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Chapter 6

Geometry of orbifolds: geometric
structures on orbifolds

In this section, we introduce the geometric structures on orbifolds. The definition

is given by the method of atlases of charts, making use of (G,X)-pseudo group

structures in Section 2.3. We show that geometric orbifolds are always good by

using the foliation theory, an important result due to Thurston (See Chapter 5

of the book [Thurston (1977)].) Then we discuss developing maps, global charts,

and associated holonomy homomorphisms. These can also be used as definitions

of geometric structures. We also introduce the approach using flat bundles and

transverse sections to define the geometric structures. (See Section 2.4.) These

observations were first due to Goldman (1987) for manifolds. The article [Goldman

(2010)] contains a general introduction to geometric structures on manifolds.

Next, we introduce the deformation spaces of geometric structures on orbifolds

using the above three approaches as were done by Goldman for manifolds. We

finally mention the local homeomorphism theorem from the deformation space to

the representation space.

6.1 The definition of geometric structures on orbifolds

Let (G,X) be a pair defining a geometry. That is, G is a Lie group acting on a

manifold effectively and transitively. Let M be a connected n-orbifold with bound-

ary, possibly empty. We have three ways to define a (G,X)-geometric structure on

M :

• Atlases of charts.

• A developing map from the universal covering space.

• A cross-section of the flat orbifold X-bundle.

6.1.1 An atlas of charts approach

Given an imbedding f : U → V between two domains U and V in Rn with groups G1

and G2 acting on them respectively, we denote by f∗ : G1 → G2 the homomorphism

determined by sending ϑ ∈ G1 to the element of G2 agreeing with f ◦ ϑ ◦ f−1 in an
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open subset provided this is always uniquely determined.

An X-chart of a model open set form the triple (U,K, φ) of M is simply a h-

equivariant homeomorphism from U to an open subset of X where h is an injective

homomorphism K → G. Given an atlas of charts for M , for each chart (U,K, φ)

in the atlas, we suppose that we find an X-chart ρ : U → X and an injective

homomorphism h : K → G so that ρ is an equivariant map. Let (U,K, φ) and

(V,H, ψ) be two charts with the inclusion map ι : ψ(V )→ φ(U). For an embedding

ι̃ : (V,H, ψ)→ (U,K, φ) of charts lifting ι, if we have

ρ ◦ ι̃ = g ◦ ρ′, h′(·) = gh(ι̃∗(·))g−1 for some g ∈ G,
then ι or ι̃ are said to be a (G,X)-map. Two X-charts (V,H, ψ) and (U,K, φ) in an

atlas of X-charts are (G,X)-compatible if given any point x ∈ ψ(V ) ∩ φ(U) in M ,

we have an X-chart (W,K, η) so that η(W ) is a neighborhood of x in ψ(V ) ∩ φ(U)

and the embedding of η(W ) in each of φ(U) and ψ(V ) is a (G,X)-map.

If we simply identify with open subsets of X, the above simplifies greatly and ι̃

is a restriction of an element of g and ι̃∗ is a conjugation by g also.

This gives us a way to build an orbifold from open subset pieces of X. A maximal

such atlas of compatible X-charts is called a (G,X)-structure on M .

(Note that this gives no condition on ∂O. Sometimes, it will be necessary to

put restrictions to work with deformation spaces. A priori, one does not know what

the boundary condition should be.)

An (G,X)-map f : M → N is a smooth map so that for each x and y = f(x),

there are charts (U,K, φ) and (V,H, ψ) so that f sends φ(U) into ψ(V ) and lifts to

an immersion f̃ : U → V so that

ρ′ ◦ f̃ = g ◦ ρ and h′(f̃∗(·)) = gh(·)g−1 for g ∈ G.
In other words, f is a restriction of an element g of G up to charts with a homo-

morphism K → H induced by a conjugation by an element g of G.

