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Strong Normalization Theorem for a
Constructive Arithmetic with Definition by
Transfinite Recursion and Bar Induction

OSAMU TAKAKI

Abstract  We prove the strong normalization theorem for the natural deduc-
tion system for the constructive arithmetic TRDB (the system with Definition
by Transfinite Recursion and Bar induction), which was introduced by Yasugi
and Hayashi. We also establish the consistency of this system, applying the
strong normalization theorem.

1 Introduction The main result of this paper is the strong normalization theorem
for the natural deduction system for the constructive arithmetic TRDB. This system
isarenewa version of the system ASOD (Analytic System especially designed for
Ordinal Diagrams) which was introduced by Yasugi in [3]. In ASOD, Yasugi suc-
ceeded in constructing an accessibility proof of ordinal diagrams (see [B] and [4]).
Yasugi and Hayashi [[5] also have studied functional interpretations of proofsformal-
izedin TRDB (see[B], [B], and [[6]). For such studies, the normalizability of a proof
formalized in TRDB isimportant.

The proof of the main result is based on [[5] and on the proof of the strong nor-
malization theorem for HA by Troelstrain [2]. For example, using degrees defined
similarly to those in [5], we define reducibility sets similarly to the strong validity
predicate in [[2]. However, since a reducibility set in this paper consists of deduc-
tions whose consequences are closed formulas, there arises new difficulty in dealing
with the reducibility of a deduction. The difficulty arises essentially from the infer-
encerule: definition by transfinite recursion. We think that, in order to settle the dif-
ficulty, it is necessary to study a relation between the reducibility of a deduction I1
(whose consequence is a closed formula) and that of a deduction IT’ obtained from
IT by substituting closed terms for free variables which are not eigenvariables. (See
Lemmal319] Lemmal322land Remark B21]) These lemmas are most crucial in our
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proof of the main result. Our proof would be applied to prove the strong normal-
ization theorem for other systems with definition by transfinite recursion (and/or bar
induction).

This paper consists of three sections: in Section2]we define TRDB and degrees
which give an order on TRDB-formulas; in SectionB] we prove the strong normal-
ization theorem of reductions (of TRDB-deductions) defined in the same section; in
Section (] applying the strong normalization theorem, we establish the consistency
of TRDB and prove the existence property and the disunction property of TRDB.

Notation 1.1  In Section[2] we define TRDB as the system formalized by the nat-
ural deduction system.

1. Lowercaseaphabetsx,...,a,...,t,...denoteterms. Inparticular, a, b, ¢, X, y
and z denote variables. Upper case alphabets A, ..., A[t], ... denote formulas.
Greek aphabetsTI, =, A, ... denote (natural) deductions. T, ... %, . .. denotefi-
nite sets of terms.

2. Given adeduction IT, Cnsq(IT) denotes the consequence of IT. [ A] denotes a
live assumption of a deduction. We do not write explicitly the label of an as-

sumption.
3. We define subdeductions of a deduction as follows: if IT is a deduction of the
form
m i,
AL A
B — R

then the set consisting of IT and al subdeductionsof IT; (i =1, ..., n) formsthe
set of all subdeductions of IT.

4. Let IT be a deduction with Cnsq(IT) = A, and let X be a deduction having a
live assumption of theform [ A]. Then X[IT/ A] denotes the deduction obtained
from X by substituting IT for the live assumption [ A].

5. Weassumethat variablesin adeduction are denoted by different al phabetsfrom
each other sofar asispossible. M5 denotes the deduction obtained from ade-
duction IT by substituting aterm t; for afree variable x; in the consequence of T1

(i=1,...,n), where X denotes x4, . . ., X, and t denotesty, ..., tn. 1159 de-
notes the deduction obtained from IT by substituting aterm s for afreevariable
yi inalive assumption of I (i = 1, ..., m), where y denotes y,, ..., ymand §
denotes sy, ..., Sn. For example, if IT is adeduction of the form
[VX(0 =1+ x)] V-E
0=1+z [(Sy > 0)] |
O=1t2r(y>0 "'
0=1+z nE

then

W“°=1+”]w5

0=1+n [(Sy > 0)] |
Mpnyz) = (0=1+mA(W>0)Aé“ *

0=1+n
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[VX(0 =1+ X)] V-E
i — 0=1+z [(Sm> 0)] o
- O=14+2A(Sm>0) £ :
0=1+z A

(We mostly follow [Z], but there are some terminologies which are used in different
context from those in [2]. Such terminologies are explicitly defined in this paper.)

2 TRDB In this section, we define the system TRDB, which is defined in 5] and
[6]. This system, in particular the language of this, seems to be highly speciaized.
The reason isthat TRDB is defined so that one can use the system directly for for-
malizing accessibility proofs and can construct functional interpretations of formal-
ized accessibility proofs (see 3], [5], and [[6]). However, in this paper, these special
properties of TRDB are not important except the two inference rules: definition by
transfinite recursion and bar induction. Therefore, the reader, who is interested not
in accessibility proofs but in the strong normalization theorem for constructive arith-
metics, may consider TRDB as HA with definition by transfinite recursion and bar
induction. (However, the reader should notice the special logical symboal o, whichis
introduced only for technical reasons. See Remark[2.2]5).)
In what follows, aword ‘integer’ means ‘ non-negative integer’.

Definition 2.1  Preceding to the definition of TRDB, we specify a primitive recur-
sivewell-ordered set T (= (I, <)). Weidentify the domain set | with the set of all
integers.

Symbols

1. Countably many n-ary variables, where nis an integer

Function constants for primitive recursive functions in function parameters
A designated unary function constant ¢

Predicate constants for primitive recursive predicates in function parameters
A specia predicate constant H

Logical symbols A, v, D,V and 3

7. A specia logical symbol p

o0k wbd

Terms

1. Variables and function constants
2. If fisann-arytermandif ty,to, ..., t, are0-ary terms, then f(ty, to, ..., tn)
isa0-ary term. We often call O-ary terms number terms.

3. If tisanumber term and if Xq, Xo, ..., X, are number variables, then Ax;A X,
... AXp.tisan n-ary term, where A isthe lambda abstraction.

Formulas

1. If pisan n-ary predicate constant and ty, .. ., t, are appropriate terms, then
p(ty, ..., ty) isan aomic formula. In particular, if sandt are number terms,
then H(s, t) isan atomic formula

2. If Aand B are formulas, then AA B, Av B, A D B, and VXA are formulas,
where x isavariable.
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If Aisaformula, then 3xAisaformula, wherethevariable xin Ais0-ary and
it does not occur inany Hin A.

