuitively describe what is meant by this term. A MD modal logic is a se-
mantically given modal logic in which the worlds of the frames areα-long sequences,
for some fixed ordinalα, and the accessibility relations are defined in a uniform set-
theoretic manner. A typical example of such a relation is “forgetting thei-th coordi-
nate,” i.e., fors, t sequences, we define

s ≡i t
def⇐⇒ (∀ j �= i)s j = t j.

Then,

M, s � �iϕ
def⇐⇒ (∃t)(s ≡i t & M, t � ϕ).

Note the similarity of this modality with the existential quantifier in first-order logic:
∃xϕ is satisfied at an assignments iff there exists an assignmentt which agrees with
s on every variable except maybex, andϕ is satisfied att. The simplest and probably
best known MD modal logic isS5, in which the worlds are sequences of length 1,
and the accessibility relation is defined as above. Recall that this logic is equivalent
to monadic first-order logic. If we make the sequences longer, sayn long, and we
add modalities for every coordinate, we arrive in cylindric modal logic, the modal
counterpart of first-order logic withn variables (cf. [11]). In this paper we start from
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another natural operation on sequences: composition of binary relations. ForV ⊆
U×U and{s, r, t} ⊆ V , define

CV srt
def⇐⇒ s0 = r0, r1 = t0 & t1 = s1

M, s � ϕ ◦V ψ
def⇐⇒ (∃rt) : CV srt & M, r � ϕ & M, t � ψ.

A well-investigated modal logic with◦V as its main connective isarrow logic
(cf., van Benthem [8], [9], Venema [10], Marx [6]). Traditionally, only the “square”
version of arrow logic (in which one considers only frames whose universe is a full
Cartesian product, that is, the modal counterpart of Representable Relation Algebras)
was investigated. Recently, the nonsquare versions (in which the universe can be any
subset of a Cartesian product) received a good deal of attention (cf., e.g., Maddux [5],
Kramer [4], Marx [6]). If one considers a modal logic with one binary modality,
the weakest derivation system (the generalization of theK system for unary modal
logic) turns out to be strongly sound and complete with respect to the class of multi-
dimensional frames{F = 〈V, CV〉 : V ⊆ U × U for some setU}. This indicates that a
natural interpretation for a binary modality is indeed (“nonsquare”) relation composi-
tion. This result formed the basis for the theorem to be proved here and is an instance
of the more general formulation.

Westart with the necessary definitions. After that we look at modal logics with
just one modality and show how to give them a multi-dimensional semantics. Having
established these results we are ready for the general theorem which deals with modal
logics with arbitrary many modalities. Then we show that the proposed frame-classes
are elementary, and we finish with a discussion of the results.

1.1 Preliminaries Arbitrary modalities are denoted by∇; their duals¬∇¬ by ∇.
A modal similarity type S is a pair(O, ρ) with O a set of logical connectives and
ρ : O −→ ω a function assigning to each symbol inO a finite rank or arity. We call
L a modal logic of type S = (O, ρ) if L is a tuple(Fml,L,�) in which,

• Fml is the smallest set containing countably many propositional variables and
which is closed under the Boolean connectives and the connectives inO.

• L is a class of frames of the form(W, R∇)∇∈O, in which W is a set, and each
R∇ is a subset ofWρ∇+1.

• � is the usual truth-relation from modal logic between models over frames in
L, worlds, and formulas. For the modal connectives it is defined as

M, x � ∇(ϕ1, . . . , ϕρ∇)
def⇐⇒ (∃x1 . . . xρ∇) : R∇xx1 . . . xρ∇ &

M, x1 � ϕ1 & . . .& M, xρ∇ � ϕρ∇.

Theminimal derivation system KS for a similarity typeS is defined as having
only CT andDB as its axioms and onlyMP, UG, andSUB as its derivation rules.

