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Irrevocable Belief Revision
in Dynamic Doxastic Logic

KRISTER SEGERBERG

Abstract In this paper we present a new modeling for belief revision that is
what we term irrevocable. This modeling is of philosophical interest since it
captures some features of suppositional reasoning, and of formal interest since
itis closely connected with AGM, yet provides for iterated belief revision. The
analysis is couched in terms of dynamic doxastic logic.

1 Introduction There seems to be a need to distinguish actual belief revision from
belief revision that is merely hypothetical. Letandy be two logically incompati-

ble propositions. If an agent, engaged in actual belief revision andpdthong his
current beliefs, decides to accepts a new belief, then according to all reasonable
theories of belief revision he will at the same time give up his old belief;ionly

if he does will the resulting set of beliefs remain consistent. Suppose, however, that
the agent, in conversation with another agent, has agreed to actfepthe sake of
argument” and that he now agrees also to acgefor the sake of argument.” In this
case, the resulting set of beliefs is just inconsistent. Since the result is consistent in
one case and inconsistent in the other, the two cases must be different.

Ordinary theories of belief change do not seem suited to handle the sort of hy-
pothetical belief change that goes on, for example, in debates where the participants
agree, “for the sake of argument,” on a certain common ground on which possibilities
can be explored and disagreements can be aired. One need not actually believe what
one accepts in this way. Nevertheless such acceptance amounts to what may be called
a doxastic commitment, one that cannot be given up within the perimeter of the de-
bate. Someone who no longer wishes to honor such a commitment may be described
as in effect abandoning the debate, perhaps in order to initiate another debate with a
different set of doxastic commitments.

Semantically speaking, a modeling of belief revision can be built as follows.
Consider a logical space, the points of which represent all the possible states of the
world (from some point of view). Any (relevant) proposition about the world may be
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identified with a certain subset of the space—with the whole space if the proposition
is logically true, with the empty set if it is logically false, otherwise with a subset in
between those two extremes. By the same token, a theory may be identified with a
subset of the space that is the intersection of a set of propositions. In particular, the
set of propositions believed by an agent to be true forms a theory in this sense, the
belief set. The belief state of the agent, however, is something more complicated.
The author’s suggestion, based on the work of Lewis and Grove, is that belief states
can be thought of asypertheories, that is, nonempty sets of theories for which Lind-
strom and Rabinowicﬂ have suggested the tefallbacks (see also Segerbe].

A doxastic action is a binary relation over the set of hypertheories. A belief change
(due to a doxastic action) is a change from one hypertheory (belief state) to another.
The intuition is that in order to describe an agent’s doxastic state it is not enough to
describe his beliefs about the world (the belief set); one must also describe his dox-
astic dispositions, how he would respond to new information about the world. The
fallbacks are theoretical positions with the help of which the agent is able to work out
anew belief set if new information forces him to give up his current one.

In this paper we describe a modeling for belief revision (IR) which accommo-
dates the intuitions about hypothetical reasoning described above. In the minimal
version presented here it is a rather special modeling that is probably too wasteful
in its treatment of old information to be of much practical interest, but it should be
possible—and perhaps not so difficult—to combine it with other, more general mod-
elings. Its theoretical interest is that it highlights doxastic commitment, a feature
that has received little attention before but which is a component in many cases,
for example, in default reasoning. On the technical side it may be noted that IR is
closely related to the classic theory of belief revision due to Alctoyr@&rdenfors,
and Makinson (AGM) as supplemented by the semantic representation of Grove (Al-
chourbn, Gardenfors, and Makinsofi], Grove B]). One important difference is that
IR specifically provides for iterated belief change. Iteration seems not to have been
of great interest to the creators of AGM, which in effect is a “one-shot” theory, and it
has proven surprisingly difficult to give an iterative extension of AGM that is natural.

Many ideas in this paper—and in the model theory of AGM type belief revision
generally—go back to Lewis’s pioneering wol [

2 Semanticsand syntax Let 2 be a Boolean algebra of subsets of a giveriket
the elements dif are callecpropositionsin 2( and the sett) = Univ 2l theuniverse of
2A. Wewrite Prop %! for the set of propositions; th® = (Prop®2(,Nn, U, —, U, @). A
nonempty subséf C U is called aheory (in the semantical sense) if there is a subset
SC Prop2 suchthafl =S

A hypertheory irRl is a special kind of subset §U; the exact definition will
vary from case to case. In this paper we requitg/gertheory H to be nonempty
(NE), to be linearly ordered by inclusion (LIN), and to satisfy the Limit Condition
(LIM):

(NE) H+#o.

(LIN) Forall X,Y € H, eitherXC YorY C X.

(LIM)  Suppose thaC = {X € H : XN P # @}, whereP is any propo-
sition inA. If C # @ then(C € C.
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A hypertheory every element of which is a theory is said tolbsed. A hypertheory
H is inconsistent if @ € H. A propositionP is inaccessibleto Hif [ JHN P = 2.

A doxastic action is a binary relation over some set of hypertheories. In this
paper all doxastic actions are of the type where P is a proposition:irrevocable
revision by P. We say that a hypertheorid’ is obtained from a hypertheony by
irrevocable revision byp if either

(i) Pisinaccessible t¢d andH’ = {5}, or
(i) H’ consists of all nonempty intersectiollsn P such thatY € H, plus o if
e H.

A system of hypertheoriesin 2 is a structure = (S, R) whereSis a set of hyper-
theories il andR = {R*P : P € Prop 2 & R*P is irrevocable revision by over
S}. Note that ifH andH’ are hypertheories, then

(H,H) e RPiff H ={@:VY e HIYNP=2)}U
(X:X#£2&3IYe H(X=YNP)U{Z:@eH).

