
Notre Dame Journal of Formal Logic
Volume 41, Number 2, 2000

THE PROPOSITIONAL LOGIC OF
ELEMENTARY TASKS

GIORGI JAPARIDZE

Abstract The paper introduces a semantics for the language of propositional
additive-multiplicative linear logic. It understands formulas as tasks that are to be
accomplished by an agent (machine, robot) working as a slave for its master (user,
environment). This semantics can claim to be a formalization of the resource
philosophy associated with linear logic when resources are understood as agents
accomplishing tasks. I axiomatically define a decidable logic TSKp and prove its
soundness and completeness with respect to the task semantics in the following
intuitive sense: TSKp ` α iff α can be accomplished by an agent who has
nothing but its intelligence (that is, no physical resources or external sources of
information) for accomplishing tasks.

1. Introduction

What we call atomic tasks are expressed in natural languages with imperative sen-
tences, such as ‘Open the door!’ or ‘Solve the P = NP problem!’. These kinds of
expressions may have one of the two semantical values: accomplished or failed.
These values usually are not initially known and only become fully determined in
what can be called the eventual situation: the task ‘Open the door’ will be considered
accomplished if the door was eventually opened, no matter when and by whom.

The connectives of classical logic can be applied to tasks with their standard
behavior: the task α → β is accomplished if and only if β is eventually accomplished
as long as α is so, ⊥ is a task that is never accomplished, and so on, so that if we only
consider what we call elementary tasks—Boolean combinations of atomic tasks—the
set of valid (always accomplished) tasks coincides with the set of classical tautologies.

Nonelementary tasks are produced by the nonclassical operator u. Explaining its
semantics requires a little analysis of our intuitive notion of a task. When we talk
about tasks, we have two agents in mind: the agent who must accomplish the task

Received May 18, 2001; printed August 30, 2002
2001 Mathematics Subject Classification: Primary, 03B47; Secondary, 03B70, 68T27
Keywords: Tasks, game semantics, linear logic, substructural logics
©2001 University of Notre Dame

171

http://www.nd.edu/~ndjfl
http://www.nd.edu

172 GIORGI JAPARIDZE

(open the door) and the agent who sets the task (requests ‘Open the door!’). The
former can be called slave and the latter master. With potential applications in mind,
slave can be thought of as a machine or a robot and master as a user or the environment.

Atomic formulas are understood as requests automatically made by master. As for

α u β,

this is a task that signifies no particular request for slave but rather two potential
requests that master can make: α and β. Accomplishing the task α u β means
accomplishing the task chosen by master. If master did not make any choice, then
this task is considered accomplished as there was no particular request that slave
failed to carry out. As for

α ∧ β,

accomplishing it means accomplishing both α and β. This task is generally harder to
carry out than α u β because the former obligates slave to carry out both of the two
tasks while the latter can signify only one (even if an arbitrary one) of the two tasks.
For example, the task

Make it faster! u Make it slower!

can be accomplished while

Make it faster! ∧ Make it slower!

is an unaccomplishable task.
Revisiting the operator → for the cases when its scope is no longer restricted to

elementary tasks, the intuitive meaning of the task

α → β

is that slave should carry outβ as long as master carries out α under slave’s command.
In other words, in α the roles of master and slave are interchanged, so that if, say,
α = α1 u α2, it is slave rather than master who makes one of the requests α1 or α2.
For example, while being unable to accomplish the task

Kill the werewolf! u Destroy the vampire!,

slave may have sufficient resources (such as a gun, a mallet, and bravery) to carry out
the conditional task

(Give me a silver bullet! u Give me a wooden stake!)
→ (Kill the werewolf! u Destroy the vampire!).

In the process of what we call a realization of this task, master can, at any time, request
either killing the werewolf or destroying the vampire. And also at any time, slave can
request either giving him a silver bullet or giving him a wooden stake. The task will
be accomplished, if master’s request (if there was one) was eventually satisfied, or if
slave’s (counter)request was not satisfied.

Generally, accomplishability of α → β corresponds to our intuition of reducibility
of the task β to the task α, so that → can be viewed as the task reduction operator.