(CT) all classical tautologies
(DB) ∇(p1, . . . , pi−1, p → p′, pi+1, . . . , pn) ↔

∇(p1, . . . , pi−1, p, pi+1, . . . , pn) → ∇(p1, . . . , pi−1, p′, pi+1, . . . , pn)

(MP) {ϕ, ϕ → ψ} / ψ (Modus Ponens)
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(UG) ϕ / ∇(ϕ1, . . . , ϕi−1, ϕ, ϕi+1, . . . , ϕn) (Universal Generalization)
(SUB) ϕ / σϕ, (Substitution)

where∇ is ann-adic operator andσ a substitution.
We recall the standard modal logical result thatKS is strongly sound and com-

plete with respect to the class of all frames of typeS. We denote this class byKS.
If F is a frame, we useF to denote its universe. A modal logic(Fml,L,�) is

calledα-dimensional if

• (∀F ∈ L) : F ⊆ αU for some setU, and

• (∀F,G ∈ L) : F = G ⇒ F = G.

A frameFa is calledrooted, if a ∈ F and the subframe ofFa generated bya isFa. For
F,G, two frames of typeS = (O, ρ), wesay thatF andG areS-bisimular (notation:
F �S G) if there exists a nonempty relationB ⊆ F × G such that, for every∇ ∈ O,

• if R∇
F

x0x1 . . . xρ∇ and x0By0, then there existsy1, . . . , yρ∇ ∈ G such that
R∇

G
y0y1 . . . yρ∇ andxi Byi (forward condition),

• similarly in the other direction (backward condition).

The relationB is called anS-bisimulation. A function f : F −→ G is called anS-

zigzagmorphism (also calledp- or bounded morphism) fromF ontoG (notation:F
f

�
G), if f is surjective andf is anS-bisimulation. Note that the forward condition then
states thatf is a homomorphism. ForK aclass of frames, we useZigK to denote the
class of all zigzagmorphic images of members ofK.

2 Multi-dimensional semantics for modal logics

2.1 Logics with one modality The major connective in this article is a general-
ization of dyadic composition ton-ary relations. We use• to denote this operator
(the context provides its specific arity). Then-adic connective• has the follow-
ing definition onn-dimensional frames. LetV ⊆ Un, M = (V,v) be a model, and
(x0, x1, . . . , xn−1) ∈ V . Then

M, (x0, x1, . . . , xn−1) � •(ϕ0, ϕ1, . . . , ϕn−1)
def⇐⇒

(∃z) M, (z, x1, . . . , xn−1) � ϕ0 &
M, (x0, z, x2, . . . , xn−1) � ϕ1 &

...
M, (x0, . . . , xn−2, z) � ϕn−1.

Forn = 1, we get the universalS5 modality; forn = 2,• can be seen as the composi-
tion modality defined in the introduction (only the order of the arguments is reversed,
i.e.,ϕ • ψ = ψ ◦V ϕ).

For convenience, we use the substitution function(·)i
z : Un −→ Un, which is

defined as follows: fors ∈ Un, z ∈ U and 0≤ i, j < n, we set

si
z( j) =

{
z if i = j
s( j) otherwise.
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Then we can define• easily as follows: fors ∈ V , we have

s � •(ϕ0, . . . , ϕn−1) ⇐⇒ (∃z) : s0
z � ϕ0 & . . .& sn−1

z � ϕn−1. (1)

Definition 2.1 Forn ≥ 2,GCn denotes the class of alln-dimensional frames whose
universe is a subset ofUn, for some base setU. The accessibility relation for• in a
GCn-frame with universeV is denoted byCV . It is defined asCV sr0 . . . rn−1 ⇐⇒
(∃z)(∀i) : si

z = ri.

We are ready to formulate the first theorem, dealing with modalities of rank higher
than one.

Theorem 2.2 Let S = (•, n) be any similarity type in which the rank of • is higher
than 1. Then KS is strongly sound and complete with respect to the class GCρ(•).

Proof: The theorem is an immediate consequence of the standard modal logical
completeness result mentioned above and the fact thatK(•,n) = ZigGCn, which fol-
lows simply from the next claim.

Claim 2.3 Let Fa = (W, R), with R ⊆ Wn+1, for n ≥ 2, be a rooted frame. Then
Fa is a zigzagmorphic image of a (rooted) frame Ga′ = (V, CV ), with V ⊆ nU, for
some set U, and CV is generalized composition.