We offer the following informal motivation for this conceptual edifiderop 2( con-

tains the propositions about the world that are in principle expressible (on a certain
occasion, in a certain context). A hypertheory represents a possible belief state of
arational agent; the relatioR*” models the change the agent’s belief state under-
goes if he revises his beliefs by the propositi®nRevision is to be understood in

the sense of irrevocable revision: orfieéas been accepted (perhaps “for the sake of
argument”) it cannot be given up later. Notice that the action of irrevocable revision
is always possible to carry out, even though the result may be inconsistent; this is in
accord with the intuition that even a rational agent should be able to investigate the
logical consequences of any hypothesis.

What is a suitable language in which to discuss these structures? Among several
possibilities, for this paper we choose the language of dynamic doxastic logic (DDL).
This is a language containitg msas well agormulas. There are no primitive terms;
the primitive formulas are a denumerable set of propositional letters. The operators
taking formulas to formulas include a truth-functionally complete set of Boolean op-
erators as well as the unaggxastic operators B andK and the binarylausibility
operator <. Therevision operator x takes formulas to terms; in fact, in this paper, the
only terms are of the formgp, whereg is a formula. Finally, the binarglynamic op-
erator [] may be thought of as operating in two steps: applying it to a termesults
in a unary operatordp] which can then be applied to a formula to yield a formula. To
complete this description of our language we add an important restriction. A formula
not containing any non-Boolean operator but built exclusively from propositional let-
ters and Boolean operators is calf@dely Boolean. Throughout the paper B and K
and < and * operate only on purely Boolean formulas. Readers are warned that they
will not always be reminded of this restriction.

To guide the informal understanding of our symbolism we offer the following
unofficial translations:

By the agent believes that
Ko the agent knows that (alternatively, has a doxastic
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commitment tap),

[*@] x necessarily, after revision of the agent’s beliefshy
it is the case thay,

¢ <Y  g@isatleastas plausible (according to the agent’s belief).as

We will also find the following defined operators useful:

bp =g —B—g,
ko =4t —K—g,
(x@)x =dat —[*xe]—x,
p<v¥ =4 (@=PY)IA-(Y=Z09).

The following unofficial readings are suggested:

by it is consistent with what the agent believes that

ke it is consistent with what the agent knows (alternatively, it is
consistent with his doxastic commitments) that

(x@) x possibly, after revision of the agent’s beliefs pyit is the case
that y,

¢ <y  @ismore plausible (according to the agent) thjan

The informal translations are given only for heuristic purposes; whenever questions
of interpretation of the modeling arise, it is to the formal definitions one should turn.
In particular, readingC for knowledge may not be a good idea; better perhaps to re-
gard bothB andK as doxastic operators and take the following slogan to hB&ur

belief and K for kommitment.

A final comment on the purely-Boolean-formula restriction, which is adopted
mostly for technical reasons. A consequence of this restriction is that we are only able
to model the agent’s beliefs about the world. In extensions of the present modeling
one could allow nestings @& andK as a first step—beliefs about beliefs—and as a
second step unrestricted nesting of all operators—beliefs about anything.

3 Truth-value conditions Let 2 be a given algebra of sets. valuation in 2l is a
function from the set of propositional lettersPoop 2. The structuredl, V) is called
amodel (on2l). Let M = (A, V) be amodel. Any purely Boolean formula has
anintension ||¢||oy defined in the usual way (we omit the subscrifi¢™ whenever
clarity allows):

[I]| = V (), if wis a propositional letter,
e A vl = llell N I[l¥]l, ete.

Notice that||p|| € Prop 2 for all purely Booleany. Let $ = (S, R) be a system
of hypertheories irl. Thetruth—in symbolsH =, ¢ (with respect tal and $H)—
of a formulag with respect to any hypertheoy € Sand any poinu € Univ A
can be given as follows (we omit the qualification “with respeciitand$” which
henceforth is regarded as implicit):
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HEey o iff  uellgll, if ¢isa purely Boolean formula,
HiEuw o Ay ff HEu gandH =y ¥,
HEu — iff  notH kg g,

and similarly for other Boolean connectives:

H =y By iff  MHC< el

HE=u Ko iff  (UH Cllell;

H =y [x¢]x  iff  forall H suchthatH, H) € R H =, x;

HEey o<y iff  forevery X e H,if XN||g|| =@ thenXN ||y =@.

Let9 = (2, V) be amodel and) = (S, R) asystem of hypertheories ilf. A setl’
of formulas is said to beatisfiable (in 9t with ) if there is some poini € Univ A
and some hypertheomyl € Ssuch that, for all formulag € I', H =, ¢. A formula
Y isvalid in a class of models with systems of hypertheories if true with respect to
all relevant points and hypertheories.

Several observations are in order. First, there are the derived conditions for the
defined operators:

H =y by iff  YHN el # 2.

H =y ko iff  UHNIell # 2.

H ey (x@)x iff  there is someH’ such that(H, H) € Rl and
H =u x;

HEy o <y iff  there is someX € H such thatX N ||p|| # @ but
XNyl =2.

Second, notice that in our definition we might have introduced two binary relations
RP andR, overUniv 21—strictly speaking, ternary, since they depend on the hyper-
theory H—stipulating that

RE:{(U,U):UEHH},

RN ={(u,v):ve JH}.
If so, we could then have replaced the official truth-conditionsBf@ndK by the
(here unofficial) conditions

H =y Be iff forall vsuchthatu,v) € RE, H =, ¢,

H =y Ke iff forall vsuchthaiu, v) € RS, H =, ¢.
To have done so would have been clumsy, but the observation reveals dinatK
are modal, Kripke/Hintikka type operators (although restricted by our rules for well-
formedness).

By contrast—a third remark—we might quite profitably rewrite the rules for the
dynamic operators:

HE=u[xolx iff Hxllell Fu X,
where

Hx gl =ar {2 : [ JHNl0ll = 2} U
{(XN|lgll: Xe H& XN ||p|| £ 2} U {@:2 e H}.



292 KRISTER SEGERBERG

ThusH x ||¢|| is inconsistent if and only if|¢|| is inaccessible téd or H is incon-
sistent.

