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Abstract  In this paper, we define a first-order logic CF’ with strong nega-
tion and bounded static quantifiers, which is avariant of Thomason'slogic CF.
For the logic CF’, the usual Kripke formal semanticsis defined based on situ-
ations, and a sound and compl ete axiomatic system is established based on the
axiomatic systems of constructive logics with strong negation and Thomason’s
completeness proof techniques. With the use of bounded quantifiers, CF’ al-
lows the domain of quantification to be empty and allows for nondenoting con-
stants. CF’ isintended as a fragment of alogic for situation theory. Thus the
connection between CF’ and infon logic is discussed.

1 Introduction  Thomason [25] constructed a first-order logic CF. In hislogic, a
constructive negation is used instead of a classical or intuitionistic one. Construc-
tive negation, also called strong negation, was introduced by Nelson [21] following
Kleene's notion of recursive realizability, emphasizing that false number-theoretic
statements, as well as true ones, are obtained simultaneously by constructive means.
Independently, Markov [19] also introduced strong negation from the point of view
of constructive logic. Such negation was later incorporated into various logical sys-
tems, such asNelson’s propositional systemsN and N, that is, the propositional parts
of Nelson's system N4 of constructible falsity (see and Routley [24]),* and their
first-order extensions (see Almukdad and Nelson [{4]),2 intuitionistic logic with strong
negation H by Gurevich [[L7], constructive predicate logic with strong negation S by
Akama [2], and first-order logic CF in [25]. See also constructive propositional cal-
culuswith strong negation by Vorob’ ev [B0] and the semanticsof thecalculusinterms
of A/-latticesin Rasiowa [[22]. Furthermore, Wansing [32] has systematically inves-
tigated the whole family of substructural subsystems of Nelson's systems from the
point of view of the fine-structure of information processing.®

The resulting logics, to which we shall refer loosely as constructive logics with
strong negation, demonstrate some satisfying features compared with intuitionistic
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logics. First of al, since negative information is treated as of equal importance with
positive information, such logics are more symmetrical than intuitionistic logics and
satisfy very natural duality laws. In particular, strong negation avoids nonconstruc-
tive features possessed by intuitionistic negation (see [[L7] and [32]). Secondly, con-
structive logics with strong negation can be provided with a more satisfying inter-
pretation than the well-known Brouwer-Heyting-Kolmogorov (BHK) interpretation
for intuitionistic logics (see [32] and Lopez-Escobar [18]). Moreover, they admit a
sentence to be undetermined and thus can accommodate the partiality of information
(see [25] and [32)).

Another desirable characteristic of constructive logics with strong negation is
the heredity or persistence of information,* to the effect that what is true at a state of
information is still true at all later states. Thisis usually bought at the cost of avery
strong dynamic satisfaction condition on universal quantifiers. A sentence VX (X)
istrue at a state of information s only when ¢(a)® istrue at all states of information
t > sfor dl individuals a in the domain of t (where > orders states by increasing
information).

Classically we should evaluate the quantifier in a static fashion where only the
state s and the individuals in the domain of s are relevant. Which form is more nat-
ural from the situation-theoretic viewpoint? Consider the situation s of a room full
of people. The sentence ‘ All men here are hungry’ will be true at s provided that all
the men in the room are hungry. Here the quantifier is taken as restricted to the men
in that room. We do not look at wider situations and (possibly) wider extensions of
‘men’. Soif wetake apoint sin aKripke model as a situation rather than a state of
information, then it seems we should eval uate the quantifier staticaly.

Thomason'’s first-order logic CF does interpret universal quantifiers statically
rather than dynamically. His semantical model is a hybrid of a Kripke model for
propositional intuitionistic logic (as the conditional is intuitionistic) and a classical
model for predicate logic (as the universal quantifier is static).® Nevertheless, his
semantical framework requires different stages to have the same domain. From the
standpoint which treats stages as situations, it is obvious that this restriction is in-
appropriate. From an intuitionistic viewpoint, it is not suitable either. Asis well
known, Kripke models for intuitionistic logic also require expanding domains. But
the connection of intuitionistic logic with expanding domains is both more compli-
cated and more tenuous than is the case with situation theory. In order to seethis, let
us consider the following schema which we call the distribution schema:

(DS) VX(p V (X)) D (¢ Vv VX¥(X)), wherexisnot freein ¢.

If we add to intuitionistic logic all instances of (DS), we obtain alogic whose models
are exactly the Kripke models with constant domain. Thus to motivate expanding
domains from an intuitionistic viewpoint is to motivate the rejection of this schema.

The BHK interpretation is of little help. According to that we need to show how
aproof of Yx(¢ Vv ¥(X)) could be extended to a proof of ¢ v Vxyr(x). Well, to havea
proof of VX(¢ Vv ¥(X)) isto have aconstruction C which transformsaproof of a € D
(D theintended range of the variable x) into aproof of ¢ v v(a). If the construction
C transforms aproof of a € D into aproof of ¢, then since xisnot freein ¢, wewould
have a proof of ¢. Otherwise, it transforms a proof of a € D into aproof of v(a) and
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thus from the construction C we derive a proof of Vxy(x). Either way we have a
proof of ¢ v Yxyr(x) (for the BHK interpretation, see Troelstra and van Dalen [27],
p. 9). Theinformal semantics of intuitionistic logic does not, at least not obvioudly,
show what is wrong with (DS). Why, then, is (DS) rejected at al? Very briefly, it
happens that certain Brouwerian principles of continuity which are more or less self-
evident from an intuitionistic standpoint are formally inconsistent in classical logic.
These principles say roughly that an assertion about an infinite sequence « must be
decided by afiniteinitial segment of «, and hence will be decided the sasmeway for all
sequences B that agree on that initial segment. Adding (DS) to intuitionistic logic will
restore inconsistency with these same principles. Dummett [11] contains a treatment
of the semantics of intuitionistic logic which discusses these issuesin detail.

There isafurther point. Kripke models are not the only semantic structures for
intuitionistic logic. Beth trees may be used instead. In the Beth semantics we have a
more complicated rule (see Troelstra[[26], p. 106) for evaluating disjunctions:

SsEeVvyiffVt>sdu>t(uEgporukE y).

