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Chapter 8

Families of 1-Arrangements

8.1 Pure Braid Space

In this chapter we consider families of 1-arrangements in the dynamic setting,
following Aomoto’s work [A12] and Kohno’s work [Ko2, Ko4]. Although they study
not only the l-arrangement case but also some higher dimensional cases, all the
essential ingredients can be found in the one-dimensional case. So we will restrict
ourselves to families of 1-arrangements in this chapter. We have n distinct points,
t1,...,tp, in the complex line and we allow them to move independently without
collision. As a particular example when n = 3, we derive the hypergeometric
differential equation of Gauss. The family of all arrangements of n distinct points
in the line is parametrized as follows.

Let U ~ C have coordinate u, let W ~ C" have coordinates t = (t1,...,t,),
and let V ~ C"*! have coordinates (u,t). Define the arrangement C in V by

QO =[Jw-t) I -t
j=1 1<j<k<n

the arrangement B in W by

and the arrangement Ag in U by

n

Q(Ay) = H(U —t5).

j=1

Here B is the braid arrangement and C is a discriminantal arrangement. Note that
the hyperplane H; ; = ker(t; —t;) corresponds to the (inadmissible) coincidence of
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70 CHAPTER 8. FAMILIES OF 1-ARRANGEMENTS

the points ¢; and t;. Let M = M(C) and B = M(B), the pure braid space. The
natural projection induces a fibration 7 : M — B whose fiber at t = (t1,... ,t,) € B
is My = M (Ay). This justifies calling B the parameter space of all (combinatorially
equivalent) arrangements of n points in the line.

8.2 Gauss-Manin Connection

Suppose we have nonresonant weights A1, ..., A\, and the corresponding local sys-
tem L. Let
H' = H' (M, £).
teB
Theorem 6.3.2 provides the following global section:

Ao du An du
= .., Ppo1 =

$1

S u—ty u—ty,

Thus H! is a globally trivial bundle over B. The bundle of duals
Hl = U Hl(Mta‘Cv>
teB

is only locally trivial over B. We want to find a differential equation which charac-
terizes Hy. The hypergeometric pairing generalizes to

H' ® O x H; ® Og — Og.

Thus H! ® Og and H; ® Og are dual Og modules. Since the former is trivial, we
may give an explicit trivialization of the latter by

H1®OB_’08717 ’7'_’[@17'-'7@71—1]]—'
where 9; = [ ®¢;. We also have H; ® Of ~ (Q%)"~ 1. These isomorphisms fit in
the commutative diagram

0 - M — Mie©0s 2% H oo

\ ! / !
oyt (@

Here d’ is exterior differential in B and V' is a connection with kernel H;, called
the Gauss-Manin connection. Write

V' =d - QA
where Q is an (n—1)x (n—1)-matrix of 1-forms on B. If v € H;, then (1&d')(y®1) =
0= V’[(ﬁl, e ,(ﬁn_ﬂT. Thus
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For n = 3, this system of first order differential equations leads to the second
order differential equation for the hypergeomertic function discovered by Gauss
and quoted in the Introduction. The explicit calculation of the matrix ) is easiest
in our case if we preserve the symmetry of the n points and use n generators
n; = Ajdu/(u—t;), j =1,... ,nfor H! whose sum is wy A1 and thus cohomologous
to zero. We write = to denote relations in cohomology. Thus n; + ...+ n, = 0.
Let ﬁj = f’y (I)T]J Then

d/ﬁj = d//(DT]]
Y

= d//(u—tl)’\l...(u—tj_l)’\j‘l(u—tj)’\j_l
ik

(U — tj_i_l))\j"'l . (U — tn)’\")\jdu

/ |:_ )\1)\jd/t1 _____ )\jflx\jd/tjfl _ /\j(/\j — 1)d/tj
S L (u—t)(u—tj) (u—tj—1)(u—t;) (u—t;)?
s NNndtin  Adedt ] Bdu.
(u—t5)(u—tj+1) (u—1t;)(u—tn)

We must express the last integral in terms of the 7);. The identity

1 1 I
(u—ti)(u—tj)_ti—tj U—ti U—tj

may be used in each term except where the denominator is (u — t;)%. Recall the
operator in the fiber V) = d + wyA, where d is differential in the fiber direction, a
distinction we did not have to make when the t; were fixed. It gives the following
relation in H?:

