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Abstract In this paper, we define a first-order logic CF′ with strong nega-
tion and bounded static quantifiers, which is a variant of Thomason’s logic CF.
For the logic CF′, the usual Kripke formal semantics is defined based on situ-
ations, and a sound and complete axiomatic system is established based on the
axiomatic systems of constructive logics with strong negation and Thomason’s
completeness proof techniques. With the use of bounded quantifiers, CF′ al-
lows the domain of quantification to be empty and allows for nondenoting con-
stants. CF′ is intended as a fragment of a logic for situation theory. Thus the
connection between CF′ and infon logic is discussed.

1 Introduction Thomason [25] constructed a first-order logic CF. In his logic, a
constructive negation is used instead of a classical or intuitionistic one. Construc-
tive negation, also called strong negation, was introduced by Nelson [21] following
Kleene’s notion of recursive realizability, emphasizing that false number-theoretic
statements, as well as true ones, are obtained simultaneously by constructive means.
Independently, Markov [19] also introduced strong negation from the point of view
of constructive logic. Such negation was later incorporated into various logical sys-
tems, such as Nelson’s propositional systems N and N1, that is, the propositional parts
of Nelson’s system N1 of constructible falsity (see [21] and Routley [24]),1 and their
first-order extensions (see Almukdad and Nelson [4]),2 intuitionistic logic with strong
negation H by Gurevich [17], constructive predicate logic with strong negation S by
Akama [2], and first-order logic CF in [25]. See also constructive propositional cal-
culus with strong negation by Vorob’ev [30] and the semantics of the calculus in terms
of N -lattices in Rasiowa [22]. Furthermore, Wansing [32] has systematically inves-
tigated the whole family of substructural subsystems of Nelson’s systems from the
point of view of the fine-structure of information processing.3

The resulting logics, to which we shall refer loosely as constructive logics with
strong negation, demonstrate some satisfying features compared with intuitionistic
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logics. First of all, since negative information is treated as of equal importance with
positive information, such logics are more symmetrical than intuitionistic logics and
satisfy very natural duality laws. In particular, strong negation avoids nonconstruc-
tive features possessed by intuitionistic negation (see [17] and [32]). Secondly, con-
structive logics with strong negation can be provided with a more satisfying inter-
pretation than the well-known Brouwer-Heyting-Kolmogorov (BHK) interpretation
for intuitionistic logics (see [32] and Lopez-Escobar [18]). Moreover, they admit a
sentence to be undetermined and thus can accommodate the partiality of information
(see [25] and [32]).

Another desirable characteristic of constructive logics with strong negation is
the heredity or persistence of information,4 to the effect that what is true at a state of
information is still true at all later states. This is usually bought at the cost of a very
strong dynamic satisfaction condition on universal quantifiers. A sentence ∀x ϕ(x)

is true at a state of information s only when ϕ(a)5 is true at all states of information
t ≥ s for all individuals a in the domain of t (where ≥ orders states by increasing
information).

Classically we should evaluate the quantifier in a static fashion where only the
state s and the individuals in the domain of s are relevant. Which form is more nat-
ural from the situation-theoretic viewpoint? Consider the situation s of a room full
of people. The sentence ‘All men here are hungry’ will be true at s provided that all
the men in the room are hungry. Here the quantifier is taken as restricted to the men
in that room. We do not look at wider situations and (possibly) wider extensions of
‘men’. So if we take a point s in a Kripke model as a situation rather than a state of
information, then it seems we should evaluate the quantifier statically.

Thomason’s first-order logic CF does interpret universal quantifiers statically
rather than dynamically. His semantical model is a hybrid of a Kripke model for
propositional intuitionistic logic (as the conditional is intuitionistic) and a classical
model for predicate logic (as the universal quantifier is static).6 Nevertheless, his
semantical framework requires different stages to have the same domain. From the
standpoint which treats stages as situations, it is obvious that this restriction is in-
appropriate. From an intuitionistic viewpoint, it is not suitable either. As is well
known, Kripke models for intuitionistic logic also require expanding domains. But
the connection of intuitionistic logic with expanding domains is both more compli-
cated and more tenuous than is the case with situation theory. In order to see this, let
us consider the following schema which we call the distribution schema:

(DS) ∀x(ϕ ∨ ψ(x)) ⊃ (ϕ ∨ ∀x ψ(x)), where x is not free in ϕ.

If we add to intuitionistic logic all instances of (DS), we obtain a logic whose models
are exactly the Kripke models with constant domain. Thus to motivate expanding
domains from an intuitionistic viewpoint is to motivate the rejection of this schema.

The BHK interpretation is of little help. According to that we need to show how
a proof of ∀x(ϕ ∨ ψ(x)) could be extended to a proof of ϕ ∨ ∀x ψ(x). Well, to have a
proof of ∀x(ϕ ∨ ψ(x)) is to have a construction C which transforms a proof of a ∈ D
(D the intended range of the variable x) into a proof of ϕ ∨ ψ(a). If the construction
C transforms a proof of a ∈ D into a proof of ϕ, then since x is not free in ϕ, we would
have a proof of ϕ. Otherwise, it transforms a proof of a ∈ D into a proof of ψ(a) and
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thus from the construction C we derive a proof of ∀xψ(x). Either way we have a
proof of ϕ ∨ ∀xψ(x) (for the BHK interpretation, see Troelstra and van Dalen [27],
p. 9). The informal semantics of intuitionistic logic does not, at least not obviously,
show what is wrong with (DS). Why, then, is (DS) rejected at all? Very briefly, it
happens that certain Brouwerian principles of continuity which are more or less self-
evident from an intuitionistic standpoint are formally inconsistent in classical logic.
These principles say roughly that an assertion about an infinite sequence α must be
decided by a finite initial segment of α, and hence will be decided the same way for all
sequences β that agree on that initial segment. Adding (DS) to intuitionistic logic will
restore inconsistency with these same principles. Dummett [11] contains a treatment
of the semantics of intuitionistic logic which discusses these issues in detail.

There is a further point. Kripke models are not the only semantic structures for
intuitionistic logic. Beth trees may be used instead. In the Beth semantics we have a
more complicated rule (see Troelstra [26], p. 106) for evaluating disjunctions:

s |= ϕ ∨ ψ iff ∀t ≥ s∃u ≥ t(u |= ϕ or u |= ψ).

A disjunction is true provided that however knowledge is extended one or other of
the disjuncts will become true. With this it is easy to find a counterexample to (DS)
that makes no appeal to expanding domains.

The upshot is that expanding domains seem more an artifact of the Kripke se-
mantics than an essential part of the interpretation of intuitionistic logic. However,
they are quite central to situation theory, which to some extent supports our choice
not to use intuitionistic logic as a basis for situation theory (for more, see Section 4
below).

