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6. Hyperbolic groups.

In this section we will explore some of the basic properties of
hyperbolic groups. The notion of a hyperbolic group was introduced
by Gromov around 1985. They arise in many different contexts, and
there is a sense in which a “generic” finitely presented group is hy-
perbolic.

For much of the discussion we will just deal with geodesic spaces.
One can get quite a long way withjust elementary metric spaoe theory
as we shall see.

6.1. Definition of a hyperbolic space.

Let ($X$ , d) be a geodesic metric space.

Definition: $A$ (geodesic) $tri$angle, $T$ , in $X$ consists of three geodesic
segments, $(\alpha, \beta, \gamma)$ cyclically connecting three point (called the ver-
tices of $T$). We refer to the geodesics segments as the sides of $T.$

Definition : If $k\geq 0$ , a point, $p\in X$ is said to be a $k$-centre for the
triangle $T$ if $\max\{d(p, \alpha), d(p, \beta), d(p, \gamma)\}\leq k.$

See Figure $6a$ . (In the figures in this section, geodesics are often
depicted curved inwards, rather than as euclidean straight lines. This
is meant to evoke the Poincar\’e model of the hyperbolic plane, to
which hypebolic spaces have a more natural resemblence.)

Definition : We say that $X$ is $k$-hyperbohc if every triangle has a
$k$-centre.

Definition : We say that $X$ is hyperbohc if it is $k$-hyperbolic for
some $k\geq 0$ . We refer to such a $k$ as a hyperbohcity constant for $X.$

Examples.

(1) Any spacc of finite diameter, $k$ , is $k$-hyperbolic.

(2) Any tree is $0$-hyperbolic

(3) The hyperbolic plane $H^{2}$ is $(\frac{1}{2}\log 3)-hyperbolic.$
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Figure $6a.$

(4) In fact, hyperbolic space $H^{n}$ of any dimension is $(\frac{1}{2} \log 3)$-hyper-
bolic: any triangle in $H^{n}$ lies in some 2-dimensional plane.

(5) Indeed, any complete simply connected riemanian manifold with
curvatures bounded above by some negative constant $-\kappa^{2}<0$ is
$(\frac{1}{2\kappa}\log 3)-hyperbolic$ . For example, complex and quaternionic hyper-
bolic spaces are $(\frac{1}{2}\log 3)-hyperbolic.$

In (2) we can $\infty nsider$ more general trees than those considered
in Section 2. In particular, we can allow any positive length assigned
to an edge (rather than just umit length). The result will always be
a $0$-hyperbolic geodesic space.

Remark: In fact, any $0$-hyperbolic geodesic space is a more general
sort of tree known as an $R$-tree” Here one can allow branch points
(i.e. valence $\geq 3$ points) to accumulate, so such a tree need not be
a graph. (Indeed there are examples where every point is a branch
point.) The theory of $R$-trees was introduced by Morgan and Shalen
and developed by Rips and many others, and it is now an important
tool in geometric group theory.
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Non-examples.

(1) Euclidean space, $R^{n}$ for $n\geq 2$ is not hyperbolic.

(2) The 1-skeleton of the regular square tessellation of the plane is not
hyperbolic. In fact, this example illustrates a slightly subtle point.
It turns out that any three points of this graph can be connected
by three geodesics so the triangle formed has a 1-centre (excercise).

However not every triangle has this property. In fact, in this graph,
we can have two geodesics between the same pair of points which go
an arbitrarily long way apart before coming back together again.

6.2. Basic properties.

Before studing properties of a geodesic space, we make a couple

of observations that hold in any geodesic metric space.
Let ($X$ , d) be a metric space. We will often abbreviate $d(x, y)$ to

$xy$ . Given $x,$ $y,$ $z\in X$ , write

$\langle x, y\rangle_{z}=\frac{1}{2}(xz+yz-xy)$ .

This is sometimes called the “Gromov product” The triangle in-
equality tells us this is non-negative. One way to think of it is as
follows. Set $r=\langle y,$ $z\rangle_{x},$ $s=\langle z,$ $x\rangle_{y}$ and $t=\langle x,$ $y\rangle_{z}$ . Then

$xy=r+s$

$yz=s+t$

$zx=t+r.$

We can construct a “tripod” consisting of three edges meeting at
a vertex of valence three and place the points $x,$ $y,$ $z$ at the other
endpoints of these edges (Figure $6b$). If we assign the edge lengths
$r,$ $s,$

$t$ to these edges, we see that distances between $x,$ $y,$ $z$ in $X$ agree
with those in the tripod. (This tripod might not be isometrically

embedable in $X.$ )
Another point to note is:
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Figure $6b.$

Lemma 6.1 : if $\alpha$ is any geodesic from $x$ to $y$ , then $ d(z, \alpha)\geq$

$\langle x,$ $y\rangle_{z}.$

Proof : If $ a\in\alpha$ , then we have

$xy=xa+ax$

$xz\leq xa+az$

$yz\leq ya+az,$

and so $az\geq\langle x,$ $y\rangle_{z}.$
$\Diamond$

Note also that if $z$ lies on any geodesic $fr$ to $y$ , then $\langle x,$ $y\rangle_{z}=$

$0.$

Suppose now that ($X$ , d) is $k$-hyperbolic. We prove a series of
lemmas involving various constants. We aim to provide arguments
that are fairly simple, rather than ones that will optimise the con-
stants involved. With more eareful arguments, one can probably do
better in this regard.

Suppose that $T=(\alpha, \beta, \gamma)$ is a geodesic triangle. If $p$ is any
$k$-centre, we can find some $ a\in\alpha$ with $ap\leq k$ . Such a point $a$ , is
then a 2 $k$-centre for $T.$

Lemma 6.2 : Suppose $x,$ $y,$ $z\in X$ , and $\alpha$ is any geodesic $\omega mecting$

$x$ to $y$ . Then $d(z, \alpha)\leq\langle x,y\rangle_{z}+4k.$
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Proof : Let $t=\langle x,$ $y\rangle_{z}$ . Let $\beta,$
$\gamma$ be geodesics from $z$ to $x$ and $y$

respetively (Figure $6c$). Let $ a\in\alpha$ be a 2 $k$-centre for the triangle
$(\alpha, \beta, \gamma)$ . Thus

$xa+az\leq xz+4k$

$\tau/a+az\leq yz+4k$

$xa+ay=xy.$

Adding the first two of these and subtracting the third, we get $ 2az\leq$

$2t+8k$ , and so $az\leq t+4k$ as required. $\Diamond$

Figure $6c.$

Corollary 6.3 : If $\alpha$ and $\beta$ are two geodesics connecting the same
pair ofpoints, then $\alpha\subseteq N(\beta, 4k)$ and $\beta\subseteq N(\alpha, 4k)$ .