Let = denote a 2-ary predicate constant expressing the equality of integers;
let 0 and 1 denote O-ary function constants expressing the integers 0 and 1 re-
spectively; and let < denote a 2-ary predicate constant expressing the order
of I. Then p((j <t I D H(J,9))A((j < 1D0=1)>0=1))isaformula,
wherei, j, and s are arbitrary number terms. We abbreviate this formula by
p(j <115 H(j,9)).

Axioms and inference rules

1

TRDB containsinference rules of constructivelogicsformulated in natural de-
ductions as usual: introduction rules A-1, v-1, D-1, V-1, 3-1; elimination rules
A-E, v-E, D-E,V-E, 3-E, 1-E. (‘L' means 0 = 1, see Definition[2.3](3) in
the next section.)

TRDB contains axioms and inference rules on constants of PRA? (primitive
recursive arithmetic with function variables). (See[2] and Girard [1].) Wegive
these axioms and inference rules as follows.

2.1. For any number termst and t/,

t=t Pt
t=t, P[t]T

where P[t] denotes an atomic formula.
2.2. For any number termst, t’,andt; (i =1,...,n),

S St=9g

1, t=t Mty ..t t) = T,
where S denotes a function constant expressing the successor function,
and I" (i < n) denotes afunction constant expressing the n-place projec-
tion function.

2.3. Let PRF, denotethe set of all n-ary primitiverecursivefunctionsin func-
tion parameters. Let F be the element of PRF,, 1 obtained froma G €
PRFnrandaK; € PRF, (i=1,..., m) by functional composition:

F(X1, ... %n) = G(Kq(Xg, ..., Xn), s Km(Xg, ..o, Xn)).

If f, g, andk; denote function constants expressing F, G, and K; respec-
tively, then for any number termst; (i=1,...,n),u;(j=1,..., m),and
v,

9(U1,~-~.,Um)=v kl(tla---.»tn)zul km(tlwnl,tn):um'
f(tl,...,tn)zv

2.4. Let F bethe element of PRF,, 1 obtained fromaK € PRF,andaG €
PRF, 2 by primitive recursion:

F(X1, ..., %1, 0) = K(Xq, ..., Xn),
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FX1, ..., X0, SX) = G(Xq, ..., Xn, X, F(Xq, ..., Xn, X)).

If f,k, and g denote function constants expressing F, K, and G respec-

tively, then for any number termst; (i=1,...,n),t, u,and v,
K(ty,...,t)) =u f(t, ..., tmh)=U gt,....to,t,U) =0
f(te, ..., th,0)=u , f(ts, ..., th, ) = v '

2.5. If f denotesafunction constant expressing a characteristic function of an
n-ary primitive recursive predicate in function parameters expressed by a

predicate constant p, then for any number termst; (i =1,...,n),
f(ty,....t)) =0 plta, ..o t)
p(tl,...,tn) f(tl,...,tn)=0

3. Well-foundedness of the set 7
4. Monotone and elementary bar induction: proceeding to the definition of this

inference rule, we give definitions as the following paragraphs.

Let R[a] beaformula, whereaisaO-ary variable, and let R[a] contain neither
any quantifier, any H, nor any variable except a. Such aformulaissaid to be
elementary.

We consider abijective function & from finite sequences of integers onto inte-
gers. Itiswell known that ® can be defined primitive recursively. Wefix such
abijection @ which is defined primitive recursively.

Let R[a] be an elementary formula. Then R[a] is said to be monotone if R[a]
satisfies the following conditions (i) and (ii).

(i) For any infinite sequence f, there exists an integer n such that R[ f[n]
holds, where f [n denotes anumber term expressing the integer assigned
to the finite sequence ( f (0), f(1),..., f(n—1)) by .

(ii) Foranyinfinitesequence f andfor any integer n, R[ f [n] implies R[ f [m]
forany m> n.

Let x denote a 2-ary primitive recursive function constant satisfying the fol-
lowing: a * b expresses the integer assigned to (aq, ..., ay, b) by ®, where
(a1, ..., an) isthefinite sequence to which ® assigns a. We give an inference
rule called a Bl -rule asfollows:

vZ( R[Z]:D AlZ]) Vz(VxA[z*:x] D A7)
ATt Bl ,

where A[a] isan arbitrary formula, R[a] is an arbitrary monotone formulaand
t isan arbitrary number term.

Definition by transfinite recursion TRD(G, I): Preceding to the definition of
this inference rule, we fix a formula G[a, b, H[a]], where a and b are O-ary
free variables, so that G satisfies the following conditions.
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(i) Nofreevariable occursin G except a or b.
(ii) No H occursin G except in asubformulaof theform p(j <; a; H(j, s)),
where j and s are some number terms.

(iii) No scope of an 3-quantifier in G containsan H.

Here G[a, b, H[a]] isunderstood to denote aformulasubstituted for an abstract
formula H[a] of the form

X, yio((x <1 & H(x, ¥))).

We give inference rules called H-rules as follows:

Gli, t,: HIil] H(i, t)

Ho,y Hh Gt O B
wherei and t are arbitrary number terms.
. p-elimination:
p(i <1 i H(j,9) oE,

(j<1iDH(,9)A(j<1D0=1)D>D0=1)

wherei, |, and sare arbitrary number terms.
Note that p-introduction is not defined as an inference rulein TRDB.

Remark 2.2

1

TRDB is specified with a certain formula G and a certain primitive recursive
ordered set 1. So, TRDB should be written as TRDB (G, I) to be precise.

Let TRDB™ be the system obtained from TRDB by removing the inference
rule TRG(G, I) and the axiom for the well-foundedness of 1. Sincethe bar in-
duction defined in Definition[2.114) implies the mathematical induction, every
formula provablein HA isprovablein TRDB™.

In this paper, we confine ourselves to the case where the order type of I is
smaller than ¢5. So we can remove the axiom for the well-foundedness of 1,
sinceitis provablein HA.

When aterm t is substituted for avariable x in aformula, t must have the same
arity asthat of x. In what follows, we assume that the above condition is satis-
fied whenever one considers such a substitution.

o(j <1 i; H(j,s)) and p-E entail the following restriction: no deduction IT
contains an inference rule

j<1iDH(,s) (j<in0=1)>0=1

G<iioHGHA((<i50=D>0=1) "

where the conclusion of the A-1 occursin aformula Gli, t, H[i]] contained in
IT. Thereasonwhy p(j < i; H(j, s)) and p-E areintroduced in the definition
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of TRDB isonly that TRDB should satisfy the aboverestriction. Infact, except
therestriction, thereisno essential difference between TRDB and that without
p(j < i; H(j,s)) and p-E. The restriction essentially has an effect only on
Proposition[2.4](2).