If we are to allow expanding domains, there is a technical problem to over-
come. Specifically, the semantical completeness proof of CF depends on an auxil-
iary lemma, that is, Lemma 2 ([25], p. 250) and the proof of the lemma in turn makes
use of the conditional introduction rule ⊃I. However, it is easy to check that if differ-
ent stages in the semantical models are allowed to have different domains, then the
rule is generally not sound since universally quantified sentences, when interpreted
statically instead of dynamically, generally are not persistent (see below, §§2.2 and
2.5). So, the condition of a constant domain has to be imposed on his models for the
sake of CF’s semantic completeness; that is to say, in order to have static universal
quantifiers, we are forced to adopt a model with constant domain.

Conversely, from the model theoretic standpoint, the models for CF are a special
case of the intuitionistic models. Accordingly, the dynamic condition for quantifiers
collapses into the static one. Since the dynamic condition is not suitable and expand-
ing domains are desired as we said above from the situation theoretic viewpoint, it is
natural to ask if we can have a logic for situation theory with both static quantifiers
and expanding domains.

Motivated by the above, we propose a first-order logical system CF′ with strong
constructive negation like Thomason’s but that allows for expanding domains. Our
semantical analysis is still based on Kripke frames 〈S,≺, D〉 but we have it in mind
to interpret S as a collection of situations rather than conventional possible worlds.
Accordingly, ≺ is a pre-order on situations and D is a function assigning a set of in-
dividuals to each situation. Situations are limited parts of the world. Thus, generally,
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situations provide us with only incomplete information. The partiality of situations
to some extent also justifies the use of situations in our semantical framework since,
as we pointed out before, constructive logics with strong negation are partial. In ad-
dition, we note that another source of the partiality of the logic is from the use of
inexact predicates (see [4], Wagner [31], and related citations there). We treat uni-
versally quantified sentences statically instead of dynamically. And since static un-
bounded universally quantified sentences generally are not persistent, we instead con-
sider bounded ones, say ∀βx ϕ(x) where β is a bounder. This is reminiscent of Dev-
lin’s infon logic. Devlin [10] considers ∀x ∈ uσ where u is a set and σ is an infon.
Such compound infons are persistent because the set u bounds the quantifier. In our
framework the bounder β may itself be nonpersistent in the sense that the extension
of β is liable to change from situation to situation, and consequently ∀βx ϕ(x) is, in
general, not persistent either. Thus, we further distinguish persistent bounders from
nonpersistent ones (see Section 2).

We summarize the various approaches to the universal quantifier in the following
table, where INT is intuitionistic predicate logic, H is Gurevich’s intuitionistic logic
with strong negation [17], and CF is Thomason’s first-order logic [25]. For a unifying
exposition of both Kripke and Beth models, see van Dalen [28].

Logics Quantifiers ∀x Models Domains

INT, H dynamic Kripke models expanding

INT static Beth models constant

CF static Kripke models constant

CF′ static Kripke models expanding

In the following, we shall first introduce the logical system CF′, then prove its sound-
ness and completeness. Finally, we discuss its connection with situation theory, its
possible extensions as well as its potential applications.

2 Logical system CF′ with strong constructive negation

2.1 Language L of CF′ The language7 of our logical system CF′ consists of
an infinite set VL of individual variables (as metavariables for variables we use
x, x0, x1, . . .), a set CL of individual constants (metavariables: c, c0, c1, . . .), and for
each n, n ≥ 0, a set P n

L of n-ary predicate symbols (metavariables: R1, R2, R3, . . .).
In addition, L has a set BL of bounders with a subset BP

L of persistent bounders
(metavariables: β, β0, β1, . . . with or without superscript P), and a relation symbol ∈.
The set TL of terms of L is VL ∪ CL . We use t, t0, t1, . . . as metavariables for terms.

Atomic formulas of L are R(t1, t2, . . . , tn) and c ∈ β, where t1, t2, . . . , tn ∈
TL , c ∈ CL , R ∈ P n

L , and β ∈ BL . The well-formed formulas of L are defined recur-
sively from atomic formulas using the connectives ∨,⊃, and ∼, and for each bounder
β, a bounded universal quantifier ∀β as follows:

1. atomic formulas are formulas;
2. if ϕ is a formula, then so is ∼ ϕ ;
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3. if ϕ,ψ are formulas, then so are ϕ ∨ ψ,ϕ ⊃ ψ ;
4. if ϕ is a formula, x is a variable, and β is a bounder, then ∀βx ϕ(x) is also

a formula. For simplicity, we write ∀x ∈ βϕ(x) for ∀βx ϕ(x).

A formula of form ∀x ∈ βϕ(x) is called a bounded, universally quantified formula.
Such formulas can be used to express local generality since the bound variables
thereof are to range over a subset of the individuals in the universe. In contrast, the
generality expressed by unbounded, universally quantified formulas is a kind of over-
all generality (see Frege [14]). In order to express overall generality by a variable,
we only need a device for the scope of the variable, whereas in order to express local
generality, we need, in addition, the range of the variable. So, generally speaking, in
order to express generality via a variable, we need both a mechanism for the scope of
the variable and a parameter for its range. In other words, a logical quantifier consists
of the scope of a variable and the range of the variable. From the pragmatic point of
view, it is clear that bounded formulas are more frequently used than unbounded ones.
In translating natural language, restricted quantifiers are usually represented as unre-
stricted quantifiers over a material conditional or something equivalent. Thus, ‘All
birds fly’ is formalized as ∀x(∼ Bird(x) ∨ Flies(x)) or ∀x(Bird(x) → Flies(x)), if
the material conditional → is defined. In CF′ it is represented as ∀x ∈ β Flies(x),
where β is a bounder for birds. We prefer our approach to the usual one. In our opin-
ion, it is tidy and emphasizes the two aspects of local generality. More importantly,
as we mentioned in the introduction, bounded, universally quantified formulas can be
used to express the persistence of information (see below). That is the primary motive
for our use of bounded formulas instead of unbounded ones.

Syntactically bounders are flags on quantifiers. Semantically they are to be in-
terpreted as sets, that is, in the same way as predicates are in classical first-order logic.
Then, it may be asked, why do we have a special syntax for bounders instead of treat-
ing them simply as unary predicates? The answer is that a predicate such as ‘Flies(x)’
gives three possibilities: an object may fly, it may not fly, or it may be undecided
whether it flies or not. But a bounder supplies only two possibilities: an object is in-
cluded in the bounder or it is not. The consequence is that ∀x(∼ ψ(x) ∨ ϕ(x)), in
fact, says a little more than ∀x ∈ βϕ(x) (see §2.3 below for exact comparison). It is
the latter that captures the informal reading of ‘All birds fly’ rather than the former.

Conjunction and bounded existential quantification are defined as follows.

ϕ ∧ ψ =df ∼ (∼ ϕ ∨ ∼ ψ).

∃x ∈ βϕ(x) =df ∼ ∀x ∈ β ∼ ϕ(x).