Let M be an orbifold. Note that an orbifold-immersion f : M → N to an

orbifold N with a (G,X)-structure µ induces a (G,X)-structure on M so that f

becomes a (G,X)-map. M is said to have a (G,X)-structure induced by f to be

denoted by f∗(µ). (See Section 2.3.1 also.)

Theorem 6.1.1 (Thurston). Let M be an n-orbifold with boundary, possibly

empty. An (G,X)-orbifold M is always good.

Proof. Basically we build the space of germs of local (G,X)-maps from M to X

which is a principal bundle and is a manifold: M is covered by open sets that can be

identified with open sets in X. For a local finite subgroup K of G acting on U ⊂M
identified with an open subset of X, let K act on G × U by k(g, u) = (kg, ku) for

u ∈ U, g ∈ G, k ∈ K. For each (U,K, φ), we build G(U) = (G × U)/K and a

projection G(U) → U/K. For any inclusion V → U for open sets U, V ⊂ M , we

obtain G(V )→ G(U) induced by inclusion maps. We paste these together to obtain

G(M). Then G(M) is a manifold since K acts on G×U freely. The foliation given
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by pasting g0×U in G(U) is a foliation by open manifolds with the same dimension

as M . Each leaf of the foliation covers M forming a manifold cover of M .

�

If G is a subgroup of a linear group, then M is very good by Selberg’s lemma

providedM has finitely generated fundamental group. ThusM is a quotient orbifold

M̃/Γ where Γ is finite and contains copies of all of the local group.

6.1.2 The developing maps and holonomy homomorphisms

Let a connected orbifold M admit a (G,X)-structure. Let M̃ denote the universal

cover of M with a deck transformation group π1(M). Then M̃ is a manifold and we

obtain a developing map D : M̃ → X by first finding an initial chart ρ : U → X and

continuing by extending maps by patching. We use a nice cover of M̃ and extend.

The map is well-defined independently of which path of charts one took to arrive at

a given chart: To show this, we consider a homotopy of paths and consider mutually

intersecting three X-charts simultaneously and the map can be consistently defined

on their union.

Since we can change the initial chart to k ◦ ρ for any k ∈ G, it follows that k ◦D
is an another developing map and conversely any developing map is of such a form.

Given a deck transformation γ : M̃ → M̃ , we see that D ◦γ is a developing map

also and hence equals h(γ) ◦D for some h(γ) ∈ G. Let π1(M) denote the group of

deck transformations of M̃ . The map h : π1(M)→ G is a homomorphism, so-called

the holonomy homomorphism.

The pair (D,h) is said to be the developing pair. The development pair is

determined up to an action of G given by (D,h(·))→ (g ◦D, gh(·)g−1).

Conversely, a developing map (D,h) gives us X-charts: For each open chart

(U,K,ψ), we lift to a component of p−1(U) in M̃ and obtain a restriction of D

to the component. This gives us X-charts. A different choice of components gives

us the compatible charts. Local group actions and embeddings satisfy the desired

properties. Thus, a development pair completely determines the (G,X)-structure

on M .

6.1.3 The definition as flat bundles with transversal sections

Given a (G,X)-orbifold M with X-charts, we form a G-bundle G(M) as in the proof

of Theorem 6.1.1. This is a principal G-bundle. We form an associated X-bundle

X(M) using the G-action on X: X(M) = G(M)×X/G where G acts on the right

on G(M) and left on X and G acts on G(M)×X on the right by

g : (u, x)→ (ug, g−1(x)), g ∈ G, u ∈ G(M), x ∈ X.

A flat G-bundle is an object obtained by patching open sets G × U by the left

action of G as in the proof of Theorem 6.1.1, and so is a flat X-bundle defined as
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above.

6.1.3.1 Flat X-bundles

One can also define a notion of foliation on n-dimensional orbifolds. Given an n-

orbifold M and each model triple (U,K, φ), we give a smooth submersion U → Ri
for some 1 ≤ i ≤ n − 1 equivariant with respect to a homomorphism K → L for a

finite group acting on Ri smoothly. The fibers of the maps is said to be leaves. For

any embedding (V, J, ψ)→ (U,K, φ), the leaves of the charts are compatible. A leaf

of a foliation is also defined as in the manifold cases as maximal n− i-dimensional

subset that is a union of images of leaves of model triples.

