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Book Review

Paolo Mancuso. Philosophy of Mathematics and Mathematical Practice in the Sev-
enteenth Century. Oxford University Press, Oxford, 1996. viii + 275 pages.

Studies of the Scientific Revolution have been heavily weighted in favor of astron-
omy and physics, a fact often noted by historians of chemistry, biology, and medicine.
Although mathematics was intimately connected with the former subjects, it too has
been relatively neglected, at least in general surveys of the period. The seventeenth
century was an exciting time in mathematics, as whole new subjects emerged and
a fundamental shift in foundations occurred. Paolo Mancosu’s book is an attempt to
bridge the gap between the history of mathematics—where detailed specialist studies
of these developments have been produced—and the history of philosophy, which de-
spite the manifest importance of mathematics in early modern philosophy has tended
to deal with this subject only in a rather general way.

There are really two parts to this book. In Chapters 1 and 4, Mancosu investi-
gates a series of discussions initiated by Renaissance essentialist philosophers who
were critical of the status of mathematics in traditional scholastic philosophy. The
debate was framed in terms of Aristotle’s conception of science as set forth in the
Posterior Analytics. Writers in the sixteenth century such as Alessandro Piccolomini
and Benedictus Pereyra argued that mathematics lacks the characteristics of a true
science, that mathematical demonstrations are not causal in the sense required of a
scientific syllogism. These thinkers were motivated by an opposition to the increas-
ing mathematization of natural philosophy taking place at the time, although the ar-
guments in question also appealed to later anti-Aristotelian skeptics such as Pierre
Gassendi. One of the propositions they objected to was Euclid’s Elements (I, 32) as-
serting that the sum of the angles of a triangle is two right angles. Their criticism was
based not as one might suspect on concerns about the fifth postulate, but rather on
what today seem plainly sterile considerations about the structure of the syllogism.
Much of the fascination of this material derives from the fact that such matters could
ever have been the subject of deep concern. Indeed, subsequent philosophers and
mathematicians such as Guiseppe Biancani and Issac Barrow soundly rejected their
arguments, although the debate did give rise to lasting criticism of two sorts of proof
that appear in the Elements, proof by contradiction and proof by superposition.1 The
first type of proof was used not infrequently by Euclid, for example in (I, 6) to show
that a triangle in which the two base angles are equal is isosceles, in (IX, 20) to show
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that there are infinitely many prime numbers, and in (XII, 2) in the method of exhaus-
tion applied to the area of a circle. Superposition refers to the idea that figures may be
moved around in space without distortion and was used by Euclid in (I, 4) to establish
the basic side-angle-side congruency theorem for triangles.

One of Mancosu’s main conclusions is that Aristotle’s conception of scientific
knowledge was invoked by both the detractors and supporters of mathematics, a situ-
ation in marked contrast to the new physics where a strong anti-Aristotelian bias pre-
vailed. He also acknowledges that internal factors played a major role in the develop-
ing mathematics of the period, stating there was “a purely mathematical program . . .
to overcome the intrinsic limitations of the Greek approach to geometry” (p. 93). In
Chapter 4 he traces these issues, as well as the subject of genetic definition (i.e., def-
inition involving generation through motion) in the work of Barrow and Antoine Ar-
nauld in the 1660s. He continues on to Immanuel Kant one century later and pro-
ceeds to Bernhard Bolzano in the 1830s where he provides a comparative examina-
tion of the two authors’ views on proof-by-contradiction in philosophy and mathe-
matics. The appendix contains an English translation by Gyula Klima of Biancini’s
1615 tract “A treatise on the nature of mathematics,” one of the essays that attempted
to respond to the Renaissance critics of mathematics.2

