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Classification of log del Pezzo surfaces of index
$\leq 2$ and applications

4.1. Classification oflog del Pezzo surfaces of index $\leq 2$

From the results of Chapters 1–3 we obtain

Theorem 4.1. For any $log$ del Pezzo surface $Z$ of index $\leq 2$ there exists a
unique resolution ofsingularities $\sigma$ : $Y\rightarrow Z$ (called right) such that $Y$ is
a right $DPN$ surface ofelliptic type and $\sigma$ contmcts exactly all exceptional
curves of the $DuVal$ and the logarithmic part of $\Gamma(Y)$ . Vice versa, $\iota fY$

is a right $DPN$ surface ofelliptic type, then there exists a unique morphism
$\sigma$ : $Y\rightarrow Z$ ofcontraction ofall exceptional curves corresponding to theDu
$Val$ and the logarithmicpart of$\Gamma(Y)$ which gives resolution ofsingularities

of $log$ del Pezzo surface $Z$ of index $\leq 2$ (it will be automatically the right
resolution).

Thus, classifications of $logdel$ Pezzo surfaces of index $\leq 2$ and right
$DPN$ surfaces ofelliptic type are equivalent, and thy are given by Theo-
rems 3.18, 3.19 and 3.20.

Proof. Let $Z$ be a $\log$ del Pezzo surface of index $\leq 2$ . In Chapter 1, a
“canonical” ($i.$

$e$ . uniquely defined) resolution of singulanities $\sigma$ : $Y\rightarrow Z$

had been suggested such that $Y$ is a right DPN surface of elliptic type. First,
a minimal lesolution of singularities $\sigma_{1}$ : $Y’\rightarrow Z$ is taken, and second, the
blow-up of all intersection points of components of curves in preimages of
non Du Val singularities $K_{n}$ of $Z$ is taken. Let us show that $\sigma$ contracts
exactly exceptional curves of Duv $\Gamma(Y)$ and ${\rm Log}\Gamma(Y)$ .

Let $E$ be an exceptional curve of $Y$ corresponding to a vertex of the

subgraph Duv $\Gamma(Y)$ or ${\rm Log}\Gamma(Y)$ . Let $\tilde{C_{g}}\in|-2K_{Z}|$ be a non-singular
curve of $Z$ which does not contain singular points of $Z$ (it does exist by

Theorem 1.5), and $C_{g}=\sigma^{-1}(\tilde{C_{g}})$ . Then (see Sections 1.5 and 2) $C_{g}+$

$E_{1}+\cdots+E_{k}\in|-2K_{Y}|$ where $E_{i}$ are all exceptional curves on $Y$ with
the square $(-4)$ and $C_{g}$ a non-singular irreducible curve of genus $g\geq 2.$
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By Chapter 2, one has $E\cdot C_{g}=0$ . If $\sigma$ does not contract $E$ , then for the

curve $\sigma(E)$ on $Z$ we have $\sigma(E)\cdot\tilde{C_{g}}=\sigma(E)\cdot(-2K_{Z})=0.$ $Then-K_{Z}$ is
not ample. We get a contradiction. Vice versa, by constmction, $\sigma$ contracts
only curves from Duv $\Gamma(Y)$ and ${\rm Log}\Gamma(Y)$ . This shows that $\sigma$ is a right
resolution.

Now, let $Y$ be a right DPN surface of elliptic type and $\sigma$ : $Y\rightarrow Z$ a
contraction of all exceptional curves corresponding to vertices Duv $\Gamma(Y)$

and ${\rm Log}\Gamma(Y)$ (it does exist analytically because Duv $\Gamma(Y)$ ULog $\Gamma(Y)$ is
negative, and we show that it does exist algebraically by the direct constmc-
tion below). To prove Theorem, we should prove that $Z$ is a $\log$ del Pezzo
surface of index $\leq 2$ , and $\sigma$ the right resolution of singularities of $Z.$

Second statement becomes obvious if one decomposes $\sigma$ as the compo-
sition of contractions of all exceptional curves of lst kind from
${\rm Log}\Gamma(Y)$ (they don’t intersect each other) and further contraction of the
remaining exceptional curves.

To prove the first statement, one can use the double covering $\pi$ : $X\rightarrow Y$

with the involution $\theta$ (see Chapter 2), the relation between exceptional
curves of $Y$ and $(X, \theta)$ (see Chapter 2), and that the contraction of $A,$ $D$

and $E$ configurations of $(-2)$ curves on $X$ does exit and gives the corre-
sponding quotient singularities $\mathbb{C}/G_{i}$ where $G_{i}\subset SL(2, \mathbb{C})$ are finite sub-
groups. Using these considerations $(i.$ $e$ . first we consider the correspond-
ing contraction, and second the quotient by involution), and Brieskom’s

results [Bri68], we obtain that all non Du Val singularities of $Z$ are $\mathbb{C}/\tilde{G_{i}}$

where $G_{i}\subset GL(2, \mathbb{C})$ and $\overline{G_{i}}\cap SL(2, \mathbb{C})=G_{i}$ have index 2 in $\tilde{G_{i}}$ , and
$\tilde{G_{i}}/G_{i}=\{1, \theta\}$ . It follows that $Z$ is a complete algebraic surface with
$\log$-terminal singularities of index $\leq 2.$