Proof of claim: Let Fa be as stated in the lemma. We define the rooted frame
(V, CV ), its baseU, and the zigzagmorphism simultaneously. The setU will con-
sist of strings of symbols, denoted by�. . .�. In these strings we code why we add an
element toU. Define the binary relationB as the smallest set such that

• ((�a1�, . . . , �an�), a) ∈ B, and
• if (s, x) ∈ B andRxy0 . . . yn−1, then(si

�(s,x)Rxy0...yn−1
�, yi) ∈ B.

Let V be the domain ofB andG(a1,...,an) = (V, CV ). Weclaim thatB is a zigzagmor-
phism fromG(a1,...,an) ontoFa. By the definition ofB, (∗) below holds:

(*) (r,w) ∈ B ⇒ r = (�a1�, . . . , �an�) & w = a, or there exists unique
s ∈ dom(B), {x, y0, . . . , yn−1} ⊆ W andi such that ei-
therr = s & w = x or r = si

�(s,x)Rxy0...yn−1
� & w = yi.

So, B is a function. It clearly obeys the backward condition of a bisimulation. Be-
causeB is a function, the forward condition states thatB is a homomorphism, which
follows simply from (∗). It is surjective, becauseFa is generated bya. So B is a
zigzagmorphism. Hence, the claim.

This finishes the proof of the theorem. �
Now we consider modal logics with one monadic modality.

Definition 2.4 Consider a similarity type with one modality� of rank 1.GC� de-
notes the class of all two-dimensional frames, where� is interpreted as the domino
operator, i.e., for pairs(a, b) in the domain ofM,

M, (a, b) � �ϕ ⇐⇒ (∃z) : M, (b, z) � ϕ.
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Theorem 2.5 Let � be a monadic modality. The basic derivation system K� is
strongly sound and complete with respect to the class of frames GC�.

Proof: Soundness is immediate. For completeness, suppose� ��K�
ϕ. By standard

modal reasoning we find a frameFd = (W, R) such that

1. Fd, d |= �, butFd, d �|= ϕ,
2. Fd is point-generated byd, and
3. Fd |= ∀xyz((Ryx ∧ Rzx) → y = z) (Fd is “unravelled”).

Let F(d′,d) denote theGC�-frame with universe{(d′, d)} ∪ {(a, b) ∈ W × W : Rab}.
Using conditions (2) and (3) above it is easy to see that the functionh defined by
h(a, b) = b is an isomorphism betweenFd andF(d′,d). But then, by (1), we are done.

�
Finally we consider the (trivial) case of modal logics with just one modal constant.

Definition 2.6 Consider a similarity type with one modal constantν. GC0 denotes
the class of allGC2-frames, whereν is interpreted as the identity constant, i.e.,

M, (a, b) � ν ⇐⇒ a = b.

The accessibility relation ofν in aGC0-frame with universeV is denoted byD01
V .

Theorem 2.7 Let ν be a modal constant. The basic derivation system Kν is strongly
sound and complete with respect to the class of frames GC0.

Proof: This follows immediately from the following simple fact:

every frame(W, R) with R ⊆ W is isomorphic to a frame inGC0. (2)

(Hint: note that every frame with one unary accessibility relation is a disjoint union
of one-element frames.) �

2.2 Logics with arbitrary many modalities We are almost ready to prove the
generalization of the last three theorems to arbitrary similarity typesS: a multi-
dimensional semantics for which the basic derivation systemKS is sound and com-
plete. The idea of the semantics is that we interpret the modalities as described in
the previous section, and different modalities are interpreted on disjoint parts of the
sequences. For instance, the semantics of a modal logic with two dyadic modalities
will be given by 4-dimensional frames, on which one modality is interpreted as com-
position on the first two coordinates, and the other modality is interpreted on the last
two coordinates.

