483

Notre Dame Journal of Formal Logic
Volume 37, Number 3, Summer 1996

Semantics for Two Second-Order
Logical Systems: =RRC* and

Cocchiarella’s RRC*

MAX A. FREUND

Abstract We develop a set-theoretic semantics for Cocchiarella’s second-
order logical systerRRC*. Such a semantics is a modification of the nonstan-
dard sort of second-order semantics described, firstly, by Simms and later ex-
tended by Cocchiarella. We formulate a new second order logical system and
prove its relative consistency. We call such a systeRRC* and construct its
set-theoretic semantics. Finally, we prove completeness theorems for proper
normal extensions of the two systems with respect to certain notions of validity
provided by the semantics.

1 Introduction  Conceptualism, as a philosophical theory of predication, posits
concepts as the semantic ground for the correct or incorrect application of predicate
expressions. Like many philosophical views, however, it is not a monolithic theory.
Thatis, different forms of the theory, not necessarily compatible, are podsibper-
ticularly interesting form igonceptual intensional realism.? Being a modern form of
conceptualism, it maintains a dispositional view of concepts. More precisely, it looks
at concepts as cognitive (human) capacities, or cognitive structures otherwise based
upon such capacities, to identify, characterize, classify, or relate objects. It is impor-
tant to note that this philosophical framework assumes that there is an ontological
distinction between objects and concepts. This distinction is reflected in their seman-
tic relation to expressions of the language: predicate expressions can never stand for
objects, only for concepts; singular terms can never denote concepts, only objects.
Another important feature of conceptual intensional realism is related to the
nominalization of predicate expressions, that is, the transformation of predicate ex-
pressions into abstract singular terfn€onceptual intensional realism is committed
to the assumption that some predicate expressions (standing for concepts) have nom-
inalizations denoting intensional objects. A connection is supposed to exist between
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the concept the predicate expression stands for and the intensional object denoted by
the nominalization of the expression, which is why such an object is also caibed a
cept correlate.?

Different features of a variant of conceptual intensional realism knowsahs
ist ramified constructive conceptualism have been described and analyzed by Coc-
chiarella, for example, ifd] and [J. This form of conceptualism posits concepts
formed in accord with the so called PoineaRussell vicious circle principle (as ap-
plied to concepts), that is, it postulates the existence of concepts whose construc-
tion does not involve a totality to which they belong. Formation of such concepts is
viewed as a potentially denumerably infinite process of hierarchized stages, in which
all concepts formed at one stage become the basis for the construction of concepts
formed at the next one(We shall hereafter refer to these sorts of concepts as “pred-
icative” or “constructible.”) Construction of concepts at any given stage (different
from the first one) is carried out by quantifying over concepts formed at the imme-
diate lower stage and closing them under Boolean operations. Realist ramified con-
structive conceptualism assumes that every predicative concept is correlated with an
intensional object and, consequently, that any nominalization of a predicate expres-
sion (standing for a predicative concept) is a singular term denoting one of such inten-
sional objects. Correlates of predicative concepts we shall call “constructive objects.”

Logical aspects of realist ramified constructive conceptualism have been ex-
pressed in the axiomatic logical systé®RC*, formulated in B] A set-theoretic
semantics for this system, however, has not yet been developed. In this paper we
construct such a semantics and prove, moreover, a completeness theorem for certain
extensions of the system with respect to a notion of validity provided by the seman-
tics. We developed this semantics by modifying the sort of models described, firstly
by Simms, for Cocchiarella’s systefmand, later adapted by Cocchiarella, for normal
extensions of his systemM*, such asT*, AT* or HST*.6 We should note that realist
ramified constructive conceptualism leaves open the possibility of postulating other
sorts of concepts (as well as of a decision concerning which ones of these other pos-
sible concepts would have a correlate). [#} [[3], [E] and [7], second-order logical
systems have been presented whose philosophical background implies the existence
of impredicative concepts the formation of which presupposes the predicative con-
cept formation process.

Within the context of realist ramified constructive conceptualism, identity can
not be reduced to indiscernibility (with respect to predicative concepts). This is be-
cause the only circumstance in which such a reduction could be possible is that one
in which every well-formed formula would stand for a predicative concept. But such
a circumstance can never obtain, since (according to the philosophical framework
of realist ramified constructive conceptualism) what motivates the transition from
one given stage of concept formation to the next one is, precisely that at that given
stage not every well-formed formula stands for a concept. Therefore, an identity free
second-order logical system (having realist ramified constructive conceptualism as its
philosophical background) would be a system in which identity could not be defini-
tionally introduced. Such a system so far has not been formulated and this is our topic
in the third part of this paper. More precisely, in the third section of this paper we state
a econd-order logical system (vizZRRC*) involving indiscernibility with respect
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to predicative concepts and in which identity is no longer among the primitive logical
symbols’ We also prove the relative consistency=sRRC* as well as develop its
set-theoretic semantics; relative to such a semantics, we prove a completeness theo-
rem. We should note thatRRC* is not a restriction oRRC* to the identity-free
language.

2 The Syntax of RRC*  We begin by describing the syntax BIRC*. We take a
languageL to be a countable set of individual and predicate constants. We assume the
availability of denumerably many individual variables as well as denumerably many
n-place predicate variables (for each natural nunmpeYVe shall usex’,'y,” * z, and

‘w’, with or without numerical subscripts, to refer in the metalanguage to individ-
ual variables andF™, G"and ‘R™ to refer ton-place predicate variables. We shall
usually drop the superscript when the context makes clear the degree of a predicate
variable or when it otherwise does not matter what degree it is. For convenience, we
shall also useu’ in order to refer to variables in general. As primitive logical con-
stants we take>, =, —, A, V, andV/ (for each natural numbgr> 0).

The reader should recall from the introduction that concept formation, accord-
ing to ramified conceptualism, constitutes a countably infinite hierarchy of levels,
in which concepts formed at a certain level are taken as the basis for concept for-
mation at the next level. The denumerably infinite series of universal quantifiers
vl v2, v3 w4 v5 ... assumed as primitive logical constants, corresponds to the hi-
erarchy of levels: for every positive numbietthe constan¥' when applied either
to ann-place predicate or individual variable should be intuitively understood, re-
spectively, as universally quantifying either oveary concepts formed at stagef
the process of predicative concept formation or over correlates of concepts formed at
stagei.

The constantV’ when applied to individual variables should be intuitively un-
derstood as universally quantifying over individuals. The occurrence of the lambda
operator, among the logical primitives, is to allow for the formation of lambda ab-
stracts as complex predicate expressions. The constaptsand = should be inter-
preted intuitively as the material implication, classical negation, and identity, respec-
tively.

Given a languagé (i.e., a set of individual and predicate constants), we define
recursively expressions of typeof £, (in symbols, ME(£)) as follows.

1. Every individual variable or constant is in M&), everyn-place predicate
variable or constant is in both ME;(£) and MEy(L).

2. If a,b e MEg(L), then(a = b) € ME1(L).

If € ME,1(£) anday, ..., ay € MEg(L), thenz(ay, ... a,) € ME1(L).

4. If § e ME1(£L) andXy, ..., X, are pairwise distinct individual variables, then
[AX1, ..., Xnd] € MEp1(L).

5. If § € ME1(£), then—§ € ME1(L).

6. If §,0 € ME1(£), then(§ — o) € ME1(L).

7. If § e ME(£), xis an individual variableF is a predicate variable, ands a
positive integer, theivx)s, (v/x)s and (V! F)§ € ME1(L).

8. If § e ME (L), then P.8] € MEg(L).

w
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9. If n> 1, then ME,(£) € MEg(L).