Let us show $that-K_{Z}$ is ample. By Nakai-Moishezon criterion [Nak63],

[Moi67] (see also Kleiman’s criterion [Kle66]), it is enough to show that
$(-K_{Z})^{2}>0$ and $(-K_{Z})$ $D>0$ for any curve $D$ on $Z$ . We have (see

Section 1.5)

$4(-K_{Z})^{2}=(-2K_{Z})^{2}=(\sigma^{*}(-2K_{Z}))^{2}=(C_{g})^{2}>0.$

since $Y$ is a DPN surface of elliptic type. Moreover,

$-2K_{Z}\cdot D=-2\sigma^{*}K_{Z}\cdot\sigma^{*}D=C_{g}\cdot\sigma^{*}D\geq 0$

because $C_{g}$ is irreducible with $(C_{g})^{2}>0$ and $\sigma^{*}D$ is effective. Moreover,

we get here zero, only if the effective divisor $\sigma^{*}D$ consists of exceptional
curves $F$ on $Y$ with $C_{g}\cdot F=0$ . But such curves $F$ correspond to vertices
of the logarithmic or the Du Val part of $\Gamma(Y)$ . They are contracted by $\sigma$ into
points of $Z$ which is impossible for the divisor $\sigma^{*}D.$ $\square $
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Using Theorem 4.1, we can transfer to $\log$ del Pezzo surfaces $Z$ of index
$\leq 2$ the main invariants $(r, a, \delta)$ , equivalently $(k, g, \delta)$ , the mot invariant,

the mot subsystem, the exceptional curves which are defined for the surface
$Y$ of the right resolution $\sigma$ : $Y\rightarrow Z$ . In particular, the Picard number of $Z$

is

(83) $\tilde{r}=$ rk Pic $Z=r-\# V$ (Duv $\Gamma(Y)$ ) $-\# V({\rm Log}\Gamma(Y))$ .

In Theorem 3.18 we have shown the Picard number $\tilde{r}$ in the extremal (for
$Y)$ case. Obviously, surfaces $Z$ with the extremal $Y$ are distinguished by
the minimal Picard number $\tilde{r}$ for the fixed main invariants $(r, a, \delta)$ (equiv-

alently, $(k,g, \delta))$ . Since the ${\rm Log}\Gamma(Y)$ is prescribed by the main invaniants
and is then fixed, this is equivalent to have the maximal rank $(i.$ $e$ . the num-
ber of $(-2)$ -curves for the minimal resolution of singularities) for Du Val
singularities of $Z.$

In Mori Theory, see [Mor82] and [Rei83], $\log$ del Pezzo surfaces $Z$

with rk Pic $Z=1$ are especially important. They give relatively minimal
models in the class of rational surfaces with $\log$-tenminal singularities: any
rational surface $X\neq \mathbb{P}^{1}\times \mathbb{P}^{1}$ with $\log$-terminal singularities has a contrac-
tion morphism onto such a model. From Theorems 4.1 and 3.6, we obtain
classification of such models with $\log$-tenninal singularities of index $\leq 2.$

By Theorem 3.18, they correspond to extremal DPN surfaces of elliptic type
with

$\tilde{r}=r-\# V$ (Duv $\Gamma(Y)$ ) $-\# V({\rm Log}\Gamma(Y))=1,$

and Theorem 3.18 gives the classification of the graphs of exceptional curves
on them. This classification can be extended to a fine classification of the
surfaces themselves. Here are results for the case of rk Pic $Z=1.$

Theorem 4.2. There exist, up to isomorphism, exactly 18 $logdel$ Pezzo

surfaces $Z$ of index 2 with rk Pic $Z=1$ . The $DPN$ surfaces $Y$ of their
right resolution ofsingularities are extremal and correspond to thefollow-
ing cases of Theorem 3.18, where we also show in parentheses the type of
singularities of $Z$ :

$11(K_{1}), 15(K_{1}A_{4}), 18(K_{1}A_{1}A_{5}), 19(K_{1}A_{7}), 20a(K_{1}D_{8})$ ,

$20b(K_{1}2A_{1}D_{6}), 20c(K_{1}A_{3}D_{5}), 20d(K_{1}2D_{4});21(K_{2}A_{2})$ ,

$25(2K_{1}A_{7}), 26(K_{2}2A_{3}), 27(K_{2}A_{7}), 30(K_{3}2A_{2});33(K_{3}A_{1}A_{5})$ ;

$40(K_{5}), 44(K_{5}A_{4});46(K_{6}A_{2});50(K_{9})$ .

In particular, the isomorphism class of $Z$ is defined by its configuration of
singularities. The number ofnon-Du Val singularities is at most one except
when the singularities are $2K_{1}A_{7}.$

In all other cases 11-50 the surface with maximal Du Val part is also
unique.