The concept of free and bound variables is defined as usual. Bound variables are used
as position markers only, and thus ∀x ∈ βϕ(x) and ∀y ∈ βϕ(y) would be counted as
the same formula. We use as above ϕ,ψ, χ, . . . as metavariables for formulas, and
�,� (with or without subscripts) for arbitrary sets of formulas.

2.2 Persistent formulas The concept of persistence comes from situation theory.
Informally, it says that what is true in one situation is still true in a larger situation.
Formally, there is a so-called persistence principle, stated as

if s ≺ s′ and s |= σ, then s′ |= σ,
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where s, s′ are situations, σ is an infon, and |= is a support relation between situations
and infons. If an infon σ satisfies the persistence principle, we say that σ is persistent
(see Barwise [5]). Generally speaking, universally quantified sentences in natural lan-
guage are not persistent. ‘Everyone here is hungry’ may be verified when evaluated
from the situation in one poor household, but falsified when evaluated from a larger
situation including comfortable ones. There is a tension between quantification and
persistence. If we take it that the persistence principle is true of every infon, then
it seems universally quantified sentences have to be excluded from the category of
infons. And conversely, if universally quantified sentences are taken as infons, then
the persistence principle would only hold partially (see [5], pp. 234–36). However,
quantified sentences are such important forms for expressing information that they
can hardly be excluded from the category of infons. We also want to retain the per-
sistence principle because, as situation theorists have argued, it captures our intuition
“that what goes on in part of the world still goes on when one has a broader perspec-
tive” ([5], p. 236). For the sake of both persistence and a rich algebraic structure of
infons, we only consider bounded quantified formulas for which these problems do
not arise. However, as we pointed out in the introduction, in our present framework a
bounder β in ∀x ∈ βϕ(x) may be nonpersistent. So we introduce an auxiliary notion
of persistent bounders. Syntactically, persistent bounders are treated as a primitive
notion. Semantic meaning of persistent bounders will be given below (see condition 3
on an interpretation in §2.3). Pragmatically, persistent bounders can be obtained by
incorporating context into bounders in universally quantified sentences. Then we can
define persistent formulas of L recursively as follows:

1. R(t1, t2, . . . , tn) and ∼ R(t1, t2, . . . , tn) are persistent for any n-ary predi-
cate R, terms t1, t2, . . . , tn, and c ∈ β and ∼ c ∈ βP are persistent for any
bounders β and βP;

2. if ϕ,ψ are persistent, then so are ϕ ∨ ψ and ϕ ∧ ψ;

3. ϕ ⊃ ψ is persistent for any formulas ϕ,ψ;

4. if ϕ is persistent, then ∀x ∈ βPϕ(x) is persistent;

5. if ϕ is persistent, then ∃x ∈ βϕ(x) is persistent for any β ∈ BL .

Given a set � of formulas, let �P be {ϕ ∈ � : ϕ is persistent}. So, all the persistent
formulas of L would be F P

L , where FL is the set of all L-formulas. Note that, in the
definition of persistent formulas, negation is restricted only to atomic formulas. Nev-
ertheless, this will not lose any generality since the negation of a compound formula,
according to related rules (see §2.5 below), is equivalent to another compound for-
mula in which negation is applied only to atomic formulas.

By the definition, nonpersistence of formulas is only due to the nonpersistence
of bounders in universally quantified formulas. So, pragmatically, the persistence of
such formulas can be recovered by incorporating context into related bounders. Nev-
ertheless, there exists indeed a kind of unrecoverable nonpersistence. In fact, such
nonpersistence is the consequence of the partiality of situations. If a situation is silent
on σ then it certainly does not preclude a larger more extensive situation settling σ. In
order to express the unrecoverable nonpersistence, we need to add a kind of modal op-
erator such as ‘definitely’ into our language. Such an extension, however, is outside
the scope of this paper (for more, see Mott [20]). The syntactic definition of persis-
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tence will be used in §2.5 below.

2.3 Formal semantics Our semantical analysis is essentially similar to Thoma-
son’s, but it is based on general Kripke frames instead of particular ones, that is, we
allow different points in a Kripke frame to have different domains. A Kripke frame
F is a triple 〈S,≺, D〉 such that

1. S is a nonempty set;

2. ≺ is a pre-order on S, that is, ≺ is a reflexive and transitive binary relation
on S;

3. D is a monotone function assigning sets of individuals to the elements of
S, that is, for any s, s′ ∈ S, if s ≺ s′ then D(s) ⊆ D(s′).

S is to be thought of as a set of situations, ≺ is the containment relation among situ-
ations, and for each s ∈ S, D(s) is the set of individuals existing at situation s.

An interpretation I of language L on a Kripke frame F = 〈S,≺, D〉 is a function
such that: for any s, s′ ∈ S, c ∈ CL , R ∈ P i

L , β, βP ∈ BL ,

1. Is is a partial function from CL into D(s), and (a) if s ≺ s′ and Is(c) is
defined, then Is′ (c) is also defined and Is(c) = Is′ (c); and (b) for each d in
D(s), Is(d) is defined and Is(d) = d.8

2. Is(R) is a partial function from the Cartesian product D(s)i into {T, F},
and if s ≺ s′, then Is′ (R) is an extension of Is(R).

3. Is is a total function from BL into P (D(s)) such that if s ≺ s′, then Is(β) ⊆
Is′ (β) and Is(β

P) = Is′ (βP).

Clause 3 in the definition of interpretation gives us the semantic meaning of persistent
sets. In other words, it is the semantic requirement for a set of individuals to be per-
sistent. It is worth pointing out the restriction incorporated in (3) is compatible with
the situation theoretic viewpoint, though it may look ad hoc. Anyway, situations are
treated as first-class citizens in situation theory. So one possible way to ensure the
persistence of universally quantified formulas would be to incorporate reference to
situations into them (see [5], p. 236). In this paper, however, we instead adopt the
device of persistent bounders.

A Kripke model M is a pair 〈F , I〉 consisting of a Kripke frame F and an in-
terpretation I on F . Before we continue the formulation of formal semantics, some
remarks seem in order about the definition of Kripke models. First, note that, in a
Kripke model M = 〈S,≺, D, I〉, D(s) can be empty for any (and all) s ∈ S. The
use of bounders means that the usual restriction to nonempty domains is unneces-
sary. Thus CF′ is inclusive in the sense that it allows the domain of quantification to
be empty (see Bencivenga [9], pp. 379–82).

Second, note that the function Is�CL is partial. So CF′ allows for nondenoting
constants just as a free logic does (see [9]). In a free logic, an extra unary predicate
E or something equivalent is introduced to deal with reference failure. Nevertheless,
in CF′, we do not need such a special predicate. Bounders of quantifiers can play
the role of the predicate E of free logic. It may be that bounders are preferable to an
existence predicate, at least if one wishes to confine existence to a purely semantic
role (as we would). Anyway, it will be no surprise that some axioms and inference
rules of CF′ will correspond to axioms and inference rules of a free logic.
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Next, note that the function Is�P n
L (n ≥ 0) is also partial. That is to say, it may be

the case that a basic sentence R(c1, c2, . . . , cn) is neither true nor false, so CF′ allows
truth-value gaps. Such gaps may arise from the use of inexact predicates, but we em-
phasize that there is another source of truth-value gaps—the partiality of situations.