For n € w we shall understand ME1(£) to be the set oh-place predicate expres-
sions of L. ME;(£) will contain all well-formed formulas ofL (wffs) and MEy(L)

all terms of L. Note that by clause (9), far > 1, everyn-place predicate expression
is also term. Fon = 0, only wffs prefixed by the lambda operator (that is, of the form
[Lo], whereo is a wff) are terms. We shall use ‘a’,'t" and ‘b’, with or without numer-
ical subscripts, to refer to terms in general. We set MEE ., MEn(L) (where

w is the set of natural numbers), that is, the set of meaningful expressians\wé
shalluseé’, ‘ u’, ‘o', ' 6", ‘" and '’ to refer to meaningful expressions 6f

Now, whereo, 1 € ME(L), we define & is a subexpression of (‘subexp’, for
short) as follows: (aj is a subexp ofi; (b) if o is a subexp ofr and is of the form
7(ty,...,th), wherer € ME,1(£) andty, ..., t, € MEg(L), then 7’ and 1,".. .,
‘tn’ are subexp ofi; (c) if § is a subexp ofe and is of either the forror — «, —«
[AX1, ..., Xno], (VX)a or ((Viu)a), theno, o are subexp of. In other words, the
subexpressions of a meaningful expressiane those expressions occurring ifin-
cluding$ itself) which are meaningful expressions £f

An occurrence of an individual variabkan an expressioais said to be &#ound
occurrence if it is an occurrence within a subexg aff the form (vx)o, (V/x)o or
[AY1...¥no], wherex = y;, for somey;, otherwise it is said to be faee occurrence.
An occurrence of a predicate varialffein an expressiod is said to be a bound oc-
currence if itis an occurrence within a subexp of the form (V! F)o, otherwise itis
said to be dree occurrence. An occurrence of a tetrim an expressiod is a bound
occurrence if some occurrence of a variableigifree int but bound ins. The bound
and free terms of an expression are the terms having bound or free occurrences in that
expression.

Let £ be alanguage. fandb are terms ofz, i.e.,t, b € MEg(L), we shall take
3(t/b) to be the expression which results by replacing ach free occurrence of
b by a free occurrence @f if such an expression exists, in which case we saytthat
is free for b in §; if no such expression exists, then we tal(¢/b) to be justs itself.
Finally, if o is a wiff of L, then we shall say that is basic if and only if it is of the
form nty .. . ty, wherer € ME1(£) andty, .. ., t, are terms.

We proceed now to describe the axiomatic sysRRC*.2 Whereu is a pred-
icate or individual variablex ando are wffs, anday, ..., a, terms, the axioms of
RRC* are as follows.

(AO) All tautologous wffs.

(AD (V01— o) > (YX)u = (¥X)0).

A2 Mu(u—o)— (YM'uyu— (Y'u)o), whereuis an individ-
ual or predicate variable.

(A3) o — (VX)o, wherex does not occur free ia.

(A4 o — (Viu)o, whereu does not occur free ia.

(A5)  (Y'u)o — (Viuyo,i > j.

(AB) a=a

(A7) (v)@Ey)x=Yy.

(A8)  (V'@A'y)x=y.

(A9 (VIF)@yy=F.
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(A10) (¥ @y)x=Yy.

(LL*) Ifa=b— (u < o),wheresc comes fromu by replacing one
or more free occurrences atby free occurrences df.

(ID*)  [AXy,..., X R(X1, ..., Xn)] = R(whereRis ann-place pred-
icate variable or constant).

(3/A-CONV)  [AX1,...,X%Xp0l(@1, ..., &) <  (@X) - @)Xy =
a1 & -+ & X = a, & o) (provided x; is not free in any
aj, O<i,j<n.

(Rw)  [AX1,...,Xn0] = [AV1, ..., Yno(Y1/X1 - Yn/Xn)], Where no
yi OCcCurs ino. _ _ _
(RRCP*)  (Vlyp) - (Vym)(VIF) - (V) QG ([Ax1, ..., Xn0] = G).

where (1)o is a wif in which no nonlogical constants occur and in which the identity
sign does not occur, (Zp is ann-place predicate variable not occurring freesin

(3) for all k > j, ‘V¥'does not occur irr, and (4)F4, ..., F are all of the pairwise
distinct predicate variables occurring freedrandys, ..., Ym, X1, ..., Xn are all of
the pairwise distinct individual variables occurring freesinThe inference rules of
RRC* aremodus ponens,

(MP) Fromo — § ando, infer§.
anduniversal generalization with respect to an individual and predicate variable,
(UG)  Fromo, infer (¥X)o, (Vix)o and(ViF)o.

The reader should note that, according to the intuitive interpretation of the logical
constants we have given above, A5 would be asserting that predicative concept for-
mation is cumulative, A9 that for every predicative concept there is a correlate and,
finally, A10 that concept correlates are existing objects. Schema RRCP!* expresses
conditions under which a predicate expression will stand for a predicative concept.
Since the first and third restriction of the schema might not be obvious, we shall offer
a krief and intuitive justification of them.

Beginning with the first restriction, we should note that identity implies indis-
cernibility with respect to all predicative concepts and should allow for the full sub-
stitutivity of terms in impredicative contexts as well. Then, it cannot be assumed that
an identity expression will, in general, stand for a predicative concept and hence the
restriction of not allowing such an expression to occur in an instance of RRCP!*.

Concerning again the first restriction, we should note that, according to ramified
constructive conceptualism, the domain of discourse and how that domain is concep-
tually represented determine which predicate constants will stand for predicative con-
cepts. Then, obviously, relative to a given domain of discourse in a given conceptual-
ization, a predicate constant might stand for a primitive concept while in some other
conceptualization the same predicate constant might not stand for a predicative con-
ceptor for no concept at all. Itis for this reason that ramified constructive conceptual-
ism is said to be free of existential presuppositions regarding predicate constants and
variables, and so the restriction of not allowing occurrences of predicate constants in
instances of the Comprehension Schema RRCP!*,

The third restriction corresponds to the nature of predicative concept formation.
Formation of predicative concepts at a certain lev@h the hierarchy of predicative
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concept formation cannot presuppose concepts whose formation is supposed to be
given at levels higher thah.

Note that none of the restrictions forbids the occurrences of unrestricted individ-
ual quantifiers such a¥%’. Such quantifiers range, intuitively, over all existing ob-
jects, including concept correlates of predicative concepts, vebéhsto run against
the intuitions behind the restriction of the third clause. For example, according to
RRCP!*, ‘[»y(3x)(31F)Fxy] stands for a predicative concept, even though it pre-
supposes as given the complete totality of concept correlates. However, we should
recall that Poincd-Russell Principle is being applied (in the framework of ramified
conceptualism) to concept formationly and not to object construction such as the
formation of concept correlates. Constructive objects are entities not constructed by
the mind and are ontologically independent of concept formation, even though they
are correlated to predicative concepts. Soitis ontologically possible for them to exist
even if no corresponding concepts have been formed. Their construction is not as-
sumed to be carried out following the PoingdRussell Principle. However, the third
restriction to RRCP!* concerning quantifiers ranging over correlates of predicative
concepts is due to the indirect reference to predicative concepts of such quantifiers.

We now define what it is to be a theoremRRC* (in symbols ‘-grre) as fol-
lows:

Frre 6 if and only if there is a finite sequendg, . . ., §, = & of wifs

such that for each(0 < i < n) either,

1. §; is an axiom;
2. there arg, k € w(0 < j, k < i) such thatsy = (8§; — &),

or

3. thereisj e w(0 < j <), such that eithed; = (Vx)8; or8; = (Y"u)s;, for some
m e w — {0}, whereu is either a predicate variable or an individual variable.