Proof: Let the common endpoints be $x$ and $y$ , and suppose $z\in\beta.$

Then $\langle x,$ $y\rangle_{z}=0$ and so by Lemma 6.2, $d(z, \alpha)\leq 4k$ . This proves
the first inclusion, and the other follows by symmetry. $\Diamond$

Thus in a hyperbolic space, any two geodesics with the same
endpoints remain a bounded distance apart. We also see that, up to
an additive constant, we can think of the Gromov product, $\langle x,$ $y\rangle_{z}$ as
the distance between $z$ and any geodesic from $x$ to $y.$
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Notation: Given any path $\alpha$ and points $a,$
$b$ on $\alpha$ , we write $\alpha[a, b]$

for the subpath of $\alpha$ between $a$ and $b.$

The following terminology is not standard, but will be useful for our
purposes.

Definition: $A$ path $\alpha$ is $t$-taut if length $(\alpha)\leq xy+t$ , where $x,$ $y$ are
the endpoints of $\alpha.$

Thus a geodesic is a -taut path. Also (exercise) any subpath of a
$t$-taut path is $t$-taut.

We have the following generalisation of Lemma 6.3:

Lemma 6.4 : Suppose $\alpha$ is a geodesic and $\beta$ is a $t$-taut path with
the same endpoints. Then:

(1) $\beta\subseteq N(\alpha, \frac{1}{2}t+4k)$ , and
(2) $\alpha\subseteq N(\beta, t+8k)$ .

Proof : Let $x,$ $y$ be the endpoints of $\alpha.$

(1) If $ z\in\beta$ , then $\langle x,$ $y\rangle_{z}\leq t/2$ , and so by Lemma 6.2, $ d(z, \alpha)\leq$

$\frac{1}{2}t+4k.$

(2) Suppose $ w\in\alpha$ . By a connectedness argument using part (1),
we can find some $ z\in\beta$ a distance at most $\frac{1}{2}t+4k$ from points $a$

and $b$ in $\alpha$ , on different sides of $w$ . (Consider the closed subsets,
$\beta\cap N(\alpha[x, w], \frac{1}{2}t+4k)$ and $\beta\cap N(\alpha[y, w], \frac{1}{2}t+4k)$ . By (1) these
cover $\beta$ and so must intersect.) Thus $ab\leq t+8k$ and $w\in\alpha[a, b]$ , so
$t1)$ is a distance at most $\frac{1}{2}t+4khom$ one of the points $a$ or $b$ (Figure
$6d)$ .

It follows that $wz\leq t+8k$ as required. $\Diamond$

Lemma 6.5 : If $(\alpha, \beta, \gamma)$ is a geodesic triangle, then $\alpha\subseteq N(\beta\cup$

$\gamma,$ $6k)$ .

Proof: Let $ a\in\alpha$ be a $2k$-centre of $(\alpha, \beta, \gamma)$ . This cuts $\alpha$ into two
segments $\alpha[a, x]$ and $\alpha[a, y]$ . Let $\delta$ be any geodesic from $z$ to $a$ . Since
$d(a, \beta)\leq 2k$ , the path $\delta\cup\alpha[a, x]$ is $4k$-taut and so by Lemma 6.4(1),
$\alpha[a, x]\subseteq N(\beta, 6k)$ . Similarly, $\alpha[a, y]\subseteq N(\gamma, 6k)$ . $\Diamond$
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Figure $6d.$

Remark: The concusion of Lemma 6.5 gives us an alternative way

of defining hyperbolicity. Suppose $(\alpha, \beta, \gamma)$ is a geodesic triangle with
$\alpha\subseteq N(\beta\cup\gamma, k’)$ for some $k’\geq 0$ , then by a connectedness argument
(similiar to that for proving Lemma $6.4(2)$ ), we can find some point
$ a\in\alpha$ a distance at most $k’$ for both $\beta$ and $\gamma$ . This $a$ will be a $k’-$

centre from $(\alpha, \beta, \gamma)$ . Thus we can define a space to be hyperbolic if

for every geodesic triangle, each edge is a bounded distance $fr$ the

union of the other two. This definition is equivalent to the one we
have given, though the hyperbolicity constants involved may differ

by some bounded multiple.

6.3. Projections.

Suppose $x,$ $y,$ $z\in X$ and $\alpha$ is a geodesic connecting $x$ to $y$ . We
describe a few different, but essentially equivalent ways of thinking

of the notion of a “projection” of $z$ to $\alpha.$

(Pl) One way, we have already seen, is to take geodesics $\beta,$
$\gamma$ from $z$

to $x$ and $y$ respectively, and let $ a\in\alpha$ be a 2 $k$-centre for the triangle
$(\alpha, \beta, \gamma)$ . $A$-priori, this might depend on the choice of $\beta$ and $\gamma$ . Here
are another two constructions.

(P2) Let $ b\in\alpha$ be the unique point so that $xb=\langle y,$ $z\rangle_{x}$ . It follows

that $yb=\langle x,$ $z\rangle_{y}.$

(P3) Choose some $ c\in\alpha$ so as to minimise $zc$ . This “neasest point”

construction is the closest to what one normally thinks of as projec-

tion.
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We want to show that these three constructions agree up to
bounded distance.

To see this, first note that

$xz\leq xa+az\leq xz+4k$

$yz\leq ya+az\leq yz+4k$

$xy=xa+ay,$

and so we get $xa-2k\leq\langle y,$ $z\rangle_{x}\leq xa+2k$ . It foUows that $ab\leq 2k.$

Now note that $zc=d(z, \alpha)=d(z, \alpha[c, x])$ . Applying Lemma 6.2
$(with \alpha replaced by \alpha[c, x])$ , we see that $zc\leq\langle z,$ $x\rangle_{c}+4k$ , and so
$2zc\leq(zc+zx-cx)+8k$ giving $zc+cx\leq zx+8k$ . Thus $\langle x,$ $z\rangle_{c}\leq 4k$

and so by Lemma 6.2 again (with $z$ replaced by $c$ and $\alpha$ replaced by
$\beta)$ we get $d(c, \beta)\leq 4k+4k\leq 8k$ . Similarly, $d(c, \gamma)\leq 8k$ . In other
words, $c$ is an 8 $k$-centre for $(\alpha, \beta, \gamma)$ . We can now apply the argument
of the previous paragraph again. The constants have got a bit bigger,
and this time we get $bc\leq 8k.$