4.1. CLASSmCATION OF LOG DEL PEZZO SURFACES OF INDEX $\leq 2$ 107

Proof. For each of the graphs of Table 3 it is straightforward to pick a
subgraph such that contracting the corresponding curves realizes $Y$ as a
sequence of blowups starting from $V=\mathbb{P}^{2}$ or $\mathbb{F}_{n},$ $n\leq 4$ . The images of the
remaining curves give a configuration of curves on $V.$

By Theorem 3.20 we are guaranteed that, vice versa, starting with such
a configuration, the corresponding series of blowups leads to a right resolu-
tion of singularities $\tilde{Z}$ of a $\log$ del Pezzo surface $Z$ of index $\leq 2.$

So, to compute the number of isomorphism classes, one has to find the
orbits of the $G$-action on the parameter space for the choices of the blowups.
Finally, one has to take into account the action of the symmetry group of
the graph and the (finitely many) choices for the contractions to $V.$

In all the cases this is a straightforward computation which gives pre-
cisely one orbit.

A typical case is that of case 48. The configuration of curves can be
contracted to a mled surface $\mathbb{F}_{1}$ so that the images of non-contracted curves
are two distinct fibres, the exceptional section $s_{1}$ and an infinite section
$s_{\infty}\sim s_{1}+f$ . In other words, they are the $(\mathbb{C}^{*})^{2}$ -invariant divisors on the
toric variety $\mathbb{F}_{1}$ . The blowups $Y\rightarrow \mathbb{F}_{1}$ are uniquely determined except
for the two last blowups corresponding to the two white end-vertices. One
easily sees that these two blowups correspond to a choice of two points
$P_{1},$ $P_{2}$ lying on two toms orbits $O_{1},$ $O_{2}$ on a toric surface $Y’\rightarrow \mathbb{F}_{1}$ with
rk Pic $Y’=4$ . The surface $Y’$ corresponds to a polytope obtained from the
polytope of $\mathbb{F}_{1}$ by cutting two comers, which adds two new sides. These
sides are obviously not parallel. Hence, the toms $(\mathbb{C}^{*})^{2}$ acts transitively on
$O_{1}\times O_{2}$ , so the surface $Y$ is unique.

The only cases where a similar toric argument does not work are 39, 45
and 47. In case 39 the surface $Y$ can be contracted to $\mathbb{P}^{1}\times \mathbb{P}^{1}$ with 6 curves,

3 sections and 3 fibres. This configuration is unique and the blowups are
uniquely determined, so the surface $Y$ is unique. In case 45 the surface $Y$

is similarly contracted to $\mathbb{P}^{1}\times \mathbb{P}^{1}$ with 6 curves, sections $s,$
$s’$ , fibres $f,$ $f’$

and curves $C\sim C’\sim s+f$ so that $C$ passes through $s\cap f$ and $s’\cap f’$ and
$C’$ through $s\cap f’$ and $s’\cap f$ . This configuration is unique as well.

In the most difficult case 47, $Y$ can be contracted to $\mathbb{P}^{2}$ with the follow-
ing configuration:

(1) three non-collinear points $P_{1},$ $P_{2},$ $P_{3},$

(2) three lines, $l_{1},$ $l_{2},$ $l_{3}$ each passing through two of the three points so
that $P_{i}\not\in l_{i}.$

(3) two conics $q_{1},$ $q_{2}$ such that $q_{1}$ is tangent to lines $l_{2}$ and $l_{3}$ respec-
tively at the points $P_{3}$ and $P_{2}$ ; and $q_{2}$ is tangent to lines $l_{1}$ and $l_{3}$

respectively at the points $P_{3}$ and $P_{1}.$

It is easy to see that this configuration is rigid as well. $\square $
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The Gorenstein case is well known” to experts but we were unable to
find a complete and accurate description of the isomorphism classes in the
literature. Therefore, we include the following theorem for completeness.
Here we use the degree $d$ of a del Pezzo surface $Z$ which is $d=K_{Z}^{2}.$

Theorem 4.3. $(a)$ There exist $28$ configurations ofsingularities ofGoren-
stein $log$ del Pezzo surfaces ofPicard number 1, and each type determines
the corresponding surface up to a deformation. The types (and the cases $N$

in Table 3) are asfollows:
(1) $ d=9:\emptyset$(case1)

(2) $d=8:A_{1}(2)$

(3) $d=6:A_{2}A_{1}(5)$

(4) $d=5:A_{4}(6)$

(5) $d=4:D_{5}(7a)A_{3}2A_{1}(7b)$

(6) $d=3:E_{6}(8a),$ $A_{5}A_{1}(8b),$ $3A_{2}(8c)$

(7) $d=$ 2: $E_{7}(9a),$ $A_{7}(9b),$ $A_{5}A_{2}(9c),$ $2A_{3}A_{1}(9d),$ $D_{6}A_{1}(9e)$,

$D_{4}3A_{1}(9f)$

(8) $d=1:E_{8}(10a),$ $A_{8}(10b),$ $A_{7}A_{1}(10c),$ $A_{5}A_{2}A_{1}(10d),$ $2A_{4}(10e)$,

$D_{8}(10fl, D_{5}A_{3}(10g) , E_{6}A_{2}(10h) , E_{7}A_{1}(10i) , D_{6}2A_{1}(10j)$,

