
CHAPTER 5

Irrationality and dynamics

The set of values of scl on all conjugacy classes in all finitely presented groups is
a countable set. It is natural to try to characterize this set of real numbers, and to
understand what kinds of arithmetic constraints exist on the values of scl in certain
classes of groups.

As discussed in Chapter 4, the Rationality Theorem (i.e. Theorem 4.24) shows
that for free groups (and more generally, for PQL groups) the scl norm is rational,
and in particular, scl takes on values in Q in free groups. More generally, we saw
that the unit ball of the scl norm on BH1 (F ) is a rational polyhedron, and discussed
the relationship of this example to the (polyhedral) Thurston norm on H2 of an
atoroidal irreducible 3-manifold.

It is natural to ask for which groups G the stable commutator length is ratio-
nal on [G,G]. In fact, Gromov ([99], 6.C) explicitly asked whether scl is always
rational, or at least algebraic, in general finitely presented groups. In the next
section we describe an unexpected and elegant example due to Dongping Zhuang
[205] of a finitely presented group in which the stable commutator length achieves
transcendental values, thus answering Gromov’s question in the negative.

There are two essential ingredients in Zhuang’s examples: the groups he consid-
ers are transformation groups (i.e. groups of automorphisms of some geometric ob-
ject), and they have an arithmetic origin. It is a general phenomenon, observed ex-
plicitly by Burger–Monod, Carter–Keller–Paige (as exposed by Dave Witte-Morris)
and others, that (especially arithmetic) lattices in higher rank Lie groups generally
admit no (nontrivial) quasimorphisms. On the other hand, such groups sometimes
have nontrivial 2-dimensional bounded cohomology classes, which typically have a
symplectic (or “causal”) origin, which can be detected dynamically by realizing the
groups as transformation groups. A central extension of such a group admits a non-
trivial, but finite dimensional space of homogeneous quasimorphisms, and one may
compute scl on such a group directly by Bavard duality, relating scl to dynamics.

In § 5.1 we discuss Zhuang’s examples, which in some ways are the most ele-
mentary. In § 5.2 we discuss lattices in higher rank Lie groups from several different
perspectives, eventually concentrating on lattices in symplectic groups as the most
interesting examples. Finally, in § 5.3, we discuss some nonlinear generalizations of
these ideas, which leads to the construction of quasimorphisms on braid groups and
certain (low-dimensional) groups of area-preserving diffeomorphisms of surfaces.
References for this chapter include [28, 192, 205, 33, 34, 53, 159, 7, 86, 87].

5.1. Stein–Thompson groups

In 1965, Richard Thompson [195] defined three groups F ⊂ T ⊂ V . Two of
these (the groups T and V ) were the first examples of finitely-presented, infinite
simple groups. They can be defined as transformation groups (i.e. as groups of
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138 5. IRRATIONALITY AND DYNAMICS

homeomorphisms of certain topological spaces): F is a group of homeomorphisms
of an interval, T is a group of homeomorphisms of a circle, and V is a group of
homeomorphisms of a Cantor set. Our interest in this section is on the groups F
and T , and their generalizations. A basic reference for Thompson’s groups is [52].

Definition 5.1. F is the group of orientation-preserving piecewise-linear (here-
after PL) homeomorphisms of the closed unit interval that are differentiable except
at finitely many dyadic rational numbers (i.e. numbers of the form p/2q for inte-
gers p, q), and such that away from these discontinuities, the derivative is locally
constant, and is equal to a power of 2.

T is the group of orientation-preserving PL homeomorphisms of the unit circle
S1 (thought of as R/Z) that maps dyadic rationals to dyadic rationals, has deriva-
tives that are discontinuous at finitely many dyadic rationals, and are elsewhere
equal to powers of 2.

Remark 5.2. All three groups can be defined as groups of rotations (in the sense of
computer science) of infinite trivalent trees. In the case of F , the tree is rooted and
planar; in the case of T , the tree is planar; in the case of V , the tree is neither rooted nor
planar. See e.g. [52] § 2 or [189].

In this section we are interested in generalizations of the groups F and T due
to Melanie Stein [192].

Definition 5.3. Let P be a multiplicative subgroup of the positive real num-
bers, and let A be a ZP -submodule of the reals with P ·A = A. Choose a positive
number l ∈ A. Define F (l, A, P ) to be the group of PL homeomorphisms of the
interval [0, l] taking A ∩ [0, l] to itself, whose derivatives have finitely many singu-
larities in A, and take values in P .

Similarly, define T (l, A, P ) to be the group of PL homeomorphisms of the circle
R/〈l〉 taking A/〈l〉 to itself, whose derivatives have finitely many singularities in A,
and take values in P .

Informally, we say that elements of F (l, A, P ) or T (l, A, P ) have breakpoints in
A, and slopes in P .

Example 5.4. In this notation, Thompson’s groups F and T are F (1,Z[ 12 ], 〈2〉)
and T (1,Z[12 ], 〈2〉) respectively.

Stein showed in [192], following published and unpublished work of Brown
[28], that for l ∈ Z, for A = Z[1/n1n2 · · ·nk] and for P = 〈n1, · · · , nk〉, the groups
F (l, A, P ) and T (l, A, P ) are finitely presented, and in fact FP∞ (i.e. there is a
K(G, 1) for these groups with only finitely many cells in each dimension). The
method of proof is to explicitly find such aK(G, 1). This is done by finding an action
of these groups on suitable (explicitly described) contractible cubical complexes,
such that the quotient complexes are homotopy equivalent to complexes with only
finitely many cells in each dimension.

Example 5.5. A presentation for Thompson’s group F is

F = 〈A,B | [AB−1, A−1BA], [AB−1, A−2BA2]〉
A presentation for T is

T = 〈A,B,C | [AB−1, A−1BA], [AB−1, A−2BA2], C−1B(A−1CB),

((A−1CB)(A−1BA))−1B(A−2CB2), (CA)−1(A−1CB)2, C3〉
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These presentations are not terribly useful in practice, except that they do indicate
algebraically how F is included as a subgroup of T . See [52], § 3 and § 5.

Zhuang’s examples are central extensions of T (l, A, P ) for certain A and P as
above. The remainder of this section is taken more or less verbatim from [205].

5.1.1. Factorization lemma. With notation as above, let IP ∗A denote the
submodule of A generated by elements of the form (1−p)a where a ∈ A and p ∈ P .
In the sequel we sometimes abbreviate T (l, A, P ) by T for the sake of legibility (but
T used in this sense should not be confused with Thompson’s T ).

Lemma 5.6 (Stein [192]). There is a natural homomorphism

ν : T (l, A, P )→ A/〈IP ∗A, l〉
defined by ν(f) = f(a)− a for f ∈ T and a ∈ [0, l] ∩A. If B denotes the kernel of
ν, then B′ = T ′′, the second commutator subgroup of T .

We use the following criterion of Bieri–Strebel (a proof appears in the appendix
to [192]):

Lemma 5.7 (Bieri–Strebel [14]). Let a, c, a′, c′ ∈ A with a < c, a′ < c′. There
is a PL homeomorphism of R, with slopes in P and finitely many singularities in
A, mapping [a, c] onto [a′, c′] iff c′ − a′ is congruent to c− a modulo IP ∗A.

Lemma 5.6 and Lemma 5.7 together let one construct elements of T with desired
properties. Let f ∈ B be arbitrary. Zhuang proves the following factorization
lemma.

Lemma 5.8 (Zhuang [205], Lem. 3.4). For any f ∈ B there is a factorization
f = g1g2 in B where g1 and g2 both fix nonempty open arcs.

Proof. Note that any element which fixes a nonempty open arc fixes some
point a in A, and is therefore in B by Lemma 5.6.

Let f ∈ B be arbitrary. Choose points a < b < a1 < b1 < c < d ∈ [0, l] ∩ A
such that f([a, b]) = [a1, b1]. Since a1 − a, b1 − b ∈ IP ∗ A (by the definition of
B), Lemma 5.7 implies that there are PL homeomorphisms h1, h2 with slopes in P
and singularities in A, sending [b, c] to [b1, c] and [d, a] to [d, a1] respectively. Now
define

g =





f if x ∈ [a, b]

h1 if x ∈ [b, c]

id if x ∈ [c, d]

h2 if x ∈ [d, a]

Set g1 = fg−1 and g2 = g. Then f = g1g2, and both g1 and g2 fix nonempty open
arcs. �

Remark 5.9. Factorization or “fragmentation” lemmas, together with Mayer–Vietoris and
Künneth formulae, are generally the key to computing the (bounded co-) homology of
transformation groups. Such techniques are used pervasively in the theory of foliations;
see e.g. Tsuboi’s survey [199].

For each θ ∈ IP ∗ A the rotation Rθ is in B. The set of such θ is dense in
[0, l]. So for i = 1, 2, let gi be as in Lemma 5.8, and choose θi so that Rθi ∈ B, and
hi := RθigiR

−1
θi

has support contained in (0, l).
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5.1.2. Calculation of commutator subgroup. Let F (l, A, P ) denote the
subgroup of T (l, A, P ) fixing 0. We abbreviate F (l, A, P ) by F , and think of F as
a group of PL homeomorphisms of the interval [0, l]. Notice that F ⊂ B. There is
a natural homomorphism

ρ : F → P × P
defined by ρ(f) = (f ′(0+), f ′(l−)); i.e. the image of ρ is the pair of elements of P
consisting of the derivative of f at 0 from the right, and the derivative of f at l from
the left. Let B1 = ker ρ. Note that h1, h2 ∈ B1, since their support is contained
strictly in the interior of [0, l].