The remainder and majority of Mancosu’s book is a collection of studies of ma-
jor episodes in seventeenth-century mathematics. In Chapter 3 he examines Bonaven-
tura Cavalieri’s method of indivisibles and Paul Guldin’s barycentric calculus, both
works of the 1630s that dealt with problems that would later be handled by the inte-
gral calculus. Cavalieri’s theory and Guldin’s criticisms of it illustrate some of the
technical and conceptual problems associated with the early development of the cal-
culus. Guldin’s work is interesting as an attempt to demonstrate some standard re-
sults on quadrature without using reductio ad absurdum, the basic logical form of the
classical method of exhaustion. Chapter 3 is devoted to a study of René Descartes’s
analytic geometry, a subject that has received a great deal of historical attention, but is
surveyed here with several fresh insights. Among other things Mancosu shows that
Descartes’s conception of geometrical construction was strongly influenced by the
Jesuit mathematician Christoph Clavius. In Chapter 5, titled “Paradoxes of the infi-
nite,” Mancosu returns to the method of indivisibles as he examines the work in 1643
of Evangelista Torricelli on solids of revolution. Torricelli discovered the remarkable
result that the solid of revolution obtained by rotating the hyperbola y = 1/x about the
x-axis has a finite volume and infinite surface area. This result “stretched the intuitive
universe of geometric figures,” and raised significant questions about the ontological
status of mathematical objects. In the final chapter Mancosu examines Gottfried Wil-
helm Leibniz’s invention of the calculus and some of the contemporary controversies
it gave rise to. It is worth noting that the latter considerably predated George Berke-
ley’s famous assault of 1734.3

On the whole Mancosu has produced a satisfying and interesting book, one that
explicates philosophical issues while remaining in contact with technical mathemat-
ical developments. Beyond the ostensible themes developed in the book there are
numerous strands in the narrative that taken together point to profound differences
between Greek and seventeenth-century mathematics. Points of contrast are found
in the early modern understanding of mathematical method, in an expanded concept
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of generality, and in the role assigned to algebra and the analytic art in mathematical
investigation.

Perhaps the single greatest innovation of seventeenth-century researchers was
the realization that mathematical understanding and demonstration must reflect the
way in which results are discovered or constructed. This insight was expressed very
clearly in the development of algebraic procedures for solving polynomial equations,
procedures that indicated how the result was obtained and why it was true. These
techniques replaced the purely synthetic propositions of Book II of the Elements (e.g.,
II, 11), where the answer was simply announced at the outset and then verified in a
series of deductive steps. Early modern researchers correctly realized that the veri-
ficationist approach to mathematical exposition followed by Euclid had fundamental
drawbacks.

The new insight into mathematical method was evident in remarks Descartes
made critical of proof-by-contradiction, although the point in question transcends the
particular issues raised in this instance. The background here was an earlier discus-
sion involving most prominently Jacopo Zabarella concerning the methods of anal-
ysis (resolution) and synthesis (composition) in rational investigation. Mancosu ob-
serves, “Descartes claims that analytic methods, by showing how a result is obtained,
also show why the result holds, and therefore analysis deserves to be considered as
the paradigmatic form of a priori proof” (p. 84). An explicit statement of Descartes’s
position is contained in his reply to the objections made by Arnauld to the second
mediation where he writes:

Analysis reveals the true way in which something is methodically discovered
and shows how effects depend on causes . . . . Synthesis by contrast demon-
strates, in a quite different way by examining causes in terms of their effects
(although the proof that it produces is often from causes to effects), the truth
that is contained in its conclusions, and provides a long sequence of definitions,
suppositions, axioms, theorems and problems, so that if one denies some of the
consequences to which it leads, one is shown how they are contained in the an-
tecedents, and the consent of the reader is compelled, however obstinate and
opinionated he may be; but it does not give, as does the former, complete sat-
isfaction to the minds of those who desire to learn, since it doesn’t teach the
method by which the thing was discovered.4