This shows the above three definitions of projections agree up to
bounded distance, depending only on $k$ . It is also worth noting that
there is some flexibility in the definitions. For example, if we took
$a$ to be any $t$-centre, or chose $ c\in\alpha$ to be any point with $ d(z, c)\leq$

$d(z, \alpha)+t$ , then we get similar bounds depending only on $t$ and $k.$

One consequence of this $\infty nstruction$ is the following:

Lemma 6.6 : Suppose that $x,$ $y,$ $z\in X$ . Then $a,$
$b$ are $t$-centres of

triangles with vertices $x,$ $y,$ $z$ , then ab is bounded in terms of $t$ and
$k.$

Proof : By Corollary 6.3, a $t$-centre of one triangle will be a $t+4k$

centre of any other with the same vertices. We can therefore assume
that $a$ and $b$ are centres of the same triangle. We can also assume
that they lie on some edge, say $\alpha$ , of this triangle (replacing $t$ by $2t$).
The situation is therefore covered by the above discussion. $\Diamond$

Of course, one can explicitly calculate the bound in terms of $t$

and $k$ , though such calculations eventually become tedious, and for
most purposes it is enough to observe that some formula exists.
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We also note that a centre, $a$ , for $x,$ $y,$ $z$ , is decribed up to

bounded distance by saying that $ax\leq\langle y,$ $z\rangle_{x}+t,$ $ay\leq\langle z,$ $x\rangle_{y}+t$

and $az\leq\langle x,$ $y\rangle_{z}+t$ , for some constant $t.$

Here is another consequence worth noting. Given $x,$ $y,$ $z\in X$ , let
$a$ be a centre for $x,$ $y,$ $z$ . Let $\delta,$

$\epsilon,$
$\zeta$ be geodesics connecting $a$ to $x,$ $y$

and $z$ respectively. Let $\tau$ be the ‘tripod” $\delta\cup\epsilon\cup\zeta$ . This is a tree in $X,$

with extreme points (valence 1 vertices) $x,$ $y,$ $z$ . Note that distances
in $\tau$ agree with distances in $X$ up to a bounded constant. This is an
instance of a much more general result about the “treelike” nature of
hyperbolic spaces.

Notation. Given $x,$ $y\in X$ we shall write $[x, y]$ for some choice
of geodesic between $x$ and $y$ . If $z,$ $w\in[x, y]$ , we will assume that
$[z, w]\subseteq[x, y].$

Of course this involves making a choice, but since any two such

geodesics remain a bounded distance apart, in practice this will not

matter much. This is just for notational convenience. Formally we
can always rephrase any statement to refer to a particular geodesic.

6.4. Trees in hyperbolic spaces.

The following expresses the “treelike” nature of a hyperbolic
space:

Proposition 6.7: There is a function $h:N\rightarrow[O, \infty)$ such that

if $F\subseteq X$ with $|F|=n$ , then there is a tree, $\tau$ , embedded in $X$ , such
that for all $x,y\in F,$ $d_{\tau}(x, y)\leq xy+kh(n)$ .

Here $d_{\tau}$ is distance measured in the tree $\tau$ . Note that we can
assume that all the edges of $\tau$ are geodesic segments. We can also

assume that every extreme (i.e. valence 1) point of $\tau$ lies in $F$ . In

this case, $\tau$ will be $kh(n)$-taut, in the following sense:
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Definition: $A$ tree $\tau\subseteq X$ is $t$-taut if every arc in $\tau$ is $t$-taut.

We will refer to a such a tree, $\tau$ , as a “spanning tree” for $F.$

To prove Propostion 6.7, we will need the following lemma:

Lemma 6.8 : Suppose $x,$ $y,$ $z\in X$ . Suppose that $\beta$ is a $t$-taut path
from $x$ to $y$ and that $y$ is the nearest point on $\beta$ to $Z_{s}$ Then $\beta\cup[y, z]$

is $(3t+24k)$-taut.

Proof: Let $\alpha$ be any geodesic from $x$ to $y$ (Figure $6e$). By Lemma
6.5(2), $\alpha\subseteq N(\beta, t+8k)$ . By hypothesis, $d(z, \beta)=yz$ , and so
$d(z, \alpha)\geq yz-(t+8k)$ . Thus, by Lemma 6.2,

$\langle x, y\rangle_{z}\geq d(z, \alpha)-4k$

$\geq yz-t-12k.$

That is, $xz+yz-xy\geq 2yz-2t-24k$ , and so $xy+yz\leq xz+2t+24k.$

It follows that

length$(\beta\cup[y, z])\leq(xy+t)+yz$

$\leq xz+3t+24k.$

$\Diamond$

Figure $6e.$
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Corollary 6.9 : Suppose that $\tau$ is $t$-taut tree and $z\in X$ . Let $ y\in\tau$

be a nearest point to $z$ . Then $\tau\cup[y, z]$ is $(3t+24k)$ -taut. $\Diamond$

Proof of Proposition 6.7: Let $F=\{x_{1}, x_{2}, \ldots, x_{n}\}$ . Construct
$\tau$ inductively. Set $\tau_{2}=[x_{1}, x_{2}]$ , and define $\tau_{i}=\tau_{i-1}\cup[y, x_{i}]$ , where $y$

is a nearest point to $x_{i}$ in $\tau_{i-1}$ (Figure $6f$). We now apply Corollary
6.9 inductively, and set $\tau=\tau_{n}.$

$\Diamond$

$x_{3}$

Figure $6f.$

We remark that this argument gives $h(n)$ exponential in $n$ . In
fact, one can show that the same construction gives $h(n)$ linear in $n,$

but this is more subtle. One cannot do better than linear for an arbi-
trary ordering of the points of $F$ (cxercise). $A$ different construction
can be used to give a tree with $h(n)=O(\log n)$ . This is the best
possible:

Exercise: Let $F$ be a set of $n$ equally spaced points around a circle
of radius $r\geq\log(n)$ in $H^{2}$ . Then no spanming tree can be better than
$t$-taut, where $t=O(r)=O(\log n)$ . (Use the fact that the length of a
circle of radius $r$ is $2\pi\sinh r.$ )
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As far as I know, the following question remains open (even for $H^{2}$ ):

Question: In the construction of the tree in Proposition 6.7, can one
choose the order of the points $(x_{i})_{i}$ so as always to give a tree with
$h(n)=O(\log n)$?

Proposition 6.7 is very useful. We are frequently in a situation
where we are dealing just with a bounded number of points. If we are
only interested in estimating something up to an additive constant
(depending on $k$), then we can assume we are working in a tree.