$2 D_{4}(10k), 2A_{3}2A_{1}(10l), 4A_{2}(10m)$ .
$(b)$ In each type there is exactly one isomorphism class, with the fol-

lowing exceptions: in types $E_{8},$ $E_{7}A_{1},$ $E_{6}A_{2}$ there are two isomorphism
classes; and in type $2D_{4}$ there are infinitely many isomorphism classes pa-
rameterized by $A^{1}.$

$(c)$ The three extra surfaces oftype $E_{8},$ $E_{7}A_{1},$ $E_{6}A_{2}$ and all surfaces of
type 2 $D_{4}$ are distinguished by thefact that their automorphism gmups are
1-dimensional and contain $\mathbb{C}^{*}$ . All other surfaces with $d=1$ havefinite
automorphism gmups.

lst proof. The first case to consider is $d=1$ . Choosing an appropriate

subgraph in the graph of exceptional curves on $\tilde{Z}$ , one picks a sequence of
blowups $\tilde{Z}\rightarrow \mathbb{P}^{2}$ . These contractions and images of $(-2)$ -curves are listed
in [BBD84]. In addition, one has to compute the images of $(-1)$ -curves.
The result is a configuration of lines, conics and cubics on $\mathbb{P}^{2}$ , and in most
cases cubics can be avoided.

Again, by theorem 3.20 we are guaranteed that, vice versa, starting with
such a configuration, the conesponding series ofblowups leads to a minimal

resolution of singularities $\tilde{Z}$ of a Gorenstein $\log$ del Pezzo surface $Z.$

To compute the automorphism groups and the number of isomorphism
classes, one has to compute the stabilizer $ G\subset$ PGL(3) of a projective
configuration on $\mathbb{P}^{2}$ and the orbits of the $G$-action on the parameter space
for the configurations and the choices for the blowups; and to take into
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account the action of the symmetry group of the graph and the (finitely

many) choices for the contractions to $\mathbb{P}^{2}.$

In the case $E_{8}$ , the projective configuration is a line and a point on it,

the group $G$ is the subgroup of upper-triangular matrices, and the parameter
space is $\mathbb{C}^{*}\times \mathbb{C}^{4}$ which can be identified with the set of power series

$y=\alpha_{3}x^{3}+\alpha_{4}x^{4}+\alpha_{5}x^{5}+\alpha_{6}x^{6}+\alpha_{7}x^{7}$ $mod x^{8}$ with $\alpha_{3}\neq 0.$

The $G$-action has two orbits: those of $y=x^{3}$ and of $y=x^{3}+x^{7}$ . The first
orbit is in the closure of the second. The stabilizer of $y=x^{3}$ is isomorphic
to $\mathbb{C}^{*}$ and consists of diagonal matrices $(1, c, c^{3})$ , the second stabilizer is
finite. The model for the moduli stack is $[A^{1} : \mathbb{G}_{m}]$ with $\mathbb{C}^{*}$ -action $\lambda.a=$

$\lambda^{4}a.$

In the case $E_{7}A_{1}$ , the projective configuration is a line $l_{1}$ , a conic $q$

tangent to it, and another line $l_{2}$ . There are two cases: when $l_{2}$ intersects $q$

at 2 distinct points, and when they are tangent. One case is a degeneration
of another, and in the degenerate case the stabilizer of the configuration
contains $\mathbb{C}^{*}$

In the case $E_{6}A_{2}$ , the projective configuration consists of 4lines and
3 of them either pass through the same point or they do not. Once again,
the local model is $[A^{1} : \mathbb{G}_{m}]$ with the standard action, one configuration
degenerates into another, and the degenerate configuration has stabilizer $\mathbb{C}^{*}$

In the case $2D_{4}$ , the projective configuration consists of4lines through a
point $P$ and the 5th line $l_{5}\geq P$ . The parameter space for such configuration
is $\mathbb{P}^{1}\backslash $ ( $3$ points). Dividing by the symmetry group $\mathbb{Z}/2\times \mathbb{Z}/2$ gives $A^{1}$

Every configuration has $\mathbb{C}^{*}$ as the stabilizer group.
In all other cases for $d=1$ the computation gives one isomorphism

class.
For $d=2$ , the surfaces $\tilde{Z}_{2}$ are obtained from the surfaces $\tilde{Z}_{1}$ of $d=1$

by contracting one $(-1)$ -curve. So, the cases where more than one isomor-
phism class is possible are the ones that come from the four exceptional
cases above.

The only contraction of the $E_{8}$ -case is the case $E_{7}$ . In this case, the
group of upper triangular matrices acts on the polynomials $y=\alpha_{3}x^{3}+\cdots+$

$\alpha_{6}x^{6}mod x^{7}$ with $\alpha_{3}\neq 0$ transitively; so there is only one isomorphism
class.

The case $E_{7}A_{1}$ produces $D_{6}A_{1}$ and $E_{7}$ . In each of these, the surface
is unique because it can also be obtained by contracting a surface of type
$D_{6}2A_{1}$ and $E_{8}$ , respectively.