That is, a theorem dRRC* is a wff for which there is a finite sequen&fulfilling
the following conditions: (1) every member 8is a wff, which is either an axiom of
RRC* or follows from preceding wffs irS by the rules oRRC* (i.e., either byMP
or UG); (2) o is the last member db. We sy thatr is a theorem of within RRC*
(in symbolsy Frre 1) if and only if for somen € w there are wff$1,...,8, € =
such that-gre- (61 & , ..., & 8n) — 1 (wheren = 0, we take this “conditional” to
bet itself). The following are theorems &RC* whose proof can be found iBJ

@/NI*)  Frre @X)(X=2a) — ((VX)o — o(a/Xx)) (providedx does not
occur free ina anda is free forxin o).
(F/UI*y))  Frrer @'X)(X=a) = ((¥V!X)o — o(a/x)) (providedx does
not occur free i anda is free forxin o).
@/NI*})  Frre @IF)(F=t) - ((VIF)o — o(t/F)) (providedF does
not occur free irt andt is free forF in o).
(EG/0) Frre @X)(X=a) — (o(a/X) — (IX)o) (providedx does not
occur free il anda s free forxin o).
(EG/0/j)  Frre @'X)(x=a) — (o(a/x) — ('x)o) (providedx does
not occur free ira anda is free forxin o).
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(EG/j) Fgrrer @'F)(F=1)— (6(t/F) - (3'F)o) (providedF does
not occur free irt andt is free forF in o).

(TH1) Frre (VF)YE'G)(F=G)i<|.

(TH2) Fgrre (VX))o < (VY)o(y/X) (providedy is free forxin o andy

does not occur free in).

(TH3) Fgrre (VX))o < (Y'y)o(y/X) (providedy is free forxin o and
y does not occur free ia).

(TH4) Frre (V'F)o < (V!G)o(G/F) (providedG is free forF in o
andG does not occur free ia).

(TH5) tFgrre @x=t— @lx)x=t,k<j.

(TH6) Frre @F)F=t— @F)F=tk<].

The reader should note that {UI*), (3 /Ul*qj), 3 /UI*/ j) are restricted forms of
instantiation with respect to the universal quantifiers of the systen2 T# onsti-
tute rewrite laws for predicate and individual variables. TH5 — 6 state the cumulative
character of predicative concept formation.

By anormal extension ¥ of RRC* (in symbols,2-RRC*) weunderstand an ax-
iomatic extension oRRC* which has the same inference rule$a®C*. Theorem-
hood inZ-RRC* (in symbolsts-rre 7) isdefined in way analogous to theorem-
hood inRRC*. We dhall say thatr is atheorem of I within X-RRC* (in symbols,

I' Fs-rre T), if and only if for somen € w there are wff$i,, ..., 8, € I such that
Fs-rre (81, ...,68n) — T (again, wheren = 0 we take this “conditional” to be just
7 itself). We say that a sét of wffs is X-RRC*-consistent if and only if there is no
wff T such thall” Fs-rres — (7 — 1), and thatl” is X-RRC*-maximally consistent

if and only if it is X-RRC*-consistent and for every wif eithero € I' or ' U {0} is
not X-RRC*-consistent. A normal extensidn -RRC* is aproper extension if and
only if for everyo € ME (L), if Fs-rre+ 0, thenks-grre o(t/a) where t' and ‘@’
are terms of the same type. Finally, by arcomplete sef” we understand a set of
wiffs which satisfies the following conditions.

1. If @x)o € T, then there is a termwhich is free forx in o (and in whichx does
not occur free) such that(t/x) e Cand(@x)(x=1t) € I'.

2. If Qlu)o € I, then there is a ternof the same type aswhich is free foruin o
(and in whichu does not occur free) such that(t/u) € Tand(Flu)y(u=t) e T
(whereu is either an individual or predicate variable).

3 Set-theoretic semantics for RRC*  We shall now describe the set-theoretic se-
mantics we have developed lRRC*.° We shall proceed as follows: we first char-
acterize the notion of a Simms-structure for Realist Ramified Constructive Concep-
tualism (arRRC*-S-structure); then, we introduce the concept of a moddRRC*
and a given languagé (anRRC*- L-model); finally, we define the concept of an in-
terpretation for a languagé based on afRRC*-structure and, relative to such an
interpretation, the concepts of satisfaction, truth and validity.

By a Simms-structure for Realist Ramified Constructive ConceptuaR&eCt -
S-structure) we understand a structure

S= (D, E.Cj, X(jm: Yn. H. f).n€ w, j € w — {0}

where
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Ec D,

Cj CE,

CicC, =Kk,

X(j,n) - Yn,

X € Xkny, J <K,

YnNYn=0,ifn#m,

D#g,

Yh# J, NE w,

- H S Unpep(Yn x DY),

. fis afunction fromD U (|, Yn) into D such that
(@) f(x) =xif xe D.

(b) for everyj e w — {0}, if ze U, X(j.n), thenf(2) € Cj.

© o No TR WDNPE

=
o

We shall now present an intuitive explanation of the elements constituting an
RRC*-S-structure. This explanation and the one on page 492 will help the reader to
understand how our semantics captures different features of realist ramified construc-
tive conceptualism. Such features include the hierarchical and cumulative nature of
predicative concept formation, the correlation of predicative concepts to certain exist-
ing objects, the approach to predication as a relation between objects and universals
(but which is not the membership relation) and the view that predicates stand for en-
tities other than sets.

We begin with setdD, E, andY, of any RRC*-S-structure. Seb represents
the set of individualsE the set of existing individuals andg, the set of universals
corresponding ta-place predicates. The reader will note that there is nothing in the
semantics that will require us to think of the elements of theYgeif universals as
extensional entities, such as sets. Our intention is rather to think of univer¥alasn
concepts, as the set ofary predicative concepts. By clause 6, mplace universal
is m-place, whenevem # n.

According to ramified conceptualism, concept formation constitutes a countably
infinite hierarchy of levels, in which concepts formed at certain level are taken as the
basis of concept formation at the next level. Formation of a new level is carried out
by quantifying over concepts of the immediate lower level and closing them under
Boolean operations. The set of predicativplace concepts constructed at certain
level j will be represented by the s&t ) of anRRC*-S-structure. Obviously, ev-
ery concept formed in accordance with principles of ramified conceptualism should
be considered to be a member of the set of all predicative concepts. This idea is ex-
pressed in clause 4, in which it is stated that, for every I¢uMble set oh-place pred-
icative concepts should contain the predicativelace concepts formed @t

Another important aspect of the structure of predicative concept formation is the
cumulative character of every level, according to which concepts formed at certain
level will be among the concepts formed at any subsequent level. This feature of
predicative concept formation is expressed in clause 5 of the semantics, ¥hgre
is required to be a subset &y ) wheneverj < k.

The version of conceptualism assumed in this article also postulates objects cor-
related with predicative concepts. Recall that such objects are called “constructive”
and constitute, according to conceptualism, the reference of the nominalizations of
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predicates standing for constructive or predicative concepts. Concept correlation is
represented, in our semantics, byfimaction f. Clause 10b expresses the assumption
that there should always be an object correlated with every constructive concept. The
set of objects correlated with concepts of certain lg\ae represented by the <&t
Because of the cumulative and hierarchical nature of predicative concept formation,
constructive objects are to be viewed in the same cumulative and hierarchical way.
For this reason, in clause 3 it is required tkatbe a subset of, wheneverj < k.
Finally, according to realist ramified conceptualism, constructive objects should be
understood as existing entities and this is expressed by clause 2 of the semantics.
So far, we have intuitively explained clauses 1-8 and 10. Before proceding to
explain clause 9, we first need to describe more elements of the semantics. (50, let
be a language angla function with £ as domain such that: (a) for every individual
constant € £, g(c) € D, (b) for everyn-place predicate constakt' € £, g(P") €
Yn. By arealist ramified constructive conceptualist model fo(RRC*- L-model)
we shall understand an ordered p@ir = (S, g),whereSis anRRC*-S-structure.
By an assignmenf in aRRC*-structureSwe understand a function with the set of
variables of all types as domain such that (& i an individual variableA(x) € D
(b) if Fisavariable of typa+ 1, A(F) € Y, (for n € w). If Ais an assignment, then
A(d/u) = (A— {{u, A(u)} U {{u, d)}), that is, A(d/u) is an assignment which is
exactly like A except (at most) for its assigningo u (whereu is either an individual
or predicate variable). Finally, we want to point out that lyy*we mean the empty
sequence and, for convenience, sometimes we will wtdeld) € H” as “aHb".
If Lisalanguage an@/ = (S, g) is aRRC*- L-model, then we shall say thaf
is aRRC*- L-interpretation, if there is a functioral \y defined for each assignment
Ain Sso thatval y_a is a function with ME() asdomain and, for ever§y € ME(L),
val v, a satisfies the following conditions.