A foliation in the manifold G(M) with leaves transversal to fibers induces a

foliation in G(M) × X with leaves transversal to fibers and hence a foliation in

the orbifold X(M) with leaves transversal to fibers. This corresponds to a flat

G-connection. A flat G-connection on X(M) is a way to identify each fiber of

X(M) with X locally-consistently. A flat G-connection on X(M) gives us a flat

G-connection on X(M̃). Since M̃ is a simply-connected manifold, X(M̃) can be

identified with X × M̃ as an X-bundle where we can regard sets of form x× M̃ as

leaves for the flat connections. X(M̃) covers X(M) and hence

X(M) = (X × M̃)/π1(M)

where the connection corresponds to foliations with leaves of type x × M̃ . Hence

this gives us a representation h : π1(M) → G so that for any γ ∈ π1(M), the

corresponding action in X × M̃ is given by (x,m)→ (h(γ)x, γ(x)).

Conversely, given a representation h, we can build X × M̃ and act by γ(x,m) =

(h(γ)x, γ(m)) to obtain a flat X-bundle X(M). (This theory is completely analo-

gous to Section 2.4.2.2. See also the books [Kobayashi and Nomizu (1997); Bishop

and Crittendon (2002)] for details.)

6.1.3.2 Flat X-bundles with transversal sections

A development pair (D,h) of M gives us a flat X-bundle X(M) with a section

s : M → X(M). We obtain a section D′ : M̃ → X × M̃ transversal to the foliation

by taking D′(x) = (D(x), x) for x ∈ M̃ . The transversality of D′ to the constant

foliation is actually equivalent to the immersive property of D. The left-action of

π1(M) gives us a section s : M → X(M) transversal to the foliation.

On the other hand, given a transversal section s : M → X(M), we obtain a

transversal section s′ : M̃ → X×M̃ . By a projection to X, we obtain an immersion

D : M̃ → X so that D ◦ γ = h(γ) ◦D for some h(γ) in G. The map h : π1(M)→ G

is a homomorphism. Hence we obtain a development pair.
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6.1.4 The equivalence of three notions.

Given an atlas of X-charts, i.e., a (G,X)-structure, we determine a development

pair (D,h). Given a development pair (D,h), we determine an atlas ofX-charts, i.e.,

a (G,X)-structure. Given a development pair (D,h), we determine a flat X-bundle

X(M) with a transversal section M → X(M). Given a section s : M → X(M) to

a flat X-bundle, we determine a development pair (D,h). Thus, these three classes

of definitions are equivalent.

6.2 The definition of the deformation spaces of (G,X)-structures

on orbifolds

Consider the setM(G,X)(M) of all (G,X)-structures on a connected orbifoldM . We

introduce an equivalence relation: two (G,X)-structures µ1 and µ2 are equivalent if

there is an isotopy φ : M →M from the identity map IM so that φ∗(µ1) = µ2. The

deformation space of (G,X)-structures on M is defined asM(G,X)/ ∼. (Currently,

we just have a set.)

We reinterpret the space as

• the set of equivalence classes of diffeomorphisms f : M → M ′ for M an

orbifold and M ′ a (G,X)-orbifold

• where f : M →M ′ ∼ g : M →M ′′ if there exists a (G,X)-diffeomorphism

h : M ′ →M ′′ so that h ◦ f is isotopic to g.

6.2.1 The isotopy-equivalence space.

First, we identify π1(M) with π1(M × I). Consider the set of diffeomorphisms

f : M̃ → M̃ ′ equivariant with respect to an isomorphism f∗ : π1(M) → π1(M ′)
for a (G,X)-orbifold M ′. We introduce an equivalence relation on this set: Given

f : M̃ → M̃ ′ and g : M̃ → M̃ ′′, we say that they are equivalent if there exists a

(G,X)-map φ : M̃ ′ → M̃ ′′ so that φ ◦ f is isotopic to g by an isotopy M̃ × I → M̃ ′′

equivariant with respect to both φ∗ ◦ f∗ and g∗ which are equal. Denote this set by

DI(M).