This interpretation makes every task of the form α → α accomplishable by a
sufficiently intelligent slave who does not need to have any extra physical or informa-
tional resources. We can call these sorts of tasks universally accomplishable. Slave’s
successful strategy for, say, the task

(Make it faster! u Make it slower!) → (Make it faster! u Make it slower!)

ELEMENTARY TASKS 173

would be to wait until master makes one of the two possible requests in the consequent
and then repeat the same request in the antecedent.

Not all the tasks that have the form of a classical tautology are universally accom-
plishable though. For example, slave cannot have a successful strategy for

(Make it faster! u Make it slower!) →

(Make it faster! u Make it slower!) ∧ (Make it faster! u Make it slower!).

In particular, slave will fail to carry out this task if master selects different u-terms in
the two conjuncts of the consequent.

This reminds us of linear logic and its variants that, too, reject the principle

α → (α ∧ α).

Our approach can serve as a semantical justification for substructural logics. In
particular, it can be considered a formalization of the resource philosophy originally
associated with linear logic (Girard [2]) where resources are understood as tasks that
are being carried out for the agent (rather than by the agent). That is, resources
are symmetric to tasks: what is a task for slave is a resource for master, and vice
versa. By their “behavior,” the classical operators of our language are similar to the
multiplicative operators of linear logic whereas u and its dual t correspond to the
additive conjunction and disjunction, respectively.

Even though our semantics is formulated without using game-semantical terms,
from the technical point of view it can be classified as a (Blass [1]- and Japaridze [3]-
style) game semantics.

What follows contains strict definitions for the task semantics at the propositional
level and an axiomatization (with a soundness and completeness proof) of the corre-
sponding logic—the set of universally accomplishable tasks.

2. Main Definitions

The language we consider is that of classical propositional logic augmented with the
binary operator u. The connective t can be defined by α t β = ¬(¬α u ¬β). For
the considerations of compactness of definitions and proofs, we choose a minimal set
of basic classical operators: → and ⊥.

Formulas of our language we sometimes also call tasks and use lowercase Greek
letters exclusively as metavariables for them. A formula (task) not containing u is
said to be elementary. By a u-formula we mean a formula of the form α u β. The
u-complexity of a formula is the number of occurrences of u in that formula. A
surface occurrence of a subformula in a formula is an occurrence that is not in the
scope of u.

We assume some standard fixed way of referring to surface occurrences of sub-
formulas such as, for example, expressions of the type ‘Antecedent of Consequent of
Antecedent’. These sorts of expressions will be called occurrence specifications and
uppercase Greek letters will be used as metavariables for them. What we mean by
validity of an occurrence specification for a formula must be clear: say, for the above
specification to be valid for α, α needs to have the form (β → (δ → ψ)) → γ in
which case the specification specifies the occurrence of δ.

If 0 is a valid occurrence specification for α, then

0(α)

174 GIORGI JAPARIDZE

denotes the occurrence in α specified by 0, to which we can also refer as ‘the occur-
rence 0 in α’.

An occurrence specification is said to be positive if it specifies an occurrence that is
in the antecedent of an even (possibly zero) number of →’s. Otherwise it is negative.

If 0 is a valid occurrence specification for α and γ is any formula, we call the pair

0/γ

a replacement for α.
If E = 0/γ is a replacement for α, we can use the expression

α(E)

or
α(0/γ)

to denote the result of replacing in α the occurrence 0 by γ .

Definition 2.1

1. A simple request for α is a replacement 0/γ for α such that 0 is positive,
0(α) = β0 u β1, and γ = β0 or γ = β1.

2. A simple response for α is defined in the same way only 0 here should be
negative rather than positive.

Note that the part of the task that gets changed by a simple request or response is
a surface occurrence because, as we agreed, ‘occurrence specification’ (0) always
means the specification of a surface occurrence.

Intuitively, a simple request means an elementary request made by master, and a
simple response means an elementary (counter)request made by slave.