1. If 5 is a variable, themaly aA(8) = A(S).

If § is a constant inC, thenvaly a(8) = g(38).

2.1f § is w(ad,...,an) (where 7 € MEy (L)) and
ai,...,an € MEo(L) then, (valm a(8),( )) € H if and only if
(valm, a(m), (f(valy a(ar)), ... f(valm a(an)))) € H.

3. If §is [AXy, ..., Xn0] (Whered € ME; (L)), then for alld,, ...,dy €
D, UalM,A((S) H(dl, RN dn> if and onIy if valMﬁ/_\(dl/Xl ,,,,, dn/xn)(e) H()
anddq,...,d, € E.

4. If § is —t, thenvaly a(§)H( ) if and only if it is not the case that
vaIM,A(r)H( )

5. If §is (u — 1), thenvaly a(8)H( ) if and only if either it is not the
case thavaly a(u)H() orvaly a(t)H().

6. If § is (YX)u, thenvaly a(8)H( ) if and only if for everyd € E,
valM,A(d/x)(M)H< ).

7. 1f 8§ is (V™) u, thenvaly a(§)H( ) if and only if for everyd e
Ch, UaIM,A(d/X)(M)H< )

8. If 8 is (V"FMpu, thenwvaly a(8)H( ) if and only if for everyp €
X(m,n)UaIM,A(p/F)(M)H< ).

9. If §is [An], thenvaly a(8)H() if and only if valpm a()H( ).
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10. If § is a = b, thenvaly a(85)H( ) if and only if f(valy a(@)) =
f(valM’/_\(b)).

We sshall proceed now to explain clause 9 on page 490. We begin by pointing out
that, as noted by Cocchiarella [ at least two approaches to predication should be
distinguished. According to one of the approaches, predication should be taken as a
fundamental and irreducible relation between the universal and the objects of which
the universal is being predicated. Its characteristics are to be determined by the philo-
sophical background assumed: different philosophical theories concerning the nature
of universals, such as logical realism, nominalism and conceptualism, will result in
different views of what the essential properties of predication should beaccor-
dance with the second approach, predication should be interpreted in terms of mem-
bership in a set, that is, predication should be reduced to the membership of certain
objects in certain particular sets and so there being no need for a theory of predication.
Examples of both approaches can be found in the two semantic systems, developed
by Montague, for his first and second intensional logics (viz., his higher order modal
logic and his sense-denotation intensional logic). (See Mont&jul2]). The sec-
ond intensional logic represents predication in terms of membership, while the first
one assumes predication to be a more fundamental concept than membership, since,
as pointed out by Cocchiarellain [5, p. 54], membership in a class is defined in Mon-
tague’s higher order modal predicate logic in terms of predication.

An approach to predication in terms of membership in a set is not compatible
with a philosophical framework assuming conceptualism as a theory of universals.
According to this philosophical theory, predicates should be understood as standing
for concepts and concepts are to be viewed as cognitive capacities, as intensional enti-
ties which do not have an individual nature but are rather unsaturated cognitive struc-
tures. On the other hand, predication is to be interpreted as a relation: as the relation
of “an object falling under a concept” or as “the saturation of a concept by an object.”
This relation is not to be understood, according to conceptualism, as membership in
a set.

One of the important and interesting features of the semantic system we have
here developed is that predication is formally represented as a two-place relation but
not as the membership relation. According to clause 9 on page 490 and the defini-
tion of an L-interpretation, predication should be understexténsionally as theH-
relation: " P(ay, ..., ap) 'is true if and only if the (correlates of thajtuple of enti-
tiesreferredto bya;,’ ..., ‘ay’ fallunder the relationd with the universal for which
the predicate expressioR" stands; in other words, that a universal be relatedto a
tuple of individuals byH will indicate that such a universal is being predicated of
the individuals of then-tuple. However, nothing in the semantics suggests that the
H-relation should be understood as the membership relation: each membeHof the
relation is an ordered pair in which the first element is a universal belonging to the
setY, of n-place universals and the second one istaple of individuals of the set
D. But it is not being assumed that the element¥,phre sets under which the
tuples might fall as members of such sets. We are rather takirig be the set of
n-ary predicative concepts and, consequently, the first component of the retation
will correspond to a concept under which the other components fall.

We shall now define truth, validity and other related semantic concepts. As
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usual, we shall define the notions of truth and validity in terms of satisfaction. Let
L be a languageM = (S, g) an RRC*- L-interpretation,A an assignment irg,

§ € ME(£) and 2-RRC* a proper normal extension ®RC*. We definesatis-
faction, truth, and =-RRC*-validity of § in M as follows:

1. Asatisfiess in M if and only if valy A(8)H ().

2. §istruein M if and only if every assignment i8 satisfiess in M.

3. § is SRRC*-valid if and only if for all RRC*- L-interpretationsM, if every
axiom of =-RRC* is true inM, thens is true in‘M.

4. T' is Z-RRC*-satisfiableif and only if there is an assignmeAtand arRRC*-
L-interpretation®M in which every axiom of£-RRC* is true and such thaa
satisfiess in M , for everys € T".

We shall proceed now to prove soundness and completeness of a proper extension
¥-RRC* with respect tax-validity.

3.1 Soundness and completeness of X-RRC* with respect to X-RRC*-validity

Let X-RRC* be a proper extension (see page 489 for a definition of this concept).
It can easily be shown that for evesye ME1(£), -5 _grrc* ¢ only if Z-RRC* is
3-RRC*-valid. Then, we show only completeness3RRC* with respect tox-
RRC*-validity.

Theorem 3.1 (Completeness) Let £ bea countablelanguageand " € ME;(£). If
I'is X-RRC*-consistent, then I is - RRC*-satisfiable.

Proof: WeextendL to a languageCt by adding to it a denumerable set of distinct
constants for each typee w. It can easily be shown thatis £-RRC*-consistent
in LT,

_ Weassume an enumeratiéq ... ., &, . . . of all the wffs of LT of either the form
“(3'u)o” (whereu s either an individual or predicate variable) or the for(@x)o™".
We define a chaiiy, ..., 'y, ... by recursion, as follows.

1. To=T.

2. Ifdpi1is (3luye ando is not an identity(a = u)(wherea is of the same type
asu), thenl'n1 = U {@lu)o — (o(b/u) & 3iu)(b = u))}, wherebis the
first constant inL™ of the same type aswhich is new tol'y U {8n1).

3. If 8p41 is of the form(3X)o, thenT 1 = Th U {(@X)o — (o(c/X) & (IX)X =
©)}, wherec is the first individual constant which is new I U {§n1}.

4. If 8,11 is (3'uyu = a (wherea is of the same type as), thenl',,; = 'y U
{(Fuwyu=a— b=a, (-@lu)u=a) — b= a}, whereb s the first constant
in LT of the same type aswhich is new tol', U {8n,1}-

We observe that, by hypothesigy is X-RRC*-consistent. Using universal general-
ization, A8-9, TH 1, elementary logical operations and the assumptioRtRRC*

is a proper extension ®&RC*, it can be shown (by reductio ad absurdum) gt

is X-RRC*-consistent, i, is X-RRC*-consistent. We conclude, accordingly, that
I'* = [Upeo I'n IS Z-RRC*-consistent. By Lindenbaum’s method, we extérido a
maximally X-RRC*-consistent sekK.
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Note that, by constructiorK is w -complete. Also, by clause 4 above, for every
termathere is a constariit of the same type such that= b € K. On pp. 494-5, the
reader will note that this part of the construction is needed in the completeness proof.