When a predicate has truth-value gaps, we call it a partial predicate, otherwise a
total predicate. A total predicate can be interpreted as a set, that is, in the same way
as predicates are in classical first-order logic. With partial predicates, however, we
have to associate two sets: one is for the positive assertions, the other for the strong
negative assertions. So we might as well divide a partial predicate into two parts, a
positive part corresponding to the positive assertions and a negative part correspond-
ing to the strong negative assertions. We recall that, syntactically, bounders are flags
on quantifiers. Semantically, as can be seen from clause 3 in the definition of inter-
pretation, bounders are interpreted as sets. What sets, then, should we associate with
a bounder β ? There are two natural candidates. We could say that β was assigned
all the objects in the current situation. Then ∀x ∈ βϕ(x) would be supported by s
provided that s made true ϕ(a) for each object a in D(s). In this case, bounder β is
nothing more than a denotational variant of the existential predicate E of free logic
(see Garson [15], pp. 251–52). An alternative would see bounders in a more restricted
way as corresponding to the positive parts of particular predicates, so that ∀x ∈ βϕ(x)

would be interpreted as asserting of all the objects that were β in the current situation
that they were also ϕ. In fact, we choose here not to restrict bounders beyond requir-
ing that the objects a bounder β is associated with in a situation s are all objects that
belong to the situation s.

Given a Kripke model M = 〈S,≺, D, I〉, we define a satisfaction relation |=+
M

(or simply |=+) and a refutation relation |=−
M (or simply |=−) between situations s ∈ S

and L-sentences ϕ relative to M as follows, by induction on the complexity of ϕ.

1. s |=+ R(c1, c2, . . . , cn) iff Is(c1), Is(c2), . . . , Is(cn) are all defined and
Is(R)(Is(c1), Is(c2), . . . , Is(cn)) = T;
s |=− R(c1, c2, . . . , cn) iff Is(c1), Is(c2), . . . , Is(cn) are all defined and
Is(R)(Is(c1), Is(c2), . . . , Is(cn)) = F;
s |=+ c ∈ β iff Is(c) is defined and Is(c) ∈ Is(β);
s |=− c ∈ β iff either Is(c) is not defined or
Is(c) is defined and Is(c) ∈ D(s) − Is(β).

2. s |=+ ϕ ∨ ψ iff s |=+ ϕ or s |=+ ψ;
s |=− ϕ ∨ ψ iff s |=− ϕ and s |=− ψ.

3. s |=+∼ ϕ iff s |=− ϕ;
s |=−∼ ϕ iff s |=+ ϕ.

4. s |=+ ϕ ⊃ ψ iff for all s′ such that s ≺ s′ if s′ |=+ ϕ then s′ |=+ ψ;
s |=− ϕ ⊃ ψ iff s |=+ ϕ and s |=− ψ.

5. s |=+ ∀x ∈ βϕ(x) iff for all d ∈ D(s), if s |=+ d ∈ β then s |=+ ϕ(d);
s |=− ∀x ∈ βϕ(x) iff for some d ∈ D(s), s |=+ d ∈ β and s |=− ϕ(d).

Basic semantic notions such as consequence, satisfiability, and validity can be de-
fined in the usual way in terms of the satisfaction relation |=+. For any sentence ϕ

and set � of sentences, we write |= ϕ to indicate that ϕ is valid, � |= ϕ to indicate
that ϕ is a semantic consequence of �, and � |= � to indicate that there is a subset
{ϕ1, ϕ2, . . . , ϕn} of � such that ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn is a semantic consequence of �.
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Lemma 2.1 (Persistence lemma) Let M = 〈S,≺, D, I〉 be a Kripke model, ϕ a
persistent formula of L .

(i) If s ≺ s′ and s |=+ ϕ then s′ |=+ ϕ .

(ii) If s ≺ s′ and s |=+ � then s′ |=+ �P.

Proof: For (i), routine induction on the complexity of ϕ. (ii) is a straightforward
corollary of (i). �

The persistence lemma 2.1(i) gives us the semantic meaning of persistence. It can be
viewed as a variant of the persistence principle.

2.4 Axiomatic system for CF′ Our axiomatic system CF′ is based on the axiomatic
systems for constructive logics with strong negation (see [24], [17], and [2]). It takes
as axioms the following list of schemas.

(A1) ϕP ⊃ . ψ ⊃ ϕP

(A2) ϕ ⊃ (ψ ⊃ χ) ⊃ . ϕ ⊃ ψ ⊃ . ϕ ⊃ χ

(A3) ϕ ∧ ψ ⊃ ϕ

(A4) ϕ ∧ ψ ⊃ ψ

(A5) ϕP ⊃ . ψ ⊃ ϕP ∧ ψ

(A6) ϕ ⊃ ϕ ∨ ψ

(A7) ψ ⊃ ϕ ∨ ψ

(A8) ϕ ⊃ χ ⊃ . ψ ⊃ χ ⊃ . ϕ ∨ ψ ⊃ χ

(A9) ϕ ⊃ . ∼ ϕ ⊃ ψ

(A10) c ∈ β ∧ ϕ(c) ⊃ ∃x ∈ βϕ(x)

(A11) ∀x ∈ βϕ(x) ⊃ ∼ c ∈ β ∨ ϕ(c)

(A12) ∀x ∈ β(ϕ ∨ ψ(x)) ⊃ (ϕ ∨ ∀x ∈ βψ(x))

(A13) ∼ (ϕ ∧ ψ) ≡ ∼ ϕ ∨ ∼ ψ

(A14) ∼ (ϕ ∨ ψ) ≡ ∼ ϕ ∧ ∼ ψ

(A15) ∼∼ ϕ ≡ ϕ

(A16) ∼ (ϕ ⊃ ψ) ≡ ϕ ∧ ∼ ψ

(A17) ∼ ∀x ∈ βϕ(x) ≡ ∃x ∈ β ∼ ϕ(x)

(A18) ∼ ∃x ∈ βϕ(x) ≡ ∀x ∈ β ∼ ϕ(x)

(A19) c ∈ β ∨ ∼ c ∈ β

In axioms A1 and A5, ϕP means that ϕ has to be persistent, which is the little price
we have to pay for the relaxation of the dynamic condition on universal quantifiers
to the static one. In axiom A12, x is required not to be free in ϕ. In addition, note
that axiom A12 is not assumed in constructive logics (see [17] and [2]). We empha-
size our situation theoretical standpoint rather than intuitionistic or constructive view-
point. So there seems nothing preventing us from assuming the axiom.