We shall define adegree of aformulaof TRDB. The definition is taken after the de-
gree of atype-formin [[5].

Definition 2.3

1.

For a primitive recursive well-ordered set I (= (I, <)) which we assume in
defining TRDB, we define I* = (1*, <*) asfollows:

I"={";iel}; "=1UI"Ufoo};i<"i7 <*j <*cowheni < j.
Moreover, we define I, = (I, <,) sothat I, = w!", where we identify I* with
the ordinal type of itself.
Let Abean H-formula, that is, aformulawhich contains the predicate constant
H. Let H denote an occurrence of the predicate constant H in A. Thenwedefine
r(H; A) (e I*) asthe following conditions.
(i) Supposethat H isan occurrencein asubformulaof Awhichisof theform
p(j <115 H(],9)).
(i-1) Ifiisclosed, thenr(H; A) =1i;
(i-2) If i contains avariable, thenr (H; A) = co.
(i) Supposethat H occursin asubformulaof theform H (j, s) and that H does
not satisfy (i).
(ii-1) If jisclosed, thenr(H; A) = |~;
(ii-2) If j containsavariable, thenr (H; A) = co.
Let Ay beaformula, and let A be an occurrence of a subformulain Ag. Then
we define the degree of A in Ag denoted by d(A; Ag) (€ |,) asfollows:

(i) if Aisanatomic formulaexcept an H-formula, d(A; Ag) = 1;

(i) d(BAC; Ay) =max(d(B; Ag), d(C; Ag)) + 1, where B and C are occur-
rencesin BA C;

(iii) d(BVv C; Ag) =max(d(B; Ag), d(C; Ag)) + 1, where B and C are occur-
rencesin Bv C;

(iv) d(B>DC; Ay) = max(d(B; Ag), d(C; Ag)) + 1, where B and C are oc-
currencesin B O C;

(v) d(¥xB[X]; Ag) = d(B[X]; Ag) + 1, where B[X] isan occurrencein YxB[X];

(vi) d(3xB[X]; Ag) = d(B[X]; Ag) + 1, where B[X] isan occurrencein 3xB[X];

(vii) d(p(j <11; H(],9); Ag) =

d((j<1iDH(, A (j<11D0=1)20=1); A +1,

where (j <1 D H(j,9))A((j <1 D0=1) D0=1)isanoccurrencein
p(j <115 H(],9));

(viii) d(H(], s); Ag) = o' H:A) ' where H isan occurrencein H(j, s).

Put d(Ag) = d(Ag; Ag), and call thisthe degree of A,.
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Proposition 2.4

1. Let GJi,t, H[i]] be the formula which determines the axiom TRD(G, I). Ifi is
closed, then d(G[i, t, H[i]]) <. d(H(i,t)).

2. Let A be a closed formula derived from a formula B by an introduction rule.
Thend(B) <. d(A).

Proof:

1. By DefinitionsETlandE23]d(H (i, 1)) = ' and d(G[i, t, H[i]]) = @' - m+n
for some integers mand n. Thusd(GJi, t, H[i]]) <. d(H(i, t)) holds by Defi-
nition2.3]

2. (i) Supposethat A (= B A C) isderived from closed formulas B and C by a
A-1. By Definition23]2), r (H; B) =r(H; A) forany Hin B,andr(H; C) =
r(H; A) for any H in C. Therefore, by Definition[2.3](3), d(B) and d(C) are
smaller than d(A).

(ii) All other cases can be proved the same way as (i), using the above (1). O

3 Strong normalization theorem for TRDB  In this section, we define reductions
of TRDB-deductions, and we show that every deduction is strongly normalizable for
these reductions.

Definition 3.1 A deduction IT is said to be elementary if IT has neither any live
assumption, any V-rule, any 3-rule, any H-rule, any p-E, any Bl-rule, nor any free
variable.

Remark 3.2 For any elementary formula R which is closed and true, there exists
an elementary deduction whose consequence is R. For any elementary formula R
which is closed and true, we fix an elementary deduction ® r whose consequenceis
R.

Definition 3.3  For any deduction IT, we define the contraction of IT in the foll ow-
ing (1)—(6). Welet ‘TT — X’ mean that IT is contracted to X.

1. If T isan axiom or alive assumption, then IT is not contracted.
2. If IT hasalogical inference rule as the last inference rule, then we follow Defi-
nition 4.1.3. in [B], that is, we give the contraction of IT as follows.
2.1. Proper contraction:

) . (A ) .
I Lo A . T . r
Ay Ay B ' T A Ala]

—— Al : S5- : V- :
Al/\Az A-E : IT; ADB A E : A VXA[X] v : F[[/a]
A -~ A B °E LB All] ~ Al
N V-V B V%) DA LA [AR]] A
A | 0 T Y A Alt] o r Alt]
AvA, BB Y XA T B : riva

v-E : —  — 3E

B - B ; B —>B
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Herei =1or 2.

2.2. Permutative contraction:

o A
A Ty I ) )
AivA, B B L Ep . Bn

[Af]] [Afa]]

. . . r C

. 8n A B C - G
B N R o IXA[X] D

D R—) D

o]
&3]

n

L
x
')_>| .
X,
©
]
s
]

R
3-E

Here Risan éimination rule; B isthe mgor premiseof R; n=10, 1 or 2.

2.3.  Immediate smplification:

CA T i CA T
AlvVA, B B T IxB[x] B . T
B V-E g A TE g -

HereT; and I" have no live assumption which is discharged by thelast in-
ferencerule of I1. Such an elimination is said to be redundant.
If IT hasa L-E asthelast inference rule, then IT is contracted as follows;

DA DA . DA
A — i LA -
0=1 g %=1 ¢ - 0=1 g
0=1 ¢ A B A 0=1 |k A
AAB 5 = AAB N AvB — - = AvB 7,
_ DA , DA ' " A
DA = DA = DA =
: 0=1 : 0=1 ¢ : 0=1 ¢
0=1 . B ) 0=1 A 0=1 . A0 "
ADB — ADB VXA[X] — VXA[X] , IXA[X] — 3XA[X] .