The case $E_{6}A_{2}$ produces $A_{5}A_{1},$ $w$hich also comes from the type $A_{5}A_{2}A_{1}$

with a unique isomorphism class. Similarly, the case $2D_{4}$ produces $D_{4}3A_{1},$

which also comes from the type $D_{6}2A_{1}$ . For $d\geq 3$ , moreover, there is only
one isomorphism class for each configuration of singularities. $\square $
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2nd proof for the $d=1$ case. By Theorem 1.5 and Remark 1.7, a general
element of the linear system $|-K_{Z}|$ is smooth. By Riemann-Roch theorem,

$h^{0}(-K_{Z})=2$ . Hence, $|-K_{Z}|$ is a pencil with a unique, nonsingular
base point $P$ . The blowup of $Z$ at $P$ is an elliptic surface with a fibration
$\pi$ : $Z’\rightarrow \mathbb{P}^{1}$ and a section. The condition rk Pic $Z=1$ implies that the

minimal resolution of singularities $\tilde{Z}’\rightarrow \mathbb{P}^{1}$ is an extremal mtional elliptic
surface, as defined in [MP86].

Vice versa, given an extremal relatively minimal (with no $(-1)$ -curves
in fibres of $\pi$) surface $\tilde{Z}’$ with a section, contracting the $(-2)$ -curves not
meeting the section and then the section gives a Gorenstein del Pezzo sur-
face with Du Val singulanities and rk Pic $Z=1$ . The finitely many choices
of a section differ by the action of the Mordell-Weil group of the elliptic
fibration, and hence give isomorphic $Z’ s.$

Hence, the classification of Gorenstein $\log$ del Pezzo surfaces of degree
1 and rank 1 is equivalent to the classification of extremal rational elliptic
fibrations with a section. The latter was done by Miranda and Persson in
[MP86], and we just need to translate it to del Pezzo surfaces.

On the level of graphs of exceptional curves, the transition from $\tilde{Z}$ to $\tilde{Z}’$

consists of inserting an extra $(-1)$ -curve and changing $(-1)$ -curves through
$P$ to $(-2)$ -curves. The $gp_{\sim}$ tum into the corresponding ex-
tended Dynkin graphs $\tilde{A}_{n},$ $D_{n},\tilde{E}_{n}$ . In addition, $A_{1}$ and $A_{2}$ can tum into
$graphs*\tilde{A}_{1},$ $*\tilde{A}_{2}$ respectively. The elliptic fibres $\tilde{A}_{0}and*\tilde{A}_{0}$ are not seen
in the graphs of $Z.$

According to [MP86, Thm 4.1] there are 16 $tyP_{\sim}^{es}$ of elliptic fibrations.
The four special $types*\tilde{A}_{0}\tilde{E}_{8},$ $*\tilde{A}_{1}\tilde{E}_{7},$ $*\tilde{A}_{2}\tilde{E}_{6}$ and $2D_{4}$ are distinguished by
the fact that the induced modular $j$ -function $j$ : $\mathbb{P}^{1}\rightarrow \mathbb{P}_{j}^{1}$ is constant and
there are exactly two singular fibres.

The subgroup $Aut_{j}Y$ of automorphisms commuting with $j$ is always
finite. Hence, in the four exceptional cases Aut $Y$ has dimension one and
contains $\mathbb{C}^{*}$ In all other cases $j$ -map is $su\dot{\eta}$ective, and hence the automor-
phism group is finite.

By [MP86, Thm 5.4], in fifteen of the sixteen cases the elliptic surface
is unique. In the case $2\tilde{D}_{4}$ , there are infinitely many isomolphism classes,

one for each value $j\in A_{j}^{1}.$
$\square $

If we consider $\log$ del Pezzo surfaces $Z$ of index $\leq 2$ and without Du
Val singularities, we get an opposite case to the previous one, every singu-
larity of $Z$ must have index 2. This case includes and is sulprisingly similar
to the classical case of non-singular del Pezzo surfaces when there are no
singularities at all. Applying The\’orem 4.1 we get the following
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Theorem 4.4. Up to deformation, there exist exactly 50 types of $logdel$
Pezzo surfaces $Z$ with singularities ofindex exactly 2 $(lf$a singularity does
exist). The $DPN$ surfaces $Y$ of their right resolution ofsingularities have
empty $DuVal$ part Duv $\Gamma(Y),$ $zem$ mot invariants, and are defined by
their main invariants $(r, a, \delta)$ $(equivalently (k, g, \delta)$), up to deformation (the

moduli are irreducible and connected). The diagram $\Gamma(Y)$ can be obtained
from the diagram $\Gamma$ ofcases 1–50 ofTable 3 (with the same main invari-
ants) asfollows: $\Gamma(Y)$ consists of ${\rm Log}\Gamma(Y)={\rm Log}\Gamma$ and

(84) Var $\Gamma(Y)=W$ (Var $\Gamma$)

where $W$ is generated by reflections in all vertices of Duv $\Gamma(i.$ $e$. one
should take $ D=\emptyset$ in Theorem 3.19). In cases 7, 8, 9, 10, 20 one can
consider only diagrams $\Gamma$ ofcases $7a,$ $8a,$ $9a,$ $10a$ and $20a$ (diagrams $7b,$

$8b_{J}c,$ $9\wedge f10b-m,$ $20b-d$give the same).