With axiom A19, we are assuming that, at any situation, we can always decide
if a constant c is in β or not. The assumption is consistent with the semantic inter-
pretation of β given above. In addition, note that axioms A13 and A18 can in fact be
derived from the other axioms and related definitions and thus can be omitted.
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CF′ has the following inference rules.

(R1) ϕ, ϕ ⊃ ψ

ψ

(R2)
c ∈ β ∧ ϕ(c) ⊃ ψ

∃x ∈ βϕ(x) ⊃ ψ

(R3)
ψ ⊃ (∼ c ∈ β ∨ ϕ(c))

ψ ⊃ ∀x ∈ βϕ(x)

In rules R2 and R3, the constant c is required not to occur in ψ.
The axiomatic system CF′ is a first-order modification of Almukdad and Nel-

son’s N as well as Thomason’s CF.9 If we delete axiom A9 from CF′, denoted CF′−,
then we have a system which is a modification of Almukdad and Nelson’s N−. Since
axiom A9 is not available in CF′−, we need another axiom to the effect that c ∈ β and
∼ c ∈ β do not hold at the same time, say c ∈ β∧ ∼ c ∈ β ⊃ ⊥. So, with logic CF′−,
inconsistent situations are allowed, but the inconsistency of situations does not arise
from contradictory statements of the form c ∈ β ∧ ∼ c ∈ β.

Basic notions (relative to CF′) such as thesishood, consequence, and consistency
can be defined in the usual way. For any sentence ϕ and set � of sentences, we write
� ϕ to indicate that ϕ is a thesis of CF′, � � ϕ to indicate that ϕ is a consequence in
CF′ of �, and � � � to indicate that there is a subset {ϕ1, ϕ2, . . . , ϕn} of � such that
ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn is a consequence of �.

From the definitions of thesishood and consequence, it is easy to prove the fol-
lowing lemma.

Lemma 2.2 Let �,� be sets of L-sentences. If � � �, then �′ � �′ for some finite
subsets �′ and �′ of � and �, respectively.

2.5 Derived rules for CF′ In this section, we list some rules for the deducibility-
relation � of CF′ between sets of L-sentences that are needed in the proof of seman-
tical completeness. It is not difficult to derive them from the axioms and rules of CF′

given before. We divide these rules into three groups. Group 1 consists of two struc-
tural rules and Group 2 of some operational rules. For CF′−, rule ∼E is to be replaced
by a rule equivalent to c ∈ β ∧ ∼ c ∈ β ⊃ ⊥. Group 3 is about connection between
strong negation and other connectives. Lacking the ∼-introduction rule, we have to
use numerous negation rules to connect negation and other connectives by driving
strong negation back and forth across them. Note that, because there is no rule of ∼-
introduction, we are able to use multiple-conclusion rules without, in general, being
able to derive the Law of Excluded Middle (see the related remarks by Gentzen [16],
p. 82 and the example about the derivation of the law on p. 85).

Group 1

R: If � and � are not disjoint, then � � �.

T:
� � �

�,	 � 
,�
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Group 2

∨I:
� � ϕ,ψ,�

� � ϕ ∨ ψ,�
∨E:

�, ϕ � �; �,ψ � �; � � ϕ ∨ ψ,�

� � �

⊃ I:
�P, ϕ � ψ

�P � ϕ ⊃ ψ
⊃ E:

� � ϕ ⊃ ψ,�; � � ϕ,�

� � ψ,�

∼ E:
� � ϕ,�; � � ∼ ϕ,�

� � �

∀I:
� � ∼ c ∈ β ∨ ϕ(c),�

� � ∀x ∈ βϕ(x),�
∀E:

� � ∀x ∈ βϕ(x),�

� � ∼ c ∈ β ∨ ϕ(c),�

In ∀I, c has no occurrence in ϕ(x) or in any member of � or of �;

Group 3

∼ ∨I:
� � ∼ ϕ,�; � � ∼ ψ,�

� � ∼ (ϕ ∨ ψ),�

∼ ∨E:
� � ∼ (ϕ ∨ ψ),�

� � ∼ ϕ,�

� � ∼ (ϕ ∨ ψ),�

� � ∼ ψ,�

∼∼ I:
� � ϕ,�

� � ∼∼ ϕ,�

∼∼ E:
� � ∼∼ ϕ,�

� � ϕ,�

∼⊃ I:
� � ϕ,�; � � ∼ ψ,�

� � ∼ (ϕ ⊃ ψ),�

∼⊃ E:
� � ∼ (ϕ ⊃ ψ),�

� � ϕ,�

� � ∼ (ϕ ⊃ ψ),�

� � ∼ ψ,�

∼ ∀I:
� � c ∈ β ∧ ∼ ϕ(c),�

� � ∼ ∀x ∈ βϕ(x),�

∼ ∀E:
� � ∼ ∀x ∈ βϕ(x),�; �, c ∈ β ∧ ∼ ϕ(c) � �

� � �

In ∼ ∀E, c does not occur in ϕ(x) or in any member of � or of �.

Theorem 2.3 (Soundness of CF′) Let � be a set of L-sentences, and ϕ an L-
sentence, and M = 〈S,≺, D, I〉 a model of L, s a situation in M . If � � ϕ, and
s |=+ �, then s |=+ ϕ.

Proof: Proof is routine and thus omitted. �
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Note that the soundness of CF′ would fail if we included a rule of ∼-introduction
(∼-I) to the effect that from �, ϕ � � we can infer � �∼ ϕ,�. To see this, observe
that, by derived rule R of CF′, ϕ � ϕ. By ∼-I it then follows that �∼ ϕ, ϕ. And so
�∼ ϕ ∨ ϕ by rule ∨-I. But it is not difficult to see that ∼ ϕ ∨ ϕ is not valid in the
current semantic framework. This shows that ∼-I is not sound in CF′.

3 Completeness proof of CF′

3.1 Definition A set � of L-sentences is L-ω-complete if for all L-formulas ϕ(x),
we have � � ∀x ∈ βϕ(x) if � � ∼ c ∈ β ∨ ϕ(c) for all c ∈ CL . And � is L-saturated
if it meets the following five conditions: for any L-sentences ϕ,ψ,

1. � is consistent;
2. � is deductively closed, that is, if � � ϕ, then ϕ ∈ � ;
3. if � � ϕ ∨ ψ, then � � ϕ or � � ψ ;
4. if ∼ ∀x ∈ βϕ(x) ∈ �, then for some constant c ∈ CL , c ∈ β ∧ ∼ ϕ(c) ∈ � ;
5. � is L-ω-complete.

Lemma 3.1 (Saturation lemma I) Let � be a set of L-sentences, and ϕ an L-
sentence. Suppose � �� ϕ. Let C = {c0, c1, c2, . . .} be a countable set of constants
foreign to L , B a set of bounders of L ∪ C, and L ′ = L ∪ C ∪ B. Then there is an
L ′-saturated set �ω such that � ⊆ �ω and �ω �� ϕ.