For many applications, it is enough to embed our set $F$ is some
tree $\tau$ , and do not need to know that $\tau$ is actually embedded in $X.$

It is possible to construct such a tree by a more direct argument,
though we won’t describe the construction here.

6.5. The four-point condition.

Let us suppose that $\tau$ is a tree containing four points $x,$ $y,$ $z,$ $ w\in$

$\tau$ . One can see that, measuring distances in $\tau$ , we have

$xy+zw\leq mx\{xz+yw, xw+yz\}.$

Suppose, for example, that the arcs $fr$ to $y$ and from $z$ to $w$ meet
in at most one point (Figure $6g$).

Figure $6g.$

In this case, we write $(xy|zw)$ , and this situation we see that
$xy+zw\leq xz+yw=xw+yz$ . Whatever the arrangement of the
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three points, it is easily seen that at least one of $(xy|zw),$ $(xz|yw)$ or
$(xw|yz)$ must hold, thereby verifying the above inequality.

From this we can deduce:

Lemma 6.10 : Given $k\geq 0$ , there is some $k’\geq 0$ such that if $X$ is
a $k$-hyperbolic geodesic spaces, and $x,$ $y,$ $z,$ $w\in X$ , then

$xy+zw\leq\max\{xz+yw, xw+yz\}+k’.$

Proof: By Proposition 6.7, we can find a tree $\tau$ , containing $x,$ $y,$ $z,$ $w,$

so that distances in $\tau$ agree with distances in $X$ up to an additive
constant $kh(4)$ . We can now apply the above observation. $\Diamond$

As usual, $k’$ is some particular multiple of $k$ , which we could
calculate explicitly (exercise). (In fact, there are more direct routes
to this particular result that would probably give better constants.)

It turns out that hyperbolicity is characterised by this property.
Let us suppose, for the moment, that ($X$ , d) is any geodesic space
and $k’\geq 0$ is some constant. We suppose:

$(*)$ $(\forall x, y, z, w\in X)(xy+zw\leq\max\{xz+yw, xw+yz\}+k’)$ .

Given $x,$ $y,$ $z\in X$ and a geodesic $\alpha$ from $x$ to $y$ , let $ a\in\alpha$ be the
point with $xa=\langle y,$ $z\rangle_{x}$ (cf. the earlier discussion of projections).

Lemma 6.11 : $xa+az\leq xz+k’$ and $yz+az\leq yz+k’.$

Proof : Let $r=\langle y,$ $z\rangle_{x},$ $s=\langle z,$ $x\rangle_{y}$ and $t=\langle x,$ $y\rangle_{z}$ . Thus,

$xy=r+s$

$yz=s+t$

$zx=t+r$

$xa=r$

$ya=s.$
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Let
$za=u.$

We now apply $(*)$ to $\{x, y, z, a\}$ . The three distance sums in $(*)$ are

$r+s+u$

$r+9+t$

$r+s+t,$

and so $u\leq t+k’$ . But now $xa+az=r+u\leq r+t+k’=xz+k’$
and $ya+az=s+u\leq s+t+k’=yz+k’.$ $\Diamond$

Lemma 6.12 : In the above situation, let $\beta$ and $\gamma$ be geodesics
from $z$ to $x$ and from $z$ to $y$ repectively. Then $a$ is $a(3k’/2)$-centre
for the triangle $(\alpha, \beta, \gamma)$ .

Proof: Let $b$ be the projection of $a$ to $\beta$ in the above sense. Applying
Lemma 6.11 to $a$ and $\beta$ (in place of $z$ and $\alpha$ ) we see that

$ab+bx\leq ax+k’$

$ab+bz\leq az+k’.$

Adding we get

$2ab+(xb+bz)\leq xa+az+2k’$

$2ab+xz\leq xa+az+2k’$

$\leq xz+3k’$

applying Lemma 6.11 again to $z$ and $\alpha$ . We see that $ab\leq 3k’/2$ . We
have shown that $d(a, \beta)\leq 3k’\prime 2.$

Similarly $d(a, \gamma)\leq 3k’/2$ as required. $\Diamond$

We have shown that under the assumption $(*)$ every triangle has
$a(3k’/2)$-centre. Putting this together with Lemma 6.10, we get:

Proposition 6.13 : For a geodesic metric space, the condition $(*)$

is equivalent to hyperbolicity. $\Diamond$

We remark that $(*)$ makes no reference to geodesics, and so, in
principle, makes sense for any metric space. Its main application,
however is to geodesic spaces.
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Remark: The “four point” condition $(*)$ is frequently given in the
following equivalent form:

$(\forall x, y, z, w\in X)(\langle x, y\rangle_{w}\geq\min\{\langle x, z\rangle_{w}, \langle y, z\rangle_{w}\}-k’’)$

$($where $k’’=k’/2)$ . Indeed this was the first definition of hyperbolic-
ity given in Gromov’s original paper on the subject.

6.6. Exponential growth of distances.

We observed in Section 5 that the length of a hyperbolic circle
grows exponentally in the diameter. The following can be viewed as
a more general expression of this phenomenon.

We fix a basepoint $p\in X$ . We write $ N(x, r)=\{y\in X|d(x, y)\leq$

$r\}$ , and $S(x, r)=\{y\in X d(x, y)=r\}$ . We write $N^{0}(x, r)=$

$N(x, r)\backslash S(x, r)$ .

Proposition 6.14: There are constants $\mu>0$ and $K\geq 0$ such that
for $aUr\geq 0$ , if $a$ is a path in $X\backslash N^{0}(p, r)$ connecting $x,$ $y\in S(x, r)$ ,
then length $\alpha\geq e^{\mu d(x,y)}-K.$

See Figure $6h.$

Figure $6h.$
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The idea behind the proof is that projections from a sphere to a
smaller concentric sphere will tend to reduce distances by a uniform
factor less than 1. Because of the additive constants involved in the
defimition of hyperbolicity, we will need to express the argument as a
discrete process.

Our proof will be to use the following two related observations.

Lemma 6.15 : For all sufliciently large $h$ in relation to the hyper-
bolicity constant, if $x,$ $y\in X$ with $d(x, y)\leq h/2$ , then $d(x’, y’)\leq h$

where $x’\in[p, x]$ and $y’\in[p, y]$ with $d(p, x’)=d(p, y’)$ .