The type ofDynkin diagram Duv $\Gamma$ can be considered as analogous to
the type of mot system which one usually associates to non-singular $del$

Pezzo surfaces. Its actual meaning is to give the type ofthe $Wyl$ gmup $W$

describing the varying part Var $(\Gamma(Y))$ by (84). In cases 7–10, 20, one
should (or can) take graphs $\Gamma$ ofcases $7a-10a,$ $20a.$

Proof. This case corresponds to $Y$ with empty $ D\subset$ Duv $\Gamma$ of Theorem
3.19. Then the root invariant is $0$ . Thus, all cases 7, 8, 9, 10 or 20 give the
isomorphic root invariants and the same diagrams, and we can consider only
the corresponding cases $7a,$ $8a,$ $9a,$ $10a$ and $20a$ to calculate the diagrams.

Let us show that moduli spaces of DPN surfaces $Y$ with the same main
invariants $(r, a, \delta)$ and zero root invariant $(i. e. D=0)$ are irreducible.

It is enough to show irreducibility of the moduli space of the corre-
sponding right DPN pairs $(Y, C)$ where $C\in|-2K_{Y}|$ is non-singular.
Taking double covering $\pi$ : $X\rightarrow Y$ ramified in $C$ , it is enough to prove
irreducibility of moduli Mod $(r,a,\delta)$ of K3 surfaces with non-symplectic in-
volutions $(X, \theta)$ and $(S_{X})_{+}=S$ where $S$ has invariants $(r, a, \delta)$ . General
such pairs have zero root invariant, as we want, because general $(X, \theta)$ have
$S_{X}=S$ . Irreducibility of Mod $(r,a,\delta)$ had been discussed in Section 2.3 with
proofs in Appendix: Section A.2. $\square $

We remark that the result equivalent to Theorem 4.4 was first obtained
in [Nik83].

We remark that cases 1–10 ofTheorem 4.4 give classical non-singular
del Pezzo surfaces. Therefore, Theorem 4.4 and all results of this work
show that $\log$ del Pezzo surfaces of index $\leq 2$ are very similar to classical
non-singular del Pezzo surfaces.
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4.2. Example: Enumeration of all possible types for
$N=20$

Let us consider enumeration of all types of singularities and graphs of ex-
ceptional curves of $\log$ del Pezzo surfaces of index 2 of type $N=20$ , i. e.
with the main invariants $(r, a, \delta)=(10,8,1)$ .

From Theorem 4.1 and Table 3, cases $20a-d$ , we obtain that all of
them have one singulanity $K_{1}$ of index 2 and Du Val singulanities which
correspond to a subgraph of one of graphs $D_{8},$ $D_{6}2A_{1},$ $D_{5}A_{3}$ and 2 $D_{4}$ . It
follows that their Du Val singularities are exactly of one of 52 types listed
below:

$2D_{4}$ ;
$D_{8}$ ;
$D_{7}$ ;
$D_{6}2A_{1},$ $D_{6}A_{1},$ $D_{6}$ ;
$D_{5}A_{3},$ $D_{5}A_{2},$ $D_{5}2A_{1},$ $D_{5}A_{1},$ $D_{5}$ ;
$D_{4}A_{3},$ $D_{4}A_{2},$ $D_{4}3A_{1},$ $D_{4}2A_{1},$ $D_{4}A_{1},$ $D_{4}$ ;
$A_{7}$ ;
$A_{6}$ ;
$A_{5}2A_{1},$ $A_{5}A_{1},$ $A_{5}$ ;
$A_{4}A_{3},$ $A_{4}A_{2},$ $A_{4}2A_{1},$ $A_{4}A_{1},$ $A_{4}$ ;
2 $A_{3}A_{1},2A_{3},$ $A_{3}A_{2}2A_{1},$ $A_{3}A_{2}A_{1},$ $A_{3}A_{2},$ $A_{3}4A_{1},$ $A_{3}3A_{1},$ $A_{3}2A_{1},$ $A_{3}A_{1},$ $A_{3}$ ;
$2A_{2}2A_{1},2A_{2}A_{1},2A_{2},$ $A_{2}4A_{1},$ $A_{2}3A_{1},$ $A_{2}2A_{1},$ $A_{2}A_{1},$ $A_{2}$ ;
$6A_{1},5A_{1},4A_{1},3A_{1};2A_{1},$

$A_{1};\emptyset.$

Using calculations of root invariants of Lemma 3.12, it is easy to calcu-
late the root invariant for any of the subgraphs. One can see that it is defined
uniquely by the type of Du Val singularities except the following 15 types
of Du Val parts of singularities for which we show all differences in their
root invariants.

$D_{4}A_{3}$ : There are exactly two possibilities for the root invariant (and

then for the dual graph of exceptional curves). The first one can be obtained
by taking $D_{4}A_{3}$ as a subdiagram in $D_{8}$ (case $20a$), and the second by taking
$D_{4}A_{3}$ as a subdiagram in $D_{5}A_{3}$ (case $20c$). In the second case, the char-
acteristic element can be written using elements of the component $A_{3}$ , and
this is impossible in the first case.