Theorem 5.10 (Stein [192]). With notation as above, the commutator subgroup
B′1 is simple, and B′1 = F ′.

On the other hand, one has the following theorem of Brown (see [192] for a
proof):

Theorem 5.11 (Brown). With notation as above, there is an isomorphism

H∗(F ) ∼= H∗(B1)⊗H∗(P × P )

We now specialize to the case that l = 1, A = Z[ 1
pq ], P = 〈p, q〉. Here p and q

are arbitrary integers which form a basis for 〈p, q〉 (this is satisfied for example if p
and q are distinct primes). We write Tp,q, Fp,q for T (l, A, P ), F (l, A, P ) in this case.

In [192], Stein explicitly calculates the homology of such Fp,q.

Lemma 5.12 (Stein, [192] Thm. 4.7). With notation as above, H1(Fp,q) is free
Abelian with rank 2(d+1) where d is the greatest common divisor of p−1 and q−1.

If d = 1 (for instance if p = 2, q = 3), Lemma 5.12 implies that H1(Fp,q) =
Z4 = H1(P × P ). Theorem 5.11 therefore implies that H1(B1) = 1 and therefore
B1 = B′1 = F ′p,q. By Lemma 5.8 and the definition of the hi, we see that every
element of B can be written as a product of conjugates of commutators in B1 ⊂ B.
In particular, B is perfect.

By Lemma 5.6, B = B′ = T ′′p,q. Since T ′p,q ⊂ B (because B is the kernel of ν,
which is a map from T to an Abelian group) we get B = T ′p,q. Furthermore, when
l = 1 and d = 1, the submodule 〈IP ∗A, 1〉 is actually equal to A, so ν is the zero
map. Hence Tp,q is perfect in this case.

5.1.3. Calculation of scl. The final ingredient we need is the following:

Theorem 5.13 (Calegari [41], Thm. A). Let G be a subgroup of PL+(I). Then
scl vanishes on [G,G].

Proof. Let g ∈ [G,G], and let H be a finitely generated subgroup so that
g ∈ [H,H ]. The fixed point set of any element of PL+(I) is a finite union of points
and closed intervals, so the same is true for the common fixed point set of a finitely
generated group. Let fix(H) denote this common fixed point set, and enumerate
the (finitely many) complementary open intervals as I1, I2, · · · , Im.

For each interval Ij there is a homomorphism ρj : H → R ⊕ R defined by
ρj(h) = (log dh+(I−j ), log dh−(I+

j )) where I+
j denotes the positive endpoint of the

interval Ij , and I−j denotes the negative endpoint, and dh+, dh− denotes derivative

from the right and from the left respectively. Let ρ : H → R2m be the direct sum of
these homomorphisms, and let H0 denote the kernel. Suppose h ∈ [H0, H0], and let
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K be a finitely generated subgroup of H0 with h ∈ [K,K]. Then fix(K) contains a
neighborhood of each endpoint of each interval Ij , so there are closed intervals I ′j
contained in the interior of the Ij such that the support of K is contained in the
union of the I ′j .

For each closed interval J contained in the interior of some Ii, there is j ∈ H
with j(J) ∩ J = ∅. By replacing j by its inverse if necessary, there is such a j
which moves J to the right. We assume by induction that for any set of intervals Ji
closed in the interior of each Ii, there is j ∈ H with j(Ji)∩ Ji = ∅ for all 1 ≤ i ≤ r.
Let k satisfy k(Jr+1) ∩ Jr+1 = ∅ and k moves Jr+1 to the right. Let J ′i be the
smallest closed interval in the interior of Ii containing Ji ∪ k(Ji). By the induction
hypothesis there is j′ ∈ H with j′(J ′i) ∩ J ′i = ∅ for 1 ≤ i ≤ r. Replacing j′ by
its inverse if necessary, we may further assume that j′ moves the leftmost point of
Jr+1 to the right. Then j′k(Ji) ∩ Ji = 0 for 1 ≤ i ≤ r + 1. It follows that we can
find a single element j ∈ H such that j(I ′i) ∩ I ′i = ∅ for all i simultaneously.

For any n there is an injection ∆n : K → H defined by

∆n(c) =

n∏

i=0

cj
i

where j is as above, and the superscript denotes conjugation. Define

h′ =

n∏

i=0

(hi+1)j
i

Then [h′, j] = ∆n(h)(h−n−1)j
n+1

. On the other hand, if h = [a1, b1][a2, b2] · · · [as, bs]
with ai, bi ∈ K then ∆n(h) = [∆n(a1),∆n(b1)] · · · [∆n(as),∆n(bs)]. It follows that
cl(hn+1) ≤ s+ 1 in H and therefore scl(h) = 0, also in H . Since h ∈ [H0, H0] was
arbitrary, it follows that scl in H vanishes identically on [H0, H0]. On the other
hand, H/[H0, H0] is two-step solvable, and therefore amenable. Since scl vanishes
in the commutator subgroup of an amenable group, for every element g ∈ [H,H ]
there is a power n such that

gn = [a1, b1] · · · [as, bs]c
where s/n is as small as we like, and c ∈ [H0, H0]. If φ is a homogeneous quasimor-
phism on H of defect 1, then φ vanishes on c, and therefore has value ≤ 2s on gn.
Hence scl(g) = 0 in H , and therefore also in G. Since g ∈ [G,G] was arbitrary, the
theorem is proved. �

Remark 5.14. Notice the use of the Münchhausen trick (i.e. Example 3.66) in the con-
struction of ∆n.

We are now in a position to determine scl in Tp,q.

Lemma 5.15 (Zhuang [205], Lem. 3.8). Let Tp,q be as above where d = gcd(p−
1, q − 1) = 1. Then scl vanishes on T ′p,q = Tp,q.

Proof. Let φ be a homogeneous quasimorphism on Tp,q, and let f ∈ Tp,q be

arbitrary. By Lemma 5.8 we can write f = g1g2 and hi = RθigiR
−1
θi

where each

hi ∈ B1. Since B1 is a perfect subgroup of PL+(I), Theorem 5.13 implies that
scl(hi) = 0 in B1. Note that φ restricts to a homogeneous quasimorphism on B1,
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and therefore by Bavard’s Duality Theorem 2.70 we have φ(hi) = 0, and therefore
φ(gi) = 0. But f = g1g2, so

|φ(f)| ≤ D(φ)

by the definition of the defect. Since f was arbitrary, φ is uniformly bounded on
Tp,q. A bounded homogeneous quasimorphism is identically zero. Since φ was
arbitrary, scl is identically zero on Tp,q by another application of Bavard’s Duality
Theorem. �

There is a natural central extension

0→ Z→ T̂p,q → Tp,q → 0

where T̂p,q is the subgroup of Homeo+(R) which cover elements of Tp,q under the

covering projection R→ S1. Note that T̂p,q is finitely presented, since Tp,q is. The
class of this central extension is the Euler class of the natural action of Tp,q on
S1. Since Z is amenable, Theorem 2.49 shows that the exact sequence induces an

isomorphism H2
b (Tp,q; R)→ H2

b (T̂p,q; R).
On the other hand, by construction, the kernel of the map in ordinary cohomol-

ogy H2(Tp,q; R)→ H2(T̂p,q; R) is 1-dimensional, generated by the Euler class. The
usual five term exact sequence in cohomology for an extension (i.e. the Hochschild–

Serre sequence; see § 1.1.6) implies that H1(T̂p,q; R) vanishes. By Theorem 2.50 the

space Q(T̂p,q) is 1-dimensional, and generated by rotation number, as in § 2.3.3.
As in Proposition 2.92, D(rot) = 1. By Bavard’s Duality Theorem we have the
following:

Theorem 5.16 (Zhuang [205], Thm. 3.9). With notation as above, and for p, q

satisfying gcd(p− 1, q − 1) = 1, for any element f ∈ T̂p,q there is an equality

scl(f) =
|rot(f)|

2

We will see more examples of such an intimate relationship between scl and
dynamics in the sequel.

5.1.4. Rotation numbers in Stein–Thompson groups. Rotation num-
bers in Stein–Thompson groups have been well-studied by Isabelle Liousse [137].
She proves the following:

Theorem 5.17 (Liousse [137], Thm. 2.C′). Any number of the form logα
log β

mod Z where α, β ∈ 〈p, q〉 can be realized as the rotation number of an element
of the group T (d,Z[ 1

pq ], 〈p, q〉) where d = gcd(p− 1, q − 1).

For concreteness, take p = 2, q = 3. An example is the following:

Example 5.18 (Liousse [137]). Define a ∈ T2,3 by

a =

{
2
3x+ 2

3 if x ∈ [0, 1
2 ]

4
3x− 2

3 if x ∈ [12 , 1]

Then any lift â of a to T̂2,3 has rotation number log 3
log 2 (mod Z), and consequently

scl(â) is irrational in T̂2,3. In fact, scl in this case is transcendental, by the celebrated
theorem of Gelfond and Schneider ([89],[183]). The graph of a is illustrated in
Figure 5.1.
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2
3

2
3

1
2

1
2

Figure 5.1. Graph of the homeomorphism a ∈ T2,3

The map h : x → 2 − 21−x for x ∈ [0, 1] conjugates a to a rigid rotation
by log 3/ log 2. This example is very closely related to examples studied also by
Boshernitzan [18]. For a full discussion, and an explanation of this and related
phenomena, see Liousse [137], § 3.

