
Chapter 1

Coin tossing process

Throughout this monograph, the coin tossing process†1 plays a role of the model process
of random number and pseudorandom number. This may sound very restrictive for appli-
cations, but it is not. Indeed, from a coin tossing process, any practical random variables
and any stochastic processes can be constructed.

1.1 Borel’s model of coin tossing process
To describe m coin tosses, we use a probability space ({0, 1}m, 2{0,1}m , Pm), where 0 and 1
stand for Tails and Heads respectively, and Pm stands for the uniform probability measure
on {0, 1}m ;

Pm(B) :=
#B
2m , B ⊂ {0, 1}m (B ∈ 2{0,1}

m
).

But each time m changes, we must take another probability space, which is not only boring
but also inconvenient when we consider limit theorems. It is a good idea to construct an
infinite many coin tosses all at once on a suitable probability space. Following Borel’s
idea, we construct them all on the Lebesgue probability space.

Definition 1.1

1. Let T1 be a 1-dimensional torus, i.e., an additive group consisting of the unit interval
[0, 1) with addition (x+ y) mod 1. Let B be a σ-algebra on T1 = [0, 1) consisting of
all the Borel measurable sets of it, P be the Lebesgue measure. The triplet (T1,B,P)
is called the Lebesgue probability space.†2 Let (Tk,Bk,Pk) denote the k-fold direct
product of (T1,B,P), which is called the k-dimensional Lebesgue probability space.

2. Let di(x) ∈ {0, 1} denote the i-th digit of real x ∈ T1 in its dyadic expansion;

x =
∞∑

i=1

di(x)2−i, x ∈ T1, (1.1)

†1We call the fair coin tossing process simply the coin tossing process.
†2We sometimes consider the completion of B by P, i.e., σ-algebra of all the Lebesgue measurable sets.

But for numerical calculations, B will do.
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2 1 Coin tossing process

where

d1(x) := 1[1/2,1)(x), di(x) := d1(2i−1x), i ∈ N+, x ∈ T1.

3. For each m ∈ N+, we define

Dm := {i2−m | i = 0, . . . , 2m − 1} ⊂ T1. (1.2)

Let Bm be the algebra generated by the collection of sets Im := {[a, b)|a, b ∈ Dm}.
Namely, each element of Bm is a finite union of some elements of Im. Let P(m) be
the uniform probability measure on Dm.

4. For each m ∈ N+ and each x ∈ T1, we define

⌊x⌋m := ⌊2mx⌋/2m ∈ Dm, (1.3)
⌈x⌉m := ⌈2mx⌉/2m ∈ Dm, (1.4)

and ⌊x⌋∞ := x.

Theorem 1.2 ([4]) The sequence of random variables {di}∞i=1 defined on the Lebesgue
probability space is a coin tossing process.

Proof. For any n ∈ N+, any ϵ1, . . . ϵn ∈ {0, 1}, defining t :=
∑n

i=1 2−iϵi, we see that{
x ∈ T1

∣∣∣ di(x) = ϵi, i = 1, . . . , n
}
=

[
t, t + 2−n) ,

from which it follows that P ( di = ϵi, i = 1, . . . , n ) = P( [t, t + 2−n) ) = 2−n. □

The dyadic expansion mapping Dm ∋ x 7→ (d1(x), . . . , dm(x)) ∈ {0, 1}m is a bijection,
and a mapping ⌊•⌋m : T1 → Dm (or ⌈•⌉m : T1 → Dm) induces a bijection between Bm and
2Dm . By these facts, the following three probability spaces are isomorphic to each other.

({0, 1}m, 2{0,1}m , Pm) � (Dm, 2Dm , P(m)) � (T1,Bm,P).

1.2 Construction of random variables from coin tossing
process

Theorem 1.3 ([7] (1.2)Theorem) Let S be a real valued random variable defined on
a probability space (Ω,F , P). Then there exists a random variable f on the Lebesgue
probability space such that f and S are identically distributed.