—du Aidu Aidu
0 = o j o aw
V) S T s A )
A (A = 1)du _ Z Ainlj — Ajni
(u — t]‘>2 it ti — tj
Making these substitutions gives the relation
. d'(t; —t; . .
(1) d'iy =y u(Amj = Ajfli)-

z bl

Theorem 8.2.1. The matriz of 1-forms in the Gauss-Manin connection with re-
spect to the basis Q1 ..., Pn—1 is

d'(ti —t;)
= ZQM ti—t;

i<j
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where the € ; are the (n — 1) x (n — 1)-reduced Jordan-Pochhammer matrices

AL+ A ifr=7-1,s=5-1

[Qujlrs =19 X ifr=j-ls#j-1,
0 else.
and for i > 2,

Aj ifr=i—1s=i—1
N dfr=i-1,s=j-1
Qijlrs =4 =\ ifr=7-1,s=i—1
A ifr=j—-1s=j-1

0 else.

Proof. Use iy = — Y 1 _y 7k and formula (1) to get

R d'(t d'(t; —t; R R
di; = M()\Nh + Zﬁk Z %tlj)(&m = Ajii)

b=t k=2 ig{1,;3 "
d'(t; —t; d'(ti—t;), . . R
= % M+X)0+ > Nk g+ Y H(Aim = Ajii)
10 ke{1,5} ig{tsy 47
for j > 2. Since f; = ¢;-1 (j > 2), we have the desired result. O

Now we can derive the system of first order differential equations (7) in the
Introduction which gives rise to the Gauss differential equation for the hypergeo-
metric function. Set t; =1, to = 0, and t3 = =, We have

Adu Aodu Aszdu

u—1 BT BT LT

=

Using formula (1) and d't3/ts = —d'z/z we get

. d'
d'e = (- )\3T}2+>\2773)

Similarly, we get from formula (1)

—d'ts d't

T, T (Aol = Asie) ——= ; :
3

Use —d'ts/(1 — t3) = d'z/x(x — 1) = d'z/(x — 1) — d'z/x and the cohomology
relation 7; = —7js — 73 to get

d'f3 = (M17j3 — A1)

" R dx d'x
dijs = stz + (A1 + As)ils] ——3 + [~ (A1 + Az + Aa)ils ]x

These formulas provide (7) in the Introduction.
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8.3 Infinitesimal Braid Relations

Since ker V/ ~ H; is a local system, the Gauss-Manin connection is known to be
flat: V'V’ = 0. Direct calculation shows that we need d’Q) — QA Q = 0. Since the
(); ; are constant matrices and the 1-forms

wm' =
are closed, we get d’QQ = 0. It remains to show Q A Q = 0. Let us check this
calculation for n = 3 first. Here

Q= owio+ Y swiz+Q3zwss.

OANQ = Qi3 —Q3Q2)wipAwis
+ (203 — Q23D 2)wio Awas
+ (3023 — Q2301 3) w1 3 Awag.

The three hyperplanes Hj o, Hy 3, and Hy 3 form a dependent set. The corre-
sponding cohomology relation is

wig AwigtwigAwrgt+wezAwrg = 0.
We use this and the Lie bracket notation to conclude that
OANQ=[Q2+ D13, Doslwip Awaz+ Q12+ D3, Q1 3l wi o Awy s

Thus 2 A Q = 0 if and only if the Lie brackets on the right side vanish. We check
the first by showing that the following two matrices commute:

_ AL+ Ao A2 _ A3 =X
Do+ Q3= < A3 A+ N Qo3 = SV
Definition 8.3.1 (K. Aomoto [A12] T. Kohno [Ko2, Ko4]). Let Q; ; be n x
n complex matrices for 1 < i < j < n. The following conditions are called the

infinitesimal pure braid relations or the classical Yang-Baxter relations:
(1) Fori<j<k

Qi+ Qe Qik] =0, [Qij+ Qg Qa) =0, Qi+ k. Qij] =0.

(2) [Q?ﬁ,jv Qg =0 if {i,3} 0 {p, ¢} = 0.

Theorem 8.3.2 (K. Aomoto [A12] T. Kohno [Ko2, Ko4]). Let (}; ; benxn
complex matrices for 1 < i < j <mn. They satisfy the infinitesimal braid relations
if and only if d' — Eiq Qi jwij 15 a flat connection on the pure braid space B.
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Proof. First construct an nbe basis for H?(B). Introduce a linear order in B by
Hi; <Hpqifi <pori=p,j<gq. Thecircuits are {H; j, Hj , H x}. If i < j <k,
then the broken circuit is {H; », Hj}. Thus H?(B) has the following nbc basis:

Wi j /\wj,;ﬁ 1< 7 < k; Wi j A Wik, 1< ] < k; Wi j /\wp,q, {Z,]} N {p, q} = (.
We observed that the connection is flat if and only if 2 A Q = 0.

