
Chapter 1

Introduction

1.1 History

It is generally accepted that John Wallis first used the term ‘hypergeometric’ in his
book “Arithmetica Infinitorum” (1655) to denote any series beyond the ordinary
geometric series. In modern use the term applies to any series $\sum a_{n}x^{n}$ such that
$a_{n+1}/a_{n}$ is a rational function of $n$ . The series which has become known as the
ordinary hypergeometric series or the Gauss series is

(1) $ 1+\frac{ab}{c}\frac{x}{1!}+\frac{a(a+1)b(b+1)}{c(c+1)}\frac{x^{2}}{2!}+\frac{a(a+1)(a+2)b(b+1)(b+2)}{c(c+1)(c+2)}\frac{x^{3}}{3!}+\cdots$

Gauss called the series $F[a, b;c;x]$ in 1812. It is convenient to introduce Appell’s
notation

$(a, n)=a(a+1)(a+2)\cdots(a+n-1)$ .

Gauss already considered $F$ as a function in four variables which may be real or
complex and considered the problem of convergence of the series. If $a$ or $b$ is zero
or a negative integer, the series reduces to a polynomial. If $c$ is zero or a negative
integer, the function is not defined. The ratio of two succesive terms of (1) is

$\frac{(a+n)(b+n)}{(c+n)(1+n)}x=\frac{(1+a/n)(1+b/n)}{(1+c/n)(1+1/n)}x$ ,

so that as $ n\rightarrow\infty$ , the absolute value of the ratio tends to $|x|$ . Thus the series
converges for $|x|<1$ and diverges for $|x|>1$ . For $|x|=1$ , more delicate tests
are required and convergence depends on $a,$ $b,$ $c$ . The sum of the series inside its
circle of convergence is called the hypergeometric function, and the same name
is used for its analytic continuation outside the circle of convergence.
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Barnes constructed more general hypergeometric series with $p$ numerator pa-
rameters $(a)=(a_{1}, \ldots a_{p})$ and $q$ denominator parameters $(c)=(c_{1}, \ldots c_{q})$ :

$pqF[(a);(c);x]=\sum_{n=0}^{\infty}\frac{(a_{1},n)\cdot.\cdot.\cdot.(a_{p},n)}{(c_{1},n)(c_{q},n)}\frac{x^{n}}{n!}$ .

In this terminology the original Gauss series is $2F1$ . Many important special func-
tions are represented by the series $pqF$ . These include the trigonometric functions,
the Legendre functions, the Bessell functions, and the Airy functions. For example:

$e^{x}$ $=$ $\sum\frac{x^{n}}{n!}=F[x]$

$\cos(x)$ $=$
$1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-$ $=0F1[1/2;-x^{2}/4]$

$\sin(x)$ $=$ $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=x_{0}F_{1}[3/2;-x^{2}/4]$

$(1-x)^{-a}$ $=$ $\sum(a, n)\frac{x^{n}}{n!}=1F0[a;x]$

$J_{0}(x)$ $=$
$1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2}4^{2}}-\frac{x^{6}}{2^{2}4^{2}6^{2}}-$ $=0F1[1;-x^{2}/4]$

$\int_{0}^{x}e^{t^{2}}dt$ $=$ $\sum\frac{(-1)^{n}x^{2n+1}}{n!(2n+1)}=x_{1}F_{1}[1/2;3/2;-x^{2}]$

$\log(1+x)$ $=$ $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots=x_{2}F_{1}[1,1;2;-x]$

arcsin(x) $=$ $x+\frac{x^{3}}{2\cdot 3}+\frac{3x^{5}}{2\cdot 4\cdot 5}+\frac{3\cdot 5x^{7}}{2\cdot 4\cdot 6\cdot 7}+\cdots=x_{2}F_{1}[1/2,1/2;3/2;x^{2}]$ .

These and related special functions are important in probability theory, heat con-
duction, vibration, electromagnetic theory, fluid dynamics, boundary value prob-
lems of potential theory, and quantum mechanics. Since the generalized series are
of peripheral importance to us, we shall use Gauss’ original notation.

Gauss knew that the differential equation

(2) $x(1-x)\frac{d^{2}y}{dx^{2}}+[c-(1+a+b)x]\frac{dy}{dx}-aby=0$

is satisfied by $F[a, b;c;x]$ . This can be verified by using

$\frac{d}{dx}F[a, b;c;x]=\frac{ab}{c}F[a+1, b+1;c+1;x]$ .