Fourth, notice thaH seems to play no role in the definition|¢$|| andu none in
the (official) truth-conditions of the non-Boolean operators. This is beaatesgre-
sents the actual world which (in this modeling) is assumed not to change. All actions
in this paper are doxastic and purely doxastic actions do not change the state of the
world. “Real” actions do. Itis a virtue of the present modeling that it is easy—or at
least possible—to extend it by the addition of terms for “real” actions.

4 Heuristic remarks Readers are encouraged to familiarize themselves with the
semantics by drawing diagrams. The general picture of a revision is obtained by two
diagrams giving the belief state before and after the change, as in Fig. 1. The shaded
areas indicate belief sets; notice that the belief sets (but of course not the belief states)
delivered by IR are the same as AGM would give (provided, in the latter case, that
the whole space is regarded as a fallback).

¢ ¢
oL
Fig. 1

Notice also that revision by a proposition can change the belief state of an agent even
if the proposition is already believed by the agent (Fig. 2). This fact, surprising at
first, becomes intelligible as soon as one distinguishes mere belief in a proposition
from doxastic commitment to a proposition—one effect of revising g/that belief

in ¢ becomesrrevocable.
¢ ¢
¢
Fig. 2

It is helpful to consider an example given by McGlék [Consider California on the
eve of the elections of 1980 and the following sentences:
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() Anderson will win.

(y) Carter will win.

(p) Reagan will win.

(,r) A Republican will win.

As the example is given, it would have been rational for a well-informed, rational
agent to believe (1) “A Republican will win,” and (2) “If a Republican will win, then

if Reagan does not win then Anderson will win” but not believe (3) “If Reagan will
not win, then Anderson will win.” In other words, the argument

T
T= (—p = )
0=«

fails. McGee offered this example as a case in which modus ponens (with respect to
the conditional=) fails. Itis interesting that our modeling suits the doxastic version
of McGee’s argument: also the argument

Br
[x7][*—p] B
- [x—p]Ba

fails. A formal proof of this claim is given by defining = {0, 1, 2}, V(@) =
{21 V(y) = {1}, V(p) = {0}, V() = {0, 2}, andH = {{0}, {0, 1}, {0, 1, 2}}. As is
readily checked(H x ||x]]) % ||U — p|| = {{2}} andH % ||U — p|| = {{1}, {1, 2}}.
Thus with respect tdd and the actual state of the world, whether it hel,0or
2, Bz and fxz][ *—p]Ba are true while $—p]Ba is false.

5 An axiom system

(TF) 7, if T is a truth-functional tautology.
(MP) If - ¢ and- ¢ D ¥ thent .
If ois B or [«6], for any purely Booleam:
(01)  o(¢ DY) D (op Doy).
(02) If - ¢ then I og.
In addition we have the rule
(03) If = @ = ¢ thent [x¢] x = [*¥] x.
as well as the following axiom schemata:
(#11)  x = [*¢]x, if x is purely Boolean.
(#12)  (x¢)x = [*¢]x.
(#13) k(oA PV]x = [xel[+y]x.

(#21) b D ([x¢]Bx =B(p D x))-
#22)  (x@)by D (xy)bT.

(#23) BL D [x¢]BL.

#24)  (x@)bT =ke.
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(#25)  [x¢glKe.
(#26) K¢ D Bo.

#31) (=AW =<0)D(p=0).

#32) (e=¥)Vv W =<o).

(#33) (e =<v¥) = ({(x(pV¥))bT D (x(pV ¥))be).
#34) (¢ <¥) D ([x(eV ¥)]Bx =[*¢]By).

(#35) (¢ <¥) D ((x¥)bT D (xp)bT).

Thus(#24) is in effect a definition of the operatrin terms of the operatoBard [];
we might have refrained from including among the primitive operators and instead
introduced it by abbreviation:

Ko =g [+—¢]BL.

Similarly, (#33) may be regarded as a definition of the operatpme could have
dispensed with it as a primitive operator at the expense of a less transparent axiom
system.

It is easy to prove the following soundness result.

Theorem 5.1  All formal theorems derivable in our axiom system are valid. Con-
sequently, if a formula set is satisfiable, then it is consistent.

Proof: The first part of the theorem is proved by checking that the axioms are valid
and that the rules preserve validity. The second part follows from this and from the
fact that our logic is finitary, that is, the rules—(MP), (02), and (03)—have only
finitely many premises. O

The axiom system is strong enough to make, not @lgnd 6], for all purely
Booleand, normal operators, but al46 and< . This is an important fact that might
be worth proving. In fact it is enough to prove the following.

Lemmab.2 Thefollowing schemata and rules are derivable in our system:

(i) Kary)=KeoAaKy),
(i) KT,
(iii) ifFgp=ythenKp=Kuy;
(V) ((pvi) =0)D((p=0)V (¥ =<0)),
(V) ifFeDythen ¢ <.

Proof: We provide outlines of the formal proofs. By ‘ML’ we mean reasoning de-
pending on (TF), (MP), and (01 -03). We begin with (iv).



IRREVOCABLE BELIEF REVISION 295
1L (VYY) =)D =0V (¥ =<0)) premise
2. =(p=0) ML: 1
3. =((x(e VvV Y))bT D (x(pV ¥))by) ML: (#33), 2
4. (x(Vvy))bT ML: 3
5. [x(pVvy)]B—g ML: 3
6. —(y<0) ML: 1
7. [x(eVvy)]B—y similarly
8. [x(pVy)]B=(pV¥) ML: 5, 7
9. [x(eVv¥IBlpV ) ML: (#25, #26)

10. [x(pVv¥)]BL ML: 8,9

11. L ML: 4, 10

Since premise 1 leads to contradiction, we have established (iv). Next we turn to (i).
Thanks to the result (iv) just proved a32) and ML,

F@=(eVvi)) V@ =(pVy)).
Hence by(#35)

E (Gl VDT D (x@)bT) v ((+(@ vV ¥))DT D (xih)bT),
F (e vV ))DT D ((x@)bT v (x¢)bT).