Definition 2.2 A request for α is a sequence

X = 〈E1, . . . , En〉

such that E1 is a simple request for α0 = α, E2 is a simple request for α1 = α0(E1),
E3 is a simple request for α2 = α1(E2),

A response for α is defined in the same way, only E1, . . . , En here should be
simple responses rather than requests.

When X = 〈E1, . . . , En〉 is a request or a response forα andα0 = α,α1 = α0(E1),
α2 = α1(E2), . . . , αn = αn−1(En), we will use the expression

α(X)

to denote αn , that is, the result of consecutively making the replacements E1, . . . , En

in α. If here X is the empty request or response 〈 〉, then we define α(X) = α.

By abuse of terminology, we will also say that a formula β is a request for α, if
β = α(X) for some request X for α; we say that such a request is proper, if X 6= 〈 〉.
Similarly, we will say that a formulaβ is a simple request forα, if β = α(X) for some
simple request X for α. The same terminological convention applies to responses
and simple responses.

Thus, a request (respectively, response) forα is the result of consecutively replacing
in α some (possibly none) positive (respectively, negative) surface occurrences of the
form β u γ by β or γ ; in a simple request or response, exactly one replacement is
made.

The following fact can be easily observed.

ELEMENTARY TASKS 175

Fact 2.3 Assume X is a response and Y is a request forα. Then X is also a response
for α(Y) and Y is also a request for α(X); moreover,

(

α(X)
)

(Y) =
(

α(Y)
)

(X).

When X is a response (or simple response) and Y is a request (or simple request) for
α, we will usually use the notation

α(X, Y)

to mean the same as the less symmetric-looking notation
(

α(X)
)

(Y).
When β = α(X, Y) for some response X and request Y for α, we say that β is a

development of α; if here β 6= α, that is, X 6= 〈 〉 or Y 6= 〈 〉, then β is said to be a
proper development of α.

Definition 2.4 A realization of α is a sequence

〈α0, . . . , αm〉

such that α0 = α and for every i with 0 ≤ i < m, αi+1 is a proper development of
αi .

When we simply say ‘a realization’, we mean a realization of α for some arbitrary
formula α.

Definition 2.5 A response strategy is a function f that assigns, to every realization,
a response for the last formula of the realization.

Thus, a response strategy is a procedure that looks at the current state of the task,
together with the history of the task, and decides what response to make for it.

Definition 2.6 Let f be a response strategy. A realization of α with f is a
realization

R = 〈α0, . . . , αm〉

of α such that f (R) = 〈 〉 and for every i with 0 ≤ i < m, we have αi+1 = αi (X, Y),
where X = f 〈α0, . . . , αi 〉 and Y is an arbitrary request for αi .

Intuitively, this is how a realization of α0 with response strategy f is produced: f
(slave) reads the current input I = 〈α0, . . . , αi 〉 (initially i = 0) which is the history of
the task, and starts thinking what response (series of simple responses) to make for its
last formula; while f is thinking, master can make zero, one, or more requests for αi ,
the combination of which is still called a (one) request. Once f has come to a decision,
the response it finds is combined with master’s request(s) and applied to αi getting a
development β of αi . This updates the input I to I ′, where I ′ = 〈α0, . . . , αi , αi+1〉

with αi+1 = β, except when β = αi , in which case I ′ = I . In either case, the whole
procedure will now be applied to I ′ as a new input, and so on.

Thus, our definition allows multiple (nonsimple) requests and responses at every
step, as well as simultaneous requests and responses. The only motivation for adopting
this relaxed protocol is to get a symmetry between master and slave. An alternative
approach would be to alternate exclusive accesses to the input between master and
slave, with or without requiring requests and responses to be simple. Each of these
three variants, as well as many other reasonable modifications of the protocol, would
produce the same class of valid (universally accomplishable) tasks. This sort of
robustness is a positive sign and it indicates how natural the semantics is, reminiscent
of the situation with different definitions of Turing machines and other models of

176 GIORGI JAPARIDZE

computation that all lead to the same class of computable functions—the phenomenon
that serves as a major argument in favor of the Church-Turing thesis.