If we assume the existence of solutions of (2) of the form $y=x^{g}\sum_{n=0}^{\infty}u_{n}x^{n}$ , then
direct calculation gives

$g(g+c-1)$ $=$ $0$ ,
$(g+n+c)(g+n+1)u_{n+1}$ $=$ $(g+n+a)(g+n+b)u_{n}$ .
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The root $g=0$ leads to the solution $y_{1}=F[a, b;c;x]$ provided $c$ is not zero or a
negative integer. The root $g=1-c$ gives a second solution $y_{2}=x^{1-c}F[1+a-c,$ $1+$

$b-c;2-c;x]$ provided $c$ is not a positive integer $\geq 2$ . Hence one complete solution
of the hypergeometric differential equation (2) is $y=Ay_{1}+By_{2}$ for $|x|<1$ and
$c\not\in \mathbb{Z}$ . In 1836 Kummer listed in all twenty-four solutions which arise in different
regions of the plane and for different values of the parameters. Since there are only
two linearly independent solutions at any point, the validity of more solutions leads
to interesting functional identities. One is Euler’s identity

$F[a, b;c;x]=(1-x)^{c-a-b}F[c-a, c-b;c;x]$ .

An integral representation of $F[a, b;c;x]$ goes back to Euler in 1748. Recall the
definition of the beta and gamma functions

$B(x, y)=\int_{0}^{1}u^{x-1}(1-u)^{y-1}du$ , $\Gamma(x)=\int_{0}^{\infty}e^{-u}u^{x-1}du$ .

Let $|x|<1$ and set

$I=\int_{0}^{1}u^{a-1}(1-u)^{c-a-1}(1-xu)^{-b}du$ .

This integral exists and is convergent if the real part $\Re(a)>0$ and $\Re(c-a)>0$ .
Now $(1-xu)^{-b}=\sum_{n=0}^{\infty}(b, n)u^{n}x^{n}/n!$ . Hence

$I$ $=$ $\sum_{n=0}^{\infty}\frac{(b,n)}{n!}x^{n}\int_{0}^{1}u^{a+n-1}(1-u)^{c-a-1}du$

$=$ $\sum_{n=0}^{\infty}\frac{(b,n)}{n!}x^{n}\frac{\Gamma(a+n)\Gamma(c-a)}{\Gamma(c+n)}$

$=$ $\frac{\Gamma(c-a)\Gamma(a)}{\Gamma(c)}F[a, b;c;x]$ .

Here we used the fact that $(a, n)=\Gamma(a+n)/\Gamma(a)$ and Euler’s beta function identity:

(3) $B(x, y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$

Thus we obtain the integral representation

(4) $\frac{\Gamma(c-a)\Gamma(a)}{\Gamma(c)}F[a, b;c;x]=\int_{0}^{1}u^{a-1}(1-u)^{c-a-1}(1-xu)^{-b}du$

provided that $|x|<1,$ $\Re(a)>0$ , and $\Re(c-a)>0$ .
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$M_{x}$

Figure 1.1: Generators

1.2 The Classical Example

Since all ingredients of the generalized theory are present in the classical example
above, we describe it first in modern terms that allow generalization. For fixed
$x$ , not 0,1, there are three distinct points 1, $0,$ $x^{-1}$ , in the complex line. This is
an example of an arrangement, defined below. We view this as the static setup
because $x$ is fixed. The three points are the zeros of the linear functions 1 $-u$ ,
$u$ , and 1 $-xu$ . We have a set of parameters $\lambda$ and a multivalued holomorphic
function defined in the complement of the points. Under suitable conditions on the
parameters $\lambda$ , there exist certain paths in the complement of the points so that
the corresponding line integrals are defined and a basis for the space of integrals
is obtained by choosing a basic set of paths. Let $\lambda=(\lambda_{1}, \lambda_{2}, \lambda_{3})$ be complex
parameters. Let $N_{x}=\{1,0, x^{-1}\}$ and let $M_{x}=\mathbb{C}-N_{x}$ . Then

(5) $\Phi(u;\lambda;x)=(1-u)^{\lambda_{1}}u^{\lambda_{2}}(1-xu)^{\lambda_{3}}$

defines a multivalued holomorphic function on $M_{x}$ . In order to write down suitable
integrals, we must introduce twisted versions of homology and cohomology. The
twisting comes from the change in the value of $\Phi$ as we prolong it by analytic
continuation while moving around a point of $N_{x}$ . Choose a base point $p\in M_{x}$ and
simple loops around the points of $N_{x}$ representing standard generators of $\pi_{1}(M_{x}, p)$

as in Figure 1.1. A rank one local system $\mathcal{L}$ over $M_{x}$ is given by the representation
$\rho$ : $\pi_{1}(M_{x}, p)\rightarrow Aut(\mathbb{C})$ , where $\rho(\gamma_{j})=\exp(-2\pi i\lambda_{j})$ for $j=1,2,3$ .