Lemma 6.16 : For all sufhcicntly largc $h$ in relation to the hyper-
bolicity constant, if $x,$ $y\in X$ with $d(p, x)=d(p, y)$ and $d(x, y)\leq 2h,$

then $d(x’, y’)\leq h$ , where $x’\in[p, x]$ and $y’\in[p, y]$ with $d(x, x’)=$

$d(y, y’)=h.$

We leave the proofs as an exercise – for example, either verify
the statements in a spanning tree for the five points $p,$ $x,$ $y,$ $x’,$ $y’$ , or
else by a more direct argument by considering the triangle with sides
$[p, x],$ $[p, y],$ $[x, y].$

Proof ofProposition 6.14 : Let $l=$ length $\alpha$ . We can assume that
$l\geq 4h$ . We can thus find some $n\in N$ so that $2^{m-2}h\leq l\leq 2^{m-1}h.$

Let $x=x_{0},$ $x_{1},$
$\ldots,$ $X_{2^{m}}=y$ be a sequence of $2^{m}+1$ points along $\alpha$

so that $d(x_{i}, x_{i+1})\leq h/2$ for $aUi$ . Lt $y_{i}\in[p, x_{i}]$ with $d(p, y_{i})=r.$

Thus $y_{0}^{0}=x,$ $y_{2^{m}}^{0}=y$ and $y_{i}^{0}\in S(r)$ for all $i$ . By Lemma 6.15,
$d(y_{i}^{0}, y_{i+1}^{0})\leq h$ for all $i.$ $(Figure 6i, where m=3.)$

Now define a sequence $y_{0}^{1},$

$\ldots,$
$y_{2^{m-1}}^{1}$ as follows. If $r\leq h$ set $y_{i}^{1}=$

$p$ for all $i$ . If $r\geq h$ , let $y_{i}^{1}\in[p, y_{2i}^{0}]$ be the point with $d(y_{i}^{1}, y_{2i}^{0})=h.$

Now $d(y_{2i}^{0}, y_{2i+2}^{0})\leq 2h$ , and so by Lemma 6.16, we have $ d(y_{i}^{1},y_{i+1}^{1})\leq$

$h$ . We now proceed inductively, each time eliminating half the points,
and moving the others a distance $h$ towards $p$ (or possibly setting
them all equal to $p$). For each $j=1,2,$

$\ldots,$
$m$ , we get a sequence

$y_{0}^{j},$ $\ldots,\dot{d}_{2^{m-j}}$ , with $d(\dot{\oint}_{i},\dot{\oint}_{i+1})\leq h$ for all $i$ . We end up with a 2-

$P^{oint}d(\dot{\oint}_{0},$ $t^{q_{)\leq handsod(y_{0}^{0},y_{0}^{m})\leq mh.Similar1y,d(y_{2^{m}}^{0},y_{1}^{m})}^{uence,y_{0}^{m},y_{1}^{m}.Notethatd(y_{0}^{m},y_{1}^{m})\leq h.Nowfor}}+a\mathbb{I}jmh.$

But $x=y_{0}^{0}$ and $y=y_{2^{m}}^{0}$ , and so $d(x, y)\leq 2mh+h=(2m+1)h$ , and
so $m\geq(d(x,y)-h)/2h.$
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Figure $6i.$

We see that $l\geq 2^{m-2}h\geq 2^{(d(x,y)-h)\prime 2h}h/4$ . This is under the
initial assumption that $l\geq 4h$ . Thus, in general, we always get an
inequality of the form $l\geq e^{\mu d(x,y)}-K$ , where $\mu$ and $K$ depend only
on $h$ , and hence only on the hyperbolicity constant $k$ , as required. $\Diamond$

Remark : It turns out that the exponential growth of distances
gives another formulation of hyperbolicity – essentially taking the
conclusion of Proposition 6.14 as a hypothesis. We will not give a
precise formulation of this here.

6.7. Quasigeodesics.

The notion of a quasigeodsesic path is another fundamental no-
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tion in geometric group theory. The following definition will make
sense in any metric space, though it is mainly of interest in geodesic
spaces. In what follows we $sha\mathbb{I}$ abuse notion slightly and identify a
path in $X$ with its image as a subset of $X$ , (even if the path is not
injective). Given two point, $x,$ $y$ in a path $\alpha$ , we shall write $\alpha[x, y]$

for the segment of $\alpha$ beween $x$ and $y.$

Definition : $A$ path, $\beta$ , is $a(\lambda, h)$-quasigeodesic, with respect to
constants $\lambda\geq 1$ and $h\geq 0$ , if for all $x,$ $ y\in\beta$ , length$(\beta[x, y])\leq$

$\lambda d(x, y)+h.$ $A$ quasigeodesic is a path that is $(\lambda, h)$-quasigeodesic
for some $\lambda$ and $h.$

In other words, it takes the shortest route to within certain linear
bounds. Note that $a(1, h)$-quasigeodesic is the same as an $h$-taut
path.

We now suppose that ($X$ , d) is $k$-hyperbolic again. $A$ basic fact
about quasigeodesiscs is that they remain a bounded distance apart
(cf. Lemma 6.4).

Proposition 6.17 : Suppose that $\alpha$ is a geodesic, and $\beta$ is a
$(\lambda, h)$-quasigeodesic Wtth the same endpoints. Then $\beta\subseteq N(\alpha, r)$ and
$\alpha\subseteq N(\beta, r)$ where $r$ depends only on $\lambda,$ $h$ , and the hyperbolicity
constant $k.$

Proof: We first show that $\alpha$ lies a bounded distance from $\beta$ . (In
other words, we proceed in the opposite order from Lemma 6.4.) Let
$a,$

$b$ be the endpoints of $\alpha.$

Choose $ p\in\alpha$ so as to maximise $d(p, \beta)=t$ , say. Let $a_{0},$ $ a_{1}\in$

$[a,p]$ be points with $d(p, a_{0})=t$ and $d(p, a_{1})=2t$ . The point $a_{0}$

certainly exists, since $d(p, a)\geq t$ . If $d(p, a)<2t$ , we set $a_{1}=a$

instead. Now $d(a_{1}, \beta)\leq t$ , and so there is some point $ a_{2}\in\beta$ with
$d(a_{1}, a_{2})\leq t$ . If $a_{1}=a$ , we set $a_{2}=a$ . We similarly define points
$b_{0},$ $b_{1},$ $b_{2}$ (Figure $6j$).