Thus we will use generalized composition of rankn on sets of relations with
rank higher thann, sayα. The idea is that the connective works only on a spe-
cific subsequence of lengthn. On that part, it behaves just liken-adic composition.
We define these modalities as follows. LetV ⊆ Uα, j, j + (n − 1) < α, and let

κ = ( j, j + 1, . . . , j + (n − 1)) be a sequence of consecutive numbers. Let
κ
s de-

note any sequence obtained froms by changing some of the coordinatesoutside κ.
Then fors ∈ V , wedefine

M, s � •κ(ϕ0, . . . , ϕn−1) ⇐⇒ (∃z) : M,
κ
s
κ(0)

z � ϕ0 & . . .& M,
κ
s
κ(n−1)

z � ϕn−1. (3)
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The accessibility relation of•κ on anα-dimensional frame with universeV is denoted
by Cκ(0),ρ(•κ)

V . Note that ifs andκ are sequences of the same length, then we get the
definition from the previous section. In the other cases, we hid the existential quan-

tification over coordinates outsideκ in
κ
s. As an example, the definition of•(2,3,4) on

sets of 7-ary relations is given below: (a “−” indicates that any element is allowed at
this place)

M, (x, y, a, b, c, v,w) � •(2,3,4)(ϕ0, ϕ1, ϕ2)

�
(x, y, a, b, c, v,w) ∈ V &

(∃z) M, (−,−, z, b, c,−,−) � ϕ0 &
M, (−,−, a, z, c,−,−) � ϕ1 &
M, (−,−, a, b, z,−,−) � ϕ2.

In a similar way we extend the definition of the domino operator and the identity con-
stant; fori, i+1 < α, ands ∈ V we set

M, s � �(i,i+1)ϕ ⇐⇒ there exists anr s.t. r(i) = s(i + 1) andM, r � ϕ

M, s � ιδi j ⇐⇒ si = s j.

In the next definition, we specify a multi-dimensional semantics for any modal type.
A concrete example is provided in the proof of Theorem2.9.

Definition 2.8 Let S = {O, ρ} be an arbitrary similarity type.GCS denotes1 the
class of allα-dimensional frames whose universe is a subset of anα-dimensional
cube, and where

• α = 2 · |{∇ ∈ O : 0 ≤ ρ(∇) ≤ 2}| + ∑
2<n(n · |{∇ ∈ O : ρ(∇) = n}|), and

• the modal constants are interpreted as diagonalsιδi j,
• the monadic modalities are interpreted as inGC�, but now using the domino

operator�(i,i+1) onα-sequences, as described above,
• for n > 1, all modalities of rankn are interpreted as•κ of rankn, and
• the ιδi j, the�(i,i+1), and•κ are chosen such that all modalities are interpreted

on pairwise disjoint parts of theα-sequences.

We definedα precisely large enough such that every modality can be interpreted as
in the previous section on separate subsequences ofα. In this way we ensured that
there is no interaction between the different modalities.

The following theorem is a joint result with István Ńemeti and Ildiḱo Sain.

Theorem 2.9 Let S be an arbitrary similarity type. Then KS is strongly sound and
complete with respect to the (multi-dimensional) class GCS.

Proof: If S consists of just one modality, the theorem follows from one of Theo-
rems2.2, 2.5, or 2.7. If we have more than one modality, we have to do additional
work. Using the argument for monadic modalities given in the proof of Theorem2.5
and standard modal reasoning, it is easy to prove the theorem from the following
claim.

Claim 2.10 Let F = (W, R∇)∇∈S be a frame where all relations are either unary
or have rank higher than two. Then F is a zigzagmorphic image of a GCS-frame.
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F = (W, R�, R∇, Rν)

↙ ↓ ↘ split the frame

(W, R�) (W, R∇) (W, Rν)

↑ h1 ↑ h2 ↑ h3 zigzagmorphisms

(V1, CV1) (V2, CV2) (V3, D01
V3

)

↘ ↓ ↙ glue together

G = (V, C0,2
V , C2,3

V , D56
V )

Figure 1: Road map of the proof of theorem2.9

Proof of claim: Wedescribe the proof of this claim for the case of three modalities
�,∇, andν with ρ(�) = 2, ρ(∇) = 3, andρ(ν) = 0. It will be clear from the proof
how to extend it to any set of modalities. A “road map” of this proof is given in Fig-
ure1. Let F = (W, R�, R∇, Rν). Weshow that this frame is a zigzagmorphic image
of a frameG = (V, C0,2