Proof. Using the distribution function F(S ; t) := P(S ≤ x), x ∈ R, of S , put

f (x) := sup{u ∈ R | F(S ; u) < x}, 0 < x < 1. (1.5)

Then, f regarded as a random variable on the Lebesgue probability space is what we want.
To show this, it is enough to prove that

{ 0 < x < 1 | f (x) ≤ t } = { 0 < x < 1 | x ≤ F(S ; t) }, t ∈ R, (1.6)
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because calculating the Lebesgue measures of the both hand sides, we see P( f ≤ t) =
F(S ; t). Let us show (1.6). First, since x ≤ F(S ; t) implies t < { u ∈ R | F(S ; u) < x }, we
have f (x) ≤ t. On the other hand, because F(S ; •) is right continuous, x > F(S ; t) implies
that there exists an ε > 0 such that x > F(S ; t + ε). Hence f (x) ≥ t + ε > t. From these
facts, (1.6) follows. □

There are many f ’s that satisfy the condition of Theorem 1.3, and the f defined by
(1.5) is merely one of them. The random variable f on the Lebesgue probability space
can always be considered as a functional†3 of the coin tossing process {di}∞i=1 through the
following formula;

f (x) = f

 ∞∑
i=1

di(x)2−i

 , x ∈ T.

Theorem 1.3 therefore implies that for any random variable S , there exists a functional of
a coin tossing process which has the same distribution as S .

Theorem 1.4 ([35]) Define a sequence of random variables {Zn}∞n=1 on the Lebesgue
probability space by

Z1 =
1
2

d1 +
1
22 d3 +

1
23 d6 +

1
24 d10 + · · ·

Z2 =
1
2

d2 +
1
22 d5 +

1
23 d9 + · · ·

Z3 =
1
2

d4 +
1
22 d8 + · · ·

Z4 =
1
2

d7 + · · ·
...

Then, {Zn}∞n=1 is a sequence of i.i.d.†4random variables, each Zn being uniformly dis-
tributed on T1.

The proof of Theorem 1.4 is easy and hence it is omitted here.
Theorem 1.3 and Theorem 1.4 imply that any sequence of independent random vari-

ables of arbitrary distribution can be constructed from a coin tossing process. For in-
stance, we can construct an i.i.d. sequence {ξn}∞n=0 ofN(0, 1)-variables from a coin tossing
process. Using this sequence, Wiener constructed a Brownian motion process {Bt}0≤t≤π by

Bt :=
t
√
π
ξ0 +

√
2
π

∞∑
n=1

sin nt
n

ξn, 0 ≤ t ≤ π.

For details see [11] p.21. Applying the procedure of Theorem 1.4 again, it is readily seen
that we can even construct countably many independent Brownian motion processes from
the coin tossing process {di}∞i=1 defined on the Lebesgue probability space. As a matter
of fact, except special cases (e.g., construction of uncountably many independent random
variables), almost all random objects can be constructed from a coin tossing process. For
details, see [30] Chapter 1.
†3A function of infinitely many variables is called a functional. Here, f (x) can be regarded as a function

of the infinitely many values of di(x), i = 1, 2, . . ..
†4i.i.d. stands for independently identically distributed.
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1.3 Simulatable random variable
Theorem 1.3 does not say that any random variable S can always be constructed in prac-
tice from a coin tossing process. Indeed, the distribution function of S is usually hard to
get explicitly, and hence we can seldom compute f of (1.5) in practice. Moreover, sam-
ples of coin tosses are not provided at once in Monte Carlo methods, but they are provided
one by one successively from the first term. Consequently, S should be computed by a
finite number of samples of coin tosses with probability 1.

When a functional f of the coin tossing process can be realized in practice, it is said to
be simulatable. In this section, we consider a precise condition for f to be simulatable.†5

1.3.1 Stopping time and simulatable random variable
A random variable defined on the Lebesgue probability space which is Bm-measurable
for some m ∈ N+ is obviously simulatable.†6 On the other hand, there exist functions
which are not Bm-measurable for any m ∈ N+ but are simulatable in practice. Look at the
following example.

Example 1.5 (Hitting time) Consider a random variable

σ(x) := inf{ n ∈ N+ | d1(x) + d2(x) + · · · + dn(x) = 5}, x ∈ T1,

defined on the Lebesgue probability space. σ is the first time when the total number of
Heads becomes 5 in successive coin tosses. (Here we define inf ∅ = ∞.) Obviously, it is
not Bm-measurable for any m ∈ N+, but nevertheless when the 5-th Heads comes up, we
can stop tossing the coin, and get the value of σ. Thus we can compute σ(x) from finite
coin tosses with probability 1.