A digunction is true provided that however knowledge is extended one or other of
the disuncts will become true. With thisit is easy to find a counterexample to (DS)
that makes no appeal to expanding domains.

The upshot is that expanding domains seem more an artifact of the Kripke se-
mantics than an essential part of the interpretation of intuitionistic logic. However,
they are quite central to situation theory, which to some extent supports our choice
not to use intuitionistic logic as a basis for situation theory (for more, see Section 4
below).

If we are to alow expanding domains, there is a technical problem to over-
come. Specifically, the semantical completeness proof of CF depends on an auxil-
iary lemma, that is, Lemma 2 ([l25], p. 250) and the proof of the lemmain turn makes
use of the conditional introduction rule DI. However, it iseasy to check that if differ-
ent stages in the semantical models are allowed to have different domains, then the
rule is generally not sound since universally quantified sentences, when interpreted
statically instead of dynamically, generaly are not persistent (see below, §882.2 and
2.5). So, the condition of a constant domain has to be imposed on his models for the
sake of CF’s semantic completeness; that is to say, in order to have static universal
quantifiers, we are forced to adopt a model with constant domain.

Conversely, from the model theoretic standpoint, the modelsfor CF areaspecial
case of theintuitionistic models. Accordingly, the dynamic condition for quantifiers
collapsesinto the static one. Since the dynamic condition is not suitable and expand-
ing domains are desired as we said above from the situation theoretic viewpoint, it is
natura to ask if we can have alogic for situation theory with both static quantifiers
and expanding domains.

Motivated by the above, we propose afirst-order logical system CF’ with strong
constructive negation like Thomason’'s but that allows for expanding domains. Our
semantical analysisis still based on Kripke frames (S, <, D) but we haveit in mind
to interpret S as a collection of situations rather than conventional possible worlds.
Accordingly, < isapre-order on situations and D is afunction assigning a set of in-
dividualsto each situation. Situations are limited parts of the world. Thus, generaly,
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situations provide us with only incomplete information. The partiaity of situations
to some extent also justifies the use of situationsin our semantical framework since,
as we pointed out before, constructive logics with strong negation are partial. In ad-
dition, we note that another source of the partiality of the logic is from the use of
inexact predicates (see [(], Wagner [[31], and related citations there). We treat uni-
versally quantified sentences statically instead of dynamically. And since static un-
bounded universally quantified sentencesgenerally are not persistent, weinstead con-
sider bounded ones, say V#x ¢ (x) where g is abounder. Thisis reminiscent of Dev-
lin'sinfon logic. Devlin [IE] considers Yx € uo where u isaset and o is an infon.
Such compound infons are persistent because the set u bounds the quantifier. In our
framework the bounder 8 may itself be nonpersistent in the sense that the extension
of A isliable to change from situation to situation, and consequently VAx¢(x) is, in
general, not persistent either. Thus, we further distinguish persistent bounders from
nonpersistent ones (see Section 2).

We summarizethevarious approachesto theuniversal quantifier inthefollowing
table, where INT isintuitionistic predicate logic, H is Gurevich’sintuitionistic logic
with strong negation [[L7], and CF is Thomason’sfirst-order logic [[25]). For aunifying
exposition of both Kripke and Beth models, see van Dalen [28].

| Logics | Quantifirs¥x |  Models | Domains |

INT, H dynamic Kripke models | expanding

INT static Beth models | constant
CF static Kripke models | constant
CF static Kripke models | expanding

Inthefollowing, we shall first introduce thelogical system CF’, then proveits sound-
ness and completeness. Finally, we discuss its connection with situation theory, its
possible extensions as well asits potential applications.

2 Logical system CF’ with strong constructive negation

2.1 Language £ of CF’  The language’ of our logical system CF’ consists of
an infinite set V. of individual variables (as metavariables for variables we use
X, X0, X1, . . .), aset C,, of individual constants (metavariables: ¢, ¢y, ¢y, . ..), and for
eachn,n> 0, aset PL” of n-ary predicate symbols (metavariables. Ry, Ry, Rs, ...).
In addition, £ has a set B, of bounders with a subset BY of persistent bounders
(metavariables: 8, Bo, B1, - - - with or without superscript P), and arelation symbol €.
Theset T, of termsof LisV,UC,. Weuset, tg, t1, ... asmetavariables for terms.

Atomic formulas of £ are R(ty,ty,...,th) and c € 8, where ty, to, ..., th €
T.,ceC.,Re P, and B € B.. Thewell-formed formulas of £ are defined recur-
sively from atomic formulas using the connectives v, O, and ~, and for each bounder
B, abounded universal quantifier V7 as follows:

1. atomic formulas are formulas;
2. if pisaformula thensois~ ¢;
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3. if g,y areformulas, thensoarep v ¥, ¢ D ¥r;
4. if g isaformula, x isavariable, and g is a bounder, then YAx ¢(x) is aso
aformula. For simplicity, we write Vx € 8¢ (x) for Vx ¢ (x).

A formula of form Vx € Bp(X) is called a bounded, universally quantified formula
Such formulas can be used to express local generality since the bound variables
thereof are to range over a subset of the individuals in the universe. In contrast, the
generality expressed by unbounded, universally quantified formulasisakind of over-
all generality (see Frege [14]). In order to express overall generality by a variable,
we only need a device for the scope of the variable, whereasin order to express local
generality, we need, in addition, the range of the variable. So, generally speaking, in
order to express generality viaavariable, we need both amechanism for the scope of
the variable and aparameter for itsrange. In other words, alogical quantifier consists
of the scope of avariable and the range of the variable. From the pragmatic point of
view, itisclear that bounded formulas are more frequently used than unbounded ones.
In tranglating natural language, restricted quantifiers are usually represented as unre-
stricted quantifiers over a material conditional or something equivalent. Thus, ‘All
birds fly’ is formalized as Vx(~ Bird(x) v Flies(x)) or Vx(Bird(x) — Hies(x)), if
the material conditional — is defined. In CF' it is represented as Vx € 8 Flies(x),
where 8 isabounder for birds. We prefer our approach to the usual one. In our opin-
ion, it istidy and emphasizes the two aspects of local generality. More importantly,
aswe mentioned in theintroduction, bounded, universally quantified formulas can be
used to expressthe persistence of information (see below). That isthe primary motive
for our use of bounded formulas instead of unbounded ones.