V , C2,3
V , D56

V ), with V ⊆ U7, for some setU.
First we splitF into three frames, one for each relation. We applyK(•,n) =

ZigGCn and (2) to the three frames(W, R�), (W, R∇), and(W, Rν) and obtain three
frames(V1, CV1), (V2, CV2), and(V3, D01

V3
) in which V1 andV3 are binary relations

on setsU1 andU3, respectively, andV2 is a ternary relation on some setU2. The rela-
tionsCV andDij

V are defined as stated before. ByK(•,n) = ZigGCn and (2), the frames
(W, R�), (W, R∇), and(W, Rν) are zigzagmorphic images of the frames(V1, CV1),
(V2, CV2), and (V3, D01

V3
) by the functionsh1, h2, andh3, respectively. For conve-

nience, we denote thei-the coordinate of a sequences by si.
Wedefine,

V
def= {s ∈ (U1 ∪ U2 ∪ U3)

7 : (s0, s1) ∈ V1 & (s2, s3, s4) ∈ V2 &
(s5, s6) ∈ V3 & h1((s0, s1)) = h2((s2, s3, s4)) = h3((s5, s6))}.

Wedefine the frameG = (V, C0,2
V , C2,3

V , D56
V ).

By writing out definitions, we see thatC0,2
V srt if and only ifCV1(s0, s1)(r0, r1)(t0, t1),

and similarly for the two other relations. Now, we define a functionh : V −→
W as h(s) = h1(s0, s1). Note that, for alls ∈ V , we haveh(s) = h1(s0, s1) =
h2(s2, s3, s4) = h3(s5, s6). The reader might have expected that

h is a zigzagmorphism fromG ontoF. (4)

Wenow prove (4).
h is surjective. Let w ∈ W, then (becauseh1, h2, h3 are surjective) there ex-

ists s ∈ V1, r ∈ V2 and t ∈ V3, such thath1(s) = h2(r) = h3(t) = w. Thus,
(s0, s1, r0, r1, r3, t0, t1) is in V , and itsh-image equalsw.
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h is a homomorphism. Suppose thatC0,2
V srt holds:

C0,2
V srt ⇐⇒ (by definition ofV andC0,2

V )
CV1(s0, s1)(r0, r1)(t0, t1) ⇒ (h1 is a homomorphism)

R�h1(s0, s1)h1(r0, r1)h1(t0, t1)
def⇐⇒ R�h(s)h(r)h(t).

Becauseh(s) = h1(s0, s1) = h2(s2, s3, s4) = h3(s5, s6), the proofs forC2,3
V andD56

V
are similar.

h satisfies the zigzag condition. SupposeR∇h(s)y1y2y3 holds. Then, sinceh2

is zigzag andh(s) = h2(s2, s3, s4), wefind y′
1, y′

2, y′
3 ∈ V2, such thatCV2(s2, s3, s4),

(y′
1, y′

2, y′
3) andh2(y′

j) = y j. Chooser, t, v ∈ V which agree on the second, third
and fourth coordinate withy′

1, y′
2, y′

3, respectively. Since all labelling functions are
surjective, we can find suchr, t, v. By definition ofC2,3

V andh, wehaveC2,3
V srtv and

h(r) = y1, h(t) = y2 & h(v) = y3. The proofs forC0,2
V and D56

V are similar. This
finishes the proof of4.

Wehave proved the theorem for this special case. Note thatα = 7 = 2 · |{ν,�}| + 3 ·
|{∇}|. Looking at the road map of this proof, it is easily verified that we can extend
the proof to any set of modalities. �

2.3 Elementarity In this subsection we show that for finite similarity typesS the
classesGCS are elementary.

Theorem 2.11 Let S be a modal similarity type consisting of finitely many modal
operators. Then the class GCS is elementary.