We claim that DI(M) is in one-to-one correspondence with M(G,X)/ ∼: Given

an element f of the first space, we obtain an induced diffeomorphism f̂ : M →M ′

for a (G,X)-manifold M ′. The equivariant isotopy goes to an isotopy. So this is a

well-defined map. The inverse is given by lifting a diffeomorphism g : M →M ′ for

a (G,X)-manifold M ′ to the universal covers.

The space S(M) is defined as follows: Consider the set of triples of form (D, f̃ :

M̃ → M̃ ′) where f : M → M ′ is a diffeomorphism for orbifolds M and M ′,
f̃ : M̃ → M̃ ′ is a lift of f , and D : M̃ ′ → X is an immersion equivariant with respect

to a homomorphism h : π1(M ′) → G. We define (D, f̃) ∼ (D′, f̃ ′ : M̃ → M̃ ′′) if

there is a diffeomorphism φ̃ : M̃ ′ → M̃ ′′ so that D′ ◦ φ̃ = D and an isotopy
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H : M̃ × I → M̃ ′′ equivariant with respect to f̃ ′∗ : π1(M) → π1(M ′′) so that

φ̃ ◦ f̃ = H0 and f̃ ′ = H1. We finally give a topology on this space by the C1-

topology on the space of maps M̃ → X restricting to the space of maps of form

D ◦ f̃ : M̃ → X. (Here the C1-topology means the compact C1-topology.)

There is a G-action on S(M) given by sending D to g ◦D for g ∈ G.

6.2.2 The topology of the deformation space

Theorem 6.2.1. Let M be a connected orbifold. There is a natural action of G

on S(M) given by g(D, f̃) = (g ◦ D, f̃), g ∈ G. The quotient space S(M)/G is in

one-to-one correspondence with the deformation space M(G,X)/ ∼. This space has

the quotient topology from the C1-topology of S(M).

Proof. We show that DI(M) is in one-to-one correspondence to S(M)/G.

We first obtain a map DI(M) → S(M)/G: Given an element f̃ : M̃ → M̃ ′, we

have a developing map D : M̃ ′ → X equivariant with respect to h : π1(M ′) → G.

Also, given f̃ ′ : M̃ → M̃ ′′, we have a developing map D′ : M̃ ′′ → X equivariant

with respect to h′ : π1(M ′′)→ G. If f̃ : M̃ → M̃ ′ and f̃ ′ : M̃ → M̃ ′′ are equivalent,

then there is a (G,X)-diffeomorphism M ′ →M ′′ and hence two global charts D′ ◦ f̃
and D′′ ◦ f̃ ′ differ only by an element of G.

Conversely, we obtain a map S(M)/G → DI(M): given (D, f̃), we obviously

obtain a (G,X)-structure on M ′ If (D, f̃) and (D′, f̃ ′) are equivalent, then there

is a diffeomorphism φ : M ′ → M ′′ so that D′ ◦ φ̃ = g ◦ D for a lift φ̃ of φ. This

means φ′ : M ′ →M ′′ is a (G,X)-diffeomorphism. The above two maps are clearly

inverses of each other. �

We will denote by D(G,X)(M) the space S(M)/G with the topology given in the

theorem.

6.2.3 The local homeomorphism theorem

6.2.3.1 The representation space

Suppose that π1(M) is finitely-generated. In particular if M is a compact n-orbifold,

this is true. Denote by g1, . . . , gn the set of generators and R1, . . . , Rm, . . . be the

set of relations.

The set of homomorphisms π1(M)→ G is to be identified with a subset of Gn by

sending a homomorphism h to (h(g1), . . . , h(gn)). This is clearly an injective map.