Corollary 5.19 (Zhuang [205]). There exists a finitely presented group con-
taining elements with transcendental scl.

This answers in the negative question (c) in Gromov [99], page 142.

Remark 5.20. Work of Ghys–Sergiescu [92] already shows that the classical Thompson

group T is uniformly perfect, and therefore its central extension bT satisfies dim(Q( bT )) = 1,
spanned by rotation number. However, [92] show that every element of T has a periodic

point in S1, and therefore rotation number (and consequently scl) is rational in bT . In any

case, bT is an example of a finitely presented group whose scl spectrum is exactly equal to
the non-negative rational numbers.

5.2. Groups with few quasimorphisms

The examples in § 5.1 suggest that it is fruitful to study examples of groups
with H2

b finite dimensional. If G is a finitely presented group with scl identically
zero, then H2

b (G) injects into the finite dimensional space H2(G) by Theorem 2.50.

If Ĝ is a central extension of G, then Q(Ĝ) is finite dimensional, and scl in Ĝ can
be computed by Bavard duality. The Stein–Thompson groups discussed in § 5.1
are examples of this kind. It is psychologically useful to think of such groups as
“lattices” (in a certain sense) in the group of PL homeomorphisms of S1. Thinking
of these groups in this way connects them to a wider class of examples which we
now discuss.

5.2.1. Higher rank lattices. The main references for this section are [33, 34]
and [66]. Using tools from the theory of continuous bounded cohomology (see
[157]), Burger–Monod show that the natural map from bounded cohomology to
ordinary cohomology in dimension 2 is injective for a large class of important groups,
namely lattices in higher rank Lie groups.

The main theorems of [33, 34] are stated in very general terms; we state
these theorems for lattices in real Lie groups, for simplicity. First we recall some
definitions.

Definition 5.21. Let G be a closed subgroup of SL(m,R) for some m. A
closed, connected subgroup T of G is a torus if T is diagonalizable over C; i.e. if
there is g ∈ GL(m,C) such that g−1Tg consists entirely of diagonal matrices. A
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torus T in G is R-split if T is diagonalizable over R; i.e. if there is g ∈ GL(m,R)
such that g−1Tg consists entirely of diagonal matrices.

Example 5.22. The subgroup SO(2,R) in SL(2,R) is a torus, but not an
R-split torus, since the eigenvalues of most elements are not real. On the other
hand, the subgroup consisting of matrices of the form

(
λ 0
0 λ−1

)
where λ ∈ R∗ is a

(maximal) R-split torus.

For G a real Lie group (not necessarily a matrix group), a closed, connected
subgroup T is an R-split torus if for every x ∈ T , the conjugation action of x on
the Lie algebra of G is diagonalizable, with all real eigenvalues.

Definition 5.23. Let G be a real Lie group. The real rank of G, denoted
rankRG, is the dimension of any maximal R-split torus of G.

Definition 5.24. A Lie group is said to be simple if it has no nontrivial, closed,
proper, normal subgroups, and is not Abelian. It is almost simple if the only closed,
proper, normal subgroups are finite.

Remark 5.25. With this definition, the Lie group SL(2,R) is almost simple, since the only

closed proper normal subgroup is the center ±id, but its universal cover fSL(2,R) is not
almost simple, since its center is Z.

A lattice Γ in a Lie group G is a discrete subgroup such that Γ\G has finite
volume. A lattice is uniform (or cocompact) if Γ\G is compact, and nonuniform
otherwise. A lattice Γ in a Lie group which is a nontrivial product G =

∏
aGa is

irreducible if the projection of Γ to each proper product of factors is dense.
The following

Theorem 5.26 (Burger–Monod [34], Thm. 21, Cor. 24). Let Γ be an irreducible
lattice in a finite product G =

∏
aGa where Ga are connected, almost-simple non-

compact real Lie groups. If ∑

a∈A

rankRGa ≥ 2

then H2
b (Γ; R)→ H2(Γ; R) is injective.

Remark 5.27. When Γ as above is uniform, this is contained in Theorem 1.1 from [33].

Example 5.28. As an example we can take G = SL(2,R) × SL(2,R). There
is a well-known construction of lattices in SL(2,R) × SL(2,R) using quaternion
algebras, which we now describe. A standard reference for this material is Vignéras
[202].

Let F be a number field (i.e. a finite algebraic extension of Q), all of whose
embeddings in C are contained in the real numbers. Such a field is said to be
totally real and can be obtained, for instance, by taking a polynomial with rational
coefficients all of whose roots are real, and adjoining to Q all of these roots. A
quaternion algebra A over F is an algebra which as a group is a 4-dimensional vector
space over F generated by elements 1, i, j, k with an associative and distributive
multiplication law satisfying i2 = a, j2 = b, k = ij = −ji for some a, b ∈ F . Such
an algebra is typically denoted

A =

(
a, b

F

)
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A (Galois) embedding of F into R induces an inclusion of A into a quaternion
algebra over R. The only two such algebras, up to isomorphism are the matrix
algebraM2(R), and the ring of Hamilton’s quaternions H. An embedding σ : F → R

is ramified if A ⊗σF R ∼= H. Let OF denote the ring of algebraic integers in F . It
is finitely generated over Z. An order O in A is a subring of A containing 1 that
generatesA over F , and is a finitely generated OF -module. If x = x0+x1i+x2j+x3k
is an arbitrary element of A, where the xi ∈ F , the norm of x is x2

0−x2
1a−x2

2b+x
2
3ab

and the trace is 2x0. The norm is a multiplicative homormorphism from A to F . If
O is an order in A, the elements O1 of norm 1 are a group under multiplication.

Suppose that A is ramified at all but exactly two real embeddings of F . Con-
sider the diagonal embedding

ρ : A→M2(R)×M2(R)×H× · · · ×H

where each term is the embedding of A into A⊗σiF R associated to an embedding
σi : F → R.

Theorem 5.29. With notation as above, the image Γ := ρ(O1) is an irreducible
lattice in the product

ρ(O1) ⊂ SL(2,R)× SL(2,R)× SU(2)× · · · × SU(2)

Moreover, if the degree of F is at least 3, the lattice Γ is uniform.

See e.g. [202] for a proof. Since the SU(2) factors are all compact, the image
of Γ in SL(2,R)× SL(2,R) is also a lattice.

If x ∈ A and σ : F → R is an unramified embedding inducing ρσ : A→M2(R),
the trace of the matrix ρσ(x) is equal to the image under σ of the trace of x. In
particular, these traces are algebraic numbers, contained in σ(F ). If x ∈ O1 and
g = σ(x) ∈ SL(2,R), we can think of SL(2,R) acting on a circle, factoring through
SL(2,R)→ PSL(2,R). The rotation number of g under this action is

rot(g) =
cos−1(trace(g)/2)

π

mod Z, providing |trace(g)| ≤ 2. By Gelfond–Schneider, these rotation numbers
are transcendental when they are not rational. Moreover, they are rational for only
finitely many conjugacy classes in O1.

Let Γ be such a lattice, and consider the preimage Γ̂ in SL(2,R) × S̃L(2,R).
The group Γ is finitely presented, since it has a compact fundamental domain for

its action on the contractible space H2 ×H2. Since Γ̂ is a central Z extension, it is

also finitely presented. As in § 5.1 the group Q(Γ̂) is one dimensional, generated

by rotation number on the S̃L(2,R) factor. Hence for g ∈ Γ̂, scl(g) = |rot(g)|/2. As
observed above, many of these numbers are transcendental.

5.2.2. Bounded generation. For many specific (mostly nonuniform) lat-
tices, the conclusion of Theorem 5.26 can be obtained directly by quite different
methods.

Definition 5.30. A group G is boundedly generated by a symmetric subset
H = H−1 if every element of G can be written as a product h1h2 · · ·hn where each
hi ∈ H .

For this definition to be useful, the subset H should be small compared to G.
The prototypical example of a boundedly generated group is SL(n,Z) where n ≥ 3,
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or more generally SL(n,O) where O is the ring of integers of a number field (this
fact is due to Carter–Keller). We do not state their theorem in full generality.

Definition 5.31. For n ≥ 3 and i 6= j ≤ n the elementary matrix eij is the
element of SL(n,Z) having 1’s down the diagonal and in the ij location, and 0’s
elsewhere. An elementary matrix more generally is a power emij of some eij .

Theorem 5.32 (Carter–Keller [53]). The group SL(n,Z) for n ≥ 3 is boundedly
generated by elementary matrices. In other words, there is a uniform bound N(n)
such that every element g ∈ SL(n,Z) can be written as a product of at most N
elementary matrices.

Example 5.33 (SL(n,Z) for n ≥ 3). The stable commutator length vanishes
identically on SL(n,Z) for n ≥ 3. For, there is an identity

enij = [enik, ekj ]

provided i, j, k are distinct (which can be verified by direct calculation), and there-
fore cl(enij) = 1 for all eij and all nonzero n. Since every g ∈ SL(n,Z) can be
written as a product of a bounded number of powers of the eij , it follows that cl is
uniformly bounded on SL(n,Z) and therefore scl vanishes identically.