Syntactically bounders are flags on quantifiers. Semantically they are to be in-
terpreted as sets, that is, inthe sameway as predicatesarein classical first-order logic.
Then, it may be asked, why do we have aspecia syntax for boundersinstead of treat-
ing them simply asunary predicates? The answer isthat apredicate such as‘ Flies(x)’
gives three possibilities; an object may fly, it may not fly, or it may be undecided
whether it flies or not. But a bounder supplies only two possibilities: an object isin-
cluded in the bounder or it is not. The consequence is that Yx(~ ¥(X) Vv ¢(X)), in
fact, says alittle more than Vx € Bo(x) (see §2.3lbelow for exact comparison). It is
the latter that captures the informal reading of *All birdsfly’ rather than the former.

Conjunction and bounded existential quantification are defined as follows.

YAy =g ~(~oV~Y).
Ixe Bp(X) =g ~VX€E B~ p(X).

The concept of free and bound variablesisdefined asusual. Bound variables are used
as position markers only, and thus Vx € Bp(x) and Vy € Be(y) would be counted as
the same formula. We use as above ¢, ¥, x, ... as metavariables for formulas, and
", A (with or without subscripts) for arbitrary sets of formulas.

2.2 Persistent formulas The concept of persistence comes from situation theory.
Informally, it says that what is true in one situation is still true in alarger situation.
Formally, there is a so-called persistence principle, stated as

ifs<sandsk=o, thens = o,
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wheres, §' are situations, o isaninfon, and = isasupport relation between situations
and infons. If aninfon o satisfies the persistence principle, we say that o is persistent
(seeBarwise[[5]). Generally speaking, universally quantified sentencesin natural lan-
guage are not persistent. ‘ Everyone here is hungry’ may be verified when eva uated
from the situation in one poor household, but falsified when evaluated from alarger
situation including comfortable ones. There is atension between quantification and
persistence. If we take it that the persistence principle is true of every infon, then
it seems universally quantified sentences have to be excluded from the category of
infons. And conversely, if universally quantified sentences are taken as infons, then
the persistence principle would only hold partially (see [E]l, pp. 234-36). However,
guantified sentences are such important forms for expressing information that they
can hardly be excluded from the category of infons. We also want to retain the per-
sistence principle because, as situation theorists have argued, it captures our intuition
“that what goes on in part of the world still goes on when one has a broader perspec-
tive” ([5], p. 236). For the sake of both persistence and arich algebraic structure of
infons, we only consider bounded quantified formulas for which these problems do
not arise. However, aswe pointed out in the introduction, in our present framework a
bounder 8 inVx € Bp(x) may be nonpersistent. So we introduce an auxiliary notion
of persistent bounders. Syntactically, persistent bounders are treated as a primitive
notion. Semantic meaning of persistent bounderswill be given below (seecondition 3
on an interpretation in 82.3). Pragmatically, persistent bounders can be obtained by
incorporating context into boundersin universally quantified sentences. Thenwe can
define persistent formulas of £ recursively asfollows:

1 R(ty, to, ..., ty) and ~ R(ty, to, ..., t,) are persistent for any n-ary predi-
cate R, termsty, tp, ..., ty, and c € B and ~c e AP are persistent for any
bounders 8 and BP;

2. if @, Y are persistent, thenso are ¢ v vy and ¢ A ;

3. ¢ D Y ispersistent for any formulas ¢, ¥;

4. if ¢ is persistent, then Vx € BPp(x) is persistent;

5. if p isperdsistent, then 3x € Bp(X) ispersistent for any g € By.

Given aset I' of formulas, let T be {¢ € I' : ¢ is persistent}. So, all the persistent
formulas of £ would be F, where F. isthe set of all L-formulas. Note that, in the
definition of persistent formulas, negation isrestricted only to atomic formulas. Nev-
ertheless, thiswill not lose any generality since the negation of acompound formula,
according to related rules (see 82.5lbelow), is equivalent to another compound for-
mulain which negation is applied only to atomic formulas.

By the definition, nonpersistence of formulasis only due to the nonpersistence
of boundersin universally quantified formulas. So, pragmatically, the persistence of
such formulas can be recovered by incorporating context into related bounders. Nev-
ertheless, there exists indeed a kind of unrecoverable nonpersistence. In fact, such
nonpersistence isthe consequence of the partiality of situations. If asituationissilent
on o thenit certainly does not preclude alarger more extensive situation settling o. In
order to expressthe unrecoverable nonpersistence, we need to add akind of modal op-
erator such as ‘ definitely’ into our language. Such an extension, however, is outside
the scope of this paper (for more, see Mott [20]). The syntactic definition of persis-
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tence will be used in §2.5]bel ow.

2.3 Formal semantics Our semantical analysis is essentialy similar to Thoma-
son’s, but it is based on general Kripke frames instead of particular ones, that is, we
alow different points in a Kripke frame to have different domains. A Kripke frame
Fisatriple (S, <, D) such that

1. Sisanonempty set;

2. <isapre-order on S that is, < isareflexive and transitive binary relation
on S

3. D isamonotone function assigning sets of individuals to the elements of
S thatis, forany s, s € S, if s< s then D(s) € D(s).

Sisto be thought of as a set of situations, < is the containment relation among situ-
ations, and for each s € S, D(s) isthe set of individuals existing at situation s.

Aninterpretation | of language £ onaKripkeframe F = (S, <, D) isafunction
suchthat: forany s,s' € S,ce C., Re PL, g, P € By,

1. lgisapartia function from C, into D(s), and (a) if s < s and Is(c) is
defined, then Iy (c) isalso defined and Is(c) = I¢(c); and (b) for each d in
D(s), ls(d) isdefined and 15(d) = d.8
2. 1s(R) is a partial function from the Cartesian product D(s)' into {T, F},
andif s< g, then I¢ (R) isan extension of Is(R).
3. lsisatotal function from B, into P(D(s)) suchthat if s < &', then Is(8) C
ls(B) and 1s(87) = 15 (BP).
Clause 3in the definition of interpretation gives us the semantic meaning of persistent
sets. In other words, it is the semantic requirement for a set of individuals to be per-
sistent. It isworth pointing out the restriction incorporated in (3) is compatible with
the situation theoretic viewpoint, though it may look ad hoc. Anyway, situations are
treated as first-class citizens in situation theory. So one possible way to ensure the
persistence of universally quantified formulas would be to incorporate reference to
situations into them (see [B], p. 236). In this paper, however, we instead adopt the
device of persistent bounders.