If IT has an H-E asthelast inference rule, then we give the contraction of I as
follows:

A
Gli, t, H[I]]
“HGo LA
it vpg TE S Gt HLL
If IT has aBl-rule as the last inference rule and if IT is of the form
DA . T
Vz(R[Zl] © AlZ) Vz(VxAlz*X] D AlZ])
Alt] Bl

wheret is closed, then IT satisfies the following properties (5.1) and (5.2).
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51. If R[t] istrue, then

CA
VeREAS A | o Ory
RtID Al - Rt
I — Alt]

O-E

’

where O gy is the deduction fixed asin Remark[32]
5.2. If R[t] isfalse, then

DA T
Ny vz(R[Z D AlZ) Vz(¥xA[z#x] D AlZ])
Vz(VxA[z*'x] > A7) Alt * a]
VXA[t=X] S Al VXAt
n - Alt] >k

Bl

V-E

6. Otherwise, any deduction cannot be contracted.

Definition 3.4

1. Supposethat I' isasubdeduction of adeduction I, A isadeductionwithI" —
A, and that X is the deduction obtained from IT by replacing I" by A. Then
we say that IT is (one-step-) reduced to X. The last inference rule of the above
deduction T" is called the reduction point of IT ~» X, where IT ~» X means that
IT is one-step-reduced to X.

2. If thereexistsafinite sequence of deductionssuchthat IT =TT~ - - - ~» I, =
3, then we say that IT is reduced to X. I1 ~~+ ¥ means that IT is reduced
toX orI1 = 2. If {ITh}nem (0 < M < w) is a sequence such that Iy = I1
andvn (n+1 < M = I, ~ ITn;1), then we call this sequence areduction
sequence of T1.

Definition 3.5 A deduction IT issaid to be strongly normalizableif every reduction
sequence of ITisfinite. TT € SN meansthat IT isstrongly normalizable. If there exists
adeduction X such that IT ~»~» X and if thereis no deduction to which X isreduced,
then we call ¥ anormal form of IT.

We will subsequently prove the strong normalizability in TRDB.
Theorem 3.6  Any deduction in TRDB is strongly normalizable.

Preceding the proof, we give definitions and results. Using induction on the structure
of a deduction, we establish the following definition.

Definition 3.7  For any deduction IT, IT is said to be closed if IT satisfies the fol-
lowing conditions.

1. If TT consists only of alive assumption [ A] or an axiom A, then A is a closed
formula.
2. If TT isof theform
>
Ala]
VXA[X]

V-1,
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: Eta
then Al v is closed for any closed term t.
If IT is of theform
~ [Bj]]
X LA
IxB[X] A
T H'E [}

[Bt]
NG

then X isclosedand A isclosed for any closed term t.

If TT isnot of theformin (1) —(3) and if IT is of the form

e My
Ay Ay

A R,

then Alisaclosed formulaand IT; is aclosed deduction for any i < n.

Definition 3.8 Let IT be adeduction, and let a be afree variable contained in IT. If
aisnot an eigenvariable for any inference rulein 1, then ais said to be strictly free

inII.

Lemma 3.9

1

2.

4.

Proof:

If TT is a closed deduction, then there is not any strictly free variable in IT, in
particular, Cnsq(IT) and all live assumptions of IT are closed formulas.

For any deduction I, there exists a closed deduction IT obtained from IT by
substituting suitable closed termsfor all strictly free variablesin IT. We call TT
a closure of IT.

If IT and X are closed deductions, and if IT has a live assumption which is
of the form [Cnsq(X)], then TI[X/Cnsq(X)] is a closed deduction, where
M[X/Cnsq(X)] isthe deduction obtained from IT by substituting X for thelive
assumption [Cnsq(X)].

If ITisclosed and IT ~+ X, then X is closed.

Using induction on the structure of I1, thislemmacan be proved easily. [

Lemma 3.10

1

2.

Let IT and ¥ be deductions with IT ~» X. Then any strictly free variablein I1
isnot an eigenvariable for any inferencerulein X.

Let IT and X be deductionswith IT ~» X, let a be a strictly free variablein IT,
let T1[t/a] be the deduction obtained from IT by substituting atermt for a, and
let ¥* be the deduction to which TI1[t/a] is reduced by the same reduction as
IT~» 3. Then ¥* isthe deduction obtained from X by substituting t for a.

Let TT be a deduction, let a be a strictly free variable in IT, and let T1[t/a] be
the deduction obtained from IT by substituting atermt for a. If T1[t/a] € SN,
then IT € SN.
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Proof: (1) istrivial. (2) can be proved easily by induction on the structure of TT.
Let {IT;}j-m be areduction sequence of 1. By (2) in this lemma, there exists are-
duction sequence {IT;[t/a]}i .m Where IT;[t/a] isthe deduction obtained from IT; by
substituting the term t for the free variable a. So, M isfinite. O

Lemma3.11 If every closed deduction is strongly normalizable, then so is every
deduction.

Proof: Let IT be a deduction. We prove IT € SN by induction on the number k of
gtrictly free variablesin IT.

(i) 1f k=0, then IT € SN since IT isaclosed deduction by Lemma3.9](2).

(ii) Supposek > 0. Let I[t/a] be the deduction obtained from IT by substituting
aclosed termt for astrictly free variable ain I1. By the induction hypothesis,
I[t/a] € SN. Therefore, IT € SN by Lemma[3.10]3). O

Definition 3.12  (Troelstra[2]) Let {S}i<n be a sequence of (occurrences of) for-
mulasin adeduction IT. Thissequenceiscalled asegment if it satisfiesthefollowing
conditions.

(i) S;isnotthe conclusion of an 3-E or av-E.
(ii) Ifi < n, then S isthe minor premise of an 3-E or a \v-E whose conclusion is
Sy
(iif) Sy isnot the minor premise of an 3-E or av-E.

If thereisasegment {S}i<n such that S, = Cnsq(I1), we call this an end segment of
I1. If adeduction IT does not end with an |-rule, IT is said to be neutral.

We define areducibility for adeduction, referring to Definition 4.1.9. in [2] and Def-
inition 5.2. in [5].

Definition 3.13  For any closed formula A, we define a reducibility set Red(A)
whichisaset of deductionswhose consequenceis A. The definition of IT € Red(A)
is primarily given by transfinite induction on the degree of A; for deductions IT with
A = Cnsq(IT) of fixed complexity, the definition of IT € Red(A) takesthe form of a
generalized inductive definition.

1. Supposethat IT is of the form

i,
A e A
f R‘I ’
where R-1 isanintroductionrule. ThenTT € Red(A) if T satisfiesthefollowing
conditions (1.1) — (1. 4).