$D_{4}2A_{1}$ : There are exactly two possibilities for the root invariant. The
first one can be obtained by taking $D_{4}2A_{1}$ as a subdiagram in $D_{8}$ (case $20a$),

and the second one by taking $D_{4}2A_{1}$ as a subdiagram in $D_{6}2A_{1}$ (case $20b$).

In the second case, the characteristic element can be written using elements
of the components $2A_{1}$ , and it is impossible in the first case.
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$A_{7}$ : There are exactly two possibilities for the root invariant. The group
$H=\{0\}$ or $H\cong \mathbb{Z}/2$ . Both cases can be obtained by taking subdiagrams
in $D_{8}$ (case $20a$).

$A_{5}A_{1}$ : There are exactly two possibilities for the root invaniant: the
group $H=\{0\}$ or $H\cong \mathbb{Z}/2$ . Both cases can be obtained by taking subdia-
grams in $D_{8}$ (case $20a$).

$2A_{3}$ : There are exactly four possibilities for the root invariant. For the
group $H=\{0\}$ the characteristic element can be wlitten using elements
either of one component $A_{3}$ or only by both components $A_{3}$ . For the group
$H\cong \mathbb{Z}/2$ either $\alpha=1$ or $\alpha=0$ . Three of these cases can be obtained by
taking subdiagrams in $D_{8}$ (case $20a$). The remaining case $H\cong \mathbb{Z}/2$ and
$\alpha=0$ can be obtained by taking a subdiagram in $D_{5}A_{3}$ (case $20c$).

$A_{3}A_{2}$ : There are exactly two possibilities for the root invariant: $\alpha=0$

or $\alpha=1$ . Both cases can be obtained by taking subdiagrams in $D_{8}$ (case
$20a)$ .

$A_{3}3A_{1}$ : There are exactly two possibilities for the root invaniant: In the
first case the characteristic element cannot be written using elements of the
components $A_{3}$ (it can be obtained by taking a subdiagram in $D_{8}$ , i. e. for
the case $20a$). For the second case it can be written using elements of the
component $A_{3}$ (it can be obtained by taking a subdiagram in $D_{6}2A_{1},$ $i.$ $e.$

for the case $20b$).
$A_{3}2A_{1}$ : There are exactlyfivepossibilities for the root invariant. For the

group $H=\{0\}$ the characteristic element can be written using elements ei-
ther of one component $A_{3}$ , or by components $2A_{1}$ , or using all three compo-
nents $A_{3}2A_{1}$ . For the group $H\cong \mathbb{Z}/2$ either $\alpha=1$ or $\alpha=0$ . Four of these
cases can be obtained by taking subdiagrams in $D_{8}$ (case $20a$). The remain-
ing case $H\cong \mathbb{Z}/2$ and $\alpha=0$ can be obtained considering a subdiagram in
$D_{6}2A_{1}$ (case $20b$).

$A_{3}A_{1}$ : There are exactly two possibilities for the root invariant: $\alpha=0$

or $\alpha=1$ . Both cases can be obtained by taking subdiagrams in $D_{8}$ (case

$20a)$ .
$A_{3}$ : There are exactly two possibilities for the root invariant: $\alpha=0$ or

$\alpha=1$ . Both cases can be obtained by taking subdiagrams in $D_{8}$ (case $20a$).
$A_{2}2A_{1}$ : There are exactly two possibilities for the root invaniant: $\alpha=0$

or $\alpha=1$ . Both cases can be obtained by taking subdiagrams in $D_{8}$ (case

$20a)$ .
$5A_{1}$ : There are exactly two possibilities for the root invariant. For the

first one the characteristic element can be written using two pairs of compo-
nents of $5A_{1}$ . For the second one the characteristic element can be written
using only one pair of components of $5A_{1}.$

$4A_{1}$ : There are exactly fourpossibilities for the root invariant. For the
group $H=\{0\}$ the characteristic element can be written using elements
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either of two components $A_{1}$ or by only four components $A_{1}$ . For the group
$H\cong \mathbb{Z}/2$ either $\alpha=1$ or $\alpha=0$ . All four cases can be obtained by taking
subdiagrams in 2 $D_{4}$ (case $20c$).

$3A_{1}$ : There are exactly two possibilities for the root invariant: $\alpha=0$ or
$\alpha=1$ . Both cases can be obtained by considering subdiagrams in $D_{8}$ (case

$20a)$ .
$2A_{1}$ : There are exactly two possibilities for the root invaniant: $\alpha=0$ or

$\alpha=1$ . Both cases can be obtained by considering subdiagrams in $D_{8}$ (case

$20a)$ .

Thus, for the types of Du Val singularities shown above. (together with
the singulanity $K_{1}$ of index two) we obtain the number shown above of dif-
ferent types of $\log$ del Pezzo surfaces: their right resolution of singulanities
can have that number of different graphs of exceptional curves. By taking
the corresponding sequence of contractions of-l curves, one can further
investigate these surfaces in details; in particular, one can enumerate irre-
ducible components of their moduli.