A Kripke model M isapair (F, |) consisting of a Kripke frame ¥ and an in-
terpretation | on ¥. Before we continue the formulation of formal semantics, some
remarks seem in order about the definition of Kripke models. First, note that, in a
Kripke model M = (S, <, D, 1), D(s) can be empty for any (and al) se S. The
use of bounders means that the usual restriction to nonempty domains is unneces-
sary. Thus CF’ isinclusivein the sense that it allows the domain of quantification to
be empty (see Bencivenga [9], pp. 379-82).

Second, note that the function I5]C is partial. So CF’ allows for nondenoting
constants just as afree logic does (see [|§]). In afreelogic, an extra unary predicate
E or something equivalent isintroduced to deal with referencefailure. Nevertheless,
in CF’, we do not need such a special predicate. Bounders of quantifiers can play
the role of the predicate E of freelogic. It may be that bounders are preferable to an
existence predicate, at least if one wishes to confine existence to a purely semantic
role (as we would). Anyway, it will be no surprise that some axioms and inference
rules of CF’ will correspond to axioms and inference rules of afreelogic.
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Next, note that the function Is[P} (n > 0) isalso partial. That isto say, it may be
the case that abasic sentence R(cq, Co, . . ., Cn) isneither true nor false, so CF’ alows
truth-value gaps. Such gaps may arise from the use of inexact predicates, but we em-
phasize that there is another source of truth-value gaps—the partiality of situations.

When a predicate has truth-val ue gaps, we call it apartial predicate, otherwise a
total predicate. A total predicate can be interpreted as a set, that is, in the same way
as predicates are in classical first-order logic. With partial predicates, however, we
have to associate two sets. oneisfor the positive assertions, the other for the strong
negative assertions. So we might as well divide a partial predicate into two parts, a
positive part corresponding to the positive assertions and a hegative part correspond-
ing to the strong negative assertions. We recall that, syntactically, bounders are flags
on quantifiers. Semantically, as can be seen from clause 3 in the definition of inter-
pretation, bounders are interpreted as sets. What sets, then, should we associate with
abounder 8? There are two natural candidates. We could say that 8 was assigned
all the objects in the current situation. Then Vx € B¢(X) would be supported by s
provided that s made true ¢(a) for each object ain D(s). In this case, bounder g is
nothing more than a denotational variant of the existential predicate E of freelogic
(see Garson [[15], pp. 251-52). An alternativewould see boundersin amore restricted
way as corresponding to the positive parts of particular predicates, sothat Vx € Bo(X)
would be interpreted as asserting of all the objectsthat were 8 in the current situation
that they were also ¢. In fact, we choose here not to restrict bounders beyond requir-
ing that the objects a bounder g is associated with in asituation s are all objects that
belong to the situation s.

Given aKripke model M = (S, <, D, 1), we define a satisfaction relation |=;{
(or simply =) and arefutation relation =g (Or simply =7) between situationss € S
and L-sentences ¢ relative to M as follows, by induction on the complexity of ¢.

1. skET R(cy, G, ..., Cp)iff Is(Cy), Is(Co), ..., Is(cy) are al defined and
Is(R)(Is(€1), Is(C2), ..., Is(Cn)) = T;
SE~ R(Cy, Cp, ..., Cp) iff Ig(Cy), Is(C2), ..., ls(Cy) aredl defined and
Is(R)(Is(C1), Is(C2), ..., Is(cn)) = F;
sk=" c e Biff Is(c) isdefined and Is(c) € Is(B);
sk~ c e Biff ether Is(c) is not defined or
Is(c) isdefined and Is(c) € D(s) — Is(B).
2. sETevyiffsETporsiET ¥
SE oV yiffsE" pandskE" .
3. sET~giffsE" ¢;
sE"~giffsET ¢.
4. skET D yiffforal s suchthats< s if s =1 gpthens =T
sE" gD yiffsEt gandsk=" .
5. skETVxeBex) iffforalde D(s),if s=* de Bthens =T ¢(d);
Sk VX € Bp(x) iff forsomed € D(s),s=Td e Bandsk=" ¢(d).
Basic semantic notions such as consequence, satisfiability, and validity can be de-
fined in the usual way in terms of the satisfaction relation =". For any sentence ¢
and set T" of sentences, we write = ¢ to indicate that ¢ isvalid, I’ = ¢ to indicate
that ¢ is a semantic consequence of T, and I |= A to indicate that there is a subset
{®1, 92, ..., ¢n} Of A suchthat ¢1 v ¢V .-V ¢, isasemantic consequence of .
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Lemma 2.1 (Persistencelemma) Let M = (S, <, D, |) be a Kripke model, ¢ a
persistent formula of L.

() Ifs<sSandsk=T pthens =1 ¢.
(i) fs<s andsk="I'thens =1 I'P.

Proof: For (i), routine induction on the complexity of ¢. (ii) is a straightforward
corollary of (i). O

The persistence lemma2.1(i) gives us the semantic meaning of persistence. It can be
viewed as a variant of the persistence principle.

2.4 Axiomaticsystemfor CF’  Our axiomatic system CF’ isbased on the axiomatic
systems for constructive logics with strong negation (see [24]), [17], and [2]). It takes
as axioms the following list of schemas.