The holomorphic l-form

$\omega_{\lambda}=d(\log\Phi)=\frac{d\Phi}{\Phi}=-\lambda_{1}\frac{du}{1-u}+\lambda_{2}\frac{du}{u}-\lambda_{3}\frac{xdu}{1-xu}$

is single valued. Define $\nabla$ : $\mathcal{O}_{M_{x}}\rightarrow\Omega_{M_{x}}^{1}$ by $\nabla(f)=df+f\omega_{\lambda}$ Note that $\nabla(\Phi^{-1})=$

$-\Phi^{-2}d\Phi+\Phi^{-1}(d\Phi/\Phi)=0$ . If $0=\nabla(f)=df+f(d\Phi/\Phi)$ , then $ df/f=-d\Phi/\Phi$ ,
so $f$ is locally a constant multiple of $\Phi^{-1}$ . This identifies $ker\nabla$ and $\mathcal{L}$ . Let $\mathcal{L}^{\vee}$
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denote the dual local system. The theory shows that integration is a nondegenerate
pairing. In our case this pairing

(6) $H^{1}(M_{x}, \mathcal{L})\times H_{1}(M_{x}, \mathcal{L}^{\vee})\rightarrow \mathbb{C}$

is defined by $\int_{\gamma}\Phi\eta$ where $\gamma\in H_{1}(M_{x}, \mathcal{L}^{\vee})$ and $\eta\in H^{1}(M_{x}, \mathcal{L})$ . Identifying a basis
of twisted cycles is easy in our example. Moreover, for suitably general $\lambda$ ,

$H^{1}(M_{x}, \mathcal{L})\simeq(\mathbb{C}\frac{d(1-u)}{1-u}+\mathbb{C}\frac{du}{u}+\mathbb{C}\frac{d(1-xu)}{1-xu})/\nabla(1)$ .

For generic values of $\lambda$ we may choose the basis $\{\varphi_{1}=\lambda_{2}du/u,$ $\varphi_{2}=\lambda_{3}xdu/(xu-$

$1)\}$ for $H^{1}(M_{x}, \mathcal{L})$ .
If we allow $x$ to vary in $\mathbb{C}-\{0,1\}$ , then we obtain afamily of arrangements of

three points in the plane parametrized by $x$ . We view this as the dynamic setup
because $x$ is allowed to vary. In this setup, we may derive the Gauss hypergeometric
differential equation (2) as follows. Let $\gamma\in H_{1}(M_{x}, \mathcal{L}^{\vee})$ and for $i=1,2$ define
$\hat{\varphi}_{i}=\int_{\gamma}\Phi\varphi_{i}$ . Working in $H^{1}(M_{x}, \mathcal{L})$ , a direct calculation in Chapter 8 shows that
$\hat{\varphi}_{1}$ and $\hat{\varphi}_{2}$ satisfy the following system of first-order differential equations:

(7) $\frac{d}{dx}\left(\begin{array}{l}\hat{\varphi}_{1}\\\hat{\varphi}_{2}\end{array}\right)dx=\left(\begin{array}{ll}0 & 0\\\lambda_{3} & \lambda_{1}+\lambda_{3}\end{array}\right)\left(\begin{array}{l}\hat{\varphi}_{1}\\\hat{\varphi}_{2}\end{array}\right)\frac{dx}{x-1}$

$+\left(\begin{array}{ll}-\lambda_{3} & \lambda_{2}\\0 & -\lambda_{1}-\lambda_{2}-\lambda_{3}\end{array}\right)\left(\begin{array}{l}\hat{\varphi}_{1}\\\hat{\varphi}_{2}\end{array}\right)\frac{dx}{x}$

Define a flat connection $\nabla_{\Omega}$ on $\mathcal{O}_{\mathbb{C}\backslash \{1,0\}}^{2}$ by

$\nabla_{\Omega}\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)=\frac{d}{dx}\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)dx-\Omega\left(\begin{array}{l}f_{1}\\f_{2}\end{array}\right)$

where

$\Omega=\left(\begin{array}{ll}0 & 0\\\lambda_{3} & \lambda_{1}+\lambda_{3}\end{array}\right)\frac{dx}{x-1}+\left(\begin{array}{ll}0 & \lambda_{2}\\0 & -\lambda_{1}-\lambda_{2}\end{array}\right)\frac{dx}{x}$

Define $F_{i}=x^{\lambda_{3}}\hat{\varphi}_{i}$ for $i=1,2$ . Equation (7) shows that these functions provide a
flat section of the connection $\nabla_{\Omega}$ :

$\nabla_{\Omega}\left(\begin{array}{l}F_{1}\\F_{2}\end{array}\right)=0$ .

An easy calculation shows that $F_{1}$ satisfies the second-order differential equation

$x(1-x)\frac{d^{2}y}{dx^{2}}+[(\lambda_{1}+\lambda_{2}+1)-(\lambda_{2}-\lambda_{3}+1)x]\frac{dy}{dx}+\lambda_{2}\lambda_{3}y=0$ .

Setting

$\lambda_{1}=c-a-1,$ $\lambda_{2}=a,$ $\lambda_{3}=-b$ ,

we recover the Gauss hypergeometric differential equation (2).