An appreciation of Descartes’s insight has been somewhat obscured today by the
influence of the deductive axiomatic method in modern mathematical philosophy.
However, during the seventeenth century astute thinkers recognized the full signif-
icance of the point in question. Descartes’s conception of analysis as consisting of
demonstrations a priori was developed into an explicit epistemological theory by Ar-
nauld in his celebrated La Logique ou l’Art De Penser (1762) written with Pierre
Nicole. (Their work is better known as the Port-Royal Logic.) Although he admired
the clarity and simple principles used by geometers, Arnauld was critical of geome-
try’s reliance on synthesis for what he regarded as its failure to spread enlightenment.
He wrote concerning geometry:

FIRST DEFECT. Paying more attention to certainty than to evidence, and to
the conviction of the mind than to its enlightenment.
The geometers are worthy of all praise in seeking to advance only what is con-
vincing: but it would appear that they have not sufficiently observed, that it does
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not suffice for the establishment of a perfect knowledge of any truth to be con-
vinced that it is true, unless beyond this, we penetrate into the reasons, derived
from the nature of the thing itself, why it is true. For until we arrive at this point,
our mind is not fully satisfied, and still seeks greater knowledge than this, which
marks that it has not yet true knowledge.5

Mancosu emphasizes the importance of Aristotle’s conception of science for both Ar-
nauld’s theory of demonstration and the work of subsequent philosophers in this area
up to the nineteenth century.6

On the plane of mathematical practice the new understanding was reflected in
the emphasis placed on problems rather than theorems in Descartes’s Géométrie. The
guiding thematic in this work was provided by Pappus’s locus problem and its gener-
alizations, and the traditional definition-postulate-proposition style of deductive trea-
tises in the exact sciences was conspicuously absent. The subsequent development of
the calculus was based on the realization that powerful heuristic procedures lay at the
foundation of this emergent subject. This point is clear when one considers the tan-
gent methods developed during the period. Isaac Barrow was a tradionalist, “between
ancients and moderns,” who in his Lectiones Geometricae (1670) derived several el-
egant and beautiful theorems concerning the tangents to various curves.7 In each case
the result was stated and then proved using the skillful employment of properties of
the curves in question in a virtuoso display of deductive inventiveness. By contrast
the Fermat tangent method involving infinitesimals provided a procedure based on
direct understanding of the problem that could be applied by anyone to any prob-
lem without any special knowledge or geometrical sophistication.8 The great power
of this method was indicated by its successful and immediate application to a broad
range of curves, both geometrical (represented in terms of polynomials) and mechan-
ical (represented in terms of transcendental expressions).

Another feature of modern mathematics that emerged in the seventeenth cen-
tury is the importance attached to generality. Mancosu’s account of Cavalieri’s Ge-
ometria Indivisibilibus Continuorum (1635) illustrates this development very well.
Cavalieri’s method of indivisibles provided a striking approach to various problems
of quadrature and cubature and paved the way for the development of the integral cal-
culus later in the century. An interesting example of his general approach is provided
by his solution of the very first problem. The problem is a geometrical version of
what is today called the mean-value theorem in the calculus. Given any curve ABC
and straight line BC (where B and C are arbitrary points on the curve) one has to find
the vertex of the curve with respect to BC, that is, the point A at which the tangent
is parallel to BC. Cavalieri imagines that a line parallel to BC moves upward until
it reaches a position KV outside of curve. At some point this moving line will touch
the curve, defining the vertex A. Mancosu observes:

What is striking about this result is the extreme generality of the statement. It is
not a question of finding a tangent to a specific curve, say a cissoid or a parabola,
as would have been the case with a Greek geometrical work. Rather, we are
aiming at a general solution of the problem. But the increase in generality cre-
ates a loss in constructivity. In other words, the theorem functions more as an
existence theorem than as a constructive rule for drawing a tangent to an ar-
bitrary curve . . . . Guldin’s objections [to Cavalieri’s result] highlight an im-
portant aspect of the characteristic trend of seventeenth-century geometry—the
passage from special constructions to general theorems. (p. 53)