(A) "Dy D"

(A2) 9D (WDX)D.¢DY¥D.¢Dx
(A3) oAy Do

(Ad) oAy DY

(AB)  ¢P .y D Ay

(A6)  9DoVvY

(A7) Y Devy

(A8) COXD.¥YDxD.oVY Dy
(A9) PD. ~eDVY

(A10) ce BAp(c)DIxe Bp(X)
(A11) Vxe Bp(X) D~ce BVeC)
(Al2)  VxeBpV (X)) D (pVVXe BY(X))
(AL3) ~(@@Ay)=~oVv~Y

(Al14) ~(pvi¥)=~pA~Y

(A1) ~~p=9g

(A16) ~(pDY)=pA~Y

(Al7) ~Vxe Bep(X)=3Ixe B~ ¢(X)
(A18) ~3xe Bp(X)=Vxe B~ p(X)
(A19) cepBv~cep

In axioms A1 and A5, ¢” means that ¢ has to be persistent, which is the little price
we have to pay for the relaxation of the dynamic condition on universal quantifiers
to the static one. In axiom A12, x is required not to be free in . In addition, note
that axiom A12 is not assumed in constructive logics (see [[17] and [2]). We empha-
Sizeour situation theoretical standpoint rather than intuitionistic or constructive view-
point. So there seems nothing preventing us from assuming the axiom.

With axiom A19, we are assuming that, at any situation, we can always decide
if aconstant cisin 8 or not. The assumption is consistent with the semantic inter-
pretation of 8 given above. In addition, note that axioms A13 and A18 canin fact be
derived from the other axioms and related definitions and thus can be omitted.
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CF’ hasthe following inference rules.

R1 ¢, 9OY

(RY) 7

(R2) ceBAreC) DY
Ixe Bp(x) DY

(R3) YD (~cepVvoe()

¥ D VX e Bp(X)

In rules R2 and R3, the constant ¢ is required not to occur in .

The axiomatic system CF’ is a first-order modification of Almukdad and Nel-
son’s N aswell as Thomason’s CF.° If we delete axiom A9 from CF’, denoted CF/—,
then we have a system which isamaodification of Almukdad and Nelson'sN~. Since
axiom A9isnot availablein CF'~, we need another axiom to the effect that ¢ € 8 and
~ ¢ € Bdonot hold at the sametime, say c € BA ~ ce 8D L. So, withlogic CF'—,
inconsistent situations are allowed, but the inconsistency of situations does not arise
from contradictory statements of theformce B A ~ce 8.

Basic notions(relativeto CF’) such asthesi shood, consequence, and consistency
can be defined in the usual way. For any sentence ¢ and set I of sentences, we write
F ¢ toindicate that ¢ isathesisof CF, I' I ¢ to indicate that ¢ is a consequencein
CF of I',and I' - A toindicate that thereisasubset {¢1, ¢2, . .., ¢n} Of A suchthat
Y1V @2V -V @ isaconsequence of T'.

From the definitions of thesishood and consequence, it is easy to prove the fol-
lowing lemma.

Lemma2.2 LetTl, Abesetsof L-sentences. If ' A, thenT" = A’ for somefinite
subsets I and A’ of T" and A, respectively.

2.5 Derived rulesfor CF’ In this section, we list some rules for the deducibility-
relation - of CF’ between sets of L-sentences that are needed in the proof of seman-
tical completeness. It isnot difficult to derive them from the axioms and rules of CF’
given before. We divide these rulesinto three groups. Group 1 consists of two struc-
tural rulesand Group 2 of some operational rules. For CF'—, rule ~E isto bereplaced
by arule equivalenttoce S A ~ce D L. Group 3 isabout connection between
strong negation and other connectives. Lacking the ~-introduction rule, we have to
use numerous negation rules to connect negation and other connectives by driving
strong negation back and forth across them. Note that, because thereis no rule of ~-
introduction, we are able to use multiple-conclusion rules without, in general, being
ableto derive the Law of Excluded Middle (see the related remarks by Gentzen [16],
p. 82 and the exampl e about the derivation of the law on p. 85).

Group 1
R: If I"and A arenot digoint, thenT" - A.

I'-A
T OFE A
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Group 2
vl I'Ho, ¥, A vEe: DeFA T YyFA TEoVY A
' INERAVETAIN ' r-A
. rf. ok y SE FFeD Y. A; THg A
rPopo>vy ' T'Fy, A
~E e, A TE~p A
' A
y: TE~cepve@©). A VE: I'FVx e Bo(X), A
" T'FVXxeBp(x), A ' F'~cepBVvoec),A

In VI, ¢ has no occurrencein ¢(x) or in any member of " or of A;

Group 3
~ V| M'E~¢ A TE~9, A
' E~(evy), A
~ VE: E~(eVvy), A 'E~(evy), A
' T'F~g A T~y A
| 'Foe, A
'E~~p, A
e B I'E~~g@, A
', A
~5 1 FEo, A TE~4, A
' FE~(@@DY¥),A
S E FE~(@Dy).A FE~(@Dy).A
o A T~y A
V- I'ceBA~pc),A
' '~ Vxe Bp(X), A
~ VE: '-~Vxe Bp(x),A; T,ce BA~¢p(C)F A

A
In ~ VE, ¢ does not occur in ¢(x) or in any member of I" or of A.

Theorem 2.3 (Soundnessof CF’) Let I' be a set of L-sentences, and ¢ an L-
sentence, and M = (S, <, D, ) amodel of £, s a situationin M. If ' - ¢, and
s=TT,thens=t o.

Proof: Proof isroutine and thus omitted. O
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Note that the soundness of CF’ would fail if we included a rule of ~-introduction
(~-1) to the effect that from I", ¢ = A we can infer I" =~ ¢, A. To see this, observe
that, by derived rule R of CF/, ¢ = ¢. By ~-I it then follows that =~ ¢, ¢. And so
F~ ¢ Vv @ by rule v-1. But it is not difficult to see that ~ ¢ v ¢ isnot valid in the
current semantic framework. This shows that ~-I isnot sound in CF'.

3 Completeness proof of CF’

3.1 Definition A setT of L-sentencesis L-w-completeif for all L-formulas ¢(x),
wehavel' FVx e Bp(X)if'~ce v e(c)foral ce Cy. AndT is L-saturated
if it meets the following five conditions: for any L-sentences ¢, ¥,

I" is consistent;

I' isdeductively closed, that is, if ' - ¢, then ¢ € T;
ifCTFovy,thenTFgporTFy;

if ~V¥xe Bp(x) e, thenfor someconstantce C,,ce BA ~@(C) eT;
' is L-w-complete.

agkrwbdpE

Lemma 3.1 (Saturation lemmal) Let T' be a set of L-sentences, and ¢ an L-
sentence. SupposeI' H ¢. Let C = {co, C1, Co, ...} be a countable set of constants
foreignto £, B a set of boundersof LU C, and L' = LU CU B. Then thereisan
L/-saturated set I',, suchthatI' € I', and T, I .