Note that $d(a_{2}, b_{2})\leq 6t$ . Let $\delta=\beta[a_{2}, b_{2}]$ , and let $\gamma=[a_{0}, a_{1}]\cup$

$[a_{1}, a_{2}]\cup\delta\cup[b_{2}, b_{1}]\cup[b_{1}, b_{0}]$ . Note that $\gamma\cap N^{0}(p, t)=\emptyset$ . Sinee $\beta$ is
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Figure $6j.$

quasigeodesic,
length $\delta\leq\lambda d(a_{2}, b_{2})+h$

$\leq 6\lambda t+h,$

and so
length $\gamma\leq 4t+$ length $\delta$

$\leq(6\lambda+4)t+h.$

On the other hand, $d(a_{0}, b_{0})=2t$ , and $\gamma$ does not meet $N^{0}(p, t)$ .
Thus applying Proposition 6.14, we get

length $\gamma\geq e^{\mu(2t)}-K.$

Putting these together we get

$e^{2\mu t}\leq(6\lambda+4)t+h+K$

which places an upper bound of $t$ in terms of $\lambda,$ $h,$ $\mu,$
$K$ , and hence in

terms of $\lambda,$ $h$ and $k.$

To show that $\beta$ lies in a bounded neighbourhood of $\alpha$ , one can
now use a connectedness argument similar to that use in Lemma 6.4
(with the roles of $\alpha$ and $\beta$ interchanged). $\Diamond$

Of course (after doubling the constant r) Propositon 6.17 applies

equally well to two quasigeodesics, $\alpha$ and $\beta$ with the same endpoints.
Using Proposition 6.17, we see that we can formulate hyperbol-

icity equally well using quasigeodesic triangles, that is where $\alpha,$
$\beta,$

$\gamma$
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are assumed quasigeodesic with fixed constants. In particular, we
note:

Lemma 6.18 : Any $(\lambda, k)-q$uasigeodesic triangle $(\alpha, \beta, \gamma)$ has a
$t$-centre, where $t$ depends only on $\lambda,$ $h$ and $k.$

Proof: Let $(\alpha’, \beta’, \gamma’)$ be a geodesic triangle with the same vertices.
Applying Proposition 6.17, we see that any k-oentre of $(\alpha’, \beta’, \gamma’)$ will
be $a(k+r)-oentre$ for $(\alpha, \beta, \gamma)$ . $\Diamond$

6.8. Hausdorff distances.

Before continuing we makc the following useful definition.

Definition: Suppose $P,$ $Q$ are subsets of a metric space $(X, d)$ . We
define the Hausdorff distance between $P$ and $Q$ as the infimum of
those $r\in[O, \infty]$ for which $P\subseteq N(Q, r)$ and $Q\subseteq N(P, r)$ .

Exercise: This is a pseudometric on the set of all bounded subsets of
X. (It is only a pseudometric, since the Hausdorff distance between
a set and its closure is $0.$ ) Restricted to the set of closed subsets of
$X$ , this is a metric.

Note that Proposition 6.17 implies that the Hausdorff distance
between two quasigeodesics with the same endpoints is bounded in
terms of the quasigeodesic and hyperbolicity constants.

6.9. Quasi-isometry invariance of hyperbolicity.

This is the key fact that makes the theory of hyperbolic groups
work.

Suppose that ($X$ , d) and $(X\prime, d’)$ are geodesic spaces and that
$\phi$ : $X\rightarrow X’$ is a quasi-isometry. We would like to say that the
image of a geodesic is a quasi-geodesic, but this is complicated by the
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fact that quasi-isometries are not assumed continuous. The following

technical discussion is designed to get around that point.

Fix some $h>0$ . Suppose that $\alpha$ is a geodesic in $X$ from $x$ to $y.$

Choose points $x=x_{0},$ $x_{1},$
$\ldots,$ $x_{n}=y$ along $\alpha$ so that $d(x_{i}, x_{i+1})\leq h$

and $n\leq l/h\leq n+1$ . Let $\eta/i=\phi(x_{i})\in X’$ Let $\overline{\alpha}=[y_{0}, y_{1}]\cup[y_{1}, y_{2}]\cup$

. . . $\cup[y_{n-1}, y_{n}].$

Exercise: If $\alpha$ is a geodesic in $X$ and $\overline{\alpha}$ constructed as above, then
$\overline{\alpha}$ is quasigeodesic, and the Hausdorff distance between $\overline{\alpha}$ and $\phi(\alpha)$

is bounded. As usual, the statement is unifom in the sense that the

constants of the conclusion depend only on those of the hypotheses

and our choioe of $h.$

We are free to choose $h$ however we wish, though it may be natural
to choose it in relation to the other constants of a given argument,
such as the constant of hyperbolicity.

Theorem 6.19 : Suppose that $X$ and $X’$ are geodesic spaces with
$X\sim X’$ , then $X$ is hyperbohc if and only if $X’$ is.

Proof : Let $\phi$ : $(X, d)\rightarrow(X’, d’)$ be a quasi-isometry and suppose
that $X’$ is $k$-hyperbolic. Let $(\alpha, \beta, \gamma)$ be a geodesic triangle in $X$ . Let
$\overline{\alpha},\overline{\beta},\overline{\gamma}$ be the quasigeodesics a bounded distance from $\phi(\alpha),$ $\phi(\beta),$ $\phi(\gamma)$

as constructed above. By Lemma 6.18, $(\overline{\alpha},\overline{\beta},\overline{\gamma})$ has a $t$-centre, $q,$

where $t$ depends only on $k$ and the quasi-geodesics constants. Since
$\phi(X)$ is cobounded, there is some $p\in X$ with $\phi(p)$ a bounded distance
from $q$ . Now $\phi(p)$ is a bounded distanoe from each of $\phi(\alpha),$ $\phi(\beta)$ and
$\phi(\gamma)$ . It now follows that $p$ is a bounded distanoe from each of $\alpha,$

$\beta,$
$\gamma.$

In other words $p$ is a centre for the triangle $(\alpha, \beta, \gamma)$ . $\Diamond$

In fact, we see that the hyperbolicity constant of $X$ depends only

on that of $X’$ and the quasi-isometry constants. (In the construction
of $\overline{\alpha},\overline{\beta},\overline{\gamma}$ it is natural to take $h=k$ . In this way, we get linear bounds
between the hyperbolicity contants.)

Theorem 6.19 has some immediate consequences. For example

we see:

(1) If $m,$ $n\geq 2$ , then $R^{m}\not\simeq H^{n}.$
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(2) If $n\geq 2$ , then $R^{n}$ is not quasi-isometric to any tree.

In particular, we get another proof that $R^{2}\oint R$ and that $R^{2}\oint$

$[0, \infty)$ .

6.10. Hyperbolic groups.

We are finally ready for the following fundamental notion:

Definition : $A$ group $\Gamma$ is hyperbohc if it is finitely generated and
its Cayley graph $\triangle(\Gamma)$ is hyperbolic.

By Theorem 3.3 and Theorem 6.19 this is well defined – it
doesn’t matter which finite generating set we take to construct the
Cayley graph.