Let ||t]| (wheret € MEg(L™), i.e., a term ofL™) be the equivalence class de-
termined by the equivalence relatior™ defined as followst ~ a if and only if
t = a e K (wheret anda are terms). LeSX be the structure

(D, E,C), X(jn) Yo, H, fiN€w, j € w— {0}

where

1. D={|itll | t € MEo(LT)};

E={|t] € D| (3x)x=t € K, xdoes not occur free ih};

Cl={|It] e D| @x)x =t € K, x does not occur free in};

Yo ={litl € D |t € MEqy(L1));

Xim = {lIth € Yo | @'F)t = F € K, F doesn't occur free in and is of the
same type at};

f is the identity function orD, i.e.,f (||t]]) = ||t|| ,for every|t|| € D;

- H=Uneo Izl (Itall, .o, Itnll)) € Ya x D" | 7ty ..., th € K}

We prove SK to be anRRC*- structure.

1. EC D, X(j,nm € YnandH < [J,,c,{Yn x Dn} (directly from the definitions).

2. D # @ andY, # @ (sincet =t € K, foreveryt € MEg(L), and ME,,1(L™")
+ 2).

3. YaN Y= @ (since ME1(LT) NME1(LT) = @), form # n.

4. C,CE.

A A

N o

Proof of 41 So supposa € Cj. By assumption and definition &;, a = |t||
for somet € MEg(L") such that@'x)x =t € K. By (3 /Ul*¢j), A10 and
Modus Poneng3x)x =t € K and sca = ||t € E. O

5. CKECJ' if k< j
Proof of 5. So supposa € Cy. By assumption and definition dZy there is

ate MEO(_L+) such tha@ = ||t and (F*x)x = t € K. By TH 5 and Modus
Ponens(3!/x)x =t € K and sca = |t|| € C;j. O

6. X(k’n) g X(j’n), If k S j.
Proof of 6:  Similar to 5, but using TH 6 instead of TH 5. O

7. Sincef is the identity function oD andY, € D (for everyn € w) only clause
(b) remains to be proved.

So suppose € (U, X(j,n- By assumption, for some € o, there is ar
ME1 such thaz = ||z| and(3'F") 7 = F € K. Then py A9 ,(3/UI*¢) and Modus
Ponens) 3'x) = x € K. So, by definition off, z= ||z = f(||=|) € C;.

Let g be the function with languagé™ as domain such that for everye
L1, g(c) = |ic||. Let MK = (SK, g). Clearly MK is anRRC*-L*-model, since we
already showed th&K is anRRC*-structure.
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We must note now that by constructionléf more precisely, by clause 4 on page
493, ift is a term of LT of typen, then there is a constabte L' of typen such
thatt = b € K. Therefore, for every assignmeatin S¥ and finite set of variables
{ay, ..., an}, there is a finite sefiby, . . ., by} of constants such that

1. g is of the same type ds, and
2. A@) = |Ibill.

So lets € ME(LY), {d4, ..., dn} be the set of all variables occurring freedrand
{bs, ..., b} the set of first constants that satisfy conditions (1) and (2) above. We
defines 5 as follows:

Sa=af 8(b1/dy, ..., bn/dn).
Let VAL A be a function on MEL™) such that for every € ME(L™):

1. if § is a variable, then VAL () = A(S);
2. if §is a constant inC™, then VALA(S) = g(8);

3. ifsism(ay, ..., an) (Wherer € ME, 1(L1)anday, ..., a, € MEg(L™)) then
VAL A(8) = [I[A8] All;

4. if §is [AXq, ..., Xn0] (Whered € ME1(LT)), then VALA(S) = || all;

5. if §is =1, then VALA(S) = ||[[Ad] all;

6. if §is (u — 1), then VALA(8) = ||[[Ad] all;

7. if §is (VX)u, then VALA(S) = |[[Ad] all;

8. if §is (V™X)u, then VALA(S) = |[[AS]all;

9. if §is (V"F")u, then VALA(S) = [|[A8] all;
10. if§is [Au], then VALA(S) = ||8all;
11. ifsisa= Db, then VALA(S) = ||[[A8] all-

We prove by induction over the set of meaningful expressionsfothat VAL 5 satis-
fies the conditions fopaly a in the definition of anrRRC*- L-interpretation. (For
definition of this concept see page 491). Bet ME(L™".)

1. Clearly VAL satisfies the corresponding clauses whereither a variable or
se LT,

2. If Sism(ay,...,an) (Wherer € ME,1(LT) anday, ..., a, € MEqn1(L1))
then VALA(8)H () if and only if (by definition)

[)\.7'[(8.1, ...,an)]A e K

if and only if (since, by §/A-CONV), o < [Ac] is aprovable schema of
RRC*)
w(ag,...,an)A € K

if and only if (by definition)
IwallH @1l - . llanall)
if and only if (sincef (VAL a(am)) = ||amall,forL<m=<n)

VAL a(m)H(f (VAL a(a1), ..., T(VAL a(an))).
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3. If§is[AXq, ..., X0] (Whered € ME{(LT)) andty, ..., t, € MEg(LT), then
VAL a([AXa, ..., Xa6DHAIG L ., lItall)
if and only if (by definitions)
[AX1, ..., X0l a(ty, ..., th) € K
if and only if (by 3/A-CONV, w-completeness, EG/0) there are constants

C1, ..., Cnhsuch that
Ax)(X=cCc) & ,..., & @) (X =Cn) &

C=11&,..., &ch=1,& 0(C1/X1,...,Ch/Xn)a) € K
if and only if (by definition of E and LL*) there are constams . .., ¢, such
that

(tall, ..., lItall) € E"

and

Ci=t1&,..., &ch=1t,& 0(C1/X1,...,Ch/Xn)a € K
if and only if (by construction oK, LL* and definitions)

(Itall, .-, lItnll) € E" andOa(litall/Xa, - -, Itnll /Xn) € K
if and only if (by3/A-CONV and definitions)

(Itall, ..., Itnll) € E" and VALA(lItall /X1, - . ., Itall/Xn) (O)H ().

4. If §is =1, (u — 1) or [Au], then it can easily be shown that VAlLsatisfies
their corresponding clauses using the inductive hypothesis. The casedvhere
is a= b can be proved by an argument similar to the one for atomic formulas.

5. If §is (YV"FMu then VALA(S)H () if and only if (by definition)

[A(Y"FMHula € K
if and only if (by @/A-CONV))
(YV"FMHu)a e K

if and only if (by w-completeness of K and @ /U.1.* |)) for all constants of
the same type aB,

if @MF)F =ce K, thenu(c/F)a e K

if and only if (by LL*, construction ofK and @/A-CONV)) for all constantg
of the same type aB,

if 3™F)(F =c) € K,then VALa(|Ic|l/F)(u)H().

We must note thatl € X ny if and only if there is a constamtof typen such
that
Ic =dand(@"F)F =ce K.

So
(V"FMua € Kif and only if, for everyd € X n), VAL acg/r) () H().
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6. By an argument similar to the one above, it can be proved thai\&stisfies
the corresponding clauses wheis either(V!x)u or (VX) .

Therefore, since VAl fulfills the conditions fowal y_a, MK = (S, g) is anRRC*-
Lt-interpretation. LetAX be the assignment i8¢ such thatAX (u) = |jul|, whereu
is either a predicate or individual variable. Now, it is clear that (by LL* and defini-
tions)d ak € Kif and only if § € K. Onthe other hand, from the definition of VALt
follows that VALA(S)H( ) ifand only if 55 € K, for every assignmerA. Therefore,
VAL AK(8)H( ) if and only if § € K. So AK satisfies" in M. Also every axiom
of £-RRC* is true inM K and MP and UG preserve truth K. Restrict nowM K
to L. Weget, then, aflRRC*- L-interpretation and assignmeAf which satisfied".