1.1. If RisA,v,or H,thenTl; € Red(Ay), ..., 1, € Red(An).
1.2. If IT isof theform
(8]
I
C
Bo>C

D'ly
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then TT1,[ X/ B] € Red(C) for any deduction ¥ with X € Red(B).
1.3. If ITisof theform
‘T,
Bb]
VXB[X]

V-1,

then Iy € Red(B[t]) for any closed term t.
14. If ITisof theform
iy
Bt]
3IxB[X]

3-1,

then Iyz/; € Red(B[t]) for any closuret of t.

2. Supposethat IT is neutral. Then IT € Red(A) if IT satisfies the following con-
ditions (2.1) —(2.3).

2.1. For any deduction  withIT~» X, X € Red(A).
2.2. |If ITisof theform

oA A
: r : Ay : A
AlVA A A
A v-E ,

then IT satisfiesthefollowing: (V1) I' € SN; (V2) A1, Az € Red(A); (v3)
for any I'y with I' ~~ "y and for any I", which is a subdeduction imme-
diately above an end segment of Ty with Cnsq(Tp) = A, Ai[T2/A] €
Red(A).
2.3. If ITisof theform
~ [Bib]]
A
EIXB[X] A

A 3-E ,

then IT satisfies the following: (31) I' € SN; (32) A € Red(A); (33) for
any I'y with T ~»~» I'; and for any I', which is a subdeduction immedi-
ately above an end segment of I'y with Cnsq(I'») = B[t], AlYPI[I,/B[t]]
€ Red(A).

For adeduction IT, IT € Red meansthat IT € Red(A) for some closed formula A. T1
issaid to be reducibleif IT € Red.

Proposition 3.14  Thereducibility set Red iswell defined.

Proof: It can be proved by transfinite induction over the definition of Red, using
Proposition24] O
Lemma3.15 For any deductions IT and X, the following properties hold.

(CR1) IIe RedimpliesIT € SN.
(CR2) IfIl € Redand I~ X, then ¥ € Red.
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Proof: The proof goes similarly to that of Lemma 4.1.12. and to that of Theorem
4.1.13. in [Z]. We prove this lemma by transfinite induction over the definition of
Red.

Case1(CR1): Supposethat IT € Red.

1. If ITisof theform _
I
Ale]
VYXA[X]
then T1yjt/5 € Red(A[t]) for any closed term t. Since d(A[t]) <, d(YA[X]),
Iyji/4) € SN by the induction hypothesis. By LemmaB.I0I(3), IT; € SN.
Therefore, IT € SN because the last inference of IT is an introduction.
2. If IT has an introduction rule except V-1, then the proof goes similarly to that
of (1).
3. If ITisneutra, then VX (IT~ ¥ = ¥ € Red). Thenit holds that VX (IT ~»
¥ = ¥ € SN) by the induction hypothesis. So IT € SN.

V-1,

Case2 (CR2): Supposethat IT~» ¥ and IT € Red.

1. If ITisof theform

e
Ala]

VXA[X]

V'I 1

then T isof the form
5
Alal

VXA[X] vl

where IT; ~ X;. By the definition of the reducibility, ITyt/q € Red for any
closed term t. By the induction hypothesis, Xjt/) € Red for any closed term
t. Therefore © € Red by the definition.

2. If TT has an introduction rule except V-1, then the proof goes similarly to that
of (2).

3. If IT is neutral, then this result holdstrivially. O

If TT € SN, we can construct awell-founded tree Tr; consisting of reduction sequences
of IT. For any nodet in T, the number of branches of t isfinite, and hence, asiswell
known, T isafinite tree. So, for any deduction TT with IT € SN we let v(IT) denote
the number of nodesin Ty.

Lemma3.16 Let IT be a deduction of the form
e ;I

A A,

A R L)

where Aisa closed formula and Risnot an introduction rule nor a Bl-rule. Then IT
isreducible if the following conditions are satisfied.

(i) T,..., s € SN.
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(if) If Riseitheran-E,anD>-E,aVv-E,al-EoranH-E,thenIly, ..., I1, € Red.
(iii) If Risa v-E, then IT satisfies Definition[3.13](2.2).
(iv) If Risan 3-E, then IT satisfies Definition[3.13]2.3).

Proof:  The proof goes similarly to that of Lemma4.1.16. in [2]. To adeduction IT
satisfying the above conditions, we assign an induction value («, 8, v, §) asfollows:

(@) « isthe degree o Cnsq(I1);

(b) 8= v(I1y) if Risanelimination rule; 8 = 0 otherwise;

(¢) yisthenumber of inferencerulesof I, if Risan elimination rule; y = 0 oth-
erwise;

(d) sisthesumof v(ITy), ..., v(Iy).

Let < be the lexicographical order on the induction values. We prove the lemma by
induction on the order <. By the conditions (iii) and (iv), it suffices to show that

VE(II~ ¥ = ¥ € Red(A)).

We deal only with the case where Risan H-E. All other cases can be proved in the
same way as in the proof of Lemma4.1.16. in [2].

1. Supposethat IT is of the form

o,
H(,t)

Gt Hp B

and that X is of the form
%
H(,t)

Gt Hp B

where IT; ~» 1. Since [T, € Red, ¥; € Red by (CR 2) in Lemmal315] Let
¢ (= (a, B, y,8)) betheinduction value of 1, and let ¢’ (= («/, B/, V', 8')) be
the induction value of . Then ¢’ < ¢ sinceax = o’ and 8/ < B. Therefore, by
the induction hypothesis, X € Red.

2. Suppose that the following scheme holds,

. T
D Ty Gli.t. HLIT |, |
- _ H(, t) _ H, t) )
= oitAml TF T GhuAnn TE
andthat © =T. Since IT; € Red, T € Red by Definition BI3J(1.1). O

Lemma3.17 Every elementary deduction isreducible.

Proof. It suffices to show the following proposition P.
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P. Let IT be a closed deduction with live assumptions [A4], ..., [An], which
has neither any V-rule, any 3-rule, any H-rule, any p-E, nor any Bl-rule, and
let TT; (i = 1,...,n) be a reducible deduction with Cnsg(TT;) = A;. Then
M[I11/ Ay, ..., 5/ Ay] isreducible, where TT[T11/ Aq, ..., I1n/ An] isthe de-
duction obtained from IT by substituting Iy, ..., ITy for [A4], ..., [Anl.

Using induction on the structure of IT and Lemma 3.16, we can show P easily. O
Lemma3.18 Let IT be a deduction of the form

- e
Vz(R[Z] D AlZ]) Vz(VxA[zxX] D AlZ])
Alt] Bl ,

where A[t] isa closed formula. Then IT isreducibleif IT; and IT, are reducible.