This image is described as an algebraic subset defined by polynomial relations given

by R1, . . . , Rm, . . . ; that is, each Ri yields Ri(h(g1), . . . , h(gn)) = I, which gives us

a system of polynomial equations. (The polynomial relations will always be finitely

many.) This follows since if the relations are satisfied, then we can obtain the

representation conversely. Denote the space by Hom(π,G), which is an algebraic

set.
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There is an action of G on Hom(π1(M), G) given by the conjugation ac-

tion (g ? h)(·) = gh(·)g−1. We denote by Rep(π1(M), G) the quotient space

Hom(π1(M), G)/G.

6.2.3.2 The map hol

We define hol′ : S(M)→ Hom(π1(M), G) by sending the equivalence class of (D, f̃)

to a homomorphism h ◦ f̃∗ : π1(M)→ G

This induces hol : D(G,X)(M) → Rep(π1(M), G). We denote by Hom(π,G)s

the subset of Hom(π1(M), G) where the conjugation action of G given by h(·) →
gh(·)g−1, g ∈ G is stable; i.e., the orbits are closed and the stabilizers are finite. (See

Section 1 of [Johnson and Millson (1987)].) We denote by Ss(G,X)(M) the inverse

image of this set under hol′ and a G-invariant set. Denote by Ds(G,X)(M) the image

of this set under the quotient map

S(M)→ S(M)/G

and denote by Rep(π,G)s the quotient image of Hom(π,G)s.

When M is disconnected as in Chapter 7, the deformation space D(G,X)(M)

is defined as the product space
∏n
i=1D(G,X)(Mi) for components M1, . . . ,Mn and

Rep(π1(M), G) is also defined as the product space
∏n
i=1 Rep(π1(Mi), G). Also,

similarly, we define

Ds(G,X)(M) :=
n∏

i=1

Ds(G,X)(Mi), Rep(π1(M), G)s :=
n∏

i=1

Rep(π1(Mi), G)s.

The main purpose of this section is to state:

Theorem 6.2.2. Suppose that M is a closed n-orbifold. Then hol restricts to a

local homeomorphism

Ds(G,X)(M)→ Rep(π1(M), G)s.

It is sufficient to prove for the case when M is connected. We just give an

informal discussion here since the proof is very complicated (see [Choi (2004)] for

details): We send the equivalence class of (D, f̃) to the associated homomorphism

h : π1(M) → G. First, it is easy to show that hol′ is continuous: If D′ ◦ f̃ ′ is

sufficiently close to D ◦ f in a sufficiently large compact subset of M̃ , then the

holonomy h′(gi) of generators gi are as close to the original h(gi) as needed.

Conversely, given a geometric structure corresponding to h, if one deforms h

by a small amount, then we can change the geometric structure correspondingly by

considering local models and changing them slightly and patching up the differences

in a consistent way. Finally, we have to show that such a change of a geometric

structure is unique up to isotopies.
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6.3 Notes

The local homeomorphism result, introduced by Weil (1960, 1962), was a very

important and subtle result for the study of deformations of (G,X)-structures on

manifolds. For manifolds, Thurston (1977) (and Ehresmann) gave a proof. Later J.

Morgan gave a series of lectures on it, which is written up by Walter Lok in Section

1.1 of [Lok (1984)]. Also, Canary, Epsten, and Green gave a short proof of it also

(Canary, Epstein, Green, 1987). See also Chapter 7 of [Kapovich (2009)].

Actually, we can find a short transversal section proof given by Goldman (1987)

in the manifold cases. It should be possible to modify this proof for the orbifold

cases as well. But the proof is conceptually not different.

The main part of this chapter is from the papers [Choi (2004); Choi and Gold-

man (2005)]. Chapter 6 of the book [Kapovich (2009)] also devotes some pages to

geometric orbifolds. The principal bundles, transversal sections, and flat connec-

tions are very interconnected and we think that this gives a very pleasant picture of

geometric structures and shows that the notion of geometric structures is intrinsic

to nature.