6 CHAPTER 1. INTRODUCTION

1.3 Outline
We generalize these ideas to several variables. The notation introduced here will be
used throughout these notes. Let $V$ be a complex affine space of dimension $\ell$ and
let $\mathcal{A}$ be an arrangement of affine hyperplanes in $V$ . Let $N=N(\mathcal{A})=\bigcup_{H\in}{}_{A}H$ be
the divisor of $\mathcal{A}$ and let $M=M(\mathcal{A})=V-N(\mathcal{A})$ be the complement of $\mathcal{A}$ . Choose
coordinates $u=\{u_{1}, \ldots u_{\ell}\}$ in $V$ and for each $H\in \mathcal{A}$ a degree one polynomial
$\alpha_{H}$ with $H=ker\alpha_{H}$ . Let $\lambda_{H}\in \mathbb{C}$ be complex weights. Define

$\Phi(u;\lambda)=\prod_{H\in A}\alpha_{H}^{\lambda_{H}}$
.

A generalized hypergeometric integral is of the form

(8) $\int_{\sigma}\Phi\eta$

where $\sigma$ is a suitable domain of integration and $\eta$ is a holomorphic form on $M$ .
Appell defined four series in 1880 which generalize (1) to two variables, see $[E,$ $p$ .
222]. They have integral representations. Corresponding to $F_{3}(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma;x, y)$

is the integral

$\int\int u^{\beta-1}v^{\beta^{\prime}-1}(1-u-v)^{-\gamma-\beta-\beta^{\prime}-1}(1-ux)^{-\alpha}(1-vy)^{-\alpha^{\prime}}dudv$

where the domain of integration is $u\geq 0,$ $v\geq 0,$ $u+v\leq 1$ and we assume $\Re\beta>0$ ,
$\Re\beta^{\prime}>0,$ $\Re(\gamma-\beta-\beta^{\prime})>0$ . The corresponding arrangement consists of the lines
$u=0,$ $v=0,$ $u+v=1,$ $u=1/x,$ $v=1/y$ .
There are several generalizations of the beta function identity (3). Here are two.
Dirichlet’s integral is

$\int\cdots\int u_{1}^{x_{1}-1}u_{2}^{x_{2}-1}\cdots u_{\ell}^{x\ell-1}(1-u_{1}-\ldots-u_{\ell})^{x_{\ell+1}-1}du_{1}\ldots du_{\ell}$

where the domain of integration is $u_{i}>0,$ $u_{1}+\cdots+u_{\ell}<1$ and we assume that
$\Re x_{i}>0$ . The corresponding arrangement consists of the coordinate hyperplanes
and $u_{1}+\cdots+u_{\ell}=1$ . Selberg’s integral [Se] is

$\int_{0}^{1}\cdots\int_{0}^{1}(u_{1}\cdots u_{\ell})^{x-1}[(1-u_{1})\cdots(1-u_{\ell})]^{y-1}|\triangle(u)|^{2z}du_{1}\ldots du_{\ell}$

where $\triangle(u)=\prod_{i<j}(u_{j}-u_{i}),$ $\Re x>0,$ $\Re y>0,$ $\Re z>-\min\{1/\ell,$ $\Re x/(\ell-1),$ $\Re y/(\ell-$

$1)\}$ . The corresponding arrangement consists of the coordinate hyperplanes, their
parallels $u_{i}=1$ , and the diagonals $u_{i}=u_{j}$ for $i<j$ . We call this the Selberg
arrangement and use it to illustrate constructions.

In Part I we work in the static setup. The constructions involve a fixed arrange-
ment in analogy with fixed $x$ in the classical example. The purpose of Chapter 2 is
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to interpret hypergeometric integrals as the result of the hypergeometric pairing.
This already appears in the book by Aomoto and Kita [AK]. Singular homology
and cohomology with real coefficients are algebraic duals. This provides a perfect
pairing between them. Ordinary integrals on manifolds are interpreted by de Rham
theory using this pairing. Smooth triangulation represents homology classes and
de Rham’s theorem represents cohomology classes as globally defined differential
forms. The hypergeometric pairing has an analogous interpretation. A rank one
local system $\mathcal{L}$ on $M$ is defined with monodromy $\exp(-2\pi i\lambda_{H})$ around the hy-
perplane $H$ . It defines the cohomology groups $H^{p}(M, \mathcal{L})$ . The dual local system
$\mathcal{L}^{\vee}$ has monodromy $\exp(2\pi i\lambda_{H})$ around the hyperplane $H$ . It defines homology
groups $H_{p}(M, \mathcal{L}^{\vee})$ . These groups are algebraic duals. This provides a perfect
pairing between them:

(9) $H^{p}(M, \mathcal{L})\times H_{p}(M, \mathcal{L}^{\vee})\rightarrow \mathbb{C}$ .