Proof: In order to obtain required �ω, we define two sequences 〈�i〉i and 〈�i〉i by
induction as follows. Let 〈ϕi〉i enumerate all L ′-sentences, and 〈ϕi,1 ∨ ϕi,2〉i, 〈∀x ∈
βiϕi(x)〉i and 〈∼ ∀x ∈ βiϕi(x)〉i enumerate with infinite repetition all disjunctive,
bounded universal and bounded existential sentences of L ′, respectively.

Let �0 = � and �0 = {ϕ}. Suppose that �k and �k have been defined. To define
�k+1 and �k+1, we distinguish the following five cases.

Case 1: k = 4n, �k � ϕn,1 ∨ ϕn,2, and ϕn,1 �∈ �k and ϕn,2 �∈ �k. Put

�k+1 = �k ∪ {ϕn,i},
�k+1 = �k,

where i is the least of {1, 2} such that �k ∪ {ϕn,i} �� �k.

Case 2: k = 4n + 1. �k � ∼ ∀x ∈ βnϕn(x),�k and for all constants c ∈ CL ′ , (c ∈
βn ∧ ∼ ϕn(c)) �∈ �k. Put

�k+1 = �k ∪ {ck ∈ βn ∧ ∼ ϕn(ck)},
�k+1 = �k,

where ck is the first member of CL ′ not to occur in ϕn(x) or in any member of �k or
of �k.

Case 3: k = 4n + 2; there are two subcases.

Subcase 1: �k, ϕn � �k. Put

�k+1 = �k,

�k+1 = �k ∪ {ϕn};
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Subcase 2: ϕn �∈ �k and �k, ϕn �� �k. Put

�k+1 = �k ∪ {ϕn},
�k+1 = �k.

Case 4: k = 4n + 3. �k,∀x ∈ βnϕn(x) � �k, and for all constants c ∈ CL ′ , (∼ c ∈
βn ∨ ϕn(c)) �∈ �k. Put

�k+1 = �k,

�k+1 = �k ∪ {∼ ck ∈ βn ∨ ϕn(ck)},
where ck is the first member of CL ′ not to occur in ϕn(x) or in any member of �k or
of �k.

Case 5: None of the cases above applies. Put

�k+1 = �k,

�k+1 = �k.

It is then not difficult to check by induction that for any k ∈ ω,�k �� �k using the
derived rules for CF′. To illustrate, let us consider Case 3.1. We need to show that if
�k, ϕn � �k, then �k �� �k ∪ {ϕn}. Suppose �k � �k ∪ {ϕn}. We assume that ϕn,�k

and �k ∪ {ϕn} are the same set of formulas. By rule T and rule ∨I, we have �k �
ϕn ∨ ϕn,�k. Since we are assuming that �k, ϕn � �k, it follows that �k � �k by rule
∨E. But this contradicts the induction hypothesis. So we have �k �� �k ∪ {ϕn}.

Now let �ω = ∪{�k : k ∈ ω} and �ω = ∪{�k : k ∈ ω}. We can show that �ω ��
�ω,�ω = FL ′ − �ω and �ω is L ′-saturated as desired. The details of verification are
omitted. �

Lemma 3.2 (Saturation lemma II) Let � be a set of L-sentences, and ϕ and ψL-
sentences, and BP

L all the persistent bounders in L . Suppose ϕ ⊃ ψ �∈ �. Let C =
{c0, c1, c2, . . .} be a countable set of constants foreign to L , B a set of bounders of
L ∪ C, and L ′ = L ∪ C ∪ B. Then there is an L ′-saturated set �ω such that �P ⊆
�ω, ϕ ∈ �ω but ψ �∈ �ω and (∼ c j ∈ βP

i ) ∈ �ω for any c j ∈ C, βP
i ∈ BP

L .

Proof: The proof is similar to that of saturation lemma I except that this time we let
�0 = �P ∪ {ϕ} ∪ {∼ c j ∈ βP

i : c j ∈ C & βP
i ∈ BP

L } and �0 = {ψ}. �

3.2 Definition (Canonical model construction) Let C1, C2, C3, . . . be a countable
sequence of disjoint countable sets of constants foreign to L . Let C ∗

n be C1 ∪ C2 ∪
· · · ∪ Cn, and Bn a set of bounders of L ∪ C ∗

n such that Bl ⊆ Bm for any l ≤ m ≤ n.
Then for language Lω = L ∪ (∪ Cn) ∪ (∪Bn), we can define a Kripke model M =
〈S,≺, D, I〉 as follows.

1. S consists of all � such that for some n, L� = L ∪ C ∗
n ∪ Bn, and � is

L�-saturated.

2. for any L�-saturated set � and L�-saturated set � with L� = L ∪ C ∗
m ∪

Bm and L� = L ∪ C ∗
n ∪ Bn (m < n), � ≺ � if and only if �P ⊆ � and

for any c ∈ C ∗
n − C ∗

m and βP ∈ BL �
, (∼ c ∈ βP) ∈ �.
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3. if � is L�-saturated and L� = L ∪ C ∗
n ∪ Bn then D(�) = CL ∪ C ∗

n .

4. I�(c) =
{

c if c ∈ CL ∪ C ∗
n ;

undefined otherwise.

5. I�(β) = {c ∈ CL ∪ C ∗
n : (c ∈ β) ∈ �}.

6. I�(R)(c1, c2, . . . , cn) =



T if R(c1, c2, . . . , cn) ∈ �;
F if ∼ R(c1, c2, . . . , cn) ∈ �;
undefined otherwise.

Lemma 3.3 (Truth lemma) Suppose M = 〈 S,≺ , D, I 〉 is a canonical Kripke
model associated with L . Then for all � ∈ S, and all L �-sentences χ, we have

� |=+ χ iff χ ∈ �.

Proof: By induction on the complexity of χ.

Case 1: χ is an atomic sentence R(c1, c2, . . . , cn) or c ∈ β : the lemma holds by the
definition of a canonical Kripke model.

Case 2: χ is an atomic sentence ∼R(c1, c2, . . . , cn): the lemma holds again by the
definition of a canonical Kripke model. If χ is ∼ c ∈ β, suppose that � |=+∼ c ∈ β,
that is, � |=− c ∈ β. By definition, either I�(c) is not defined or I�(c) is defined and
I�(c) �∈ I�(β). In either case, (c ∈ β) �∈ �. By axiom A19 and saturatedness of �, we
get (∼c ∈ β) ∈ �. For converse, let (∼c ∈ β) ∈ �. By axiom A9 and the consistency
of �, we get (c ∈ β) �∈ �. From this it follows that � |=+∼c ∈ β.

Case 3: χ is ϕ ∨ ψ: the proof is straightforward and thus omitted.