By (#24) and ML, this is half of (i). Now the converse:

1. =((eVvy)=<9¢) premise
2. (x(pVvy))bT ML: (#33), 1
3. [x(pVvy)]B—g ML: (#33), 1
4. o< (pVy) ML: (#32), 1
5. [x¢B—¢ ML: (#34), 3, 4
6. [x¢]By ML: (#25, #26)
7. [x¢]BL ML: 5, 6
8. (x(pV¥))bT D (xp)bT ML: (#35), 4
9. (x@)bT ML: 2, 8
10. L ML: 7,9

This deduction shows th&t (¢ v ¥) < ¢. Hence by#35), - (x@)bT D (x(p Vv
¥))bT. By asymmetrical argument; (xy)bT D (x(¢ V ¥))bT. Hence the desired
result,= ((x@)bT Vv (xy)bT) D (x(¢ v ¥))bT. This ends the proof of (i).

For (ii) we have to prove that [«—=T]B_L. This follows readily by ML from

(#25, #26).

(iii)—congruentiality forK —follows readily from congruentiality foB and []

(that is, (02-03)).
Finally we turn to (v):

1. FeD vy premise
2. Fpvi)=vy ML: 1
3. F(xy)bT D (xy)byr ML: (#25,#26)
4. F (x(pV))bT D (x(p Vv ¥))by ML: 2, 3
5. FyYy<g ML: (#33), 4
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We end the section with some technical results.
Lemmab5.3 The following theorem schemata are derivable in our axiom system:

(@ (x(@AY))DbT D (xp)bT.

(0)  (x@)bT D (x(@ Vv ¥))bT.

© (k@A Y))bT D [xg](x(p A ¥))bT.

(d)  (xp)bb = (xp)b(p A 0).

€ (x(eAY)BT D ((xp)(0 <¥) = (e A0) < (9 AY))).

Proof: (a) and (b) follow from Lemm&.2] For (c), use#12 #13), for (d) use
(#23 #25,#26). For (e) we sketch a syntactic proof.

1. (x(eAY))bT premise
2. (xy)bT Lemmab.3{a): 1
3. (x(OVY)bT Lemmds.3b): 2
4. 0<yr=(x0OVy)bo ML: (#33), 3

This argument shows that (x(¢ A Y))bT D (0 < ¢ = (x(6 V ¥))bh). Hence

E k@] (x(@ A Y))DT D [x¢] (0 < ¢ = (x(6 V ¥))bO).
By Lemmd5.3{c) and more ML
E (@A Y))DT D ((x¢) (0 < ¥) = (x) (x(0 v ¥))bO).
By (#13)
(@A Y))DT D ((x9) (0 < ¥) = (x((9 A 0) V (9 A ¥)))b0).
Hence with the help of Lemnta3{d),
(@A Y))bT D ((x9) (0 < ¥) = (x((9 A O) V (9 AY)))D (@ A D).
By Lemmad5.3[b) and ML,
(@A Y))bT D (x((pA0) vV (9 AY)))bT.

The desired result follows bg33) and ML O
6 World states, belief sets, hypertheories A small Lindenbaum set is a maximal
consistent set of purely Boolean formuladig Lindenbaum set a maximal consis-
tent set of any formulas. (Consistency here is with respect to the axiom system in the
preceding section.) If in the sequel we speak of Lindenbaum sets without specifying
small or big, it is big that we have in mind.

The set of small Lindenbaum sets is denotedUbyf ¢ is a purely Boolean for-

mula, then we writéyp| for the set{u € U : ¢ € u}. Let T be a big Lindenbaum set.
Already in [8] we have the following definitions.

Definition 6.1 wst X = {x € X : x is purely Booleah.

Definition 6.2 bst X ={ueU:Vx(Bxe X = x e u)}.
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Definition 6.3  X* = {x : [*xp]x € Z}.

Lemma6.4 Supposethat ¥ and ® are big Lindenbaum sets.

(i) bstX C |¢p|ifandonlyif By € X.

(ii) bst X C bst ® if and only if, for all x,Bx € ® onlyif Bx € X.
(iii) Z*¢ isabig Lindenbaum set.

(iv) wst X* = wst X.

Proof: (Inaccordance with our general policy, it is assumed ¢had x are purely
Boolean formulas.) The proofs are similar to the proofs of similar claing]inyx-
iom schema#12) is used for (iii),(#11) for (iv). O

Notice also thal*! is a big Lindenbaum set even thougét =*' = @. Throughout
the remainder of this section let = be a fixed, given big Lindenbaum set.

Definition 65  f(y, X) = | J{bst = : 0 < ¥ € 2)}.
We shall say thatX C U is abasic fallback (with respect tox) if, for somey, X =
f (¢, X). A basic fallbacK (v, X) is proper if (xy)bT € X, otherwisemproper. A

necessary and sufficient condition fb¢y,, ) to be proper is théty € X or, equiv-
alently,v < L € X.

Lemma6.6 If BL e Xthen f(y,X)=a.

Proof: Supposethaie f (i, X). Thenthereis some formufesuchthad < ¢ €
andu e bst ©*. If BL € X then [6]BL € X by (#23). HenceBL € =*¥ and so
1 € u, which is absurd. O

Lemma6.7 Ifgp <y e Xthen f(p, X) C f(y, X).
Proof: By (#31). O

Lemma6.8 Assumethat (x(¢ A ¥))bT € . Then f(y, T*°) = f(p A, )N
.

Proof: Assume that«(¢ A ¥))bT € Z. Note that
f(y, 2%) = | J{bst =¥ 1 0 < y € %)

First suppose that € f (i, ¥*¢). Then there is someé such thab < € ¥*¢ and
ue bst =¥ Hence k] (0 < ¥) € X. Therefore(xp) (0 < ¥) € X by (#12).
By Lemmda.3[e) thenp A 6 < ¢ A ¥ € . Hencebst =*@") € f(p A ¥, ). That
bst *@9 C || is obvious. Consequently,e f(p A, )N ]g].