In unpublished work, Carter–Keller and E. Paige extended these results con-
siderably; Dave Witte-Morris [159] has obtained a very nice proof of their results
using the Compactness Theorem of first-order logic. A special case of particular
relevance is the following:

Theorem 5.34 (Carter–Keller–Paige [159] Thm. 6.1). Let A be the ring of
integers in a number field K (i.e. a finite algebraic extension of Q) containing
infinitely many units. Let T be an element of SL(2, A) which is not a scalar matrix
(i.e. not of the form λ · id). Then SL(2, A) has a finite index normal subgroup which
is boundedly generated by conjugates of T .

Remark 5.35. If A is the ring of integers in a number field K, and A has only finitely
many units, then K must be either Q or Q(

√
−d) for some positive integer d. Every other

A as above satisfies the hypothesis of the theorem.

Remark 5.36. The hypotheses of this theorem are equivalent to the property that SL(2, A)
is isomorphic to an irreducible lattice in a higher rank semisimple Lie group. So the
conclusion that scl vanishes identically also follows from Theorem 5.26.

Example 5.37. Let A = Z[
√

2], the ring obtained from Z by adjoining
√

2.
Then Γ = SL(2, A) is boundedly generated by conjugates of T =

(
1 1
0 1

)
. Since

H1(SL(2,Z); Z) = Z/6Z, the matrix T has a power which is a product of commuta-
tors in SL(2,Z), hence also in Γ. Let H < Γ be a finite index normal subgroup of Γ
which is boundedly generated by conjugates of T . Then cl is uniformly bounded on
H , and therefore scl vanishes identically on H . Since H is finite index on Γ, every
element of Γ has a power which is contained in H , hence scl vanishes identically on
all of Γ.

The inclusion Z[
√

2]→ R induces an inclusion of Γ into SL(2,R) whose image is

dense. Let Γ̂ be the preimage in S̃L(2,R). As in § 5.1 we conclude that Q(Γ̂) is one-

dimensional, spanned by rotation number. Hence in Γ̂ we have scl(g) = |rot(g)|/2.
By Gelfond–Schneider, these values are transcendental when they are not rational.
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Example 5.38. Another example, due to Liehl [136], says that SL(2,Z[1/2])

is boundedly generated by elementary matrices. As above, Q(Γ) = 0, and Q(Γ̂) is
one-dimensional, generated by rotation number, where Γ denotes SL(2,Z[1/2]) and

Γ̂ its central extension. An element of Γ with trace 2−n has transcendental rotation
number when n is positive.

Remark 5.39. If G is boundedly generated, so is a central extension bG. Thus there are
many examples of finitely presented groups which are boundedly generated, but for which

Q( bG) is nontrivial. This observation is made by Monod–Rémy in an appendix to [143].

They also observe that many of the groups G and bG furthermore have Kazhdan’s property
(T).

5.2.3. Symplectic groups. One class of Lie groups deserving special atten-
tion are the symplectic groups. As remarked earlier, there are two main sources of
quasimorphisms. The first source, hyperbolic geometry, was studied systematically
in Chapter 3. The second source is symplectic geometry (or more generally, causal
or ordered structures); we turn to this subject in this section and the next. Basic
references for symplectic geometry and topology are [151] and [112]. The material
and exposition in this section borrows heavily from Barge–Ghys [7].

Given a vector space V (over R for simplicity), let V ∗ denote its dual. The
nth exterior product ΛnV ∗, whose elements are called n-forms on V is the vector
space generated by terms v1 ∧ v2 ∧ · · · ∧ vn with the vi ∈ V ∗, which is linear in each
factor separately, and subject to the relation that interchanging the order of two
adjacent factors is multiplication by −1. With this notation, Λ1V ∗ = V ∗, and we
make the convention that Λ0V ∗ = R. The sum ⊕iΛiV ∗ is a graded algebra, where
multiplication is given by

v1 ∧ · · · ∧ vn × u1 ∧ · · · ∧ um = v1 ∧ · · · ∧ vn ∧ u1 ∧ · · · ∧ um
and extended by linearity. If x ∈ ΛiV ∗ and y ∈ ΛjV ∗, then by counting signs, one
sees that xy = (−1)ijyx. If the dimension of V ∗ is m, then the dimension of ΛiV ∗

is equal to
(
m
i

)
. Hence ΛmV ∗ ∼= R, and ΛiV ∗ = 0 for all i > m.

Definition 5.40. If V has dimension 2n, a form ω ∈ Λ2V ∗ is symplectic if
ω ∧ ω ∧ · · · ∧ ω 6= 0 for any r-fold product, where r ≤ n. Equivalently, ωn 6= 0 ∈
Λ2nV ∗.

If G acts on V linearly, there is an induced action on V ∗ by the formula

g(v)(g(u)) = v(u)

for all v ∈ V ∗ and u ∈ V . This lets us define a diagonal action of G on each ΛiV ∗

given by the formula

g(v1 ∧ · · · ∧ vn) = g(v1) ∧ · · · ∧ g(vn)
and extended by linearity.

Definition 5.41. Let V be a vector space and ω ∈ Λ2V ∗ a symplectic form.
The symplectic group of V, ω, denoted Sp(V, ω), is the subgroup of GL(V ) which
fixes ω.

Remark 5.42. When V has even dimension, the action of GL(V ) on Λ2V ∗ has a unique
open dense orbit which consists exactly of the set of all symplectic elements of Λ2V ∗. It
follows that any two groups Sp(V, ω) and Sp(V, ω′) are conjugate as subgroups of GL(V ),
and their isomorphism class depends only on the dimension of V .
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A vector space with an inner product may be identified with its dual. On R2n

with orthonormal basis x1, x2, · · · , xn, y1, y2, · · · , yn there is a “standard” symplec-
tic element given by the formula

ω = x1 ∧ y1 + x2 ∧ y2 + · · ·+ xn ∧ yn
Using the orthonormal basis to identify R2n with its dual, this defines a symplectic
form on R2n.

The symplectic group of R2n with respect to ω is usually called the symplectic
group, and denoted Sp(2n,R). If J denotes the 2n × 2n matrix whose four n × n
blocks have the form

J =

(
0 id
−id 0

)

then Sp(2n,R) is the group of matrices A for which ATJA = J .
Let U(n) denote the unitary group, i.e. the group of n × n complex matrices

which preserve the standard Hermitian inner product on Cn. If we think of R2n as
the underlying real vector space of Cn, then the inclusionMn(C)→M2n(R) realizes
U(n) as a compact subgroup of Sp(2n,R). In fact, U(n) is a maximal compact
subgroup, and the coset space X := Sp(2n,R)/U(n) admits an Sp(2n,R)-invariant
Riemannian metric of non-positive curvature. The space X is usually called the
Siegel upper half-space, and has several equivalent descriptions. One well-known
description says that X is the space of n × n complex symmetric matrices whose
imaginary part is positive definite. If n = 1, this is the set of complex numbers
with positive imaginary part, which is the upper half-space model of the (ordinary)
hyperbolic plane.

Since X is non-positively curved and complete, it is contractible, so the inclu-
sion U(n)→ Sp(2n,R) is a homotopy equivalence. The group U(n) acts transitively
on the unit sphere S2n−1 in Cn, with stabilizer U(n− 1), so there is a fibration

U(n− 1)→ U(n)→ S2n−1

By the homotopy exact sequence of a fibration, it follows that π1(U(n)) = Z,
generated by the inclusion S1 = U(1)→ U(n), and therefore π1(Sp(2n,R)) = Z.

Let S̃p(2n,R) denote the universal covering group. In the case n = 1 this is

just S̃L(2,R).

A closed differential 2-form ω on a manifold M2n of dimension 2n is symplectic
if the 2n-form ωn is nonzero at every point. It turns out that there is a natural sym-
plectic form ω on the Siegel upper half-space X which is invariant under Sp(2n,R).
If Γ is a (torsion-free) lattice in Sp(2n,R), then ω descends to a symplectic form on
X/Γ. If Γ is cocompact, the cohomology class [ω] ∈ H2(X/Γ) = H2(Γ) is nonzero,
since the integral of the top power of ω over X/Γ is nonzero. In fact, it turns out
that the class of [ω] is in the image of H2

b (Γ). Moreover, Domic and Toledo [66]
calculate the norm of this class, and show that it is equal to nπ.

If we let Γ̂ denote the preimage of Γ in S̃p(2n,R), then [ω] pulls back to a

class [ω̃] in H2
b (Γ̂) whose image in H2(Γ̂) is trivial, and therefore comes from a

homogeneous quasimorphism ρ, which we normalize by scaling to have D(ρ) = n.
Evidently, in the case n = 1, the quasimorphism ρ is just rotation number. Barge–
Ghys [7] call this quasimorphism the symplectic rotation number. In fact, since
the form ω is invariant under the action of Sp(2n,R) on X , there is a well-defined
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homogeneous quasimorphism ρ defined on the entire group S̃p(2n,R), and ρ ∈ Q(Γ̂)
is just pulled back by inclusion.

Barge–Ghys give an explicit description for this quasimorphism, as follows.

Definition 5.43. A subspace π of R2n of real dimension n is Lagrangian if the
symplectic form ω restricts to zero on π. That is, if ω(u, v) = 0 for all u, v ∈ π.

A subspace π of R2n of real dimension n is Lagrangian if and only if it is
totally real when considered as a subspace of Cn. It follows that the subgroup
U(n) of Sp(2n,R) acts transitively on the space Λn of Lagrangian subspaces of
R2n, with stabilizer the subgroup O(n,R). In other words, there is an isomorphism
U(n)/O(n,R) = Λn as principal U(n)-spaces. Note that we are thinking here of
O(n,R) firstly as a subgroup of GL(n,C) by the inclusion R→ C, and then secondly
as a subgroup of Sp(2n,R) by the inclusion GL(n,C) → GL(2n,R) coming from
the identification of Cn with R2n.