Definition 2.7 An eventual situation is a function s that assigns to every proposi-
tional atom one of the values {1, 0}. 1 corresponds to the intuitive value accomplished
and 0 corresponds to the value failed.

This function is extended to all formulas as follows:

1. s(⊥) = 0.

2. s(α → β) =

{

0 if s(α) = 1 and s(β) = 0;
1 otherwise.

3. s(α u β) = 1.

The elementarization of α, denoted by

α,

is the result of replacing inαall (surface) occurrences of all u-subformulas by >which
abbreviates ⊥ → ⊥. The following fact immediately follows from Definition 2.7.

Fact 2.8 For every eventual situation s, we have s(α) = s(α).

An eventual situation s can be thought of as a classical model where an atom p is
interpreted as a true proposition if and only if s(p) = 1.

When restricted to elementary formulas, Definition 2.7 is the same as the classical
definition of truth in model s. Therefore, for every elementary formula α, we have
s(α) = 1 if and only ifα is true in s in the classical sense. Thus we have the following.

Fact 2.9 An elementary formula α is a classical tautology if and only if s(α) = 1
for every eventual situation s.

Observe that development preserves the →-structure of the formula. That is, a devel-
opment of α → β always has the form α′ → β ′ where α′ and β ′ are developments
of α and β, respectively. It follows that if an occurrence specification is valid for a
formula, it is also valid for any development of that formula.

Assume
R = 〈α0, . . . , αm〉

is a realization of α0 and 0 is a valid occurrence specification for α0. Then the
projection of R on 0 denoted by

0(R),

is the result of deleting in
〈0(α0), . . . , 0(αm)〉

every formula that is a duplicate of its predecessor in the sequence. It is obvious that
0(R) is a realization of 0(α0).

Definition 2.10 We say that a realization

R = 〈α0, . . . , αm〉

of a formula α0 is successful with respect to an eventual situation s, if one of the
following conditions holds:

1. α0 is atomic (which implies m = 0) and s(α0) = 1;
2. α0 = β → γ and Consequent(R) is successful with respect to s whenever

Antecedent(R) is so;

ELEMENTARY TASKS 177

3. α0 is a u-formula and either m = 0 or m ≥ 1 and 〈α1, . . . , αm〉 is successful
with respect to s.

This definition formalizes the intuition on accomplishing a task that was described
in Section 1. In the context of an actual realization 〈α0, . . . , αm〉 and an actual
eventual situation s, the task α0 should be considered accomplished if the realization
is successful with respect to the eventual situation. In particular, an atomic task is
accomplished if and only if it has the value 1 in s. The task β → γ is accomplished
if and only if γ (the projection of the realization on the consequent) is accomplished
as long as β (the projection on the antecedent) is accomplished. The task α0 of the
form β u γ is accomplished if and only if either there was no command specifying
which particular subtask implied by α0 should be accomplished or there was such a
command and the specified subtask was accomplished.

Lemma 2.11 A realization of a task is successful with respect to an eventual
situation s if and only if s assigns the value 1 to the last formula of the realization.

Proof: Assume R is a realization of a task α and s is an eventual situation. Below
‘successful’ means ‘successful with respect to s’.

We use induction on the complexity of α. If α is atomic, then by Definition 2.10,
R is successful if and only if s(α) = 1. It remains to notice that R = 〈α〉 so that α is
(the first and) the last formula of R.

Assume α = β0 → γ0. Then R has the form

〈β0 → γ0, . . . , βm → γm〉.

Therefore βm is the last formula of Antecedent(R) as the latter is nothing but
〈β0, . . . , βm〉 with duplicate formulas removed. Similarly, γm is the last formula of
Consequent(R). Antecedent(R) and Consequent(R) are realizations of β0 and γ0,
respectively. The complexities of β0 and γ0 are lower than that of α. Hence, by
the induction hypothesis, Antecedent(R) is successful if and only if s(βm) = 1, and
Consequent(R) is successful if and only if s(γm) = 1. Therefore, in view of clause 2
of Definition 2.7, s(βm → γm) = 1 if and only if Antecedent(R) is not successful
or Consequent(R) is successful. But by Definition 2.10, this is the case if and only
if R is successful. Thus, R is successful if and only if s assigns 1 to its last formula
βm → γm .