U

4 System =RRC* and its set-theoretic semantics  As noted in the introduction,
identity can not be reduced to indiscernibility (with respect to predicative concepts) as
long as we assume the philosophical framework of realist ramified constructive con-
ceptualism. This is because the only circumstance in which such a reduction could
be possible is that one in which every wif would stand for a predicative concept. But
such a circumstance can never obtain, since (according to the philosophical frame-
work of realist ramified constructive conceptualism) what motivates the transition
from one given stage of concept formation to the next one is, precisely that at that
given stage not every wif stands for a concept. Therefore, an identity free second-
order logical system (having realist ramified constructive conceptualism as its philo-
sophical background) would be a system in which identity could not be definitionally
introduced.

In this section, we introduce an axiomatic second-order logical system involving
indiscernibility with respect to predicative concepts (and having realist ramified con-
structive conceptualism as its philosophical background). We prove its relative con-
sistency. We also develop its set-theoretic semantics as well as prove a completeness
theorem for proper normal extensions of the system with respect to a certain notion
of validity, provided by the semantics.

We begin by defining the set adlentity free-RRC* -meaningful expressionsof a
language L (in symbols =ME(L)) by the same clauses used in the definition, in Sec-
tion 2, of anRRC*-meaningful expression but without the clause for identity. Also,
we define a relative form of indiscernibility:

a=jb=g (V'F)(F@ < F0))(j € »— {0}

that is intuitively,a is indiscernible frormb with respect to concepts formed at the

stage (of the potentially infinite hierarchy) of predicative concept formation. Related
to this sense of indiscernibility, there is the philosophical question whether two en-
tities belonging to different realms of being can fall under the same predicative con-
cepts. That is, for example, whether a constructible object of stdgdich is an

entity with intensional being) can fall under the same predicative concepts (of stage
j + 1) under which an object with concrete existence falls. The answer to this particu-
lar problem is not an easy one, unless we take into account the possibility of concepts
(of stagej + 1) under which an object falls if and only if it is a constructible object



498 MAX A. FREUND

of stagej, such as the concept of being a constructible object (of sfpdself. In
this section we take into consideration this possibility. Therefore, we will assume
throughout that every object indiscernible from a constructible object of §tamest
also be a constructible object of the same stage. Also, we will suppose that concept
correlates are indiscernible from correlates of concepts of the same type only. Both
of these assumptions are the intuitive motivations for clause 10 of the semantics we
are developing in this section.

Given the above intuitions, we proceed now to describe the axiomatic system.
We call it system=RRC*. In contradistinction t(RRC*, =RRC* assumes every
singular term to denote, but not necessarily, a constructible objeetRRC* is not
“free of existential presuppositions” with respect to singular terms. However, it is
“free of existential presuppositions” with respect to predicate expressions.

Whereo isawff,ay, ..., a, are terms, the axioms efRRC* are the following.

1. Axioms(AQ) — (A5) of systemRRC*.
2. For everyj € w — {0},

(=A7)  (V0@E)X=jY).
(=A9) (MFP@EG)(F=i1106).
(=A10)  (V0@EY)(X=j1Y).
(=AL)  VE@EY(Y=iF).
(=Ulljlo) @' (x=j11t) = ((YV'X)o — o(t/X)), providedt is free for
xin o andx does not occur free ih
=Ull)) @A'F)(F=j1t) — ((Y'F)o — o(t/F)) , providedt is free
for F in o and is of the same type & andF does not occur

free int.
(=Ullo)  (¥X)o — o(t/x), providedt is free forxin o.

(=A12) FAwu=ct) > A'u(u=jt), foreveryk < j.

(A-CONV)  [AXg, ..., %po](&1, ..., 8n) <> o(a1/Xq, ..., @n/Xn), provided
g is free forxi ino,for0 <i < n.)

(=RRC!*)  (Vlyp), ..., (Vlym)(VIFD, ..., VIF)@AIG)(YX1), ..., (¥Xn)
(0 <> G(Xq, ..., X)) Where (1)o is a wff in which no nonlog-
ical constants occur, (23 is ann-place predicate variable not
occurring free ino, (3) for allk > j,“(vK)” does not occur in
o,and (4)F4, ..., F are all of the pairwise distinct predicate
variables occurring free is andy,, ..., Ym, X1, ..., Xy are all
of the pairwise distinct individual variables occurring free in
o.

Definition 4.1  § comes fromr by rewriting the bound occurrences of a variable
in a subexpressiom of T by a variablez if and only if there is an expressi@ai such
that, for some wffr, either

e ais (Yw)o anda™ is (Vz)o(z/w) or
e «is (Viw)o anda* is (Viz)o(z/w) or
o wiS[AXy, ..., Xno], a®iS[AY1, ..., Yno(Y1i/X1, - .., Yn/X)]s

wherey; = z, X; = w andx; = yj, for somei and everyj # i suchthatO< j,i <n;
ands is the result of replacing one or more occurrences iof ¢ by o*.



SEMANTICS FOR SECOND-ORDER LOGIC 499

(Rw) o < o*, wheres* comes fromo by rewriting the bound occurrences of one or
more variables in lambda abstracts, which are subexpressienby¥ariables
new too.

The rules of inference cERRC* are Modus Ponens (MP) and Universal General-
ization (UG) with respect to all types of variables.

Theorems

(Thl)  Fogre EW) (U=t > FU) (U= 1), k< j (by A5, propo-
sitional logic, and definitions of quantifiers).

(Th2) F_RRC [)»Xl, RN Xne] (t1, ..., th) < 6* (t1/Xq, ..., th/Xn), where
6* comes fronmp by rewriting each variable occurring bounddn
and free in somg by a variable new t¢o, t4, ..., t,} (by (Rw) and
(A-CONV)). _

(Th3)  F_rrce (V'X)o <> (V!'y)o(y/x), providedy does not occur free
and is free forxin o (by (=Ul/0/), =A10, A4, and propositional
logic).

(Th4) I—SRR)C« (VX)o < (VY)o(y/X), providedy does not occur free and
is free forx in o (by Ul, A3 and propositional logic).

(Th5)  F_rrce ((V!'F)o < (V!G)o(G/F), provided G does not occur
free and is free foF in o (by (=Ul/ j), =A11, A4 and propositional
logic).

(The) I—SRR)G o < o, wherecs* comes fromo by rewriting the bound
occurrences of a variable in a subexpression loy a variable new
to o (by induction over subwffs of o).

The following notions are understood in a way similar to their analogues in Sec-
tion 2: proper normal extension of =RRC*, (in symbolsX-=RRC*), X-=RRC*-
consistent set I', andmaximal ly X-=RRC* consistent I'. By an= w-completeset I"

we understand a set of wffs which satisfies the following conditions.

(1) If @x)o €T, thenthere is a terimwhich is free forxin o such that (t/x) € T'.

(2) If (3'u)o eI, then there is a termof the same type as(in whichu does not
occur free) and which is free farin o such that(t/u) € I' and(3'u) (U =11
t) e ' (whereu is either an individual or predicate variable).

4.1 Consistency of =RRC*  As we show in the proof to the next metatheorem,
our new systers=RRC* turns out to be relatively consistent to Cocchiarella’s system
AT*+Ext* (see[l], pp. 220-225).

Theorem 4.2 (Metatheorem) If AT*+Ext* is consistent, then =RRC* is consis-
tent.