We note:

Lemma 6.20 : Suppose that $\Gamma$ acts properly discontinously cocom-
pactly on a proper hyperbolic (geodesic) space, then $\Gamma$ is hyperbolic.

Proof: By Theorem 3.5, Theorem 3.6 and Theorem 6.19. $\Diamond$

Examples:

(1) Any finite group.

(2) Any virtually free group.
(3) The fundamental group of any compact hyperbolic manifold.
Note that if $\Gamma=\pi_{1}(M)$ , where $M$ is compact hyperbolic, then $\Gamma$

acts properly discontinously cocompactly on $H^{n}.$

(4) In particular, if $\Sigma$ is any compact (orientable) surface of genus at
least 2, then $\pi_{1}(\Sigma)$ is hyperbolic.

Non-examples:

(1) $Z^{n}$ for any $n\geq 2.$

(2) It turns out that a hyperbolic group cannot contain any $Z^{2}$ sub-
group, so this fact provides many more non-examples. For example,
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many matrix groups $SL(n, Z)$ etc., knot groups (fundamental groups
of knot complements), mapping class groups, braid groups etc. This
is not the only obstruction, however.

6.11. Some properties of hyperbolic groups.

This is all we have time to deal with systematically in this course.
We shall finish off by listing a few interesting directions currently
being pursued. This list is by no means complete.

6.11.1. Subgroups.

(Sl) Suppose $g$ is an infinite order element of a hyperbolic group, $\Gamma$ , so
that $\langle g\rangle\cong$ Z. Then $\langle g\rangle$ is a “quasiconvex subgroup” Here this means
that if $x\in\Delta(\Gamma)$ , then the bi-infinite path $\alpha=\bigcup_{n\in Z}[g^{n}x, g^{n+1}x]$ is
quasi-geodesic. This is, in fact, the same as saying that the $u_{Sta-}$

ble length” $||g||=\lim_{n\rightarrow\infty}\frac{1}{n}d(x, g^{n}x)$ is positive. (There are many
examples of non-hyperbolic groups where this fails.)

(S2) Suppose that, in (Sl), $ h\in\Gamma$ is another element commuting with
$g$ . The bi-infinite path $h\alpha=\bigcup_{n\in Z}[g^{n}hx, g^{n+1}hx]$ is a finite Hausdorff
distanoe from $\alpha$ . In fact, using Proposition 6.17, one can show that
the Hausdorff distance between $\alpha$ and $ h\alpha$ is uniformly bounded, that
is, it depends only on the quasi-geodesic constants of $\alpha$ , and not
on $h$ . But since $\Delta(\Gamma)$ is locally finite, there are only finitely many
possibilities for $ h\alpha$ . As a result, one can show:

A hyperbolic group cannot contain any subgroup isomorphic to $Z^{2}.$

(S3) $A$ “Baumslag-Solitar group” is a group of the form $B(m, n)=$

$\langle g,$ $ h|g^{m}h=hg^{n}\rangle$ , where $m,$ $n\geq 1.$ (Note that$ B(1,1)=Z^{2}$ .) By a
similar argument to (S2), one can show, in fact, that:

A hyperbolic group cannot contain any Baumslag-Solitar subgroup.

(Indeed if$ (m, n)\neq(1,1)$ , this can also be seen from (Sl) sinoe, in
that case, the stable length of $h$ in $B(m, n)$ can be shown to be $0.$ )

(S4) Any hyperbolic group $\Gamma$ that is not finite or virtually cyclic con-
tains a free subgroup of rank 2, and henoe free subgroups of any
countable rank. (In particular, $\Gamma $has “exponential growth”.) The
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usual way to construct such subgroups uses the so called “small can-
cellation theory”, which long predates the invention of hyperbolic
groups (see (F5) below).

(S5) It is a non-trivial question as to which groups can be embedded
in hyperbolic groups. In (S4) we saw examples of non-f.g. subgroups
of hyperbolic groups: free groups of infinite rank. One can construct
hyperbolic groups that contain f.g. subgroups that are not f.p. One
can also construct f.p. subgroups which are not hyperbolic, though
these constructions become increasingly complicated.

(S6) $A$ hyperbolic group contains only finitely many conjugacy classes
of finite subgroups. To see this one can argue as follows. Suppose $G$

is a finite subgroup of the hyperbolic group, $\Gamma$ . Let $a$ be any vertex
of the Caylcy graph $\Delta(\Gamma)$ . Let $r\in N$ be minimal such that the orbit,
$Ga$ , is contained in $N(b, r)$ for some vertex $b$ of $\Delta(\Gamma)$ . Now let $B$ be
the set of all vertices $b$ with $Ga\subseteq N(b, r)$ . Thus $B$ is $G$-invariant,
and an exercise in hyperbolicity shows that it has diameter bounded
in terms of the hyperbolicity constant. There are thus only finitely
many possiblities for $B$ up to the $\Gamma$-action on $\Delta(\Gamma)$ , and it follows
that there are only finitely many possibilities for $G$ up to conjugacy.

(S7) It is an open question as to whether every hyperbolic group is
virtually torsion-free.

6.11.2. Finiteness and computablility properties.

(Fl) By hypothesis, a hyperbolic group is f.g. One can show that
any hyperbolic group is f.p.

(F2) If $\Gamma$ is any hyperbolic group, then one can construct a locally
finite contractible simplicial complex, $K$ , (the “Rips complex”) sueh
that $\Gamma$ acts properly discontinuously cocompactly on $K$ . This is a
strong finiteness condition. For example, a group acts p.d. $c$ . on a
locally finite connected complex if and only if it is f.g. (Here we
could take $K$ to be a graph. The case of free p.d.c. actions was
discussed in Section 2.) Moreover, a group acts freely p.d. $c$ . on a
locally finite simply-connnected complex if and only if it is f.p. Here
we are assuming that $K$ is contractible, which is equivalent to saying
that the homototopy groups, $\pi_{n}(K)$ , are trivial for all $n\in N.$
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(F3) Suppose that $\Gamma$ is a group which acts properly discontinuously
cocompactly on a finite dimensional locally-finite contractible com-
plcx, an$(1$ that $\Gamma$ has no Baumslag-Solitar subgroups. Is $\Gamma$ hyperbolic?
This seems to be an open question (due to Bestvina). In other words
are the conditions (S3) and (F2) together the only obstructions to
hyperbolicity?