Let ∗ ∈ Λn be some basepoint, for example corresponding to the Lagrangian
subspace Rn in Cn. For each g ∈ Sp(2n,R), there is a unique coset u(g)O(n,R) ∈
U(n)/O(n,R) with g(∗) = u(g)(∗) for any element of the coset. The homomorphism
det2 : U(n)→ S1 factors through the quotient U(n)/O(n,R), and defines a function

det2 : Sp(2n,R) → S1. This map is a double covering, restricted to the subgroup
S1 = U(1), so we get a covering map

µ : S̃p(2n,R)→ R

which turns out to be a quasimorphism.
The quasimorphism µ is not homogeneous. However, Barge–Ghys derive a

formula for its homogenization ρ, at least mod Z. To state their theorem we must
first recall some standard facts about the spectrum of a symplectic matrix. Let
A ∈ Sp(2n,R) and suppose for simplicity that A is diagonalizable over C. The
spectrum of A (i.e. the set of complex eigenvalues with multiplicity) is invariant
under conjugation, since A is a real matrix. Moreover, it is invariant with respect
to inversion in the unit circle in C. Hence if λ is an eigenvalue, then λ, λ−1, λ, λ−1

are all eigenvalues. The case that λ is real or on the unit circle is naturally rather
special. It turns out that eigenvalues λ which are not on the unit circle do not
contribute to ρ.

Suppose A is diagonalizable over C, and H is the subspace of R2n of dimension
2k spanned by the 2 × 2 Jordan blocks of A (over R) corresponding to pairs of
complex eigenvalues λ, λ with λ on the unit circle. Then H is a symplectic subspace
of R2n, and the restriction of A to H is orthogonal, and therefore unitary; hence
A|H is conjugate in the symplectic group to a unitary matrix B ∈ U(k). The
complex eigenvalues of B are called the proper values of A of absolute value 1.

Barge–Ghys’ theorem gives a formula for ρ in terms of the proper values of
absolute value 1.

Theorem 5.44 (Barge–Ghys [7], Thm. 2.10). Let g be an element of Sp(2n,R),
and let λ1, · · · , λk be the proper values of g of absolute value 1, listed with multi-
plicity. Then

ρ(g) =
1

π

∑
arg(λi) (mod Z)

Remark 5.45. If we deform a matrix in Sp(2n,R) so that some set {λ, λ−1, λ, λ−1} of
eigenvalues is deformed onto the unit circle, one obtains for the deformed matrix two
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proper values of absolute value one, which are equal to λ and λ respectively, and therefore
the sum of their arguments vanishes. This explains why ρ is continuous on Sp(2n,R),
which is otherwise not obvious.

Remark 5.46. If we think of R2n with its standard symplectic form as a product of n
copies of R2 with its standard symplectic form, we get a natural inclusion

SL(2,R)× SL(2,R)× · · · × SL(2,R)→ Sp(2n,R)

The symplectic rotation number restricts to Poincaré’s rotation number on each SL(2,R)
factor, and is equal to the sum of rotation numbers on the factors on the image of the
product of SL(2,R)’s.

Theorem 5.26 shows that H2
b (Γ) includes into H2(Γ), when n is at least 2.

Since the defect of ρ is n, there is a formula

scl(g) = |ρ(g)|/2n =
1

2nπ

∑
arg(λi) (mod

1

2n
Z)

for g ∈ Γ̂. Lattices in Sp(2n,R) for n at least 2 have algebraic entries. Hence by

Gelfond–Schneider, scl is transcendental on Γ̂ when it is irrational.

Obviously the examples above can be generalized tremendously. However in
every case, the irrational values of scl obtained appear to be transcendental. Hence
we pose the following question.

Question 5.47. Is there a finitely presented group G in which scl takes on an
irrational value that is algebraic?

More generally, one can ask for a complete characterization of the values of scl
that can occur in finitely presented groups.

Question 5.48. What real numbers are values of scl on elements in finitely
presented groups?

This seems like a difficult question.

5.2.4. Causal structures and quasimorphisms. In this section we give a
more topological definition of the symplectic rotation quasimorphism ρ defined in
§ 5.2.3 which “explains” the integral value of D(ρ). The construction makes use of
the causal structure on Λn. This point of view is particularly explicit in [3]. Also
compare [54].

Definition 5.49. Let V be a real vector space. A cone C in V is a subset of
the form R ·K where K is compact and convex with nonempty interior, and disjoint
from the origin. A vector v ∈ V is timelike if it is in the interior of C, is lightlike if
it is in the frontier of C, and is spacelike otherwise.

Example 5.50. Let V be an (n + 1)-dimensional real vector space, and q :
V × V → R a symmetric bilinear pairing of signature (n, 1) (i.e. with n positive
eigenvalues and one negative eigenvalue). The set of vectors v with q(v, v) ≤ 0 is a
cone in V .

If M is a smooth manifold, a cone field is a continuously varying choice of cone
in the tangent space at each point. The set of timelike vectors at a point has two
components; a causal structure on M is a cone field together with a continuously
varying choice of one of these components (the positive cone) at each point. Two
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points p, q are causally connected, and we write p ≺ q, if there is a nontrivial smooth
curve from p to q whose tangent vector at every point is positive and timelike. The
relation≺ is transitive (but not typically reflexive or symmetric). A causal structure
is recurrent if p ≺ q for all p and q.

Remark 5.51. Some authors use the notational convention that p ≺ q means either that
p = q or that p is causally connected to q in the sense above. We denote this instead by
p � q.

Let M be a closed manifold which admits a recurrent causal structure, and let S
be a non-separating codimension one submanifold whose tangent space is spacelike.
Then S is essential in homology, and is dual to an element of H1(M ; Z). Let M ′

denote the infinite cyclic cover of M dual to S. The causal structure on M lifts to
one on M ′ (where it is no longer recurrent).

Let C+(M) denote the group of diffeomorphisms of M which preserve the
causal structure, and C+(M ′)Z the preimage of this group in Homeo+(M ′). There
is a central extension

0→ Z→ C+(M ′)Z → C+(M)→ 0

where Z is the deck group. We write the action of the deck group on points in M ′

by p→ p+ n.
For any p, q ∈M ′, define d(p, q) to be the greatest integer n ∈ Z such that p ≺

q−n. Pick a basepoint ∗ in M ′, and for any α ∈ C+(M ′)Z, define φ(α) = d(∗, α(∗))
and ρ(α) = limn→∞ φ(αn)/n. Since the causal structure on M is recurrent, there
is a least positive integer w such that any two points p and q are contained in a
closed timelike curve which intersects S at most w times.

Lemma 5.52. The function φ as above is a quasimorphism, and ρ is its homog-
enization. Moreover, the defect of ρ is at most w.

Proof. For any α there is equality φ(α − φ(α)) = 0. Let α, β be arbitrary,
and denote α′ = α−φ(α) and β′ = β−φ(β). Then ∗ ≺ α′(∗) ≺ ∗+w and similarly
for β′(∗). We calculate

∗ ≺ α′(∗) ≺ α′β′(∗) ≺ α′(∗+ w) ≺ ∗+ 2w

and therefore

|φ(αβ) − φ(α) − φ(β)| = |φ(α′β′)| ≤ 2w

This shows that φ is a quasimorphism; evidently ρ is its homogenization.
To estimate the defect of ρ we repeat the argument of Lemma 2.41. For any

p ∈ M ′ and any elements α, β ∈ C+(M ′)Z, after multiplying by elements of the
center if necessary, we can assume

p � α(p) � αβ(p) ≺ α(p+ w) ≺ p+ 2w

p � β(p) � βα(p) ≺ β(p+ w) ≺ p+ 2w

Set q = βα(p). Then p � q ≺ p+ 2w and therefore

q − 2w ≺ p � αβ(p) = [α, β](q) ≺ p+ 2w � q + 2w

Since p was arbitrary, so was q, and we have shown that q−2w ≺ [α, β](q) ≺ q+2w
for any q and any commutator [α, β].

It follows that if γ is a product of m commutators, then |ρ(γ)| ≤ 2w(m + 1).
Taking m large, the argument of Lemma 2.24 shows D(ρ) ≤ w. �
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Remark 5.53. Essentially the same construction is described in [54], § 7–8.

Causal structures arise naturally in certain contexts.

Example 5.54. Let G be a simple Lie algebra with Lie group G. An Ad(G)-
invariant cone in G exponentiates to a G-invariant cone field on G. This determines
a causal structure either on G or on a double cover, which is invariant under the
action of the group on itself. Let K be a maximal compact subgroup of G, with Lie
algebra k. It turns out (Paneitz [165], Cor. 3.2) that there is an Ad(G)-invariant
cone in G if and only if k has nontrivial center.

If G = Sp(2n,R), then

G =

(
A B
C −At

)
where A,B,C are n× n blocks, and B,C are symmetric

k =

(
A −B
B A

)
where A is skew, and B is symmetric

The center of k is nontrivial, and spanned by the matrix
(

0 −Id
Id 0

)
. If ω denotes the

standard (and Ad(G)-invariant) symplectic form on R2n, define C to be the cone
of vectors X ∈ G for which ω(ad(X)v, v) ≥ 0 for all v ∈ R2n. This is nonempty
and invariant, and defines a (recurrent) causal structure on Sp(2n,R).