Proof: Wefix formulas R[a] and A[a], where R[a] isamonotone formula (see Def-

inition[2.1](4)) and A[a] does not contain any free variable except a. Let A[s] denote
the following unary predicate, where s ranges over finite sequences of integers.

A[s]: Forany closed term t expressing the integer assigned to s by the bijection

@ fixed in Definition 2.1 (4), for any reducible deduction X with Cnsq(X)

Vz(R[zZ] D Alz]) and for any reducible deduction A with Cnsg(A)
Vz(VxA[z* X] D A[Z]), adeduction IT; of the form

> DA
Vz(R[Z] ) AlZ]) Vz(VxA[z % X] > A[Z])
Aff] Bl

isreducible.

Since VsA[s] implies our result, we show VsA[s]. Let R[s] be a unary predicate,
where s ranges over finite sequences of integers, such that & [s] isequivalent to R[t]
for any finite sequence of integers s and for any closed term t expressing the integer
assigned to sby ®. By using (informal) bar induction on s, in order to show VsA4[g],
it suffices to establish the following properties.

Hyp 1: V{anR][ f[n].

Hyp 2: VIVN(R[f[n] = Vm=> | R[f[m]).
Hyp 3: Vs(R[s] = A[9]).

Hyp 4: Vs(VnA[skn] = A[9)]).

Here, sxn denotes the finite sequence (sy, ..., Sm, N) for any finite sequence s (=
(S1,...,Sm) and any integer n. Since Hyp 1 and Hyp 2 are obvious from the con-
dition of the monotone formula R[a], we show Hyp 3 and Hyp 4.

Casel (Hyp 3): Supposethat R[s] istrue. Then R[t] istrue for any closed term t
corresponding to s. We prove that IT; € Red by induction on v(X) + v(A).

3.1. Suppose v(X) 4+ v(A) = 0. For any deduction I" with IT; ~ T, T" is of the

form
> |
VARAS A | L Oy
R[t] D Alt] R[t] 5-E

Alt]
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Since Oryy is an elementary deduction (see Definition B.3l(5.1)), ORyy isre-
ducible by Lemmal[3:17] So, by LemmaBI6] I € Red. Therefore, IT; € Red
by Definition[2.13]

3.2. Suppose v(X) 4+ v(A) > 0. For any deduction I" with IT; ~» ', T" is either in
(3.2) or of theform

LY DA
Vz(R[Z D AlZ) Yz(¥xAlzxX] D AlZ])
Alt] Bl ,

where (T~ Y and A= AN or (X=X and A ~ A). If Iisof theformin
(3.1), the proof goesthe sameway asin (3.1). Otherwise, I" € Red followsfrom
the induction hypothesison v(X) 4+ v(A). Therefore, I; € Red. By (3.1) and
(3.2) inthislemma, we have shown that A4[g].

Case2 (Hyp4): SupposeVnA[sxn]. Lett beaclosedterm correspondingtos. We
provethat TT; € Red by induction on v(X) + v(A).

4.1. Supposev(X) + v(A) =0. Let T" be adeduction with TT ~» T". T is either of
the sameform asin (3.1) or is of the form

CA (IT) tvayy)
Vz(VxA[zx X] D AlZ]) Alt * a]
L VXA O AT T VATt V-l -
Al Sk

If T is of the same form as in (3.1), the proof goes the same way asin (3.1).
Otherwise, by the hypothesis VnA[sxn], (ITy)[v,y € Red for any integer n and
for any closed term t’ corresponding to sxn. By Definition[3.13](1.3), and by
LemmaB.16] " € Red. Therefore, I; € Red.

42. v(X)+v(A) > 0. The proof goesthe sameway asin (3.2).
By (4.1) and (4.2) in thislemma, we can show A[g]. O

Lemma3.19 Let IT be a deduction whose consequence is closed, and let a be a
strictly free variable in I1. If T1[t/a] € Red for any closed term t, then IT € Red.
Here, I1[t/a] isthe deduction obtained from IT by substituting t for a.

Proof: We consider a deduction IT which satisfies the following condition (i) or
(i): (i) IT € Red; (ii) Cnsq(IT) is closed and there exists a strictly free variable a
in IT such that T[t/a] € Red for any closed term t. Such a deduction IT is said
to be prereducible. To a prereducible deduction IT, we assign an induction value
e(IT) = («, B, y) asfollows:

1. «isthe degree of Cnsq(I1);
2. B=v(ID);
3. yisthe number of inference rules of IT.
Note that since I1[t/a] € SN by (CR 1), IT € SN by LemmaB10](3). Let < bethe

lexicographical order of the induction values. We prove that every prereducible de-
duction is reducible by induction on the order <.
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1. Supposethat IT is not neutral.
1.1 Supposethat IT isof the form

12

(8]
X

C
B>C

-l .

SinceIl[t/a] € Red, X[t/a][T"/B] € Red for any closed termt and for any
I' € Red(B). Sincee(X[I"/B]) < ¢(I1), X[I"/B] € Red by theinduction
hypothesis. So, T € Red.

Suppose that IT is of the form

>
B[]

IxB[X] &1

121 If sdoesnot contain a asafreevariable, then (X[t/a])(s/g = (X(s/g)

[t/a] and (X[t/a])[s/ € Red for any closed term t and for any clo-
suresof s. Since e(X[s/g) < &(I1), and by the induction hypothesis,
Y[s/q € Red for any closuresof s. So, IT € Red.

1.2.2 Suppose that s contains a as a free variable in s. For theterm s (=

13

21

2.2

9a]), let §a] denote a term obtained from s by substituting closed
terms for all free variables except a. If g[t] denotes (g a])[t/a] and
S[t] denotes (S[a])[t/a], then (X[t/a])g1y,qy; € Red for any closed
term t and for any S[a], since I1[t/a] € Red for any closed term t.
Inthis case, (Z[t/aDs/q0 = (Zigal/giyal = Zsn/g- Therefore,
Y[s/g € Red for any closuresof s. So, IT € Red.

The other cases where IT is not neutral can be proved in the same way as

in (1.1) and (1.2) in thislemma.

Suppose that IT is neutral.

We show YV (IT~ ¥ = ¥ € Red). Let ¥ beadeduction with IT ~ X.
If aisastrictly free variable in IT, then a is not an eigenvariable in X
by Lemma 3.10 (1). For any closed term t, X[t/a] can be obtained from
I1[t/a] by the same reduction as IT ~» X. So, by (CR 2), X[t/a] € Red
for any closed termt. Since e(X) < ¢(I1), X € Red by theinduction hy-
pothesis.