(F4) The fact that $\Gamma$ is finitely presented can be strengthenned in
another direction to a “linear isoperimetric inequality”. One can
construct a p.d. $c$ . action of $\Gamma$ on a locally finite 2-dimensional simpli-
cial complex $K$ with the property that if $\alpha$ is a curve in the 1-skeleton
of length $n$ , then $\alpha$ bounds a disc in $K$ (not nescessarily embedded)
meeting at most $f(n)$ $2$-simplices, where $f$ is a linear function. One
can give an equivalent algebraic statement. Fix any finite presen-
tation of $\Gamma$ . Suppose that $w$ is a word in the generators and their
inverses representing the identity in $\Gamma$ . Then we can reduce $\prime u$) to
the trivial word (of length $0$) by repeatedly applying the relations.
A linear isoperimetric inequality says that we only need to do this
at most $f(n)$ times, where $n$ is the length of $w$ and $f$ : $N\rightarrow N$ is
linear. It turns out that:

A group is hyperbolic if and only if it has a linear isoperimetric func-
tion.

(In fact, a subquadratic isoperimetric inequality is sufficient.)

(F5) We can make the following additional remarks. It turns out that
isoperimetic inequalities of this sort are q.i. invariants (thereby giving
a different proof that hyperbolicity is q.i. invariant.) The group $Z^{2}$

has a quadratic, but not a linear isoperimetric inquality. The Heisen-
berg group has a cubic inequality. Other groups have exponential
inqualities (or worse).

One can show that, for a f.p. group, a (sub)computable isoperi-
metric inequality is equivalent to solvability of the word problem. (It
puts a computable bound on the work we need to do to cheCk whether
or not a word can be reduced to the trival word.) This shows that a
solvable word problem is q.i. invariant. It also shows that the word
problem in a hyperbolic group is solvable. In fact (though this is
not an immediate consequence) it can be solved in linear time. The
linear time algorithm is the $‘‘$Dehn algorithm”. Back in the 1920s
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Dehn used ideas of hyperbolic geometry to show that the word prob-

lem in a surface group is solvable. This was the beginning of ”small
cancellation theory” referred to in (S4). The same basic idea applies

to general hyperbolic groups.

(F6) A lot more can be said in relation to computablity. For example,

it turns out that a hyperbohc group is “automatic” in the sense of
Thurston. This was essentially shown by Cannon, before the either of
the notions “hyperbolic” or “automatic” were formally defined. Au-
tomaticity is a formal criterion which implies that many calculations
can be carried out very efficiently. In particular, the word problem is

solvable.

6.11.3. Boundaries.

(Bl) Let $X$ be a proper hyperbolic space. $A$ “ray” in $X$ is a semi-
infinite geodesic. We say that two rays are ”parallel” if the Hausdorff
distance between them is fimite. This is an equivalence relation, and
we write $\partial X$ for the set of equivalence classes. (We can equivalently

use quasi-geodesic rays.) One can put a topoloy on $\partial X$ –informally
two rays are close in this topoloy if they remain close over a long
distance in $X$ . It turns out that $\partial X$ is compact and metrisable. We
refer to $\partial X$ as the $u$(Gromov) boundary” of $X$ . Any q.i. $\phi:X\rightarrow Y$

induces a homeomorphism $\partial X\rightarrow\partial Y$ . Thus the homeomorphism
type of $\partial X$ is a quasi-isometry invariant. In particular, it makes sense
to talk about the boundary, $\partial\Gamma$ , of a hyperbolic group $\Gamma.$

(B2) The boundary of a compact space is empty. Thus $\partial$(finite group $)$

$=\emptyset.$

(B3) The real line has two boundary points – one for eaeh end. The
boundary of the group $Z$ , or any virtually cyclic group, is thus the
two-point spaoe.

(B4) If $p\geq 3$ , then $\partial T_{p}$ is a cantor set. Thus $\partial F_{n}$ is a cantor set for
al $n\geq 2.$

(B5) $\partial H^{n}$ can be identified with the ideal boundary we have already

defined -the boundary of thc Poincar\v{c} disc. It is thus homcomor-
phic to $S^{n-1}$ . It follows that:
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If $H^{m}\sim H^{n}$ then $m=n.$

Note in particular that the fundamental group of a compact surface
cannot be q.i. to the fundamental group of a hyperbolic 3-manifold.

(B6) The work of Tukia, Gabai, Casson and Jungreis referred to ear-
lier shows that if the boundary of a hyperbolic group is homeomorphic

to a circle, then the group is a virtual surface group. Cannon asked
whether a hyperbolic group with boundary a 2-sphere is a virtual
hyperbolic 3-manifold group. This question remains open. The anal-
ogous assertion certainly fails in higher dimensions. For example the
fundamental group of a compact complex hyperbolic -manifold is
hyperbolic and has boundary a 3-sphere, but it does not admit any
p.d. $c$ . action on (real) hyperbolic 4-space.

(B7) $A$ hypcrbolic group $\Gamma$ acts by homcomorphism on the boundary
$\partial\Gamma$ . In fact this has a particular dynamical property: it is a “uniform
convergenoe group” This means that induced action on the spaoe of
distinct triples (the configuration space of 3-element subsets of the
boundary) is p.d. $c$ . The notion of a convergenoe group was introduced
by Gehring and Martin and explored by a number of people, such as
Tukia. It turns out (Bowditch) that one can characterise hyperbolic
groups in these terms:

If a group acts as a umiform convergence group on a compact metris-
able spaoe with no isolated points, then the group is hyperbolic, and
the spaoe is equivariantly homeomoprhic to the boundary.

(B8) It turns out that any compact metrisable topological spaoe is
homeomorphic to the boundary of some proper hyperbolic spaoe.
However, there are constraints on what kinds of spaces can arise as
boundaries of hyperbolic groups. In some sense, the “generic bound-
ary” is a Menger curve, but there are many other examples. One can
get a lot of information about the algebraic structure of a hyperbolic
group from the topology of its boundary.

6.11.4. Other directions.

There are many other directions in the study of hyperbolic groups
which I have not had time to mention. The “JSJ splitting” the-
ory of Sela, for example, which has inspired similar results for much
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wider classes of groups. The Markov property of the boundary, the
”geodesic flow” of a hyperbolic group, bounded cohomology, the
Novikov conjecture etc.

The subject of urelatively hyperbolic” groups is very fashionable at
the moment. These include fundamental groups of finite-vo1ume hy-

perbolic manifolds, amalgamated free products of groups over finite

groups, the “limit groups” defined by Sela in relation to the Tarski
problem etc.

There are many naturally arising spaces that are hyperbolic that
do not stem directly from groups. For example the Harvey curve
complex associated to a surface was shown to be hyperbohc by Masur
and Minsky. This has many implications, for example to the study
of the mapping class groups.
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