Case 4: χ is ∼ (ϕ ∨ ψ): the proof is straightforward and thus omitted.

Case 5: χ is ϕ ⊃ ψ. Suppose ϕ ⊃ ψ ∈ �. We show � |= ϕ ⊃ ψ. For any � such
that � ≺ �, we have �P ⊆ �. Since ϕ ⊃ ψ ∈ � and ϕ ⊃ ψ is persistent, we get
ϕ ⊃ ψ ∈ �P ⊆ �. It follows that if ϕ ∈ �, then ψ ∈ � by rule ⊃E. By the hypothesis
of induction then, for all such �, if � |= ϕ, then � |= ψ; and therefore � |= ϕ ⊃ ψ.

Conversely, suppose ϕ ⊃ ψ �∈ �, then ϕ ⊃ ψ �∈ �P, so �P ∪{ϕ} �� ψ by rule ⊃I.
Using saturation lemma II, we can get a saturated set � ∈ S such that � ≺ �,ϕ ∈ �,
but ψ �∈ �. By the hypothesis of induction, we get � |= ϕ but � �|= ψ. Thus � �|=
ϕ ⊃ ψ.

Case 6: χ is ∼ (ϕ ⊃ ψ). � |=+∼ (ϕ ⊃ ψ) if and only if � |=− ϕ ⊃ ψ if and only
if � |=+ ϕ and � |=− ψ if and only if � |=+ ϕ and � |=+∼ ψ, and this if and only if
ϕ ∈ � and ∼ ψ ∈ � by the hypothesis of induction. But ϕ ∈ � and ∼ ψ ∈ � if and
only if ∼ (ϕ ⊃ ψ) ∈ � by rules ∼⊃ I and ∼⊃E.

Case 7: χ is ∼∼ ϕ: the proof is straightforward and thus omitted.
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Case 8: χ is ∀x ∈ βϕ(x). Suppose � |=+ ∀x ∈ βϕ(x), then for all c ∈ D(�), if � |=+

c ∈ β, then � |=+ ϕ(c). But � |=+ c ∈ β ∨ ∼ c ∈ β. It follows that for all c ∈ D(�),
� |=+∼ c ∈ β ∨ ϕ(c), so (∼ c ∈ β ∨ ϕ(c)) ∈ � by the hypothesis of induction. Thus
∀x ∈ βϕ(x) ∈ � by the L�-ω-completeness of �. Conversely, suppose ∀x ∈ βϕ(x) ∈
�, then for any c ∈ D(�), (∼ c ∈ β∨ϕ(c)) ∈ � by rule ∀E, so ∼ c ∈ β ∈ � or ϕ(c) ∈ �

by the saturatedness of �. Since � is consistent, if c ∈ β ∈ �, then ∼ c ∈ β �∈ �, so
ϕ(c) ∈ �. That is, for any c ∈ D(�), if � |=+ c ∈ β then � |=+ ϕ(c) by the hypothesis
of induction, so � |=+ ∀x ∈ βϕ(x).

Case 9: χ is ∼∀x ∈ βϕ(x). The proof is similar to that for Case 8 except that we
use condition 4 of L�-saturatedness of � and rule ∼∀ I, completing the proof. �

Theorem 3.4 (Strong completeness for CF′) Let ϕ be an L-sentence and � a set
of L-sentences. If � |= ϕ then � � ϕ.

Proof: Suppose � �� ϕ. By canonical model construction, we can associate L� with
a canonical Kripke model M = 〈S,≺,D,I 〉. Saturation lemma I then guarantees us
that there is a � ∈ S such that � ⊆ � and ϕ �∈ �. By the truth lemma, � |= � but
� �|= ϕ. Therefore, � �|= ϕ. �

4 Conclusion and discussion The main contribution of this paper is the proposal
of a first-order logic that is based on constructive logic with strong negation. How-
ever, different from constructive logic, quantifiers in our system, as in Thomason’s,
are static rather than dynamic. Our intention is to develop CF′ further so that it can
serve as a logic for situation theory.

Originally, situation theorists were not much concerned with developing their
own logical systems. Their semantic theory of consequence emphasized the external
significance of language and the role of nonlinguistic contexts. Consequence is for
them no longer a relation between syntactic elements. There is no exact correspon-
dence between the information conveyed by an utterance and the sentence used to
convey. In fact “ . . . there can be no syntactic counterpart, of the kind traditionally
sought in proof theory and theories of logical form, to the [situation] semantic theory
of consequence.” (see Barwise and Perry [8], pp. 44–45). However, the desire to use
situation theory and situation semantics to give an account of inference eventually led
Barwise and Etchemendy to construct a situation theoretical model of inference, em-
phasizing information content. They called this infon logic; that is, a logic whose el-
ementary formulas represent items of information and whose compounds correspond
to ways of compounding those items (see Barwise and Etchemendy [7], [10]).

An infon algebra I = 〈Sit , I,⇒, |=〉 consists of a nonempty collection Sit of
situations, a distributive lattice 〈I,⇒〉 on infons, together with the makes-factual or
support relation |= between situations and infons satisfying certain additional condi-
tions.

In an infon algebra I, infons represent pieces of information and situations are
intended to be limited portions of the world. The support relation |= is essentially
partial: a situation may support some infons and refute others but remains silent on
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many. It follows that any algebraic theory of infons is definitely not Boolean. Fur-
thermore, they argue that a situation theoretical model of infons is at least a complete
distributive lattice, that is, a Heyting algebra. Thus, the logic for situation theory is
at least intuitionistic but not classical.

This argument immediately poses at least two questions. One of them is about
negation, the other about the interpretation of quantifiers. Let us first consider the
question about negation.

We recall that in situation theory there are two kinds of basic infons: one is
〈〈 R, a1, a2, . . . , an;1 〉〉, the other 〈〈 R, a1, a2, . . . , an;0 〉〉, where R is an n-place re-
lation, a1, a2, . . . , an are objects with the restriction of appropriateness. Note that
a1, a2, . . . , an need not necessarily be individuals. 0 and 1 are the polarity of infons.
For basic infons, negation is defined through a dual operation as follows:

〈〈 R, a1, a2, . . . , an;1 〉〉 = 〈〈 R, a1, a2, . . . , an;0 〉〉; (1)

〈〈 R, a1, a2, . . . , an;0 〉〉 = 〈〈 R, a1, a2, . . . , an;1 〉〉. (2)

So, we have

〈〈 R, a1, a2, . . . , an;1 〉〉 = 〈〈 R, a1, a2, . . . , an;1 〉〉; (3)

(4)
〈〈 R, a1, a2, . . . , an;1 〉〉 = 〈〈 R, a1, a2, . . . , an;1 〉〉.

However, it is well known that intuitionistic negation does not satisfy (3) though it
satisfies (4).