BOOK REVIEW 451

Figure 1: from Mancosu, p. 52

Cavalieri’s propositions about “all the lines” or “all the squares” of a figure could be
interpreted in different ways in different problems, for example, as giving the area
under a curve or the volume of a solid of revolution. Although the method of indi-
visibles was a general and innovative heuristic tool it possessed several drawbacks
that limited its potential for further mathematical development. The first was the con-
cept of indivisible itself. As his older contemporary Guldin showed, it is possible to
match in a one-to-one fashion the indivisibles of figures of different areas. In Figure
2 consider the triangles HAD and HGD . A given parallel IL to the base ADG de-
fines the matched vertical lines IC and LE in the two triangles. There is then a corre-
spondence to the indivisibles IC of triangle HAD and the indivisibles LE of triangle
HGD . Hence “all the indivisibles of HAD” is equal to “all the indivisibles of HGD”
although the two triangles evidently possess different areas. Cavalieri responded to
this difficulty in various ad hoc ways, failing to realize that the problem lies with the
very notion of an indivisible; instead one needs the concept of an infinitesimal, pos-
sessing in a well-defined sense a definite width, which can be connected analytically
to the coordinates describing the figure.9

Figure 2: from Mancosu, p. 123

A larger issue concerned Cavalieri’s exclusively geometrical outlook. Mancosu ob-
serves that “A very important problem . . . is the relationship between geometry and
algebra, and the advantages and disadvantages of the algebraic and geometric ap-
proach in mathematical practice” (p. 227). It turned out that an effective method for
determining quadratures must be formulated algebraically, with algorithms and uni-
form procedures for generating results. This insight provided the key to the work of
Isaac Newton and Leibniz, both young researchers at the time they developed their
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respective versions of the calculus. Even in their work the new analysis remained
firmly rooted in geometrical conceptions; the calculus was viewed not so much as an
independent subject as an important tool in the investigation of “fine” geometry.

An indication of the conceptual character of the early calculus is provided by
Leibniz’s approach in his very first paper on the subject in 1684. He began with the
analytical equation of a curve and showed how his differential algorithm could be
applied to obtain the tangent to the curve at any point. Given any problem which de-
pends on the analysis of some relationship between two quantities, Leibniz modeled
this relation by a curve in Cartesian coordinates, so that his differential method could
be introduced into the solution . He had evidently achieved a quite different kind of
generality than Cavalieri, one that moved beyond the realm of geometric curves to in-
clude in principle any kind of relational dependence, although the resulting solution
was still elaborated in a geometrical context.10

The mathematical events of the seventeenth century, so richly documented in
Mancosu’s book, were truly remarkable and there is consequently a danger of los-
ing perspective on the overall epistemological setting within which mathematics de-
veloped during this period. Modern mathematics unfolded in several stages and the
period 1500–1700 for all its revolutionary character was only one stage in this his-
tory. It would be wrong, as some authors have done, to read into any single achieve-
ment of the period a kind of overarching modernity, be it François Viète’s analytic
art, Descartes’s putative notion of construction, or Leibniz’s writings on formal logic.
Mathematics and physics were viewed as related subjects that were part of the same
intellectual domain; the calculus investigated the fine structure of curves and the func-
tion concept was barely adumbrated; the arithmetization of analysis lay in the dis-
tant future; subjects such as the theory of numbers and probability theory were in
a very preliminary state; and the critical and logical underpinnings of mathematics
remained largely unexplored. Most fundamentally, the early modern mathematical
outlook lacked the sense of logical freedom that is basic in today’s mathematics. A
biographer of the Enlightenment, mathematician Jean d’Alembert, has noted his in-
sistence on “the elementary truth that the scientist must always accept the essential
‘giveness’ of the situation in which he finds himself.”11 Each mathematical prob-
lem or theorem was understood as something that was given implicitly from without;
there was no conception at the level of actual mathematical practice of a purely in-
ternal, self-generated theory. Although there were occasional anticipations the next
great epistemological leap in the history of mathematics would occur in the nineteenth
century. The deep intellectual transformation that took place after 1800 is succinctly
expressed in Dedekind’s famous comment of 1888 that “Numbers are free creations
of the human mind,” a statement which presupposes a spirit of logical freedom that
would have been foreign to seventeenth- or eighteenth-century masters of the subject.
The development of modern mathematics in this sense is rightly associated with ma-
jor philosophical thinkers such as Bernhard Bolzano, Gottlob Frege, and Dedekind
himself, but it may also be found in the mathematical practice of a range of working
mathematicians. In his study of philosophy and mathematical practice in the seven-
teenth century, Mancosu has made a substantial contribution to our understanding of
the Scientific Revolution and provided a model for how to investigate the interaction
of these subjects in later periods.
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NOTES