Conversely, suppose that f (¢ A ¥, ) N |p|. Then there is som@such that
0 <(pAy) e Xandue bst =* andu e |¢|. It follows that [«6]bg € =, so by
(#12 #25,#26) and modal logid*0)b (¢ A 6) € . Using the fact thatp A 0) v 0
is tautologically equivalent t@, we infer with the help of(#33) that (¢ A 0) <
6 € ¥. Consequently(p A 6) < (¢ A ¥) € X by (#31). By LemmaE3{e), then,
[*¢] (0 < ¥) € =, whenced < ¢ € T*%. Thus in order to be able to conclude that
ue f(y, ), all we now need to do is to prove thate f (v, 2*@"9), Let x be
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any formula such tha@ y € =*@"9: it will be enough to show that € u. Note that
[*(¢ A 0)]Bx € X and so, by#13) and modal logic,$¢][«0]Bx € X. By (#21) and
modal logic,

[+0]be O ([+6][*¢]Bx = [+6]B(p D x))

is a theorem. We already saw that]by € T, hence ¥6]B(¢p D x) € . Conse-
quently,B(¢ D x) € £*. Sinceu € bst ©*, it follows thaty > x € u. The fact that
u € || implies thatp € u. Hencey € u, as we wanted. O

If (xy)bT € X, we rekrto f (i, X) as thesmallest -fallback (with respect tax),
that is, the smallest basic fallback to intersgit To justify this terminology there
is the following result.

Lemma6.9 f(y,X) N|g| # @ implies that (xp)bT € X and that (¢, X) C
f(y, 2).

Proof: Assume thaff (v, X) N|¢| # @. Evidently there is some € f (i, ) N|¢|.
Hence there is somgsuch tha® < ¢ € ¥ andu € bst =*’. Sincey < uit is clear
that (x6)bp € . Then(xp)bT € X by (#22). This proves one part of the lemma.
Let us now address the remaining part. Suppose by absurdity thal ¢ X.
Then p«(6 v ¢)]|B—¢ € X thanks to(#33). Furthermoref < ¢ € X by (#31 #32),
hence §6]1B—¢ € X by (#34). This contradicts the fact, noted above, that)bg
3. Thereforep <0 € X. Sinced < ¢ € X, (#31) yyieldsy < ¢ € X. Consequently
f(p,T) C f(y, =) by Lemmds.1] O

Lemma6.10 Supposethat (x¢)bT € X. Then ¢ < v € X if and only if, for all 6,
if (0, )N |p| =2 then f(6, )N |yY|=2.

Proof: Assume thatx@)bT € X. First suppose that < { € X. Let 6 be any for-
mula such thatf (6, X) N |y| # . Then f(y, X) C (6, ) by Lemmatg.d But
bst =*¢ C f(y, X), and so a fortioribst =*¢ C f (9, ). Moreover,(x@)bT € X
implies thatbst X*? # @. Hencef (6, X) N |¢| # &, as we wanted to show.
Conversely, assume that< ¢ ¢ ¥. Theny¥ < ¢ € X, and so by(#35)
(xy)bT € . Then f(y, ) N |¢¥| # ; thus it will be enough to prove that
f(y, X) N || = @. Suppose there is some element f (¥, X) N |p|. Then there
exists some formul@ such thatu € bst ©* andé < ¥ € ¥ and (x0)bp € X. If
¢ < 0 ¢ ¥, then by the same argument as in the proof of Lerkn®f*6]B—¢ € X,
which is impossible; consequently,< 6 € . Then by (#31) ¢ < ¢ € T in contra-
diction with our hypothesis. Henck(y,, ) N |¢| = @. O

We define thecanonical hypertheory induced by ¥, in symbolshth X, as the clo-

sure under arbitrary union of the set of basic fallbacks. Thilife ¥, then by

Lemmal.6lhth = = {@}. Butif bT € S—the nontrivial case—thehth X is the

closure under arbitrary union of the gdt(y, X) : (xy)bT € X}. Inthe latter case,
hth T is the smallest se® of subsets obJ such that

(i) if (xY)bT € Tthenf(y,X) e S
(i) if TC SandT #a,thenT e S

An element ohth X that is the union of a set of basic fallbacks but is not itself a basic
fallback is called dimit fallback.



IRREVOCABLE BELIEF REVISION 299
Lemma6.11 hth ¥ isa hypertheory.

Proof: If BL e Xthen@ e hthZ. If bT € X then(x*T)bT € X by (#21), and so
f(T, %) € hth . Hence (NE) is satisfied. (LIN) holds thanks@@31, #32). (LIM)
follows from Lemmd6.9 a

Lemma6.12 [ Jhth T =J{bst *: (x0)bT € X}.

Proof:  First suppose thate (] hth ¥. Then there is somg such that«y)bT € X
andu € f (¢, ). Consequently there is somesuch thaip < ¢ € ¥ andu € bstx*?.
By (#35), (x¢)bT € . Thusu € {{ Jbst =** : (x0)bT € T}.

Conversely, suppose that bst X*? for some formula such that0)bT e X.
By (#32),0 < 6 € X, sobst ¥* € f(, X). But f(4, ©) C |Jhth =, henceu
(Jhth . O

Lemma6.13 (| Jhth )N |¢| # @ ifandonlyif ke € X.

Proof:  First suppose that_Jhth %) N |¢| # @. Then, by Lemmd.12] there is
some elementl € |¢| and some formuld such thatu € bst *? and (x0)bT € .
Sincey € uwe haveby € *?, whence §6]by € X. Hence (x0)bg € X by (#12).
By (#22), (x¢)bT € X, thereforeky € T by (#24).