Example 5.55. Let G = SO(n, 2), the group of linear automorphisms of Rn+2

which preserve the quadratic form q(x) = x2
1 + · · ·+ x2

n − x2
n+1 − x2

n+2. Let H be
the hyperboloid of vectors x for which q(x) = −1. Then G acts transitively on H .
At a point x ∈ H , the tangent space TxH is naturally isomorphic to the orthogonal
subspace of Rn+2 to x with respect to the form q. Since q(x) = −1, the restriction
of q to this subspace has signature (n, 1), and therefore G preserves a cone field on
H as in Example 5.50. There is a subgroup SO0(n, 2) of index 2 which preserves
the orientation on the cone field, and therefore a causal structure on H .

When n = 1, the group SO(1, 2) is isomorphic to PSL(2,R), the group of
isometries of the hyperbolic plane. In the Klein (projective) model, the hyperbolic
plane is identified with the interior of a round disk D in RP2, and the exterior
RP

2 − D (which is homeomorphic to an open Möbius strip) is equal to H/ ± 1
where H is as in Example 5.55. If p is a point in RP

2 −D, there are two straight
lines through p which are tangent to ∂D. The cone at p is the set of tangents to
straight lines through p which do not intersect D. A smooth curve in RP2 − D
is timelike if every tangent line to the curve is disjoint from D. Evidently, the
causal structure on H is recurrent; in fact, one sees that any two points in H are
contained in a closed timelike loop with winding number at most 2. By rotational
symmetry, it follows that the same is true for arbitrary n ≥ 2 and therefore one

obtains a homogeneous quasimorphism on the universal covering group S̃O0(n, 2)
with defect at most 2. When n ≥ 2, this estimate can be seen to be sharp by an
explicit construction (compare with Domic–Toledo [66] and [55]).

Causal structures on noncompact manifolds often extend to causal structures on
certain natural boundaries. A symmetric bounded domain is a complex symmetric
space that is isomorphic to a bounded domain in Cn for some n. It is irreducible if its
universal cover is not a nontrivial direct product of symmetric spaces. By a theorem
of Harish-Chandra, every irreducible complex symmetric space of noncompact type
is bounded. An irreducible symmetric bounded domain is said to be of tube type
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if it is isomorphic to a domain of the form V + iΩ where Ω ⊂ V is a proper open
cone in the real vector space V .

A realization of a bounded symmetric domain defines a natural compactifi-
cation. The group G of holomorphic automorphisms of the domain extends to
the compactification, and the Shilov boundary is the unique closed G-orbit in the
compactification. It is known (see e.g. [120], § 5) that the Shilov boundary of a
symmetric bounded domain of tube type admits a natural causal structure.

Example 5.56. The Siegel upper half-space Sp(2n,R)/U(n) is a symmetric
bounded domain of tube type. Its Shilov boundary is the space Λn of Lagrangians
in R2n.

The causal structure on Λn can be given a very geometric definition, as observed
by Arnold [3]. If π is a Lagrangian subspace of R2n (and therefore corresponds to
a point in Λn) the train of π is the set of Lagrangian subspaces of R2n which are
not transverse to π.

Fix a Lagrangian π and a transverse Lagrangian σ, and let πt be a 1-parameter
family of Lagrangians with π0 = π. For small t, the Lagrangians πt and σ are still
transverse, and span R2n. For each v ∈ R2n and each such t, there is a unique
decomposition v = v(πt) + v(σ) where v(πt) ∈ πt and v(σ) ∈ σ (note that for a
fixed v, the vector v(σ) typically depends on t). Define a 1-parameter family of
bilinear forms qt on R2n by the formula

qt(v, w) = ω(v(πt), w(σ))

where ω is the symplectic form. In this way, a tangent vector π′0 := d
dt

∣∣
0
πt to π

determines a symmetric bilinear form q′0 := d
dt

∣∣
0
qt which vanishes identically on σ,

and can be thought of as a symmetric bilinear form on π. The map π′0 → q′0 is
an isomorphism from the tangent space TπΛn to the space of symmetric bilinear
forms on π (to see this, observe that it is linear and injective, and is surjective
by a dimension count, since both U(n)/O(n) and the space of symmetric n × n
matrices have dimension n(n + 1)/2). Note that q′0 is degenerate precisely along
the subspace π′0∩π. Hence the tangent cone to the train at π corresponds precisely
to the degenerate bilinear forms. Exponentiating, we see that in a neighborhood of
π, the train separates Λn into chambers, corresponding to nondegenerate quadratic
forms on Rn of a fixed signature. The positive cone corresponds (infinitesimally) to
positive definite quadratic forms on π.

Example 5.57. The space Λ2 = U(2)/O(2) is diffeomorphic to the nonori-
entable sphere bundle over S1. Fix co-ordinates Λ2 = S2 × [0, 1]/ ∼ where (θ, 0) ∼
(−θ, 1). Fix a basepoint ∗ to be the north pole of the sphere S2 × 0 in these co-
ordinates. The train of ∗ intersects each sphere S2×t in a circle of constant latitude
which decreases monotonically with t, until it converges to the south pole in S2× 1
(which is identified with ∗ by the holonomy map).

Example 5.58. Let G = SO(n, 2), and recall the notation from Example 5.55.
The projectivization of the cone q = 0 is an Sn−1 bundle over S1 that we denote by
E (this bundle is twisted by the antipodal map, so E is topologically a product if
and only if n is even). Then E is a Shilov boundary for G. In the projectivization,
E divides RPn+1 into two components, one of which is H/ ± 1. The cone field
on H limits to a cone field on E, where the cone at a point e ∈ E is the set
of tangent lines to E which point into H/ ± 1. The group SO0(n, 2) preserves



154 5. IRRATIONALITY AND DYNAMICS

the causal structure on E. When n = 1, E is a circle, which can be thought
of as the circle at infinity of the hyperbolic plane. When n = 2, E is a torus,
and the cone structure determines a pair of transverse foliations on this torus by
circles. SO0(2, 2) acts on the leaf spaces of these foliations (which are themselves
circles) by projective transformations, exhibiting the exceptional 2-fold covering
SO0(2, 2) → PSL(2,R) × PSL(2,R). When n = 3, E is a twisted S2 bundle over
S1, and is equal to the space Λ2 as described in Example 5.57; this reflects the
exceptional isomorphism SO0(3, 2) = Sp(4,R)/± 1.

Causal structures become very rigid in high (≥ 3) (real) dimensions. For ex-
ample, one has the following:

Theorem 5.59 (Kaneyuki [120], Thm. 6.2). Let D be an irreducible symmetric
bounded domain of tube type, and G(D) the group of holomorphic automorphisms of
D. Let S be the Shilov boundary of D with its natural causal structure. Let C+(S)
be the group of causal homeomorphisms of S. Suppose (complex) dim(D) > 1.
Then C+(S) = G(D).

5.3. Braid groups and transformation groups

5.3.1. Braid groups.

Definition 5.60. The braid group Bn on n strands is generated by elements
σi for i = 1, 2, · · · , n− 1 and relations [σi, σj ] = 1 when |i− j| 6= 1, and σiσi+1σi =
σi+1σiσi+1.

These groups were introduced by Emil Artin in 1925 [5].
A word in the generators is represented pictorially by a projection of a tangle

of n arcs running between two parallel vertical lines, where no arc has any vertical
tangencies. Braids are composed by “gluing” pictures; see Figure 5.2. A generator

◦ =

Figure 5.2. Braids are represented by pictures; composition is
performed by gluing adjacent pictures. This picture illustrates the
composition of σ1 with σ−1

2 in B3.

σi is represented by a crossing, where the ith strand crosses over the (i + 1)st
strand, and σ−1

i is represented by a crossing where the (i+ 1)st strand crosses over
the ith strand. Equivalence in Bn corresponds to equivalence of pictures up to
“isotopy”. The relation [σi, σj ] = 1 when |i − j| 6= 1 corresponds to the fact that
crossings on disjoint pairs of strands can be performed in either order. The group
law σ−1

i σi = σiσ
−1
i = id corresponds to the Reidemeister 2 move on diagrams,

and the relation σiσi+1σi = σi+1σiσi+1 corresponds to the Reidemeister 3 move on
diagrams; see Figure 5.3.

Another way to think of Bn is as a mapping class group. A diagram of a braid
can be thought of as a tangle in a product D2 × [0, 1] transverse to the foliation by
vertical disks. In this way, an element in Bn determines a loop in the configuration
space of distinct n-tuples of points in the disk. Isotopy of braids corresponds to
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=

Figure 5.3. The relation σiσi+1σi = σi+1σiσi+1 in the braid
group corresponds to the Reidemeister 3 move on diagrams.

homotopy of loops, so Bn can be thought of as the fundamental group of the
space of distinct n-tuples in D2. Equivalently, Bn is just the mapping class group
rel. boundary of a disk with n punctures. Braid groups, as examples of mapping
class groups, admit a very large space of homogeneous quasimorphisms, by the
construction described in § 3.5.