Suppose that IT is of the form

~ [Bp]]
XY A
HXB[X] A

A 3-E .

We show the following: (31) £ € SN; (32) A € Red(A); (33) for any
1 such that X ~~» X7 and for anyX, which is a subdeduction im-
mediately above an end segment {S}i<n of X1 with Cnsq(X;,) = B[],
AP 3, /B[s]] € Red(A).
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Proof of (31):  SinceIl € SN, ¥ € SN.

Proof of (32):  Since ¢(A) < e(IT), A € Red by the induction hypo-
thesis.

Proof of (33):  Wefix ¥4, Xp and {S}i<n, and let X4 be of the form

LR
| ¢ .. stl ' orE
T 5
S S " QuaE,

wheren > 1 and Q-E iseither av-E oran 3-Eforany 1 <i < n.
Note that S has the same form as AxB[x] for any i < n. Let T be a
deduction obtained from TT by replacing ¥ by X, and let I'™* be a de-
duction obtained from I" by (n — 1 times) permutative contractions along
{S1,..., S} Then

I~~~ T A F*,

and I'’* is of the form

. %, [Bib]]
| By, ia
;I S ° Aqg
C, A ' OLE
. A '
N A} :
Cho1 A
Qn-1-E .
A

If aisastrictly free variablein IT, then a is not an eigenvariable in I'* by
Lemma 3.10 (1), and hence, a is not an eigenvariablein AISPI[ 3,/ B[4]].
Lett beaclosedterm. SinceTl[t/a] € Red, I'*[t/a] € Red by (CR 2). So,
AlSPl[s,/B[4]][t/a] € Red by (CR 2) and Definition 3.13 (2.3). There-
fore, sinces (AP 2,/B[s]]) < e(T'*) < (") < &(IT), Al¥P[2,/B[4]]
Red by the induction hypothesis.

If IT has a v-E as the last inference rule, then the proof goes similarly to
that of (2.2) in thislemma. O

Lemma3.20 Let IT be a deduction whose consequence is closed, and let & (=
ai, ..., an) bedrictly free variablesin IT. Then IT € Red whenever I1[t/d] € Red
for any closed termst (= ty, ..., t,), where IT[t/d] denotes the deduction obtained
from IT by substituting t; for a; (i=1,...,n).

Proof:

Using induction on n, we can easily show thislemmafrom Lemmal3.19] O
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Remark 3.21 Let IT be a deduction whose consequence is closed, and let X be the
set of al strictly free variablesin I1. By Lemma[2:20]in order to show IT € Red, it
sufficestofind asubset @ of X suchthat I1[t/a] € Red for any closed termst. Applying
this property, we show the following lemma.

Lemma3.22 Let IT be a closed deduction which has live assumptions [ Aq], .. .,
[An]. f I0; (i =1, ..., n) isadeduction such that Cnsq(IT;) = A; and IT; € Red,
then I[I11/Aq, ..., ITn/ An] isreducible.

Proof: We prove this lemma by induction on the structure of IT.

1. If IT consists only of alive assumption [ A] or an axiom A, then it isimmediate.
2. If IT isnot neutral, then it follows immediately from Definition[3.13](1).
3. Supposethat IT is neutral and that TT has arule R asthe last inference rule.

3.1. If RisaBI-rulg, thenit follows immediately from Lemma[3.18]
3.2. Supposethat IT is of the form

Bl
X A
EIxB[x] A 1E
A :

Let X* = X[I11/Aq, ..., I /A, and let A* = A[TT1/ Ay, ..., 1/ An].
By Lemmal[3.16] in order to show II[I1;/Aq, ..., ITn/An] € Red, it suf-
fices to show the following: (31) * € SN; (32) A* € Red(A); (33)
for any X1 such that X* ~»~» X, and for any X, which is a subdeduc-
tion immediately above an end segment of X, with Cnsq(X,) = B[9],
A/ 3, /B[g]] € Red(A).

Proof of (31): By the induction hypothesis, X* € Red. Therefore,
¥* e SN by (CR 1).

Proof of (32):  Let [B[b]] be the live assumption of A discharged by
the last inference rule 3-E of I1. Since b is the eigenvariable of the
last inference rule 3-E of I1, b is not an eigenvariable in A or A*. By
Definition 3.13, Al'/?! jsa closed deduction for any closed term t, where
APl jsthe deduction obtained from A by substituting t for the free vari-
able binthelive assumption [ B[b]]. Therefore, by theinduction hypothe-
sis, AlVP satisfiesthislemma. So, AIVPI[TT,/Aq, ..., TTn/An] € Red for
any closed term t. Since AWVOI[TTy/ Ay, ..., [Th/ An] = AHYBL AXIU/D] ¢
Red for any closed term t. Therefore, by Lemmal[3.20] A* € Red.

Proof of (33): By (CR 2), and by DefinitionB13¥2.3), 5/ € Red
for any closure s of s, whereas for the closed term s, Al%/Y is the closed
deduction. Therefore, by the induction hypothesis, AlS/Pl satisfies this
lemma. So, A*I5/PI[Sys/q/B[S]] € Red for any closure s of s. Since any
free variable in the term sis not an eigenvariable in A*IS/P[£,/B[4]], by
Lemmal3.20) A*¥P[x,/B[g]] € Red.
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3.3. If RisavVv-E, then the proof goes similarly to that of (3.2).
3.4. If Ristheother rule, then it followsimmediately from LemmalB16] O

Proof of the strong normalization theorem: By Lemma[3.22] every closed deduc-
tion isreducible. So every closed deduction is strongly normalizable by (CR 1). By
Lemmal[3.11] every deduction is strongly normalizable. a

Remark 3.23 In [B], Yasugi and Hayashi introduced the term-system TRM (the
system of TeERM). TRM consists of parametric types called type-forms and terms
called term-forms, which are used to carry out a certain abstraction of computation to
proofs formalized in TRDB. The authors of [B] also proved the strong normalization
theorem of type-formsand term-formsin TRM. In order to prove the strong normal -
ization theorem for TRM, the authors of [[5] needed akind of restriction: R -strategy
and p-strategy for reductions of type-forms; B-strategy and o-strategy for reductions
of term-forms. However, the proof in this paper needs neither.

Itisknown that the reductionsin Definition[3:3]do not satisfy the Church-Rosser prop-
erty. Infact, the immediate signification of v-E can make a deduction reduce in two
ways (see [2]). We can, however, avoid this shortcoming by applying a suitable re-
gtriction, for instance, removing immediate signification of v-E. If we confine our-
selves to such a case, the Church-Rosser property holdsin TRDB.