Conversely, suppose thap € . Then(xg)bT € = by (#24). By Lemmé.12]
thereforebst £*¢ C | Jhth 2. By (#25 #26), bst £*¢ C |¢|. Take anyu € bst *¢
(according to Lindenbaum, such elements exist!). Evideaty J hth X)N|¢|. O

Lemma6.14 hth (X*?) = (hth X) % |¢|.
Proof: It follows from a remark at the end of Section 3 that

hth =« |¢| = {@:(_Jhth =N g| = 2} U
{(XN]g|: X ehth= & XN |g| # 2} U{2:@ € hth =}.

There are two main cases, the first one of which is wheiB L € X.

Casel: Inthis caseB.L € ¥*¢. Hence by definitionhth (*¢) = {@}. Further-
more, if f (¥, ) N |¢| # @ for some fallbackf (, £) € hth X, then by Lemm&_.8]
(x@)bT € X, which is absurd; consequentiihth ) x |¢| = {&}.

Case2: The other main case is whémrp)bT € . Note thatbT € X by (#23).
First we prove inclusion from left to right. There are two subcases.

Subcase 1: First the basic case. Suppose that hth (X*¢) and that there is some
¥ such that(xy)bT € X** and X = f(y, ¥*¢). Assume, for contradiction, that
[%(p vV ¥)]B—¢@ € Z**. Then k¢][*(p vV ¥)]B—¢ € . Hence k¢p]B—¢ € X by
(#13) and (03). By(#25, #26) and modal logic thendp]B_L € X, aresult that con-
tradicts the assumption thate)bT € X. This argument shows thé&t(¢ Vv ¥))bg €
>*¢. It follows from (#33) thaty < i € X*?. But thenbst =*¢ C f (¢, ¥*¢). Since
the fact thatx@)bT € X implies thatbst X*¢ £ &, this shows thaX # @. Now, let
Y = f(p Ay, X). With the help of(#12 #13) and the fact that«y)bT € X*? itis
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readily shown that« (¢ A ¥))bT € =: henceY € hth £. By Lemmd6.8] X =Y N |g|.
HenceX € (hth X) = |¢|.

Subcase2:  Now the limiting case. Suppose thék hth (£*¢) and thatX = [ J{ X :
i € 1}, wherel is some nonempty index set and eaglis a basic fallback ire*?. By
the argument presented in the preceding paragraph, for eathhere is somé;
hth 3 such thafX; = Y; N |¢|. Butsincehth X is closed under uniory, = [ J{Yi:i € I}
is a fallback inhth . Moreover,X = Y N |p|. HenceX e (hth ¥) % |¢|. This ends
the proof of inclusion from left to right.

For the converse direction—inclusion from right to left—suppose that
(hth ) % |¢|. ThenX £ @. Moreover, there is somée hth  suchthaX =Y N |g|.
Let Z denote the set

Jtf (@6, 3) 1bst 5D 0 X £ &),

Weclaim thatX = ZN |¢|. First suppose that € X. Note thatu € |¢|. Furthermore,
u € Y. Hence there are sonteandt such thatf(z, £) € Y andu e bst =*¢ and
0 < 7 € X. This implies that{6]bg € X, whence §0]b(¢ A 6) € T by (#25, #26),

and so on. Hencéxt)b(p A 0) € T by (#12) and so(x(¢ A 6))bT € X by (#22).

By (#32), 0 < 0 € ©*¢, whencebst ¥* C (6, ©*%). Lemma.8lapplies, yielding
ue f(p A0, %) N |p|. The conclusion is that € Z. Conversely, suppose thate

Z N |p|. Then there is somé such thau € (¢ A 6, ¥) andbst 2*@) N X #£ @.

Note thatY N |¢ A 6] # @. Hence f (9 A 6, =) C Y since by Lemm&.9df (¢ A 6, )

is the smallest fallback intersectingn 6. Thereforeu € Y. We also haveu € |¢|.

Henceu € X. This ends the proof of the claim thXt= Z N |¢p]|.

By distribution, therefore,

X:U{f((p/\@, )Nl : bst @) N X £ &},

But wheneves is such thabst ©*¢% N X # @ we have(x(¢ A 0))bT € X. Hence
by Lemmdb.8)

X=[J{f® =) bst 259 0 X 3 2},

Suppose thabst ©*@") N X £ @, for somed. Then (x(¢ A 0))bp € . By
(#12 #13), [x¢](x0)bT € ¥ and so(x0)bT € ¥*¢, implying that f (6, ¥*¢) €
hth *¢. The fact that canonical hypertheories are closed under arbitrary union then
yields X € hth £*¢. O

7 Thecompletenessproof As beforeU is the set of small Lindenbaum sets. Ret

be the Boolean algebra generated by the set-theoretical operations intersection, union
and complement by the set of elemefjtg| : ¢ is a propositional lettér Define a
valuationV by the requirement that, for each propositional lettev (r) = {u e U :

7 € u}. The valuationV is extended in the usual way to a valuatighof all purely
Boolean formulas. We adopt the convention of writifg|| for V/'(¢), wheng is

purely Boolean. By a classical argumelfip|| = |¢|; werefer to this fact by the term
tautological completeness.
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Lemma7.1l Let X beany bigLindenbaum set. Then
hth X =g s xiff x € Z.

Proof: The proof is by induction on the complexity @f The basic step holds by
definition. The Boolean steps are trivial. The cas@a$ as in modal logic. The
cases oK, [], and < are dealt with with the help of Lemms136.14] and6.10)]
respectively.

As an example we give the case of []. Assume thé of the form [x¢]6; the
induction hypothesis is that the theorem holdséor

1. hthX g3 [*¢]0 iff (by the truth-definition)

2. (hthX) «||¢ll Ewgxs @ iff (bytautological completeness)

3. (MhX) x| Euss 6 iff (by Lemmal6.14

4. hth (%) =pg x 0 iff (by Lemmale_4iv))

5. hth (Z**) Eyps 5w 0 iff  (by the induction hypothesis)

6. OeX* iff (by definition)

7. [x¢]0 € X 0

From Lemmadz_1lfollows a completeness result that is a converse to the soundness
result stated in Theoref 1]

Theorem 7.2 If aset of formulasis consistent in our axiom systemfor IR, thenitis
satisfiable. In particular, a formula true with respect to all points and hypertheories
is derivablein our axiom systemfor IR.