Gambaudo–Ghys [87] use symplectic geometry to define some quite different
quasimorphisms. Many interesting representations of Bn can be derived from their
geometric description as mapping class groups. Let Dn denote the disk with n
points removed. There is an isomorphism π1(Dn) → Fn, the free group on n gen-
erators, and the generators may be taken to be loops, each of which winds around
one puncture. Let ǫ : π1(Dn) → Z take each generator to 1. This homomorphism

defines a cyclic cover D̃n, whose first homology H1(D̃n) can be thought of as a
Z[q, q−1]-module, where q generates the deck group of the covering. The first ho-
mology group is free as a module of rank (n−1). If ei is a based loop in Dn winding
positively once around the ith puncture, the loops αi := ei+1e

−1
i for 1 ≤ i ≤ (n−1)

all lift to D̃n, and freely generated H1(D̃n) as a Z[q, q−1]-module.
If we fix some basepoint p ∈ Dn, every braid ψ ∈ Bn is represented by a

homeomorphism which fixes p, and is covered by a unique homeomorphism ψ̃ of

D̃n which fixes the preimages of p pointwise. Hence there is an induced action of Bn
on H1(D̃n) by Z[q, q−1]-module automorphisms, and thereby a representation β :
Bn → GL(n− 1,Z[q, q−1]). This representation is called the Burau representation.
See e.g. [15] for an elegant geometric interpretation of this action, and [16] as a
general reference for braid groups. As matrices, this representation has the form

σ1 →
(
−q−1 q−1

0 1

)
⊕ Idn−3, σn−1 → Idn−3 ⊕

(
1 0
1 −q−1

)
,

and

σi → Idi−2 ⊕




1 0 0
1 −q−1 q−1

0 0 1


⊕ Idn−i−2 for 1 < i < n− 1

where the notation A⊕B stands for the block matrix
(
A 0
0 B

)
.

Remark 5.61. Several different conventions exist in the literature, depending on whether
one takes σi or σ−1

i as the generators of Bn, and whether one studies the action on
homology or cohomology.

Squier [190] showed that the image of the Burau representation is unitary,
in the following sense. It turns out that there is a nonsingular matrix J0 defined
over Z[q, q−1] such that for each w ∈ Bn, one has β(w)∗J0β(w) = J0 (here ∗ is
the conjugate transpose, where conjugation interchanges q with q−1). In fact, over
Z[s, s−1] where s2 = q, a change of basis replaces J0 by a matrix J satisfying
J∗ = J .
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If σ : Z[s, s−1] → C takes s to an element of norm 1, the matrix J(s) is
Hermitian (in the usual sense) and one obtains a representation βσ : Bn → U(J),
the unitary group of the form J . If J is nondegenerate, its imaginary part is
a nondegenerate antisymmetric form, and one therefore obtains a representation
βσ : Bn → Sp(2n − 2; R). It turns out that the forms J are degenerate exactly
when s is a (2n)th root of unity different from ±1 (so that q is an nth root of unity
different from 1). When s is sufficiently close to 1, the form J is positive definite.
Each time q crosses an nth root of unity, the number of positive eigenvalues changes
by −1. So when q is specialized to an mth root of unity with m < n and m,n
coprime, the form is nondegenerate, the signature is indefinite, and the image of βσ
in Sp(2n− 2; R) typically has noncompact closure.

Another way to obtain these representations of Bn is by using surface topology.
For each m, let Dn,m be the surface obtained by taking an m-fold branched cover
of the disk over n points. The induced action of Bn on Dn,m is well-defined up to
homotopy, and we get a representation on the vector space H1(Dn,m, ∂Dn,m; R).
The deck group Z/mZ acts onDn,m. If ω is anmth root of unity, the ω-eigenspace of
this action is real, and Bn-invariant. There is thus an action of Bn on the invariant
vector space H1(Dn,m, ∂Dn,m; R)ω . It turns out this representation is isomorphic
to the Burau representation evaluated at q = ω (see e.g. [87], Prop. 2.2). The
ordinary intersection pairing on H1 is nondegenerate on this subspace when n and
m are coprime, and one sees in another way the symplectic structure.

Remark 5.62. When n and m are not coprime, the imaginary part of J is degenerate on
a subspace, and one obtains a symplectic action of Bn on the quotient by this subspace.

The cohomology of classical braid groups was computed by Arnold [1] (also see
[201], Thm. 4.1). He showed the following:

Theorem 5.63 (Arnold [1]). For n ≥ 2, there are isomorphisms H0(Bn; Z) =
H1(Bn; Z) = Z. Otherwise, Hi(Bn; Z) is finite when i ≥ 2 and zero when i ≥ n.

We are concerned with the case i = 2. Theorem 5.63 says that H2(Bn; Z)
is torsion. Consequently, each representation βσ : Bn → Sp(2n − 2,R) defines a
quasimorphism ρ on Bn (well-defined up to elements of H1), whose coboundary is
the pullback of the generator of H2

b (Sp(2n− 2)) under β∗σ.

Example 5.64. The braid group B3 is discussed in Example 4.33. In the
special case of B3, the image of the Burau representation evaluated at −1 is equal to
SL(2,Z), and ρ is the rotation quasimorphism coming from the action of PSL(2,Z)
on S1. A slightly different normalization of this quasimorphism is sometimes called
the Rademacher function on SL(2,Z); see § 4 of [87], and § 6.1.7.

Example 5.65. The Burau representation of B4 evaluated at ω = e2πi/3 is 3
(complex) dimensional, and has matrix entries in the discrete subring Z[ω] of C. The
form J has signature (1, 2). Projectivizing, one obtains a discrete representation
of B4 into PU(1, 2), the group of isometries of the complex hyperbolic plane. One
may therefore obtain interesting de Rham quasimorphisms on B4, as in § 2.3.1.

5.3.2. Area-preserving diffeomorphisms of surfaces. Gambaudo–Ghys
[86] showed how to use quasimorphisms on discrete groups to obtain nontrivial
quasimorphisms on certain transformation groups.
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Similar ideas appeared earlier in work of Arnold [4], Ruelle [181], Gambaudo–
Sullivan–Tresser [88] and others. A given (continuous) dynamical system is ap-
proximated (in some sense) by a discrete combinatorial model. Associated to the
discrete approximation is some numerical invariant, which can then be integrated
over the degrees of freedom of the continuous system. For this integration to make
sense and have useful properties, the continuous dynamical system must be (at
least) measure preserving, and of sufficient regularity that the integral converges.

The case presenting the fewest technical details is that of a group of area-
preserving diffeomorphisms of a (finite area) surface.

Definition 5.66. For any surface S, let Diff∞(S, ∂S, area) (or omit the ∂S
in the notation if S has no boundary) denote the group of diffeomorphisms of
S, fixed pointwise on the boundary, that preserve the (standard) area form, and
let Diff∞0 (S, ∂S, area) denote the subgroup of such diffeomorphisms isotopic to the
identity.

There is an exact sequence

Diff∞0 (S, ∂S, area)→ Diff∞(S, ∂S, area)→ MCG(S, ∂S)

Quasimorphisms on mapping class groups can be pulled back to Diff∞(S, ∂S, area).
Therefore we focus on the construction of quasimorphisms on Diff∞0 (S, ∂S, area).
A key case to consider is S = D, the closed unit disk.

Definition 5.67. Fix some n, and let µ be a quasimorphism on Bn. Fix n
distinct points x0

i in D for 1 ≤ i ≤ n. Given g ∈ Diff∞0 (D, ∂D, area), let gt be an
isotopy from id to g. For a generic ordered n-tuple of distinct points x1, · · · , xn
in D, let γ(g;x1, · · · , xn) ∈ Bn be the braid obtained by first moving the x0

i in a
straight line to the xi, then composing with the isotopy gt from xi to g(xi), then
finally moving the g(xi) in a straight line back to the xi.

Now define

Φµ(g) =

∫

D×···×D

µ(γ(g;x1, · · · , xn))darea(x1)× · · · × darea(xn)

and Φµ(g) = limn→∞
1
nΦµ(g

n).

Lemma 5.68. For any quasimorphism µ on Bn, the function Φµ is a homoge-
neous quasimorphism on Diff∞0 (D, ∂D, area).

Proof. For any two diffeomorphisms g, h, and generic x1, · · · , xn there is
equality

γ(gh;x1, · · · , xn) = γ(h;x1, · · · , xn) · γ(g;h(x1), · · · , h(xn))

in Bn. Homogenizing removes the dependence on the choice of x0
i . Integrating over

D × · · · ×D and using the fact that µ is a quasimorphism, we obtain the desired
result. �

Example 5.69. In case n = 2, the group B2 is isomorphic to Z and we can take
µ to be an isomorphism. In this case, the resulting function Φµ is a homomorphism
from Diff∞0 (D, ∂D, area) to R, which is equal (after normalization) to the well-
known Calabi homomorphism.

Calabi [38] constructed an invariant for any symplectic diffeomorphism with
compact support of a symplectic manifold without boundary. Calabi’s construction
can be translated into the case of area-preserving diffeomorphisms of the disk as
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follows. Let θ be a 1-form on D whose exterior derivative dθ is the area form. If
g is an area-preserving diffeomorphism of D fixing ∂D pointwise, then g∗θ − θ is
closed, and there is a function f on D satisfying df = g∗θ − θ. The function f is
unique up to addition of a constant; normalize f so that it is zero on ∂D. Calabi’s
homomorphism is defined by the formula

Ψ(g) =

∫

D

fdθ

Changing θ to θ′ = θ+dh changes f to f ′ = f+(h−hg); since g is area-preserving,
the integral of (h− hg) is zero, so Ψ does not depend on the choice of θ.