Furthermore, the negation of compound infons in situation theory is defined by
the following version of DeMorgan’s laws (see [5], p. 235 and Fernando [12], p. 108).
Even in [7] (p. 55), Barwise and Etchemendy do mention that (5) is sometimes as-
sumed in situation theory. However, (5) does not hold though (6) does for intuition-
istic negation.

σ ∧ τ = σ ∨ τ (5)

σ ∨ τ = σ ∧ τ (6)

Therefore, we conclude that situation theoretic negation is not intuitionistic. More-
over, the above way of treating negation by situation theorists to some extent suggests
that the negation used in situation theory is in fact strong negation. More importantly,
we can put aside the question whether situation theoretic negation is intuitionistic or
strong since it turns out that intuitionistic negation can in fact be simulated by strong
negation (see [19] and [2]).

Now we consider the question of quantifiers. Quantification of infons is not
treated in Barwise and Etchemendy’s infon algebra. Presumably, they would not in-
terpret quantifiers dynamically for the reasons we discussed previously. Moreover,
quantifiers in related situation theoretical literature are interpreted in one way or an-
other statically rather than dynamically (see [5], p. 271; [10], pp. 134–36; and [12],
p. 109).
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Therefore, we are inclined to use constructive negation, more generally, to use
constructive logic with strong negation as the underlying logic for situation theory
but to interpret quantifiers statically instead of dynamically. That is the way we arrive
at the logic CF′ from situation theorists’ work on infon logic. However, we do not
claim that our logic is fully-fledged. For one thing, the components in a basic formula
R(a1, a2, . . . , an), or using the notation of infon logic, 〈〈 R, a1, a2, . . . , an; i 〉〉 are
still individuals whereas infon logic allows them to be any objects. Nevertheless, we
do intend to claim that our logic preserves many features of infon logic since (1) CF′

is partial in the sense that a formula can be neither true nor false; (2) it has a rich
algebraic structure of persistent formulas; (3) with strong negation available, CF′ has
in fact two kinds of basic formulas very similar to the two kinds of basic infons of
situation theory; (4) the negation of compound formulas satisfies DeMorgan’s laws
which are assumed to hold in situation theory; and (5) quantifiers in CF′ are static, as
is consistent with situation theoretical interpretation of quantifiers.

CF′ can be extended in many ways. A natural extension is to replace basic for-
mulas R(a1, a2, . . . , an) of CF′ with basic infons 〈〈 R, a1, a2, . . . , an; i 〉〉, emphasiz-
ing that components a1, a2, . . . , an in basic infons can be any objects not just individ-
uals. Such structures lend themselves to the treatment of complex objects.

Another possible extension is to incorporate an operator into CF′ in order to
express nonpersistence.10 What is true in one situation is still true in a larger one.
However, what is undetermined in a situation may become true or false when more
information is available. It is then natural to introduce an operator such as ‘definitely’
(see [20]) or, more directly, an ‘undetermined’ operator U. Using this operator U, the
indeterminacy of both the assertion and the (strong) negation of an infon σ can be ex-
pressed by means of Uσ and U ∼ σ, respectively. If an agent, querying a situation
s for a decision whether σ, fails to establish both σ and ∼ σ, s/he can then thereby
establish Uσ. In a larger situation, however, what is originally absent in a smaller
situation may become available, thus the same agent may verify σ so that Uσ is re-
jected. So, Uσ is not persistent. Similarly, if a query to a situation s fails to refute σ,
then it rejects the claim that σ is refuted by s and thereby establishes U ∼σ. For the
same reason, U ∼σ is not persistent either. The distinction between strong negation
and U is similar to Barwise and Etchemendy’s distinction between negation and de-
nial (see Barwise and Etchemendy [6]). However, our approach is radically different
from Barwise and Etchemendy’s. Among other things, the inclusion of U in our logic
will lead us into nonmonotonic logic whereas Barwise and Etchemendy claim that
“Closing the class of propositions under conjunction, disjunction, and denial would
result in a notion of proposition whose logic is entirely classical” ([6], p. 169). Full
details of such an extension remain to be done.

In addition to the foundational role for situation theory, CF′ may have potential
applications in database theory. In database theory, we are concerned with what in-
formation we can get from a query to a database. Since data in relational databases
are all positive, we have to use the closed world assumption (CWA) (see Reiter [23])
to obtain negative information. For complete databases, CWA is efficient. However,
databases often provide us with just an incomplete description of the world. As a
result, the use of CWA may give rise to unpleasant consequences (see Abiteboul,
Hull, and Vianu [1], p. 282). Thus, much effort has been devoted to ways of deal-
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ing with various kinds of negative information. Among other things, it is argued that
strong negation is necessary in many important applications (see [31] and Alferes
and Pereira [3]).11 Moreover, there is a more general problem to be considered. It is
well known that the relational model for database theory is based on first-order logic.
However, such a logical foundation is perhaps inappropriate. First of all, the principle
of excluded middle is no longer valid when databases are incomplete. Second, though
it is always desirable to have the principle of noncontradiction, we certainly do not
want the destructive consequences that propositional logic gives. Indeed, from the in-
formational point of view, it is obvious that the inferential rule of form p ∧∼p → q
should always be rejected. As a result, what remains is at most the constraints of form
p ∧∼p → ⊥. So it is worth seeking a modified foundation for database theory.
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NOTES

1. Two similar systems F and G, or equivalently, HF and HG (using Routley’s notation),
have been studied by Fitch [13]. For the difference between Fitch’s systems and Nelson’s
systems, see [24], and see also Thomason’s footnote on page 255 of [25].

2. In [4], Almukdad and Nelson use N and N− for their first-order systems, where N− is
the proper subsystem of N without the axiom schema ϕ ⊃ (∼ ϕ ⊃ ψ).

3. Wansing uses N− and N instead of N and N1 respectively. N− and N are formulated in
symmetrical sequent calculus (see [32], pp. 24–25).

4. The terminology of the heredity of information is used in [32] whereas the persistence of
information is the situationists’ parlance. Note that [32] is only concerned with propo-
sitional logics. For the property of predicate logic, see Lemma 3.1 on p. 53 of [17]. In
intuitionistic logic, the property is called monotonicity (see the lemma on p. 78 of [27].).

5. Hereafter, we use a as a name for a.

6. It should be pointed out that his model for propositional logic, strictly speaking, is not
intuitionistic since the falsity of an atomic sentence at a stage of construction is treated
as being discovered directly rather than being decided by later stages.

7. Function symbols introduce nothing new. For simplicity, we avoid them here.

8. We are assuming that every object has a name. In effect we work with the expansion of
language L to accommodate all the objects of all the domains.

9. Note that neither N nor CF is formulated in axiomatic formalism.

10. Readers are invited to refer to Veltman’s paper “Defaults in update semantics” [29].
There he introduces operators such as ‘presumably’ to deal with nonpersistence within
the framework of update semantics.
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11. In [3], exactly speaking, Alferes and Pereira use explicit negation instead of strong nega-
tion.
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