Smooth triangulation of $M$ represents twisted homology classes. In order to inter-
pret cohomology, let $\mathcal{O}=\mathcal{O}_{M}$ denote the sheaf of germs of holomorphic functions
on $M$ and let $\Omega=\Omega_{M}$ be the de Rham complex of germs of holomorphic differ-
entials on $M$ , where $\Omega^{0}=\mathcal{O}$ . Let $\omega_{H}=d\alpha_{H}/\alpha_{H}$ and

$\omega_{\lambda}=d(\log\Phi)=\sum_{H\in A}\lambda_{H}\omega_{H}$
, $\nabla=d+\omega_{\lambda}\wedge$

as in the one-variable case. We see that $\nabla$ : $\Omega^{0}\rightarrow\Omega^{1}$ is a flat connection whose
kernel is $\mathcal{L}$ . Extend $\nabla$ to a derivation of degree one. The sequence

$ 0\rightarrow \mathcal{L}\rightarrow\Omega^{0}\rightarrow\nabla\Omega^{1}\rightarrow\nabla$ . . . $\rightarrow\nabla\Omega^{\ell}\rightarrow 0$

is exact. Cartan’s Theorem $B$ implies that $H^{n}(M, \Omega^{p})=0$ for $n>0$ and all $p$ since
$M$ is a Stein manifold. Thus the exact sequence above is an acyclic resolution of
$\mathcal{L}$ . We obtain the holomorphic de Rham theorem

$H^{p}(M, \mathcal{L})\simeq H^{p}(\Gamma(M, \Omega),$ $\nabla$ )

where $\Gamma$ denotes global sections. A twisted version of Stokes theorem shows that
the bilinear pairing (9) is given by the integral (8).

The next four chapters are devoted to the explicit calculation of the groups
$H^{p}(M, \mathcal{L})$ . If all $\lambda_{H}\in \mathbb{Z}$ , then the local system is trivial. Calculation of the
cohomology groups $H^{*}(M, \mathbb{C})$ was initiated by Arnold [Ar], who found a beautiful
formula for the Poincar\’e polynomial of the of the cohomology of the complement
of the braid arrangement $\{u_{i}=u_{j}\},$ $i\neq j$ . Arnold conjectured and Brieskorn [Bri]
showed that the algebra $B(\mathcal{A})$ generated by 1 and the holomorphic l-forms $\omega_{H}$ ,
$H\in \mathcal{A}$ is isomorphic to $H^{*}(M, \mathbb{C})$ . When the local system is nontrivial, the groups
$H^{p}(M, \mathcal{L})$ are not known in general. Let $\Omega^{p}(*\mathcal{A})$ denote the group of globally
defined rational p-forms on $V$ with poles on $N$ . These forms are holomorphic on
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$M$ so $\Omega^{p}(*\mathcal{A})\rightarrow\Gamma(M, \Omega)$ is an inclusion. Note that $(\Omega(*\mathcal{A}), \nabla)$ is a complex
because $\omega_{\lambda}\in\Omega^{1}(*\mathcal{A})$ . It follows from the algebraic de Rham theorem of Deligne
and Grothendieck that the inclusion is a quasiisomorphism of complexes and hence

$H^{p}(M, \mathcal{L})\simeq H^{p}(\Omega(*\mathcal{A}), \nabla)$ .

This reduces the original analytic problem to the algebraic problem of computing
cohomology of rational forms on $V$ with poles on $N$ , but it is still very difficult.
Deligne’s work [D1] may be used to reduce the problem from poles of arbitrary
order on $N$ to computing in a complex of forms with poles of order one. In order
to apply the results of [D1] we must compactify $M$ with a normal crossing divisor.

In Chapter 3 we embed $V\subset \mathbb{C}\mathbb{P}^{\ell}$ by adding the infinite hyperlane, $H_{\infty}$ . Define
the projective closure of $\mathcal{A}$ , as $\mathcal{A}_{\infty}=\mathcal{A}\cup H_{\infty}$ . The divisor $N(\mathcal{A}_{\infty})=N\cup H_{\infty}$ may
have non-normal crossings. To get a normal crossing divisor we need to determine
where these non-normal crossings occur and blow up their singularities. We review
basic notions of arrangements from [OT1]. A nonempty intersection of hyperplanes
is an edge. An edge is called dense if the subarrangement of hyperplanes containing
it is irreducible: the hyperplanes cannot be partitioned into nonempty sets so
that after a change of coordinates hyperplanes in different sets are in different
coordinates. The divisor $N(\mathcal{A}_{\infty})$ does not have normal crossings along a dense
edge. In higher dimensions it is difficult to use the definition directly to decide
which edges are dense. We find a combinatorial condition. Let $L(\mathcal{A})$ denote the set
of edges. Define a partial order on $L(\mathcal{A})$ by reverse inclusion $X\leq Y\Leftrightarrow Y\subseteq X$ .
Thus $V$ is the unique minimal element of $L$ . Let $\mu$ : $L\rightarrow \mathbb{Z}$ be the M\"obius function
of $L$ defined by $\mu(V)=1$ , and for $X\neq V$ by the recursion $\sum_{Z\leq X}\mu(Z)=0$ . The
characteristic polynomial of $\mathcal{A}$ is defined as $\chi(\mathcal{A}, t)=\sum_{X\in L}\mu(X)t^{\dim X}$ . The rank
of $\mathcal{A},$ $r=r(\mathcal{A})$ , is the maximal number of linearly independent hyperplanes in $\mathcal{A}$ .
Call $\mathcal{A}$ essential if $ r(\mathcal{A})=\ell$ . The $\beta$-invariant of $\mathcal{A}$ is $\beta(\mathcal{A})=(-1)^{r}\chi(\mathcal{A}, 1)$ . The
product $Q(\mathcal{A})=\prod_{H\in A}\alpha_{H}$ is a defining polynomial for $\mathcal{A}$ . It is unique up to a
constant. An arrangement is called central if the intersection of all its hyperplanes
is nonempty. This intersection is the center. Given a central $(\ell+1)$ -arrangement
$C$ , we obtain a projective $\ell$-arrangement $\mathbb{P}C$ by viewing the defining homogeneous
polynomial $Q(C)$ as a polynomial in projective coordinates. Given a central $(\ell+1)-$