8 Closed hypertheories  From a philosophical point of view, the completeness re-
sult just achieved is not enough. The elements of a hypertheory—the fallbacks—
represent positions on which the agent might fall back if his beliefs are challenged;
if he modifies his belief state, it is from those elements that (with the help of set-
theoretical operations) he molds his new belief state. Therefore one would expect the
fallbacks—those theoretical positions—to be theories (in the semantical sense). But
the fallbacks of a canonical hypertheory, although unions of theories, are not neces-
sarily theories. In this concluding section we will improve upon that state of affairs.

Let ¢ range over the set of purely Boolean formulas analver the set of sets of
purely Boolean formulas. As befong,is the set of small Lindenbaum sets. Retaining
the definition

lp| = {ueU:gpeu}
we also define
] = {ueU:XCu}
These notations are consistent if one accepts|thiit= |¢|. If X C U we define
thX= {¢:XClell,
CX = Nilel: X< lgl}.

We say thatC X is theclosure of X, and thatX is closed if X = CX. Note that ) X =
{p:Vue X(p e W} ={p:Vue XU e |p))} = th X. The following list of well-
known regularities is longer than really needed in this paper; itis included anyway in
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order to emphasize the interplay between syntax and model theory (or, more precisely,
between syntax and the theory of the canonical model).

(a) XcCX,
(b) CCX=CX,
(€) Clol=l¢l,
(d Co=g,
(e) CIzZ|l=I%],
H C(XNY)=CXNCY,
(g0 C(XUY)=CXUCy,
(h) r—]ielcxi =Cr]iel X,
() Uiei CX S CUicr X,
() if XZYthenCX CCY,
(k) if X ZYthenth X2 thy,
() if X tautologically impliesp, then|X| C |¢],
(m) if |X] < |¢| then (by compactnesy) tautologically impliesp,
(n) Zcthl|x],
(o) X =th|X] (thanks to compactness), If contains all tautologies

and is closed under modus ponens,
(p) Xc|thX],

(@) X=|th X|, if Xis closed,
() thCX=thX.
(s) IthX|=CX.

Lemma8.1l If XN|p| =g, thenCXN |yl = 2.

Proof: Suppose thaK N |¢| = @. ThenC(X N |¢|) = C@. Furthermore, with
the help of observations (c), (d), and @(X N |¢|) = CXNC|p| = CXN |p| and
Co=0. O

Definition 8.2 chth ¥ = {CX: X € hth X}.

Thus each element @hth X is a theory, as we wanted. Notice thahth ~ = {&},
then alsachth ¥ = {@}.

Obviously what we have called theories in the semantical sense are the same as
the closed sets. Thus, according to the definition in Section 2, a hypertheory is closed
if all its fallbacks are closed. For philosophical reasons, it is in closed hypertheories
that our interest lies. We now wish to establish the following results.

Lemma8.3 chth ¥ isa hypertheory.
Proof: (NE) and (LIN) hold as before. We check the limit assumption (LIM) by
verifying thatC f (¢, X) is the smallest fallback ichth X to intersecfp|. Suppose

thatC f (y, £) N|¢| # @. Thenf (¥, £) N|¢| # @ by Lemmdd.1] Hencef (¢, T) C
f (¢, ), whenceC f (¢, ) C Cf(y, ) by observation (). O

Lemma8.4 chth (Z*¢) = (chth ) * |¢|, i f (xp)bT € .
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Proof: Assume tha{xp)bT € Z. First suppose thal € chth (X*?). Then there
is someX € hth (X*?) such thatZ = CX. It follows from the assumption by
Lemmale.14lthat X € (hth ¥)  |¢|. HenceX # @ and there is som¥ € hth ©
such thatX = Y N |¢|, for someY € hth X. Note thatCX = C(Y N |¢|) = CYN|g|.
Evidently,CY e chth . Moreover,CX # &. ConsequentlyZ € (chth ) * |¢].
Conversely, suppose thdte (chth X) * |¢|. ThenZ # @ and there is some
W e chth T such thatZ = W N |¢|. Evidently there is som& e hth X such that
W = CY. Let X = YN |¢|. By LemmaB.1] X # @. HenceX e hth (£*¥) and so
CX e chth (X*?). Note thatCX = CY N |p| = WN |¢| = Z. ThusZ e chth (Z*¢),
as we wanted. O

Lemma8.5 For all formulas, purely Boolean or not, chth =« 5 ¢ if and only
if p e .

Proof: By induction ong. Remember thak and< could have been introduced as
abbreviations. Thus in order to check the inductive step of the induction it is really
enough to check the cases wheis B+, for some purely Booleai, or [«y/] x, for
some purely Booleaty and arbitraryy. We confine ourselves to the latter as the for-
mer easily follows from Lemma_1l

First assume that) chth ¥ N || = @. By observation (a) abov¢,j hth X C
(Jchth =. Hencel Jhth £ N || = @. This case is trivial.

Therefore suppose thigf chth N |y| # @. Thenthere is som¥ € hth X such
thatCX N |y| # @. By LemmdB.I] X N || # @. Hencel  hth = N || # @. Note
that (xy)bT € X. Then

1. chth E=pgs [*xy¥]x  iff (by the truth definition)
2. chth T« |y| Ewsxx  Iff (by Lemmal8.4)
3. chth (&%) Epgsx  ff (by LemmalE.4iv))
4. chth (=) =, g s x ff (by the induction hypothesis)
5. xex¥v iff (by definition)
6. [xy]xeX.

U
From this lemma follows the second completeness result of this paper:

Theorem 8.6 If a set of formulasis consistent in our axiom systemfor IR, then it
is satisfiable in a model with a system of closed hypertheories. In particular, in the
class of models with systems of closed hypertheories, a formula true with respect to
all points and hypertheoriesis derivable in our axiom systemfor IR.