Finally, assume α is β u γ . If R = 〈α〉, then by Definition 2.10, R is successful
and by Definition 2.7, s(α) = 1. If R = 〈α, α1, . . . , αm〉 (m ≥ 1), then α1 must be a
proper development of α and hence have a lower complexity than α does. Therefore,
by the induction hypothesis, the realization 〈α1, . . . , αm〉 of α1 is successful if and
only if s(αm) = 1. By Definition 2.10, R is successful if and only if 〈α1, . . . , αm〉 is
so. Thus, R is successful if and only if s(αm) = 1. �

The reader may ask why I have not chosen Lemma 2.11 as a definition of ‘suc-
cessful’ instead of Definition 2.10. There are two strong reasons: First of all, it is
Definition 2.10 rather than Lemma 2.11 that captures the task intuition described in
Section 1. Secondly, the robustness/portability of the definition would be lost. The
point is that Definition 2.10 has natural generalizations for certain more expressive
languages—languages where realizations may no longer be finite which would make
Lemma 2.11 inapplicable.

178 GIORGI JAPARIDZE

Definition 2.12 We say that a response strategy f universally accomplishes α if
and only if for every eventual situation s, every realization of α with f is successful
with respect to s. If such a response strategy f exists, we say that α is universally
accomplishable.

Definition 2.13 (Logic TSKp) The axioms are all the elementary formulas that
are classical tautologies. The rules of inference are:

RS-rule:
π
α

,

where π is a simple response for α;

RQ-rule: α,π1,...,πn
α

,

where (α is the elementarization of α and) π1, . . . , πe are all the simple requests for
α.

By a straightforward induction on the u-complexity of a formula the following can
be verified.

Fact 2.14 TSKp is decidable.

3. Main Theorem

Theorem 3.1 A task is provable in TSKp if and only if it is universally accom-
plishable.

The rest of this section is devoted to a proof of this theorem. In this proof we will be
using the expression

α(β)

to denote a formula α together with a certain surface occurrence of a subformula β.
This notation fixes that particular occurrence so that using, in the same context, the
expression α(γ) would mean the result of replacing that particular occurrence of β
by γ in α.

In the same style,
α(β1, . . . , βn)

will denote α together with certain occurrences of subformulas β1, . . . , βn. Note that
for some i 6= j , we may have βi = β j , but still βi and β j are different occurrences
that may get replaced with different γ s in α(γ1, . . . , γn). It should be seen from the
context whether, when referring to βi , we mean βi as a formula or as a particular
occurrence of that formula. The expression

TSKp `l α

will be used to say that α has a proof in TSKp whose length is at most l.

Lemma 3.2 If TSKp `l α and ρ is a simple request for α, then TSKp `l−1 ρ.

Proof: We proceed by induction on l. If l = 1, that is, α is an axiom, then α has no
simple requests and we are done. Assume now l > 1 and ρ is a simple request for α.

If α is obtained by the RQ-rule from α, π1, . . . , πn , then ρ = πi for one of the i
with 1 ≤ i ≤ n. Each of these πi has a proof of length ≤ (l − 1) and hence, so does
ρ.

ELEMENTARY TASKS 179

Suppose now α is obtained by the RS-rule from π . Since ρ is a simple request for
α and π is a simple response for α, we must have

α = α(ξ0 u ξ1, η0 u η1),

ρ = α(ξ0 u ξ1, η j),

and
π = α(ξi , η0 u η1)

for some ξ0, ξ1, η0, η1 and i, j ∈ {0, 1} where ξ0 uξ1 is negative and η0uη1 is positive
in α. Let then

θ = α[ξi , η j].