Thus, there are exactly $52+12+3\cdot 2+4=74$ different graphs of
exceptional curves on the right resolution of singularities of log del Pezzo
surfaces of index 2 with the main invariants $(r, a, \delta)=(10,8,1)(i.$ $e.$

$N=20)$ .
Of course, similar calculations can be done for all 50 types of main

invariants of $\log$ del Pezzo surfaces of index $\leq 2$ . The considered case
$N=20$ is one of the richest and most complicated.

4.3. Application: Minimal projective compactifications of
affine surfaces in $\mathbb{P}^{2}$ by relatively minimal $\log$ del
Pezzo surfaces of index $\leq 2.$

This is similar to [BBD84] in the Gorenstein case.
Let us consider one of the 45 relatively minimal surfaces of Theorems

4.2, 4.3 which are different from $\mathbb{P}^{2}$ ($i.$
$e$ . except the case 1). Let $\sigma$ :

$Y\rightarrow Z$ be its right resolution of singularities, and $v_{1},$
$\ldots,$

$v_{r-1}$ a sequence
of vertices of $\Gamma(Y)$ such that the corresponding exceptional curves on $Y$

give a contraction of the sequence of curves of the lst kind $\tau$ : $Y\rightarrow \mathbb{P}^{2}.$

Let $C\subset \mathbb{P}^{2}$ be the union of images by $\tau$ of all exceptional curves $E_{v},$

$v\in V$(Duv $(\Gamma(Y))$ ) $UV({\rm Log}(\Gamma(Y)))$ . Then, the embedding $f=(\sigma\tau^{-1})$ :
$W\rightarrow Z$ gives a compactification of the affine surface $W=\mathbb{P}^{2}-C$ of $\mathbb{P}^{2}.$

The morphism $f$ is minimal in the sense that $f$ cannot be extended through
components of $C$ (see [BBD84] for details). The description of all such
affine surfaces $W$ and such their compactifications is then reduced to the
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description of subdiagrams of $\Gamma(Y)$ $(defined by v_{1}, \ldots, v_{r-1}))$ which were
described by their connected components in Section 3.6.

4.4. Dimension of the moduli space

For each triple of invariants

(85) $(k, g, \delta, the root invariant)$ ,

equivalently,

(86) $(r, a, \delta, the dual diagram of exceptional curves \Gamma(Y)$ )

one has the moduli space of pairs $\mathcal{M}_{(Z,C)}$ of log del Pezzo surfaces together
with a smooth curve $C\in|-2K_{Z}|$ . We have established the equivalence
between pairs $(Z, C)$ and K3 surfaces $(X, \theta)$ with a non-symplectic invo-
lution. Hence instead of moduli $\mathcal{M}_{(Z,C)}$ of pairs $(Z, C)$ we can consider
moduli $\mathcal{M}_{(X,\theta)}$ of pairs $(X, \theta)$ .

By (63),

(87) $\dim \mathcal{M}_{(X,\theta)}=20-r-\# V(Duv(\Gamma))=9+g-k-\# V(Duv(\Gamma))$ .

Moreover,

(88) $\dim|-2K_{Z}|=\dim|C_{g}|=3g-3$

(see Sections 1.4 and 1.5). It follows that the dimension of the parameter
space $\mathcal{M}_{(r,a,\delta),\Gamma(Y)}$ ofgeneric surfaces $Z$ of type $(r, a, \delta)$ and with the graph
$\Gamma(Y)$ of exceptional curves on the right resolution $Y$ of singularities (or

with the corresponding root invariant) is equal to

$\dim \mathcal{M}_{(r,a,\delta),\Gamma(Y)}=12-2g-k-\# V($Duv $(\Gamma(Y))+\dim$ Aut $Z=$
(89)

$\frac{r+3a}{2}-10-\# V(Duv(\Gamma(Y))+\dim$ Aut $Z$

Note that this formula may fail for non-generic surfaces. For example,
by Theorem 4.3 there are exactly two isomorphism classes of Gorenstein
surfaces with a single $E_{8}$ -singularity. The formula above gives

$\dim \mathcal{M}_{(r,a,\delta),\Gamma(Y)}=\dim$ Aut $Z$

which is tme for the generic surface that has trivial isomorphism group and
fails for the second surface which has Aut $Z=\mathbb{C}^{*}$
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4.5. Some open questions

4.5.1. Finite characteristic

It would be very interesting to generalize results of this work to finite char-
acteristic. As we had mentioned in Remark 3.16, it seems, the main prob-
lem is to generalize Theorem 1.5. We think that our results are valid in
characteristic $\geq 3$ . As we have seen, in characteristic 2 the number of cases
increases.

4.5.2. Arithmetic of log del Pezzo surfaces of index $\leq 2$

There are many results (e.g. see [Man86], [MT86] and [CT88]) where the
anithmetic of classical non-singular del Pezzo surfaces is studied. What is
the anithmetic of $\log$ del Pezzo surfaces of index $\leq 2$ and equivalent DPN
surfaces of elliptic type?
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