Let us specify a general class of simulatable random variables that includes σ of Ex-
ample 1.5.

Definition 1.6 A random variable τ : T1 → N+ ∪ {∞} is called a {Bm}m-stopping time
(cf. [1]) or simply a stopping time if it satisfies

∀m ∈ N+, {τ ≤ m} := {x ∈ T1 | τ(x) ≤ m} ∈ Bm.

For a stopping time τ, we define a sub-σ-algebra

Bτ := {A ∈ B | ∀m ∈ N+, A ∩ {τ ≤ m} ∈ Bm }.

For simplicity, we use the term “τ-measurable” to mean “Bτ-measurable”, and Lp(Bτ) to
mean Lp(T1,Bτ,P).
†5The contents of § 1.3 will not be necessary until § 5.3, so the reader may skip this section at the first

reading.
†6Of course, if m is an astronomical number, it would be impossible to deal withBm-measurable functions

in practice. The simulatability here should be understood in a theoretical sense. More precisely, f is
simulatable if there exists a Turing machine (cf. [6]) which computes f .
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A constant time τ(x) ≡ m ∈ N+ is a stopping time and Bτ = Bm.
A function f : T1 → R ∪ {±∞} is Bm-measurable, if and only if f (x) = f (⌊x⌋m),

x ∈ T1. As a generalization of this, we have the following.

Lemma 1.7 Let τ be a stopping time. A function f : T1 → R ∪ {±∞} is τ-measurable,
if and only if

f (x) = f
(⌊x⌋τ(x)

)
, x ∈ T1. (1.7)

Proof. Necessity: Suppose that f is τ-measurable. Then, for each m ∈ N+ and each t ∈ R,
we have {τ ≤ m} ∩ { f ≤ t} ∈ Bm. This means that τ(x) ≤ m implies f (x) = f (⌊x⌋m).
Consequently,

f (x) =
∑

m∈N+
f (x)1{τ=m}(x) + f (x)1{τ=∞}(x)

=
∑

m∈N+
f (⌊x⌋m) 1{τ=m}(x) + f (⌊x⌋∞) 1{τ=∞}(x)

=
∑

m∈N+
f
(⌊x⌋τ(x)

)
1{τ=m}(x) + f

(⌊x⌋τ(x)
)

1{τ=∞}(x)

= f
(⌊x⌋τ(x)

) ∑
m∈N+

1{τ=m}(x) + f
(⌊x⌋τ(x)

)
1{τ=∞}(x) = f

(⌊x⌋τ(x)
)
.

Sufficiency： Suppose that f satisfies (1.7). Then for each m ∈ N+ and each t ∈ R, we
have

{ f ≤ t} ∩ {τ ≤ m} = { f (⌊•⌋τ(•)
) ≤ t} ∩ {τ ≤ m} = { f (⌊•⌋m) ≤ t} ∩ {τ ≤ m} ∈ Bm.

Thus f is τ-measurable. □

The random variable σ in Example 1.5 is a stopping time, and of course it is σ-
measurable.

A function f which is τ-measurable for some stopping time τ that is finite with prob-
ability 1 is simulatable. Indeed, suppose that samples of the coin tosses {di(x)}∞i=1 are
provided one by one successively from the first term. Then the following algorithm com-
putes f .

1. Set m := 1.

2. Set t :=
∑m

i=1 2−idi(x) (= ⌊x⌋m).

3. If τ(t) = m, then output f (t) and end.

4. If τ(t) > m, then set m := m + 1 and go to 2.

Since τ is finite with probability 1, this algorithm ends in finite time with output f (x) with
probability 1.

Conversely, if f is simulatable, it must be computed by a finite number of coin tosses
with probability 1. Namely, for P-a.e. x ∈ T1, there exists an m ∈ N+ such that f (x) =
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f (⌊x⌋m). Here m may depend on x and we write it as τ(x). Thus the function τ : T1 →
N+ ∪ {∞} satisfies P(τ < ∞) = 1. Suppose that τ is not a stopping time. Then it may
happen that a sample sequence of the coin tossing process should be provided forever to
compute f (x), which means that f cannot be simulatable. Thus that τ is a stopping time
is indispensable for f to be simulatable.