arrangement $C$ and a hyperplane $H\in C$ , we define an affine $\ell$-arrangement $d{}_{H}C$ ,
called the decone of $C$ with respect to $H$ . We construct the projective quotient
$\mathbb{P}C$ and choose coordinates so that $\mathbb{P}H=keru_{0}$ is the hyperplane at infinity. By
removing it, we obtain the affine arrangement $d{}_{H}C=\mathbb{P}C-\mathbb{P}H$ . It is easy to see
that $\beta(d_{H}C)$ is independent of $H$ , so we may omit $H$ in the notation. Given $X\in \mathcal{A}$ ,
define $\mathcal{A}_{X}=\{H\in \mathcal{A}|X\subset H\}$ . It is a central arrangement with center $X$ .

Theorem 1.3.1. The edge $X\in L(\mathcal{A}_{\infty})$ is dense if and only if $\beta(d(\mathcal{A}_{\infty})_{X})>0$ .

In Chapter 4 we show that there is a “minimal” resolution $\tau$ : $\overline{X}\rightarrow \mathbb{C}\mathbb{P}^{\ell}$ so that
the proper transform $Y=\tau^{-1}(N(\mathcal{A}_{\infty}))$ has normal crossings. This resolution is
obtained by blowing up successively with centers the proper transforms of dense
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edges of dimensions $0,1,$ $\ldots\ell-2$ . We apply Deligne’s results [D1] to this resolution
and find that under certain conditions on $\lambda$ , the local system cohomology groups
may be computed in terms of a complex of forms that are holomorphic on $M$ and
have logarithmic poles on $Y$ . Let $\lambda_{\infty}=-\sum_{H\in A}\lambda_{H}$ be the weight of $H_{\infty}$ . For
$X\in L(\mathcal{A}_{\infty})$ , define $\lambda_{X}\in \mathbb{C}$ by

$\lambda_{X}=\sum_{X\subset H}\lambda_{H}$
, $H\in \mathcal{A}_{\infty}$ .

Since $\omega_{\lambda}\wedge\omega_{\lambda}=0$ , wedge product with $\omega_{\lambda}$ provides a finite dimensional subcomplex
$(B, \omega_{\lambda}\wedge)$ of $(\Omega(*\mathcal{A}), \nabla)$ :

$0\rightarrow B^{0}\rightarrow^{\omega_{\lambda}\wedge}B^{1}\rightarrow^{\omega_{\lambda}\wedge}$ . . . $\rightarrow^{\omega_{\lambda}\wedge}B^{\ell}\rightarrow 0$ .

The next result was proved by Esnault, Schechtman, and Viehweg [ESV] and im-
proved by Schechtman, Terao, and Varchenko [STV]:

Theorem 1.3.2. Assume that $\lambda_{X}\not\in \mathbb{Z}_{>0}$ for every dense edge $X\in L(\mathcal{A}_{\infty})$ . Then

(10) $H^{p}(M, \mathcal{L})\simeq H^{p}(B(\mathcal{A}), \omega_{\lambda}\wedge)$ .

The conditions on $\lambda$ appear when Deligne’s theorem is applied to the normal
crossing divisor $Y=\tau^{-1}(N(\mathcal{A}_{\infty}))$ .

In Chapter 5 we introduce combinatorial tools to study the groups $H^{p}(B, \omega_{\lambda}\wedge)$ .
The transformation of the original analytic problem into a problem in combina-
torics is completed by the Orlik-Solomon algebra, A. It is a finite dimensional
$\mathbb{C}$-algebra defined combinatorially using the intersection poset $L(\mathcal{A})$ . There is a
graded algebra isomorphism [OT1, 5.90]:

(11) $A(\mathcal{A})\simeq B(\mathcal{A})$ .