Lemma3.24 Let IT be any deduction, and let ¥ and A satisfy IT ~~» ¥ and
[T~~~ A. Then there exists a deduction I" such that ¥ ~~» I"and A ~s~» T,

Proof: The proof goes the same way as the well-known method. O
From this lemma, we immediately obtain the following theorem.

Theorem 3.25 For any deduction IT in TRDB, IT is uniquely normalized to a de-
duction.

4 Consistency of TRDB In this section, we establish the consistency of TRDB,
using the strong normalization theorem, Theorem[3.6]and paths used to establish the
consistency of HA in [2]. We also prove the existence property and the disjunction
property of TRDB, using the strong normalization theorem and the paths.

Definition 4.1 (Troelstra [2])

1. For adeduction IT, afinite sequence { A; }i <n consisting of (occurrences of) for-
mulasin IT is called a path of IT if it satisfies the following conditions.

(i) Aqiseither alive assumption, an axiom, an assumption discharged by an
D-1, or the conclusion of aBl-rule.

(ii) Foranyi < n, A isneither Cnsq(IT), the minor premise of any O-E, any
premise of any Bl-rule, the major premise of any Vv-E whichisredundant,
nor the major premise of any 3-E which is redundant.

(iii) Foranyi < n,if A isnot the magor premise of an v-E or an 3-E, then
A1 isaformulathat occursimmediately below A; in IT.
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(iv) Foranyi < n,if A isthemajor premise of av-E or an 3-E, then A1
is one of the assumptions discharged by the elimination.

(v) A, iseither Cnsq(IT), the minor premise of an O-E, one of the premises
of aBl-rule, the major premise of a v-E which isredundant, or the major
premise of an 3-E which is redundant.

2. A path of IT whose end formulais Cnsq(IT) is called an end path of IT.

For apath { Ai}i<n, if thereexistsani (< n) such that A; iseither the conclusion or a
premise of an inference R, then we say that { Ai}i< contains R.

For any deduction IT, welet TTy denote anormal form of aclosure of IT, and let
rz(IT) denote the number of end paths of IT whose initial formulas are conclusions
of Bl-rules.

Lemma4.2  Let IT bea deduction whose consequence is an atomic formula except
an H-formula. Thenrg(TTy) = 0.

Proof:  Suppose that TT has an end path { A }i<n such that A; isthe conclusion of
aBl-rule. Then there exists a Bl-rule B such that TTy is of the following form

A ‘T
VZ(R(2) D AlZ) Vz(YxA[z#x] > A[Z)
Alt] 3
b
Cnsq(TTy)

and that A; isthe conclusion A[t] of B. If t isaclosed term, then TTy is not anormal
form since B is areduction point of TTy. So, t contains a free variable. By Lemma
[B.91(4), Ty isaclosed deduction. So, t contains an eigenvariablefor aVv-1 or an 3-E
by Lemmal[3.9](1). Since A[t] occurs below B, t does not contain any eigenvariable
for 3-E. So, t must contain an eigenvariable for a vV-1. However, {Aj}i<, does not
contain any introduction rule, because X isanormal formand Cnsq(ITy ) isan atomic
formula except an H-formula. Thisyields a contradiction. O

Lemma4.3 LetIT beadeduction. For any end path { A;}i <, of TTy which does not
contain any V-1 rule, A; isnot the conclusion of a Bl-rule.

Proof: The proof goes the same way as LemmalZ.2] O

Definition 4.4 Let A be an atomic formula except an H-formula. Then A is said
to be absurd if A satisfies the following:

TRDB — (Bl + TRD(G, I)) - A>0=1.

Theorem 45 TRDB isconsistent.

Proof:  Let IT be a deduction whose consequence is 0 = 1. By Lemmal4.2] no end
path of TTy contains a Bl-rule or an introduction rule. Therefore, there exists an end
path whose initial formula A; satisfies the following conditions.
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(i) Ay isnot any assumption discharged by a >-I.
(ii) Az contains an H-formula or an absurd formula, that is, A; is nhot an axiom
formula

So, Ty has at least one live assumption, and hence, IT has at least one live assump-
tion. O

Theorem 4.6 (The existence property and the digunction property of TRDB)

1. Ifaclosed formula3xA[x] isprovablein TRDB, thenthereexistsa closed term
t such that Aft] isprovablein TRDB.

2. If aclosed formula A v B is provable in TRDB, then A or B is provablein
TRDB.

Proof: (1) Let IT be a deduction which has a closed formula 3xA[X] as the conse-
quence, and let TT have no live assumption. Then Ty aso has 3xA[X] as the conse-
quence and also has no live assumption. We show that TTy has an introduction rule
asthelast inference rule.

(i) Since the consequence of Ty is not an atomic formula, Ty is not an axiom.
Since the conclusion of every inference rule defined in Definition[2.11(2.1) —
(2.5) is an atomic formula, the last inference rule of Ty is either alogical in-
ferencerule, a L-E, aBl-rule, an H-1, an H-E or p-E.

(i) The consequence of Ty isaclosed formula, the last inference ruleis not a Bl-
rule.

(iii) Supposethat Ty has an elimination rule except a v-E or an 3-E, asthelast in-
ferencerule. Then every end path containsno introduction rule. So, by Lemma
[d3]rz(TIn) = 0. So, for any end path { Ai}i<n, A1 isan axiom formula. How-
ever, inthiscase, A; isan absurd formulaor an H-formulawhenever A; isan
atomic formula. Thisyields a contradiction.

(iv) Supposethat TIy hasa v-E or an 3-E rule as the last inference rule. Then the
subdeduction X of Ty, whose consequence is the major premise of the last in-
ferencerule of Ty, has neither any v-E nor any 3-E asthelast inferencerule.
Note that X is a closed deduction and a normal form, whose consequence is
a closed formula of the form 3yB[y] or B v C. By (i) —(iii), ¥ has an intro-
duction rule as the last inference rule. Since Iy isanormal form, it yields a
contradiction.

By (i) —(iv), TIn has an introduction rule as the last inference rule. Since the outer-
most logical symbol of the consequence of Ty is an 3-quantifier, the last inference
ruleisan 3-1. Moreover, since [Ty isaclosed deduction, there exists a closed term t
such that A[t] is provable with the subdeduction obtained from Ty by removing the
last inferencerule.

(2) The proof goes the same way as (1). O
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