Proof: In order to obtain required I',,, we define two sequences (I'j); and (A;); by
induction as follows. Let (¢i)i enumerate all L'-sentences, and (i 1 V ¢i.2)i, (VX €
Bioi (X)) and (~ VX € Bigi(X)); enumerate with infinite repetition all disunctive,
bounded universal and bounded existential sentences of L', respectively.

LetI'o =T and Ag = {¢}. Supposethat I'y and Ay have been defined. To define
ky1 and Ay 1, we distinguish the following five cases.

Casel: k=4nTyF ¢n1Venz, anden1 & Ikand gn2 & Ty. Put
Fkrr = TwU{enil,
A1 = Ag
wherei istheleast of {1, 2} such that 'y U {¢n,i} I/ Ax.
Case2: k=4n+1 I'xF ~ VX e Bron(X), Ag and for al constantsc € C./, (C €
Bn A~ @n(C)) ¢ k. Put
ki1 = TkU{Ck € Bn A~ on(Ci)},
A1 = Ay
where ¢ isthe first member of C, not to occur in ¢y (X) or in any member of T’y or
of Ag.
Case3: k=4n+ 2; there are two subcases.
Subcasel: Ty, ¢n - Ag. Put

N1 = T
A1 = AxU{gn};
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SQubcase2: ¢n & ' and Ty, ¢n ¥ Ag. Put

Ivpr = TkU{en),
A1 = Ak

Case4d: k=4n+ 3. Tk, VX € Bren(X) = Ak, and for al constantsc e C./, (~C e
BnV @n(C)) & Ag. Put

Ivir = Ty
Ay1 = AxU{~cke BnVon(Chl,

where ¢y isthe first member of C, not to occur in ¢n(X) or in any member of 'y or
of Ay.

Case5: None of the cases above applies. Put

I'vpp = T,
A1 = Ak

It is then not difficult to check by induction that for any k € w, I'x F# Ay using the
derived rulesfor CF’. Toillustrate, let us consider Case 3.1. We need to show that if
Tk, on = Ak, then T B A U {@n}. Suppose T'k F A U {pn}. We assumethat ¢n, Ak
and Ag U {¢n} are the same set of formulas. By rule T and rule vI, we have I'y -+
©nV @n, Ag. Sinceweare assuming that I'y, ¢n - A, it followsthat Ty = Ay by rule
VE. But this contradicts the induction hypothesis. So we have I'y F/ Ag U {¢n}.
Now let T, = U{Tl'k: k € w} and A, = U{Ag : k € w}. We can show that T",, t/
Ay, T =Fg —A,and T, is L -saturated as desired. The details of verification are
omitted. O

Lemma 3.2 (Saturation lemmall) Let I" be a set of L-sentences, and ¢ and v L-
sentences, and BE all the persistent boundersin £. Suppose¢p D ¢ ¢ T'. Let C =
{co, C1, Cp, ...} be a countable set of constants foreign to £, B a set of bounders of
LUC, and £ = LUCU B. Then thereis an £’-saturated set I, such that I'P C
T,,pel,buty ¢T,and (~cjepf)eT, foranyc; e C, gF € BE.

Proof: The proof issimilar to that of saturation lemmal except that thistime we let
To=TPUf{ptU{~cjepP:cjeC& AP e BR}and Ag = {y}. O

3.2 Definition (Canonical model construction) LetCq, Co, Cs, ... beacountable
sequence of digoint countable sets of constants foreignto L. Let Cy be C; UC, U
.-+ U Cy, and By, aset of boundersof £ U C;; such that Bj € By, forany | <m<n.
Then for language £, = L U (U C,) U (UBy), we can define a Kripke model M =
(S, <, D, I) asfollows.
1. Sconsistsof al I' such that for somen, Lr = LUC; U By, and I is
Lr-saturated.
2. forany Lr-saturated set I and L -saturated set A with L = LUCHU
Bnand L, = LUCFUB,(m<n), T < Aifandonlyif I'" € A and
foranyce Cf — Crand P € B.,., (~ce BP) e A.
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3. ifI'is Lp-saturated and L = LUCF U Bythen D(I') = C,UC;.

e ifce C,UC;
4 1r© _{ undefined  otherwise.

5. Ir(B)={ceC,UC;: (cep)eTl}.

T if R(C1,Cp,...,Ch) €T
6. Ir(R)(cy,C0,...,cn)=1 F if ~R(cy,Cp,...,Ch) €T
undefined otherwise.

Lemma 3.3 (Truthlemma) Suppose M = (S, <, D, ) is a canonical Kripke
model associated with £. Thenfor all " € S, and all £ --sentences y, we have

=" x iff xerl.

Proof: By induction on the complexity of .

Casel. yisanatomicsentence R(cq, Cy,...,Cpy)Or C € B:thelemmaholdsby the
definition of a canonical Kripke model.

Case2: yisanatomic sentence ~R(cq, Cy, ..., Cy): thelemmaholds again by the
definition of a canonical Kripke model. If x is~c € B, supposethat I' ="~c € B,
thatis, I' =" ¢ € B. By definition, either | -(c) isnot defined or 1 -(¢) isdefined and
Ir(c) € I (B). Ineither case, (c € B) ¢ I'. By axiom A19 and saturatedness of I", we
get (~ce B) eI'. For converse, let (~c € B) € I'. By axiom A9 and the consistency
of ', weget (c € B) ¢ I'. Fromthisit followsthat I' =*~c € B.

Case3: xisgV y: theproof isstraightforward and thus omitted.
Case4d: yxis~(¢V y): the proof is straightforward and thus omitted.