Let $a_{H}$ be the image of $\omega_{H}$ and let $a_{\lambda}$ be the image of $\omega_{\lambda}$ under this isomorphism.
Thus we must compute the cohomology of the combinatorial complex $(A, a_{\lambda}\wedge)$ .

We define the simplicial complex $NBC(\mathcal{A})$ . Write $\mathcal{A}=\{H_{1}, H_{2}, \ldots H_{n}\}$ and
introduce a linear order in $\mathcal{A}$ by $H_{p}\prec H_{q}$ if $p<q$ . Different linear orders may
result in different complexes, but it follows from our results that the number of
simplexes in each dimension and the homotopy type of the complex is independent
of the linear order in $\mathcal{A}$ . Thus we may ignore dependence on the linear order. Let
$S=\{H_{i_{1}}, \ldots H_{i_{q}}\}$ be a set of hyperplanes and write $\cap S=H_{i_{1}}\cap\ldots\cap H_{i_{q}}$ and
$|S|=q$ . We say that $S$ is independent $if\cap S\neq\emptyset$ and $co\dim(\cap S)=|S|$ . A maximal
independent set is called a frame. Every frame has cardinality $r$ . We say that $S$

is dependent $if\cap S\neq\emptyset$ and $co\dim(\cap S)<|S|$ . An inclusion-minimal dependent set
is called a circuit. A broken circuit is a set $S$ for which there exists $H\prec\min(S)$

such that $\{H\}\cup S$ is a circuit. The collection of subsets of $\mathcal{A}$ which have nonempty
intersection and contain no broken circuits is called the nbc set of $\mathcal{A}$ . This set
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has the properties of a simplicial complex which we denote N $BC(\mathcal{A})$ . We agree to
include the empty set in nbc and the empty simplex of dimension $-1$ in $NBC(\mathcal{A})$ .
This results in reduced homology and cohomology. A maximal element (simplex)
of nbc is called an nbc frame. It follows from the general theory [OT1, 3.55] that
the elements of nbc provide a $\mathbb{C}$-basis for the algebra A. Next we compute the
cohomology groups of N B $C$ :

(12) $H^{p}$ ( $N$ BC $(\mathcal{A})$ ) $=\left\{\begin{array}{ll}0 & if p\neq r(\mathcal{A})-1,\\free of rank \beta(\mathcal{A}) & if p=r(\mathcal{A})-1.\end{array}\right.$

We conclude Chapter 5 with construction of a basis for $H^{r-1}(NBC(\mathcal{A}))$ . A frame
$B$ is called a $\beta nbc$ frame if $B$ is an nbc frame and for every $H\in B$ there exists
$H^{\prime}\prec H$ in $\mathcal{A}$ such that $(B\backslash \{H\})\cup\{H^{\prime}\}$ is a frame. Let $\beta nbc$ be the set of
all $\beta nbc$ frames. Direct calculation shows that $|\beta nbc|=\beta(\mathcal{A})$ and the $\beta nbc$ set
provides a cohomology basis.

We compute the cohomology of the combinatorial complex $(A, a_{\lambda}\wedge)$ in Chapter
6. Let $y=\{y_{H}|H\in \mathcal{A}\}$ be a system of indeterminates in one-to-one correspon-
dence with the hyperplanes of $\mathcal{A}$ . Let $\mathbb{C}[y]$ be the polynomial ring in $y$ . Let

$A_{y}=A_{y}(\mathcal{A})=\mathbb{C}[y]\otimes_{\mathbb{C}}A(\mathcal{A})$

and let $a_{y}=\sum_{H\in A}y_{H}\otimes a_{H}\in A_{y}^{1}$ . Then $(A_{y}(\mathcal{A}), a_{y}\wedge)$ is called the Aomoto
complex. We prove that over a suitable ring of quotients of $\mathbb{C}[y]$ , the Aomoto com-
plex is isomorphic to the cochain complex of $NBC(\mathcal{A})$ . The collection of invertible
elements is determined by the set of dense edges of $\mathcal{A}$ . We show that if $\lambda_{X}\neq 0$ for
every dense edge $X$ , then

(13) $H^{p}(A(\mathcal{A}), a_{\lambda}\wedge)\simeq H^{p-1}$ ( $N$ BC $(\mathcal{A}),$
$\mathbb{C}$ ).

This reduces the original problem of computing the cohomology groups of a complex
which depends on $\lambda$ to computing the cohomology groups of the simplicial complex
$NBC(\mathcal{A})$ with constant coefficients. We combine (10), (11), and (13) to obtain:

Theorem 1.3.3. If $\lambda_{X}\not\in \mathbb{Z}\geq 0$ for all dense edges $X$ , there are isomorphisms

$H^{p}(M, \mathcal{L})\simeq H^{p}(B(\mathcal{A}), \omega_{\lambda}\wedge)\simeq H^{p}(A(\mathcal{A}), a_{\lambda}\wedge)\simeq H^{p-1}(NBC(\mathcal{A}), \mathbb{C})$ .