Obviously θ is a simple request for π and a simple response for ρ. That θ is a simple
request for π implies, by the induction hypothesis, that θ has a shorter proof than π
does so that, since TSKp `l−1 π , we have TSKp `l−2 θ . Consequently, since ρ can
be derived from θ by the RS-rule, we have TSKp `l−1 ρ. �

To show the soundness of TSKp, assume TSKp `l α. Below we define a response
strategy f and show, by induction on l, that it universally accomplishes α.

Case 1 α is an axiom, that is, l = 1, that is, α is a classical tautology. Let then f
be an arbitrary strategy, say, the one that always returns 〈 〉.

As α is elementary, it has no proper developments and 〈α〉 is the only possible
realization of α with f . Therefore, in view of Lemma 2.11, 〈α〉 is successful with
respect to an eventual situation s if and only if s(α) = 1. But since α is a tautology,
by Fact 2.9, for every eventual situation s, we have s(α) = 1. Thus, f universally
accomplishes α.

Case 2 α = α(ξ0 u ξ1) follows from π = α(ξi) by the RS-rule. The proof of π is
shorter than l and, by Lemma 3.2, every request for π also has a proof shorter than l.
Let

β1, . . . , βk

be all the distinct requests for π . By the induction hypothesis, there are response
strategies

f1, . . . , fk

that universally accomplish β1, . . . , βk , respectively.
Let then f be a function that acts as follows:

1. f 〈α〉 = 〈ξ0 u ξ1 / ξi 〉;
2. For any realization 〈α, α1, . . . , αm〉 with m ≥ 1 where α1 is one of the
β j (1 ≤ j ≤ k), f returns the same value as f j does for the realization
〈α1, . . . , αm〉.

We claim that f universally accomplishes α. Indeed, observe that α(f 〈α〉) = π .
Therefore, every realization of α with f has the form

〈α, π ′, θ1, . . . , θm〉

(m ≥ 0) where π ′ is a request for (both α and) π . Remember that β1, . . . , βk are all
the distinct requests for π , so we must have π ′ = β j for one of the j , 1 ≤ j ≤ k.
Thus, the realization of α has the form

〈α, β j , θ1, . . . , θm〉.

180 GIORGI JAPARIDZE

From the way f is defined, it is easy then to see that 〈β j , θ1, . . . , θm〉 is a realization
of β j with the response strategy f j . It was our assumption that the latter universally
accomplishes β j . Therefore, by Lemma 2.11, the last formula of 〈β j , θ1, . . . , θm〉

has the value 1 for every eventual situation s. But the last formula of 〈β j , θ1, . . . , θm〉

is the same as the last formula of 〈α, π ′, θ1, . . . , θm〉 which implies that the latter is
successful with respect to every eventual situation s. Thus, every realization ofα with
f is successful with respect to every eventual situation, so f universally accomplishes
α.

Case 3 α follows from α, π1, . . . , πn by the RQ-rule. Let

β1, . . . , βk

be all the distinct proper requests for α (so that π1, . . . , πn are among them). It
follows from Lemma 3.2 that each of these formulas has a proof shorter than l and
hence, by the induction hypothesis, there are response strategies

f1, . . . , fk

that universally accomplish β1, . . . , βk , respectively.
Let then f be a function that acts as follows:

1. f 〈α〉 = 〈 〉;
2. For any realization 〈α, α1, . . . , αm〉 with m ≥ 1 where α1 is one of the
β j (1 ≤ j ≤ k), f returns the same value as f j does for the realization
〈α1, . . . , αm〉.

We claim that f universally accomplishesα. Indeed, consider an arbitrary realization
〈α, θ1, . . . , θm〉 of α with the response strategy f and an arbitrary eventual situation
s. We need to show that 〈α, θ1, . . . , θm〉 is successful with respect to s.

There are two subcases to consider.

Subcase 3.1 Assume m = 0. Then α is the last formula of the realization and by
Lemma 2.11 the realization is successful with respect to s if and only if s(α) = 1.
So it suffices to show that s(α) = 1. But indeed, since α is an elementary formula
provable in TSKp, it must be a tautology (otherwise there would be no way to derive
it in TSKp). Hence, by Fact 2.9, s(α) = 1 whence, by Fact 2.8, s(α) = 1.