1. Biancini (1566–1624) is an obscure figure not listed in any of the standard reference
sources in history and philosophy of science. He was a Jesuit who taught mathemat-
ics in Parma and was critical of Galileo’s telescopic discoveries in astronomy. See also
the next note.

2. In the biography Drake [1] writes (p. 441): “In 1615 he [Biancini] published a book on
the mathematical passages in Aristotle that is still of value.”

3. To explain why the method of fluxions produced the tangent to the curve Berkeley in-
troduced the doctrine of compensation of errors. This explanation was quite noncausal
in the Aristotelian sense and missed the point entirely. The reason the calculus produces
the tangent is because the preliminary expression it yields for the slope approximates in
some definite sense the actual value slope of the curve. Berkeley’s critique seems to have
limited intrinsic merit. Perhaps its greatest value was to have stimulated other mathe-
maticians; for example, Jean d’Alembert in his article “Différentiel” in the Encyclopédie
(1754) provided a lucid discussion of the point in terms of the notion of limit. The idea
of compensation of errors was resurrected by Lazare Carnot in an unmemorable prize-
competition essay of 1786 on the foundations of the calculus. See Youschkevitch [10].

4. Translated by the reviewer from the French passage on p. 226 of Mancosu’s book. Man-
cosu notes that the “Latin uses a priori and a posteriori instead of ‘from causes to effects’
and ‘from effects to causes’.”

5. Mancuso, pp. 100–101.

6. Both Descartes and Arnauld disliked proof-by-contradiction, because they believed the
deductive form of a proposition should reflect how the thing is discovered or derived.
Consider Euclid (X11, 2) where reductio ad absurdum is used in the method of exhaution
to establish the area result for circles, that is, the areas of two circles are as the squares on
their diameters. (Euclid’s proof is given in many books on the history of mathematics,
for example, Katz ([7], p. 92). Why does this result hold? Because it is true for similar
regular polygons, and becuase such polygons fill out the circle, that is, the circle is the
limit of inscribed polygons as the number of sides increases to infinity. By recasting the
proof in direct form we are led to the central concept of limit: the area of the circle is the
limit of the area of the inscribed polygons. If this idea is expressed in terms of Leibniz’s
calculus we are led directly to the integral formula in polar coordinates for the area under
a circle.

7. See Mahoney [8]. A good account of Barrow’s results on tangents is contained in
Fancy [2].

8. See Jensen [6].

9. Cavalieri regarded “all the lines” of a given figure as a magnitude, and such magnitudes
were assumed to satisfy the rules of Eudoxan proportion theory. There is the implied
suggestion in some of the histroical literature that Cavalieri was dealing with a kind of
weighting that may be interpreted in a modern abstract measure-theoretic sense as a mea-
sure defined on plane figures. Guldin’s counterexample indicates clearly that such an
interpretation is in error.

10. For further discussion of these points see Fraser [4].

11. Grimsley [5]. For studies of the older eighteenth-century understanding of mathematics
see Fraser [4], Panza [9], and Ferraro [3].
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