If g1 and g2 are two diffeomorphisms, then

(g1g2)
∗θ − θ = g∗2g

∗
1θ − g∗1θ + g∗1θ − θ

so Ψ(g1g2) = Ψ(g1) + Ψ(g2). The interpretation of Calabi’s homomorphism as an
“average braiding number” of pairs of points in the disk is due to Fathi (unpub-
lished); see [85].

To define quasimorphisms on Diff∞0 (S2, area), we need to construct quasimor-

phisms on B̂n, the braid group of n-points in the sphere. One way to construct

such quasimorphisms is to think of B̂n as the mapping class group of a sphere with
n punctures, and use the methods of § 3.5, for instance Theorem 3.74. Another,

more explicit method is to use the relationship between B̂n and Bn−1. By thinking
of the disk as the once-punctured sphere, one sees that there is a homomorphism

Bn−1 → B̂n. The kernel of this map is Z, generated by a “full twist” of all strands;

and the image has finite index in B̂n, and contains the kernel of the permuta-

tion map from B̂n to the symmetric group Sn. For example, B̂4 contains the free
group F2 with finite index, and therefore admits an infinite dimensional family of
homogeneous quasimorphisms.

Given a (homogeneous) quasimorphism µ on B̂n, we can construct a homo-
geneous quasimorphism Φµ on Diff∞0 (S2, area) as in Definition 5.67. In a similar
way Gambaudo–Ghys show ([86], Theorem 1.2) that for every closed oriented sur-
face S there exist an infinite dimensional space of homogeneous quasimorphisms on
Diff∞0 (S, area).

5.3.3. Higher genus. When S has higher genus, one can construct quasi-
morphisms on Diff∞0 (S, area) from a hyperbolic structure on S, by a variation of
the construction of de Rham quasimorphisms in § 2.3.1.

Definition 5.70 (de Rham quasimorphism). Let S be a closed surface with
χ(S) < 0. Fix a hyperbolic structure on S, and let α be a 1-form on S. Given
f ∈ Diff∞0 (S, area), let ft be an isotopy from id to f . For each x ∈ S, define γ(x, f)
to be the unique geodesic in S from x to f(x) in the relative homotopy class of the
path ft(x). Then define

φα(f) =

∫

S

(∫

γ(x,f)

α

)
darea

Lemma 5.71. The function φα is a quasimorphism on Diff∞0 (S, area) with defect
at most ‖dα‖π · area(S).
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Proof. For any point x and any two elements f, g there is a geodesic triangle
with edges γ(x, f), γ(f(x), g), and γ(x, gf). By Stokes’ theorem,

∣∣∣∣∣

∫

γ(x,f)

α+

∫

γ(f(x),g)

α−
∫

γ(x,gf)

α

∣∣∣∣∣ ≤ ‖dα‖π

Now integrate over x ∈ S, and use the fact that f is area-preserving to change
variables in the second term on the left hand side. One obtains the estimate

|φα(f) + φα(g)− φα(gf)| ≤ ‖dα‖π · area(S)

as claimed. �

The homogenizations of φα are typically nontrivial, and generate an infinite
dimensional subspace of Q. When α is a closed 1-form, φα depends only on the
cohomology class [α] ∈ H1(S), and is evidently equal to the flux homomorphism
(Poincaré) dual to [α].

Example 5.72 (Ruelle’s rotation number [181]). The same method does not
work directly on Diff∞0 (T 2, area). Nevertheless, Ruelle showed how to define a
“rotation quasimorphism” on this group as follows. First, trivialize the tangent
bundle; for example, we can choose a Euclidean metric on T 2, and use the flat
connection to trivialize the bundle. Given x ∈ T 2 and f ∈ Diff∞0 (T 2, area), choose
an isotopy ft from id to f . Given a point x, the trivialization lets us canonically
identify tangent spaces Tft(x) and Tx, so we can think of dft as a path in GL(Tx).

Projectivizing gives a path in PSL(Tx); lifting to S̃L(Tx) and composing with the
rotation quasimorphism defines a number ρ(x, f). A different but homotopic path
f ′t determines a homotopic path in PSL(Tx). Since π1(Diff∞0 (T 2, area)) is generated
by loops of translations, ρ(x, f) does not depend on any choices. Now define

R(f) =

∫

T 2

ρ(x, f)darea

Similar arguments to those above show that R is a (nontrivial) quasimorphism.

Remark 5.73. If G is a subgroup of Diff∞

0 (T 2) and µ is any G-invariant probability mea-
sure on T 2, there is a Ruelle quasimorphism Rµ on G. Similar constructions also make
sense on groups of Hamiltonian symplectomorphisms (or on their universal covers) of
certain symplectic manifolds.

Remark 5.74. There is a section from SL(2,Z) to Diff∞(T 2, area) whose image consists
of the linear automorphisms of T 2 fixing a basepoint. This group acts by conjugation on
Diff∞

0 (T 2, area), and the Ruelle quasimorphism is constant on orbits. Consequently, the
Ruelle quasimorphism admits an extension to all of Diff∞(T 2, area).

Also see work of Py, e.g. [173, 172, 174] and Entov–Polterovich [75] for many
more examples of quasimorphisms on various transformation groups.

5.3.4. C0 case. The material in this section is taken from [76].
The quasimorphisms discussed in § 5.3.2 and § 5.3.3 are evidently continuous in

the C1 topology, and therefore extend continuously to quasimorphisms on groups
of the form Diff1

0(S, area). If a quasimorphism on Diff1
0(S, area) is continuous in the

C0 topology, it extends to Homeo0(S, area); this property is more delicate.
The following characterization of continuous quasimorphisms on topological

groups is due to Shtern:
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Theorem 5.75 (Shtern [188], Thm. 1). Let G be a topological group. A homo-
geneous quasimorphism φ on G is continuous if and only if it is bounded on some
neighborhood of id.

Proof. One direction follows from the definition of continuity. Conversely,
suppose there is a neighborhood U of id and a constant C so that |φ(k)| ≤ C for
k ∈ U . For any g ∈ G and n ∈ N, define U(g, n) to be the set of h ∈ G such that
hn = gnk for some k ∈ U . Evidently, U(g, n) is a neighborhood of g. Moreover, if
h ∈ U(g, n), then by homogeneity,

|φ(h) − φ(g)| = 1

n
|φ(hn)− φ(gn)− φ(k) + φ(k)|

where k = g−nhn. Since k ∈ U , there is an estimate |φ(k)| ≤ C. Hence one can
estimate

|φ(h)− φ(g)| ≤ 1

n
(D(φ) + C)

Taking n large shows that φ(h)→ φ(g) as h→ g, so φ is continuous. �

Using this characterization, Entov–Polterovich–Py derive the following theorem
in the context of transformation groups. Given a surface S, let Ham(S, area) denote
the subgroup of Diff∞0 (S, area) consisting of Hamiltonian diffeomorphisms (i.e. those
in the kernel of every flux homomorphism).

Theorem 5.76 (Entov–Polterovich–Py). Let φ be a homogeneous quasimor-
phism on Ham(S, area). Then φ is continuous in the C0 topology if and only if
there is some positive constant a so that if D → S is any embedded disk of area at
most a, then φ vanishes identically on the subgroup G(D) of elements supported in
D.

Proof. We give the sketch of a proof; for details, see [76]. Suppose φ is
continuous, and let U be a neighborhood of id (in the C0 topology) for which there
is a constant C as in the conclusion of Theorem 5.75. If D0 is sufficiently small in
diameter, then G(D0) ⊂ U , and therefore φ is bounded on G(D0). But since φ is
a homogeneous quasimorphism, and G(D0) is a group, φ must vanish identically
on G(D0). Now, if D is any other disk with area(D) ≤ area(D0), there is an
area-preserving Hamiltonian isotopy from D to D0. Hence G(D0) and G(D) are
conjugate, and the conclusion follows.

Conversely, suppose there is a positive constant a with the desired properties.
There is a neighborhood U of the identity so that S can be covered with finitely
many disks Di for i ≤ N , each of area at most a, so that any f ∈ U can be written
as a product f = g1g2 · · · gN where the support of each gi is contained in Di (and
therefore gi ∈ G(Di)). Since φ vanishes identically on each G(Di), the value of φ on
f is bounded by (N − 1)D(φ), and therefore φ is continuous, by Theorem 5.75. �

A homogeneous quasimorphism on Diff∞0 (S, area), continuous on Ham(S, area),
and linear on every one-parameter subgroup, is continuous in the C0 topology, and
therefore extends to Homeo0(S, area).

Remark 5.77. The most delicate aspect of Theorem 5.76 is the fragmentation lemma (i.e.
to show that one can express a Hamiltonian diffeomorphism sufficiently C0 close to the
identity as a product of boundedly many diffeomorphisms supported in small disks). This
depends on work of Le Roux [133]. Note that the assumption that the diffeomorphism
be Hamiltonian is essential.



5.3. BRAID GROUPS AND TRANSFORMATION GROUPS 161

Example 5.78. When the genus of S is large, the homogenizations of the de
Rham quasimorphisms (Definition 5.70) vanish on G(D) for any embedded disk D.
Hence they are continuous in the C0 topology, and extend to quasimorphisms on
Homeo0(S, area).

It is still unknown whether Homeo0(S
2, area) admits any nontrivial quasimor-

phism.

Remark 5.79. The study of quasimorphisms on (mostly 2-dimensional) transformation
groups is an active and fertile area. In addition to the work of Entov–Polterovich [75] and
Gambaudo–Ghys referred to above, we mention only the survey [169] by Polterovich, and
[175] by Py, discussing relations of this material to Zimmer’s program.
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