Proof: We first show the theorem for types with just one modality. ForGC0 this
is immediate by (2). A first order definition ofGC� can be found in a similar way
as we will show forGC2; we leave the details to the reader. Forn > 1, we give

only the proof forn = 2. The other cases are similar. LetSQ def= {F = 〈V, CV〉 :
V = U × U for some setU}. BecauseGC2 consists of all substructures ofSQ, it
suffices to show thatSQ is elementary. (Because thenGC2 can be axiomatized by
all the universal consequences of the first-order theory ofSQ.) We need four ax-
ioms. We useIx as an abbreviation forCxxx. We also term-define two functions:

xl = y
def⇐⇒ Cxyx & Iy andxr = y

def⇐⇒ Cxxy & Iy (by the first axiom(·)l and(·)r

are total functions).

∀x∃!y(Cxyx & Iy), ∀x∃!y(Cxxy & Iy) (5)

xl = yl & xr = yr ⇒ x = y (6)

Cxyz ⇐⇒ xl = yl, yr = zl & zr = xr (7)

∀xy((Ix & Iy) ⇒ ∃z(x = zl & y = zr)) (8)

Any frameF = 〈W, C〉 satisfying (5)–(8) is isomorphic to the frame(I × I, CI×I ),
by the functionh defined ash(x) = (xl, xr). This finishes the proof forGCn.

This proof can easily be adapted to the case with finitely many modalities. By
way of illustration we show how to modify the last proof for the similarity type
{(�1,2), (�2,2)}. We show that any frameF = 〈W, C1, C2〉, with the Ci ternary,
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which satisfiesAx below is isomorphic to a frameG = 〈V, C0,2
V , C2,2

V 〉 with V =
U1×U1×U2×U2 for U1 andU2 some sets. Then the conclusion follows by the same
argument as given above. The set of axiomsAx is given as follows. We construct
predicatesI1 andI2 and functions(·)l1, (·)r1, (·)l2, (·)r1 as above fromC1 andC2, re-
spectively. The setAx consists of the indexed versions of (5) and (7) plus the follow-
ing two:

xl1 = yl1 & xr1 = yr1 & xl2 = yl2 & xr2 = yr2 ⇒ x = y, (9)

∀xyvw((I1x & I1y & I2v & I2w) ⇒
∃z(x = zl1 & y = zr1 & v = zl2 & w = zr2)). (10)

It is now straightforward to show that the functionh : W −→ I1×I1×I2×I2 defined
by h(x) = (xl1, xr1, xl2, xr2) is an isomorphism fromF to the frame(V, C0,2

V , C2,2
V )

with V = I1×I1×I2×I2. �
Wedo not know whether the classGCS is elementary for infiniteS.

3 Final remarks. In Henkin et al. [3] (remark 2.7.46) it is argued that a Kripke-
style semantics for modal logic is not satisfactory, because the relations in the frames
are “abstract.” Instead, they advocate a “geometrical” or “concrete” semantics. A
“concrete” semantics for modal logic should, in their terminology, consist of a class
of frames in which the relations are defined instraightforward set-theoretical terms,
the definitions are uniform for all frames involved, and as a consequence, each of
the frames is uniquely determined by its universe. The “standard”unravelling (cf.,
Sahlqvist [7], Bull and Segerberg [1]) of modal frames gives a representation which
is satisfactory from the above point of view. This result can be extended to any modal
logic, as is shown by de Rijke [2] (Proposition 6.3.5). We think however that the rep-
resentation given here is closer to the spirit of the remarks in [3]. The main advantage
of our representation is that the worlds in the frames are uniform: each world in each
frame is anα-long sequence (for somefixed α), whereas in the standard unravelling,
the worlds are sequences of arbitrary length. (Their length is important, because it
determines to which worlds it is related.) Moreover, it is not clear whether the class
obtained by unravelling is elementary. Finally, we think that the generalized compo-
sition relationsCV are rather intuitive, even if they do become awkward to draw once
the sequences are longer than 2.
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NOTE

1. We kept this definition deliberately imprecise in order to keep the intuituive idea ofGCS.
We can make it precise in the following way.GCS is the class of allα-dimensional
frames whereα is as above. Now letf be a function assigning to each operator inO a
finite subsequence ofα in such a way that the concatenation of allf -images is precisely
α. The modal constantsν are then interpreted asιδ f (ν), the monadic modalities� as in
GC�, using�( f (i), f (i+1)), and the higher-adic modalities∇ as generalized composition
• f (∇).
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