Case5: yxis¢ D . Supposeg D ¥ € I'. Weshow I' = ¢ D 4. For any A such
that I < A, wehave I'P € A. Sinceg D ¢ € I' and ¢ D  is persistent, we get
@Dy el'PC A ltfollowsthatif ¢ € A, theny € A by rule DE. By the hypothesis
of induction then, for all such A, if A = ¢, then A = ; and therefore” = ¢ D .

Conversely, supposeg D ¢ ¢ T, theng D v ¢ TP, s0TP U (¢} K~ ¥ by rule D,
Using saturation lemmall, we can get asaturated set A € SsuchthatI' < A, ¢ € A,
but ¢ & A. By the hypothesis of induction, we get A = ¢ but A |~ . ThusT p=

» D Y.

Case6: xis~(pD V). TET~(@Ddy)ifandonlyif I' == ¢ D v if and only
ifIF'=Tgpandl =" yifandonlyif I' =" ¢ and ' ="~ v, and thisif and only if
¢ € I'and ~ ¢ € T by the hypothesis of induction. But ¢ € T and ~ ¢ € T if and
only if ~ (¢ D ) € I by rules~>1 and ~OE.

Case7: yxis~~ ¢: theproof is straightforward and thus omitted.
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Case8: xisVxe Bp(x). Supposel’ =1 Vx € Bop(x),thenforalce D(I),ifI' ="
ce B, thenT =T ¢(c). ButT' =" ce B v ~ ce B. Itfollowsthat for al c € D(I'),
I'=t~ce BVoe(c),so(~ce BVe(c)) eI bythehypothesis of induction. Thus
VX € Bp(X) € T by the L-w-completenessof I". Conversely, suppose Vx € Bp(X) €
I, thenforanyce D(I'), (~ce BVve(c)) eTbyruleVE,so~ce BeTorp(c) el
by the saturatedness of I'. Since " isconsistent, if ce B e I',then~ce B ¢ T, s0
@(c) el. Thatis, foranyce D(I"),if I' =" c € BthenT =" ¢(c) by the hypothesis
of induction, so ' =+ VX € Bp(X).

Case9: yxis~Vxe Bp(x). The proof is similar to that for Case 8 except that we
use condition 4 of L-saturatedness of " and rule ~V I, completing the proof.  [J

Theorem 3.4 (Strong completeness for CF’)  Let ¢ be an L-sentence and I" a set
of L-sentences. If ' =@ then T F ¢.

Proof:  SupposeT I ¢. By canonical model construction, we can associate L with
acanonical Kripke model M = (S, <, D, I). Saturation lemmal then guarantees us
that thereisa A € Ssuchthat I' € A and ¢ ¢ A. By the truth lemma, A =T but
A = @. Therefore, T = o. O

4 Conclusion and discussion  The main contribution of this paper is the proposal
of afirst-order logic that is based on constructive logic with strong negation. How-
ever, different from constructive logic, quantifiersin our system, as in Thomason’s,
are static rather than dynamic. Our intention is to develop CF’ further so that it can
serve as alogic for situation theory.

Originally, situation theorists were not much concerned with developing their
own logical systems. Their semantic theory of consequence emphasized the external
significance of language and the role of nonlinguistic contexts. Consequence is for
them no longer a relation between syntactic elements. There is ho exact correspon-
dence between the information conveyed by an utterance and the sentence used to
convey. Infact“ . . . there can be no syntactic counterpart, of the kind traditionally
sought in proof theory and theories of logical form, to the [situation] semantic theory
of consequence.” (see Barwise and Perry [[8], pp. 44-45). However, the desire to use
situation theory and situation semanticsto give an account of inference eventually led
Barwise and Etchemendy to construct a situation theoretical model of inference, em-
phasizing information content. They called thisinfon logic; that is, alogic whose el-
ementary formulas represent items of information and whose compounds correspond
to ways of compounding those items (see Barwise and Etchemendy [, [10]).

Aninfon algebral = (Sit, |, =, =) consists of a nhonempty collection Sit of
situations, a distributive lattice (I, =) on infons, together with the makes-factual or
support relation = between situations and infons satisfying certain additional condi-
tions.

In an infon agebral, infons represent pieces of information and situations are
intended to be limited portions of the world. The support relation = is essentially
partial: asituation may support some infons and refute others but remains silent on
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many. It follows that any algebraic theory of infons is definitely not Boolean. Fur-
thermore, they argue that a situation theoretical model of infonsis at |east acomplete
distributive lattice, that is, a Heyting algebra. Thus, the logic for situation theory is
at least intuitionistic but not classical.

This argument immediately poses at |east two questions. One of them is about
negation, the other about the interpretation of quantifiers. Let us first consider the
question about negation.

We recall that in situation theory there are two kinds of basic infons: one is

({R, a1, a,...,an; 1)), theother (( R, a;, as, ..., an; 0)), where Risan n-placere-
lation, a;, ay, ..., a, are objects with the restriction of appropriateness. Note that
ai, a, ..., a, need not necessarily be individuals. 0 and 1 are the polarity of infons.

For basic infons, negation is defined through a dual operation as follows:

(Raa, .. an 1)) = ((Raya,... a;0); (1)
<<R7alva27"~»an;o>> - <<R7a17a27"'7an;1>>' (2)
So, we have
((Rag,ap,...,an; 1)) = ((Ragap,....,an 1)) (©)]
(4)
(R ag,an,...,an 1)) = ((Ra,ap,...,an1)).

However, it is well known that intuitionistic negation does not satisfy (3) though it
satisfies (4).

Furthermore, the negation of compound infons in situation theory is defined by
thefollowing version of DeMorgan’slaws (see[[5], p. 235 and Fernando [[I2], p. 108).
Evenin [ (p. 55), Barwise and Etchemendy do mention that (5) is sometimes as-
sumed in situation theory. However, (5) does not hold though (6) does for intuition-
istic negation.

®)
(6)

Therefore, we conclude that situation theoretic negation is not intuitionistic. More-
over, the aboveway of treating negation by situation theoriststo some extent suggests
that the negation used in situation theory isin fact strong negation. Moreimportantly,
we can put aside the question whether situation theoretic negation isintuitionistic or
strong since it turns out that intuitionistic negation can in fact be simulated by strong
negation (see [[19] and [2]).