Subcase 3.2 Assume now m ≥ 1. Since f 〈α〉 = 〈 〉, θ1 must be a proper request
for α. As β1, . . . , βk are all the distinct proper requests for α, we must have θ1 = β j

for one of the j , 1 ≤ j ≤ k. Then it can be easily seen from the way f is defined that
〈θ1, . . . , θm〉 is a realization of θ1 with the response strategy f j . It was our assumption
that the latter universally accomplishes β j and hence θ1. Therefore, by Lemma 2.11,
s(θm) = 1. And since θm is also the last formula of 〈α, θ1, . . . , θm〉, this realization
is also successful with respect to s.

This completes the soundness part of our theorem. Our remaining task now is to
prove the completeness part.

Lemma 3.3 Assume f is a response strategy, f 〈α〉 = X, Y is a request for α and
α(X, Y) is not universally accomplishable. Then f does not universally accomplish
α.

ELEMENTARY TASKS 181

Proof: Assume the conditions of the lemma. It is sufficient to consider the only non-
trivial case whenα(X, Y) 6= α. Assume for a contradiction that f universally accom-
plishes α. Let f ′ be the response strategy such that for any realization 〈α0, . . . , αk 〉,
where α0 is a proper development of α,

f ′〈α0, . . . , αk 〉 = f 〈α, α0, . . . , αk 〉.

Sinceα(X, Y) is not universally accomplishable, there is a situation s and a realization

R = 〈α(X, Y), α1, . . . , αk 〉

of α(X, Y) with strategy f ′ such that R is unsuccessful with respect to s. But notice
that then

〈α, α(X, Y), α1, . . . , αk 〉

is a realization of α with strategy f . By Lemma 2.11, the latter is also unsuccess-
ful with respect to s because it has the same last formula as R does which is in
contradiction with our assumption that f universally accomplishes α. �

To prove the completeness of TSKp, assume TSKp 6` α. We are going to show that
α is not universally accomplishable by induction on the u-complexity of α.

Basis: Assume α is elementary. TSKp 6` α implies that α is not a tautology. In view
of Fact 2.9, this means that here is an eventual situation s such that s(α) = 0. As α
is elementary, the only realization of it is 〈α〉 and by Lemma 2.11 this realization is
not successful with respect to s. Thus, α is not universally accomplishable.

Inductive step: Assume α is not elementary. Let f be an arbitrary response strategy.
We need to show that f does not universally accomplishα, that is, there is a realization
of α with f that is not successful with respect to some eventual situation.

There are two cases to consider.

Case 1 α is not a tautology. Then, by Facts 2.9 and 2.8, there is an eventual
situation s such that

s(α) = 0. (1)

If f 〈α〉 = 〈 〉, then 〈α〉 is a realization of α. It follows from (1) by Lemma 2.11 that
this realization is not successful with respect to s.

Assume now f 〈α〉 = X for some nonempty response X forα. Then TSKp 6` α(X)
because otherwise, by the RS-rule, we would have TSKp ` α. Also, the u-
complexity of α(X) is lower than that of α. Therefore, by the induction hypothesis,
α(X) is not universally accomplishable. Then by Lemma 3.3 (with Y = 〈 〉), f does
not universally accomplish α.

Case 2 α is a tautology. Since α is not provable in TSKp, there is a simple request
for α that is not provable (otherwise α would be derivable by the RQ-rule). Thus we
have α = α(ξ0 u ξ1), where ξ0 u ξ1 is a positive occurrence, and α(ξi) is not provable
for i = 0 or i = 1.

Clearly a response for α(ξi) cannot be provable, for otherwise, by the RS-rule,
α(ξi) would be provable, too. Therefore, by the induction hypothesis we have

No response for α(ξi) is universally accomplishable. (2)

182 GIORGI JAPARIDZE

Denote by Y the request 〈ξ0 u ξ1 / ξi 〉 so that α(Y) = α(ξi). Consider an arbitrary
response strategy f . Let f 〈α〉 = X . In view of Fact 2.3, X would also be a response
for α(Y). Therefore, by (2), α(X, Y) is not universally accomplishable. Then, by
Lemma 3.3, f does not universally accomplish α.