With these reasons, we define that f is simulatable if it is τ-measurable for some
stopping time τ that is finite with probability 1.

Example 1.8 (Last exit time) A random variable

τ′(x) := sup
({

n ∈ N+
∣∣∣∣∣ d1(x) + d2(x) + · · · + dn(x) − n

3
< 0

}
∪ {1}

)
, x ∈ T1,

is finite with probability 1 by the strong law of large numbers, but it is not a stopping
time. Indeed, the value of τ′(x) can never be computed from a finite number of terms of
{di(x)}∞i=1. τ′(x) is not simulatable.

1.3.2 T1-valued uniform i.i.d. sequence as random source
In Monte Carlo methods, we usually take a T1-valued uniform i.i.d. sequence as the ran-
dom source of simulations. In this context, the simulatability, or equivalently, the mea-
surability with respect to stopping time is stated as follows.

Assumption 1.9 †7 Suppose that f is a functional of a T1-valued uniform i.i.d. sequence
{Zl}∞l=1, and that it requires only a finite number of Z1, . . . , ZT to be computed with prob-
ability 1. Here T is a random variable with the following property; for each l ∈ N+,
whether the event {T ≤ l} occurs or not can be judged by the values of Z1, . . . , Zl without
any knowledge about Zl′ , l′ ≥ l + 1.

Example 1.10 In case f can always be computed from a constant number of Zl’s, i.e.,
T is a constant, it satisfies Assumption 1.9.

As is seen in the following example, we need not be aware of the stopping time T so
explicitly in most of practical computations.

Example 1.11 (von Neumann’s rejection method [28]) Let p(x), x ∈ [a, b], be a bounded
probability density function. We consider an algorithm to generate a random variable f
whose probability density function is p. Let M > 0 be an upper bound of the function p,
and (ξ, η) be a random point which is uniformly distributed in [a, b] × [0,M]. Then we
have

Pr( ξ ∈ [c, d] | p(ξ) ≥ η ) =
∫ d

c
p(x)dx, a ≤ c < d ≤ b.

With this knowledge, we consider the following algorithm, which uses a T1-valued uni-
form i.i.d. sequence {Zl}∞l=1 as the random source.

1. Set l := 1.
†7A more precise formulation will be given in § 5.4.5.
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2. Set (ξ, η) := ((b − a)Z2l−1 + a,MZ2l).

3. If p(ξ) ≥ η, then output f := ξ and stop.

4. If p(ξ) < η, then set l := l + 1 and go to 2.

The output f of this algorithm, which obviously satisfies Assumption 1.9, is what we wish
to get.

Example 1.12 (cf. Example 1.5) Define {Yn}∞n=1 by

Yn :=
{

0 ( Zn ∈ [0, 1/2) )
1 ( Zn ∈ [1/2, 1) ) n = 1, 2, . . . .

{Yn}∞n=1 is a coin tossing process. Then

f := inf{ n ∈ N+ |Y1 + Y2 + · · · + Yn = 5 }

satisfies Assumption 1.9. f is the first time when the total number of Heads becomes 5 in
successive coin tosses.

In practical computations, real numbers are treated in finite precision, say 2−K . Ac-
cordingly, instead of {Zl}∞l=1, we use a DK-valued uniform i.i.d. random variables {Z(K)

l }∞l=1,
which is, for example, defined on (T1,B,P) by

Z(K)
n :=

K∑
i=1

2−id(n−1)K+i, n ∈ N+, (1.8)

i.e.,

Z(K)
1 =

1
2

d1 +
1
22 d2 + · · · +

1
2K dK

Z(K)
2 =

1
2

dK+1 +
1
22 dK+2 + · · · +

1
2K d2K

Z(K)
3 =

1
2

d2K+1 +
1
22 d2K+2 + · · · +

1
2K d3K

...

If f satisfies Assumption 1.9, regarding it as a functional of {Z(K)
l }∞l=1, set

τ(x) := inf{ lK ∈ lN+ | f (x) is computed from Z(K)
1 (x), . . . , Z(K)

l (x)}.

Then τ becomes a {Bm}m-stopping time, and f is τ-measurable.