Now we consider the question of quantifiers. Quantification of infons is not
treated in Barwise and Etchemendy’s infon algebra. Presumably, they would not in-
terpret quantifiers dynamically for the reasons we discussed previously. Moreover,
guantifiersin related situation theoretical literature are interpreted in one way or an-
other statically rather than dynamically (see [, p. 271; [[10], pp. 134-36; and [[12],
p. 109).
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Therefore, we are inclined to use constructive negation, more generally, to use
constructive logic with strong negation as the underlying logic for situation theory
but to interpret quantifiers statically instead of dynamically. That istheway wearrive
at the logic CF’ from situation theorists' work on infon logic. However, we do not
claimthat our logicisfully-fledged. For onething, the componentsin abasic formula
R(ap, ap, ..., an), or using the notation of infon logic, ({ R,ai,ay,...,an;i)) are
il individuals whereas infon logic allows them to be any objects. Nevertheless, we
do intend to claim that our logic preserves many features of infon logic since (1) CF
is partia in the sense that a formula can be neither true nor false; (2) it has arich
algebraic structure of persistent formulas; (3) with strong negation available, CF’ has
in fact two kinds of basic formulas very similar to the two kinds of basic infons of
situation theory; (4) the negation of compound formulas satisfies DeMorgan’s laws
which are assumed to hold in situation theory; and (5) quantifiersin CF’ are static, as
is consistent with situation theoretical interpretation of quantifiers.

CF’ can be extended in many ways. A natural extension isto replace basic for-
mulas R(ay, ap, ..., a,) of CF' withbasicinfons (( R, a3, ap, ..., an; i )), emphasiz-
ing that componentsay, ay, . . ., a, in basic infons can be any objectsnot just individ-
uals. Such structures lend themselves to the treatment of complex objects.

Another possible extension is to incorporate an operator into CF’ in order to
express nonpersistence.’’ What is true in one situation is still true in a larger one.
However, what is undetermined in a situation may become true or false when more
informationisavailable. Itisthen natural to introduce an operator such as ' definitely’
(see[l201) or, more directly, an ‘ undetermined’ operator U. Using this operator U, the
indeterminacy of both the assertion and the (strong) negation of aninfon o can be ex-
pressed by means of Uo and U ~ o, respectively. If an agent, querying a situation
s for a decision whether o, fails to establish both o and ~ o, She can then thereby
establish Uo. In alarger situation, however, what is originally absent in a smaller
situation may become available, thus the same agent may verify o so that Uo isre-
jected. So, Uo isnot persistent. Similarly, if aquery to asituation sfailsto refute o,
then it rgjects the claim that o isrefuted by s and thereby establishes U ~o. For the
same reason, U ~ o is not persistent either. The distinction between strong negation
and U is similar to Barwise and Etchemendy’s distinction between negation and de-
nial (see Barwise and Etchemendy [E]). However, our approach isradically different
from Barwise and Etchemendy’s. Among other things, theinclusion of U inour logic
will lead us into nonmonotonic logic whereas Barwise and Etchemendy claim that
“Closing the class of propositions under conjunction, disjunction, and denial would
result in a notion of proposition whose logic is entirely classica” ([[g], p. 169). Full
details of such an extension remain to be done.

In addition to the foundational role for situation theory, CF’ may have potential
applications in database theory. In database theory, we are concerned with what in-
formation we can get from a query to a database. Since data in relational databases
areall positive, we have to use the closed world assumption (CWA) (see Reiter [23])
to obtain negative information. For complete databases, CWA is efficient. However,
databases often provide us with just an incomplete description of the world. Asa
result, the use of CWA may give rise to unpleasant consequences (see Abiteboul,
Hull, and Vianu [, p. 282). Thus, much effort has been devoted to ways of deal-



A VARIANT OF THOMASON'S CF 91

ing with various kinds of negative information. Among other things, it is argued that
strong negation is necessary in many important applications (see [2I] and Alferes
and Pereira[[3]).1* Moreover, thereis a more general problem to be considered. It is
well known that the relational model for database theory is based on first-order logic.
However, such alogical foundation isperhapsinappropriate. First of all, theprinciple
of excluded middleisnolonger valid when databases areincomplete. Second, though
it is always desirable to have the principle of noncontradiction, we certainly do not
want the destructive consequencesthat propositional logic gives. Indeed, fromthein-
formational point of view, it is obvious that the inferential rule of form pA~p — q
should alwaysberejected. Asaresult, what remainsisat most the constraints of form
pA~p— L. Soitisworth seeking a modified foundation for database theory.
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NOTES

1. Two similar systems F and G, or equivalently, HF and HG (using Routley’s notation),
have been studied by Fitch [13]. For the difference between Fitch’ssystemsand Nelson’s
systems, see [24], and see also Thomason's footnote on page 255 of [25].

2. In[4], Almukdad and Nelson use N and N~ for their first-order systems, where N~ is
the proper subsystem of N without the axiom schema g > (~ ¢ D ¥).

3. Wansing uses N~ and N instead of N and N; respectively. N~ and N are formulated in
symmetrical sequent calculus (see [32], pp. 24-25).

4. Theterminology of the heredity of information is used in [32] whereasthe persistence of
information is the situationists parlance. Note that [32] is only concerned with propo-
sitional logics. For the property of predicate logic, see Lemma 3.1 on p. 53 of [17]. In
intuitionistic logic, the property is called monotonicity (see thelemmaon p. 78 of [27].).

5. Heredfter, we use a asanamefor a.

6. It should be pointed out that his model for propositional logic, strictly speaking, is not
intuitionistic since the falsity of an atomic sentence at a stage of construction is treated
as being discovered directly rather than being decided by later stages.

7. Function symbols introduce nothing new. For simplicity, we avoid them here.

8. We are assuming that every object has aname. In effect we work with the expansion of
language L to accommodate al the objects of al the domains.

9. Notethat neither N nor CF is formulated in axiomatic formalism.

10. Readers are invited to refer to Veltman's paper “ Defaults in update semantics” [[29].
There he introduces operators such as ‘ presumably’ to deal with nonpersistence within
the framework of update semantics.
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In|[3], exactly speaking, Alferesand Pereirause explicit negation instead of strong nega-
tion.
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