Proof: Assume the hypothesis of the theorem. Edde the function with=ME(L)
as domain and such that for everye =ME(L):

e if § is a variable or constant, thef(§) = §;
e if Sis ofthe formn(ty, ..., th), thenf(§) = (f(m)(f(ty),..., f(1)));
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e if § is of the form—o, (6 — 1), (Yy)o Or [AXq, ..., Xno],
then f(8) = —=f(0), f(8) = (f(o) —» f(2)), T(8) = (Vy)f(o), f(§) =
[AX1, ..., Xn T (0)], respectively;

e if §is of the form(¥'y)o, then f (8) = (Vy) f (0);
e if §is of the form(VIFy)o, then f (8) = (VFn) (f(0)).

Clearly, f has the effect of erasing every superscript in the quantifiers of every ex-
pressions of =ME(L), turningo into a formula ofAT*+Ext*, since identity does
not occur in any member gEME(L).

We show that if-_rrc: o, then; 1« gxe« f(0), for everyo € =ME(L). So sup-
pose that-_rrc 0. Then, by definition, there ismsequencés, ..., 8, = o of wffs
of =ME(L) every one of which is either an axiom &fRRC* or is obtained from pre-
ceding wffs in the sequence by either modus ponens (MP) or universal generalization
(UG).

Let A= {i € w| k)11 ext- T(8)}. Clearly A C w. By strong induction we show
w € A. So auppose for everk < i, k e A. Now we have to consider three cases.

Casel: §jis an axiom.

(i) If i is aninstance of either A1 or A2, then cleafiys;) is an instance of axiom
Al of AT*+Ext*. If an instance of AQ, then alsd (§;) is also an axiom of
AT*+EXt*.

(i) If & is aninstance of either A3 or A4, obviousfy$;) is an instance of axiom
A2 of AT*+EXxt*.

(i) If & is an instance of A5 (i.ed; is “((Viuyo — (Ylu)o)”, for someo ¢
ME(L))), then f(5;) is “((Yu) f(¢) — (VYu) f (o))", which is a tautologous
formula inAT*+Ext* and thus an axiom ofT*+Ext*.

(iv) If & is either (Vix)(3y)(x =jy1 Y) (i.e., an instance of=A7) or
v @y)(x =j11 y) (e, an instance of=A10), then f(8) is
(YX)Ay)(x = y) which is a theorem oA T*+Ext*, since it follows, by
existential and universal generalization, from= x, which (by proposi-
tional logic and universal generalization) can be shown to be a theorem of
AT*+Ext*. ‘

(V) If 8iis (V'F)(3'G)(F =j41 G) (i.e., an instance 0&£A9), then f(§) is
(YF)(3G)(F = G), which is a theorem of T*+Ext*, since it follows, by ex-
istential and universal generalization, frorR ‘= F”, a formula that can be
shown (by propositional logic and universal generalization) to be also a the-
orem of AT*+EXxt*.

(vi) If & is (WIF)@'y)(F =j41 y) (i.e., an instance o£A1l), then f(§) is
(VF)@y)(F = y), which is a theorem of T*+Ext*, since in ([], pp. 222
227),(VF)(Ay)(F = y) has been shown to be a theorem\df +Ext*.

(vii) If & is AIx)(x =1 ) — ((Vix)o — o(t/x)), wheret is free for x
in o and x does not occur free i, then f(§j) = AX)(X = 1)) —
((vx) f (o) = f(o)(f(t)/x)), which easily follows, by propositional logic,
from (vx) f (o) — f(o)(f(t)/X), which (in [ﬂ p. 222) has been shown to be
atheorem ofAT*+Ext*.

(viii) If & is either €UI/j) or (Ul/0), then f (§;) is a theorem ok T*+Ext* by rea-
sons similar to those of (vii).
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(ix) If 8iis @uy(u=¢t) > @uy(u=j1t), for somek, j € w andk < j (i.e.,
one of the axioms=A12), thenf(§;j) = Au)(u= f(t)) > Au(u= (1)),
which is a tautologous formula afT*+Ext* and so an axiom of T*+Ext*.

(x) If & is an instance ofA(-CONV), then clearlyf (§;) is also an instance of the
axiom (A-CONV) of AT*+Ext*.

(xi) If & is (Viy1), ..., Viym) (VIFD), ..., (VIFR) @IG)(¥X1), ..., (VX)) (0 <
G(X1,...,Xn)) for some wif ¢ satisfying conditions above specified
in =RRC!*, then f(@i) is (Vy1),...,(¥ym) (YF),..., (VF)@EG)
(VX1), ..., (VXn) (f(0) < G(Xq, ..., Xy)) Which is a theorem of T*+Ext*,
since it follows (by several applications of the rule of universal generalization
of AT*+Ext*), from (3G) (VX)) (VXn)(f (o) < G(Xy,...,Xn)), aformula
which must be a theorem aff *+Ext*, by reasons stated i], pg. 225.

(xii) If & is Rw,thenf(§)is f(a) <« f(a)* (Wheref («x)* satisfies the conditions
stated inRw). Now, f (§;) would be a special case of the more general principle
thato <> o*, whereo* comes fromo by rewriting any number of bound occur-
rences of any number of variables in subexpressioadyfvariables new to.
Such general principle can be shown to be a theorehTéfExt*, by strong
induction on the complexity of wffs occurring i using axioms A6, LL*, and
Ext* of AT*+Ext*.

Case2: §jisobtained by Modus Ponens, i.e., therelalle< i such that, = (8x —
3i). This case follows directly from the inductive hypothesis.

Case 3. §jis obtained by Universal Generalization, i.e., thete isi such thab; is
either (VX)dx, (V) x)8y, or (VI F)8. By the inductive hypothesist (8y) is a theorem
of AT*+Ext* and so, by the rule of universal generalizatiorh.®f +Ext* (which is
applicable to any variable)(¥x) f (8x) and(VF) f (§x) are theorems of T*+Ext*.
But clearly f (§;) is either(vx) f (8x) or (VF) f (8k). O

4.2 Semantics for =RRC*systems By an S*-structure for identity free realist
ramified constructive conceptualism(=RRC*-S-structure) we understand a structure

S=(D,Cj, X(jn), Yn, H, f)n€w, j € o — {0}

where the set®, Cj, X(j n),Yn, H, f satisfy conditions 3—10 on page 490. Lebe
alanguage and afunction with £ as domain such that: (a) for every individual con-
stantc € £, g(c) € D; (b) for everyn-place predicate constaRt' € £, g(P") € Y,.

By an identity free-realist ramified constructive conceptualist model fGgeRRC* -
L-model) we understand an ordered p@ir = (S, g), whereSis an=RRC*-S
structure. We define what an assignménin an =RRC*-structure is similarly to
the way we did foRRC*-S-structures. Given agRRC*-L-modelM = (S, g), we
will say thatM is an=RRC*- L-interpretation if there is a functiowal v, defined
for each assignmerft in S, which satisfies the following clauses.

1. If § is a variable, themal y a(8) = A(S).
If § is a constant inC, thenvaly a(8) = g(d).



502 MAX A. FREUND

2. If§isn(ay,...,an) (Wherer € ME,1(£)) anday, ..., a, € MEg(L) then,
valy, a(8)H () ifand only if (valy a(7),( f (valm a(@1)),. .., f(valpy a@n))))
e H.
3. If §is[Axq, ..., xn0], then forallds, ...,dy € D, valy a(§)H(dy, ..., dp) if
and only ifvaly a(d1/X1, ..., dn/Xn) (O)H().
4. If sis—t,thenvaly a(§)H() ifand only if itis not the case thatly a(z)H ().
5. If §is (u — 1), thenvaly a(§)H( ) if and only if either it is not the case that
valm, a(n)H() orvaly a(t)H ().
6. If§is (YX)u, thenvaly a(8)H( ) if and only if for everyd € D, valy, a(d/X)
(H().
7. 1f8is (V™) u, thenvaly a(8)H () ifand only if for everyd € Cy,, valy a(d/X)
(L)H().
8. If §is (V"FMu, thenvaly A(8)H( ) if and only if for every p € Xmn),
vaIM,A(p/F)(M)H< ).
9. If §is [An], thenvaly a(8)H() if and only if valpy a()H( ).
10. If vaIM,A((EIJ'x)(x =j+1 DH(), thenf(valy a(t)) € Cj, providedxis not free
int.
11. Ifval ,\,LA((EIj F)(F =j+1 )H() andtis of the same type @ andF is not free
int, then(valy A1) € X(jn)-

As noted above, clauses 10 and 11 are intuitively motivated by our assumptions that
(1) every object indiscernible from a constructible object of stagaust be also a
constructible object of the same stage; and (2) concept correlates are indiscernible
from correlates of concepts of the same type only.