Theorem 3.1 is proven.

4. Announcing Further Results

We call TSKp the logic of elementary tasks because its atoms are meant to represent
only elementary tasks: TSKp is closed under substitution of propositional letters
with elementary tasks but not nonelementary tasks. For example, where p and q are
propositional letters, TSKp ` p → p ∧ p but TSKp 6` (p uq) → (p uq)∧ (p uq).
Therefore, the logic whose propositional letters are meant to represent any (elementary
or nonelementary) tasks, and which is thus closed under unrestricted substitution for
atoms, would be different from TSKp. Let us call that logic the propositional logic
of valid task schemata.

Claim 4.1 The propositional logic of valid task schemata is decidable and it is
exactly the propositional fragment of logic ET.

ET is a decidable first-order logic introduced by the author in [3] with a differ-
ent semantics in mind. This logic is a proper extension of Affine logic (additive-
multiplicative linear logic + weakening) and its language, in addition to the con-
nectives (equivalent to those) of the language of TSKp, has the quantifier-type
operator u. In the context of our task semantics, uxα(x) can be interpreted as
α(a0) u α(a1) u α(a2) u · · · , where a0, a1, a2, . . . are all the objects of the universe
of discourse. I have not formally introduced u as the present paper is focused on
propositional logic only, but extending definitions to u does not present a problem.
Then the propositional logic of valid task schemata naturally extends to the predicate
logic of valid task schemata; as it turns out, so does Claim 4.1.

Claim 4.2 The predicate logic of valid task schemata is decidable and it is exactly
ET.

The author intends to publish the proofs of Claims 4.1 and 4.2 in a separate paper.
The (a little lengthy) definition of ET is not included here either and an interested
reader can look it up in [3].

I would like to finish the paper with three examples of formulas that separate ET
from Affine logic:

(p ∧ q)∨ (r ∧ s) → (p ∨ r) ∧ (q ∨ s);
(

p ∧ (r u s)
)

u
(

q ∧ (r u s)
)

u
(

(p u q)∧ r
)

u
(

(p u q)∧ s
)

→ (p u q)∧ (r u s);

ux
(

(

P(x) ∧ ux Q(x)
)

u
(

Q(x) ∧ ux P(x)
)

)

→ ux P(x) ∧ ux Q(x).

ELEMENTARY TASKS 183

References

[1] Blass, A., “A game semantics for linear logic,” Annals of Pure and Applied Logic, vol. 56
(1992), pp. 183–220. Zbl 0763.03008. MR 93e:03041. 173

[2] Girard, J.-Y., “Linear logic,” Theoretical Computer Science, vol. 50 (1987), pp. 1–102.
Zbl 0625.03037. MR 89m:03057. 173

[3] Japaridze, G., “A constructive game semantics for the language of linear logic,” Annals
of Pure and Applied Logic, vol. 85 (1997), pp. 87–156. Zbl 0882.03057. MR 98j:03086.
173, 182

Acknowledgments

This paper was supported by a Summer Research Grant from Villanova University.

Department of Computing Sciences
Villanova University
800 Lancaster Avenue
Villanova PA 19085
japaridz@csc.villanova.edu
http://www.csc.vill.edu/~japaridz

http://www.emis.de/cgi-bin/MATH-item?0763.03008
http://www.ams.org/mathscinet-getitem?mr=93e:03041
http://www.emis.de/cgi-bin/MATH-item?0625.03037
http://www.ams.org/mathscinet-getitem?mr=89m:03057
http://www.emis.de/cgi-bin/MATH-item?0882.03057
http://www.ams.org/mathscinet-getitem?mr=98j:03086
mailto:japaridz@csc.villanova.edu
http://www.csc.vill.edu/~japaridz

	1. Introduction
	2. Main Definitions
	3. Main Theorem
	4. Announcing Further Results
	References
	Acknowledgments