QONQ = Z [Qi,j,Qj,k] wij N\ Wik

i<j<k

+ EZ[QJIRHMJAWM
i<j<k

+ Z [y Qj k] Wik Awjik
i<j<k

+ Z [, Qp.g] wij Awpg-
{i.530{p,q}=0

We substitute w; i Awjr = wij Awji — wij Awi g in the third sum to get

ON) = Z [Qi,j + Qi,ka Qj,k} Wi, j N Wik
i<j<k
> [ Y Ui wig Awig
i<j<k
+ Z [, Qp,q] wij A wpg.-
{i,}n{p,q}=0

This completes the proof. O

8.4 Fundamental Group Action

In this section we compute the action of 71(B, %) on the homology of the fiber. Let
the base point * have real coordinates t; < --- < t,. For i < j let 7; ; denote the
oriented loop in B linking the hyperplane H; j = ker(t; —t;) so that moving along
the loop in the positive direction first interchanges ¢; and ¢; by a counterclockwise
rotation through 180° and then moves them back to their original position by
another counterclockwise rotation through 180°. It is clear that the v; ; generate
m1(B, *). Next we observe that 7 (B, %) may be identified with the pure braid group
on n strands, PB,,. The (ordinary) braid group on n strands, B,,, is generated by
the elementary braids Ay, ..., A,_1 shown in Figure 8.1.

The following relations define B,,:

AiAdiiAi = AipAidin 1<i<n,
AiAj = AjAZ' ‘l—]| > 1.
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t1 ti  tiy1 tn

k
|

Figure 8.1: The Braid A4;

If we call the symmetric group on n letters S,,, then we have the exact sequence
1—-PB,— B,— S, — 1

It is known that PB,, is generated by 7; i+1 for 1 <i <n—1 and 1 ,. Here v; i1
is naturally identified with the pure braid A? and

le,n - (AI . .An_2)71A2_1A1 . 'ATL—Q'

Suppose we have nonresonant weights A1, ..., A, and the corresponding local sys-
tem LY. Choose a basis 0, j = 1,...,n—1 in the fiber H{(M,, L") as follows.
Recall Example 2.2.2. Consider a loop A(t;) which goes around ¢; counterclockwise
first with positive and then with negative imaginary parts. Let AT(¢;) denote the
half of A(t;) with positive imaginary parts and let A~ (¢;) denote the half of A(t;)
with negative imaginary parts. In order to define o; we must also consider a loop
A(t;)* which goes around t; counterclockwise first with negative and then with
positive imaginary parts. Note the relation A(t;)* = AT (¢;) U cj_lA_(tj) where
¢j = exp(2mi);). Then for 1 <j<n-—-1

g5 =(c; = )7HAW) @) + [t — € tjy1 — ] © P — (c41 — 1) (Atj41)" @ ).

tj+1

t]
e o) —
L4 ] L

Figure 8.2: A Basis Element

In order to compute the action of PB, in Hi(M,, L"), we must calculate the
action of y; ; on the generator oj,. We shall illustrate this for 1 2 = A2. Since A?
moves o once around ¢; and 5 in the positive direction, we get v1 2(01) = c1c2071.
It is clear that v, 2(0;) = o for j > 2. The action on o9 is shown in Figure 8.3
after each half-turn. Thus 1 2(02) = c2(1 — ¢1)01 + 09.

This representation of the pure braid group, 7 : PB,, — GL(n —1,C), is called
the Gassner representation. It is given by the following matrices (2 <i <n —2):
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t3

t1 o to t3
R T
c1co®P
Figure 8.3: The Action of 7 2 on o
M(1,2 0
T(P)/I,Q) = < <0 ) In—3) )
M(1,2)= <01002 02(11— 01)> ,
Ii_o 0 0
T(% H—l) 0 Al(l’l + 1) 0 y
0 0 y P
1 0 0
]\/[(’L,’L + 1) =|1- Ci+1 CiCit1 Ci+1(1 — Ci)
0 0 1
 (In-s 0
T(’Vn—l n) - ( 0 ]w(n _ 17 n)) ’
1 0
M(n—1,n) = <1 e Cn—10n> ,
1—c1+cien ifr=1,s=1
—c1 + c1e, ifr>1,s=1
T(Vin)rs =4 c1—1 ifr<n—-1,s=n-1
c1 ifr=n—-1,s=n-1
Or.s else.
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When ¢; = - - = ¢,, this representation is a restriction of the Burau represen-
tation of the braid group, B,.