The second part of Theordfm6lcan be strengthened even further: it is enough to
consider finite models. Suppose thet a particular formula. Thea contains only
afinite number of propositional letters—saywheren is a nonnegative integer. Let
L, be the object language obtained by restricting the normal object langliage
the propositional letters occurring inThe constructions and arguments in Section
6 go through as before witlL, taking the place ofL. There are some differences,
of course; one is that the cardinality of the &gt of small Lindenbaum sets ir,

is 2", hence finite. (Notice that this fact trivializes condition (LIM).) The proof of
LemmaZ1lalso goes through. Hence we have:
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Theorem 8.7 A formula truein all finite models with respect to all points and all
systems of (closed) hypertheoriesis derivable in our axiom systemfor IR.

Corollary 8.8 IRisdecidable.

Proof: We now have both a proof procedure and a disproof procedure. [

The last result is of theoretical interest only as the complexity of the decision problem
is impractical.

9 Concluding remarks This paper was read by several referees who, in addition
to suggesting many improvements, made a number of interesting comments. This
section is in response to the latter.

First, it should be said that the interest in the paper is mainly formal. It seems
obvious to the author that the proposed modeling has some application, in particular
to a common variety of hypothetical reasoning; but not much effort was expended
in arguing for this view. Rather, the interest is in describing a modeling with formal
features that make it worth investigating. Modal logic may be looked upon as a store-
house of systems that can be used to model certain concepts in which philosophers
are interested; for most of those concepts, there are many candidates. In the view of
the author, the situation in belief revision is similar: we need not just one modeling,
but many. It is probably hopeless to look for the logic of belief revision—if there is
uniqueness, at least it is not obvious from the outset. Thus IR has not been launched
in order to replace AGM.

As stated above, AGM is really a “one-shot” theory whereas IR is iterative, so
in some ways it is impossible to compare the two. In the “one-shot” perspective, the
difference between AGM and IR is not great and stems mainly from the slightly dif-
ferent conceptions of hypertheory: in AGM but not in IR, hypertheories are replete in
the sense that the universe of a model is always a fallback (tHatissa hypertheory
in an algebra with univergd only if U € H). Another difference is thatin AGM any
hypertheory becomes consistent upon revision by a consistent proposition, whereas in
IR inconsistent hypertheories remain inconsistent after any revisioté28)). This
has to do with a feature of IR that might be called “the persistence of commitment”:
[x@][*¥]K @ andK ¢ D [*y]K ¢ are valid schemata.

But even though it is possible to compare AGM and IR in some ways, it is per-
haps more fruitful to focus on the doxastic actions that they model. In AGM we find
one kind of revision, in IR another; let them be denoted+bgnd % , respectively.

There is an obvious way in which Grove’s modelingl@} ¢f AGM (“one-shot”) re-
vision can be adapted to nonreplete hypertheories: in an algebra with uriyéfde

is any proposition anti any hypertheory such thej H N P = &, then just stipulate
that revision ofH by P yields the new belief set. Consider the obvious model-
ing in which bothx and ¥ are represented. The fact that the two different kinds of
action—AGM revision and “one-shot” IR revision—lead to the same beliefs in “nor-
mal” cases is brought out by the fact that the schergdB x = [£¢]By is valid in

this modeling, whether or not attention is restricted to replete hypertheories.

To gain further perspective, let us compare another modeling with the idea of
irrevocable revision. LR is a system of belief revision describe@jritat differs
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from AGM in two respects: hypertheories need not be replete and need not be nested
(that s, the condition (LIN) is notimposed; dE]j, and there is provision for iterated
revision. Letx denote revision according to LR aii® the relation that models the
change the agent’s belief state undergoes if he revises his beliefs by a propBsition
(cf. Section 2). According to LRR*P is defined as the set of all pai¢$i, H') of
hypertheoriedd andH’ for which there exists a s& such that

1. Zisminimalinthe sefX e H: XN P #£ &},
2. H=({X:ZC X}U{XNP:ZCX].

(Thus belief revision in LR is not functional, in contrast with both revision in AGM
and irrevocable revision in IR.) Now |éf denote irrevocable revision in this system,
and letR*P denote the relation modeling the change the agent's belief state undergoes
if he revises his beliefs by a propositiéin the irrevocable manner. Thenitis natural

to defineR*P as the set of all pairéH, H’) of hypertheories such that eithefH N
P=g@andH’ = g, or else there is a s& such that

3. Zisminimal inthe se{X € H: XN P # o},
4. H' ={XnP:ZcC X}.

The example suggests that the idea of irrevocable belief revision may be combined
with many modelings of “ordinary” belief revisich.

Acknowledgments The author is grateful to John Cantwell for helping to sort out a number
of confusions and to the anonymous referees.

NOTES

1. One referee found Lemriia3e) “very interesting” and went on to make the following
comment: “It states, for the principal case, where a revisiop ofy is feasible, a def-
inition of how to revise plausibility relations. My conjecture is that the biconditional
(x@) (0 < ¥) = ((p A B) < (¢ A Y)) fully characterizes the author’s method of irre-
vocable revision (save perhaps for the limiting case in whi¢h(p A ¥))bT) obtains.
Given the equivalence of Grove plausibilities ar@r@Genfors-Makinson entrenchments,
it turns out that the method was briefly discussed (but finally rejected) by Rott in a paper
published in 1991.” Evidently, the paper referred to herE]s [

2. The idea underlying the modeling of IR (as distinct from the idea of exploring it with
the help of dynamic deontic logic) arose in conversation between HorachoCusta
and the author. At one time we had hoped to write a joint paper; a joint abstract was
presented by title at the Scandinavian Logic Symposium in Uppsala 1997 but unfortu-
nately never published. The author gratefully remembers many discussions with Arl
Costa. In particular, it was AolCosta who first observed that the McGee example can
be handled by IR; se&].
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