The notions of satisfaction and truth are understood in a way similar to their ana-
logues in Section 2 . We also define a new notion. LetRRC* be a proper normal
extension 0=RRC*, thenéd is X-=RRC*-valid if and only if for all =RRC*- L-
interpretationd in which every axiom of-=RRC* is true,§ is true inl. It can
easily be shown that for evedye ME;(L), Fs-_rrc 8 Only if § is =RRC*-valid.

We show completeness af-=RRC* with respect tax-=RRC*-validity.

Theorem 4.3 (Completeness) Let £ beacountablelanguageandI" € ME (£). If
I is X-=RRC*-consistent, then T" is ©-=RRC*-satisfiable.

Proof: WeextendL to a languageL™ by adding to it a denumerable set of distinct
constants for each typee w. It can easily be shown thétis ¥-=RRC*-consistent
in LT,

Weassume an enumeratiéq .. ., &, . . . of all the wffs of LT of either the form

“(3lu)e” or the form “(3x)o.” We define a chaiMy, ..., Iy, ... by recursion, as
follows.
1. To=T.

2. If$ny1is (Fuyo, thenlng = TU{E'Wo — (o(b/u) & (Fu)(b=j1 )},
whereb is the first constant icC* of the same type aswhich is new tol'y U
{5n+1}-

3. If §py1 is of the form(3x)o, thenl'p 1 = T U {(3X)o — o(c/X)}, wherec is
the first individual constant which is new I, U {641}
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SinceZ-=RRC* is a proper extension, then by (UGA9-A10, A2—-A5, and el-
ementary logical operations, it can be shown that; is ¥-=RRC* consistent, if
Iy is X-=RRC* consistent. On the other hand, by assumptighis X-=RRC*-
consistent. S&™* = |, I'n is Z-=RRC*-consistent. By Lindenbaum’s method,
we extend™ to a maximallyX-=RRC*-consistent sei. Clearly, by construction,
K is = w-complete. LetS¥ be the structure

(D,Cj, X(j’n),Yn, H, f)n € w, J € w—{0}

where

1. D = MEg(L1).
2. Cj={te D| @x)(x=j411) € K, xdoes not occur free itj.
3. Ya={te D|teMEn1(LT)}.
4. Xinm ={teYn| EH== =j+1 1) € K, F does not occur free ihand is of
the same type as.
f is the identity function orD, i.e., f(t) =t , for everyt € D.
6. H=Upe, {(m (t1,...,th)) € Yax D" | mty, ..., th € K}.
We prove SX to be an=RRC*-structure.
1. C; € D, X(jny € YnandH € [J,c,{Yn x D"}. (immediate from the defini-
tions).
2. D # @ andY, # @ (since ME(L™") # @, for everyn € ).
YnN Ym # @ (since ME,1(LT) N MEp1(£L1) = @), form # n.
4. G Cj,ifk=< .

o

w

Proof: So supposé € C, andk < j. By assumption and definition @3,
there is & € MEg(L") such thab = t and (IXx)x =1 t € K. Then, by (Th
1) and Modus Ponensﬂjx)x =1t € K. So, by=A12 and Modus Ponens,
@x)x=j;1te Kandthert =b e C;j. O

5. X(k’n) - X(j,n)a if k< J
Proof: Similar to 4. O

6. Sincef is the identity function oD andY, C D (for everyn € w), only clause
(b) remains to be proved.

Proof:  Sosupposee |, Xj.n- By assumption there isae ME ;1 (L") such
thatz= 7 and (@' F)z =1 F € K. Butby = A1l and(= 3/U.l.j), @X)7 =1
xe K. Soz=n= f(7r) € Cj.

Let g be the function withZ* as domain such that for evecye L*, g(c) = c.
Let MK = (SK, g). Clearly Mk is an=RRC*-£*-model, since we already showed
that SK is an=RRC*-structure.

Lets € MEL(L™) (for somen € w), {d4, ..., dy} the set of all variables occur-
ring free ind and{by, ..., by} the set of terms such th&t(d;) = bj, where A is an
assignment itM K. We defines 5 as follows.

5A =df 5*(bl/d1, ceey bn/dn)
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wheres* comes froms by rewriting each variable occurring bounddrand free in
b;, for somei such that O< i < n, by avariable new tdsé, by, ..., by}.
Let A be an assignment and VAlafunction on= ME (L") such that for every

8 e =ME(LT).

1. If §is avariable, then VAL () = A(S).

If §is aconstantinC™, then VALA(S) = g().

2. Ifsism(ay, ..., an) (Wherer € MEn1(L1))anday, ..., a, € MEq(LT) then
VAL A(8) = [18] a.
If §is[AXq, ..., Xn0] (Whered € ME{ (L)), then VALA(S) = §a.
If § is =, then VALA(8) = [Ad] a.
If §is (u — 1), then VALA(S) = [A6] a.
If §is (VX)u, then VALA(8) = [Ad] a.
If §is (V™) u, then VALA(S) = [Ad] a.
If 8 is (V"F") i, then VALA(S) = [18] a.
9. If §is [Au], then VALA(S) = 8.

In a way analogous to Section 3, it can be shown (by induction over the set of mean-
ingful expressions of.*) that VAL 4 satisfies the conditions famly_ a in the defi-

nition of an identity-freeL-interpretation. LetAX be the assignment i8¢ such that
AK(u) = u, whereu is either a predicate or individual variable. Now, from the defi-
nition of VAL 4 it follows that VALA(§)H{( ) if and only if §a € K, for every assign-
mentA. But, itis clear that .« = 8. So AKX satisfied” in MK, Restrict nowMX to

L. We get, then, an identity-freé-interpretation and assignmeAt which satisfies

I'. Also, every axiom of2-=RRC* is true inMX and MP and UG preserve truth in
MK, O

© No ok w
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NOTES
1. For details on different versions of conceptualism cf. Cocchiafdi@hapter 2 andd],
and Freund[]].

2. For a detailed description of this philosophical theory cf. Cocchiatg]larid ], and
@.
3. Such as the transformation of “human” into “humanity” and of “red” into “redness.”

4. For details on the nature of this correlation [&] &nd [Z] Chapter 1.

5. For details on this hierarchy and the mechanisms involved in its constructi&h ahd

1.

6. For details on the semantics for those systems cf. Sifafjsihd ], Chapters 4 and 6.
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7. Note that a predicate expression is allowed to occur in subject position in an atomic for-
mula, even when that expression is itself the predicate of the formula. This permits a
more accurate representation of the role of predicates in natural language, even though
it does not comply with the grammar of the theory of simple logical types as originally
conceived. But, for reasons noted by Cocchiarellfijrahd [B], the gramatical stratifi-
cation of the original form of the theory of simple logical types is unnecessary and based
on a confusion between the concepts predicates stand for in their role as predicates and
the objects which their nominalized forms denote as singular terms.

8. For an intuitive explanation of this system .

9. As we have already noted, this semantics is an adaptation of the sort of models formu-
lated firstly, by John Simms, for Cocchiarella’s systénand later adapted, by Coc-
chiarella, for normal extensions of his systk. The semantics is Fregean (in the sense
understood, for example, i&]), that is, it interprets nominalized predicates as denoting
certain individuals (viz. concept correlates).

10. For details concerning the way such theories condition predicatioBJee |
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