It follows from (12) that there is only one nontrivial group, $H^{r}(M, \mathcal{L})$ . Falk
and Terao [FT] constructed a basis for $H^{r}(B, \omega_{\lambda}\wedge)$ which is in natural bijection
with the set $\beta nbc$ . For $X\in L(\mathcal{A})$ define $\omega_{\lambda}(V)=1$ and

$\omega_{\lambda}(X)=\sum_{H\in Ax}\lambda_{H}\omega_{H}\in B^{1}(\mathcal{A})$
.

Given an element $B=(H_{i_{1}}, \ldots, H_{i}.)$ of $\beta nbc$ with $i_{1}<\ldots<i_{r}$ , associate to it
the flag $\xi(B)=(X_{0}>\cdots>X_{r})$ , where $X_{r}=V,$ $X_{p-1}=\bigcap_{k=p}^{r}H_{i_{k}}$ for $1\leq p\leq r$ ,
and the element of $B^{r}$

$\zeta(B)=\bigwedge_{p=0}^{r}\omega_{\lambda}(X_{p})$ , $X_{p}\in\xi(B)$ .
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Theorem 1.3.4. Let $\mathcal{A}$ be an affine arrangement with projective closure $\mathcal{A}_{\infty}$ . As-
sume that $\lambda_{X}\not\in \mathbb{Z}\geq 0$ for every dense edge $X\in L(\mathcal{A}_{\infty})$ . Then the set

$\{\zeta(B)\in H^{r}(M, \mathcal{L})|B\in\beta nbc\}$

is a basis for the only nonzero local system cohomology group, $H^{r}(M, \mathcal{L})$ .

We may also ask for a basis of the twisted homology group $H_{r}(M, \mathcal{L}^{\vee})$ . Morse
theoretic arguments are used in [OSi] to construct a $\beta nbc$ local system homology
basis for arbitrary arrangements. Here we present a special case used in Chapter
7. We say that $\mathcal{A}$ is a complexified real arrangement if the polynomials $\alpha_{H}$ have
real coefficients. In this case let $V_{\mathbb{R}}=\mathbb{R}^{\ell}$ be the real part of $V$ and let $M_{\mathbb{R}}=$

$M\cap V_{\mathbb{R}}$ be the real complement. It is a disjoint union of open convex subsets called
chambers. Let ch $(\mathcal{A})$ denote the set of chambers in $M_{\mathbb{R}}$ . If we assume that $\mathcal{A}$ is
essential so $ r=\ell$ , some chambers may be bounded. Let bch $(\mathcal{A})$ denote the set
of bounded chambers in $M_{\mathbb{R}}$ . Zaslavsky [Za] proved that $|ch(\mathcal{A})|=(-1)^{\ell}\chi(\mathcal{A}, -1)$

and $|bch(\mathcal{A})|=\beta(\mathcal{A})$ . Let $\rho=(X_{0}>X_{1}>\cdots>X_{\ell})$ be a simplex of edges
$X_{i}\in L(\mathcal{A})$ with $\dim X_{i}=i(i=0, \ldots\ell)$ . Let $\triangle\in$ bch $(\mathcal{A})$ and A be its closure
in $\mathbb{R}^{\ell}$ . We say that $\rho$ is adjacent to $\triangle$ if $\dim(X_{i}\cap\triangle)-=i$ for $i=0,$ $\ldots\ell$ . There
exists a unique bijection

$\tau$ : bch $(\mathcal{A})\rightarrow\beta nbc(\mathcal{A})$

with the property that $\xi(\tau(\triangle))$ is adjacent to $\triangle$ . Let $C_{p}^{lf}(M, \mathcal{L}^{\vee})$ denote the p-
th locally finite chain group with coefficients in $\mathcal{L}^{\vee}$ and let $H_{p}^{lf}(M, \mathcal{L}^{\vee})$ denote
the corresponding locally finite homology group. There is a natural inclusion $i$ :
$C_{p}(M, \mathcal{L}^{\vee})\rightarrow C_{p}^{lf}(M, \mathcal{L}^{\vee})$ which induces a map in homology. If $\triangle$ is a bounded
chamber in $M_{\mathbb{R}}$ , then $\triangle\in C_{\ell}^{lf}(M, \mathcal{L}^{\vee})$ is a cycle. Let $[\triangle]$ denote its locally finite
homology class. The following holds for nonresonant weights $\lambda$ :

(1) $H_{p}(M(\mathcal{A}), \mathcal{L}^{\vee})=H_{p}^{lf}(M(\mathcal{A}), \mathcal{L}^{\vee})=0$ for $ p\neq\ell$ .
(2) The natural map $i_{h}$ : $H_{\ell}(M(\mathcal{A}), \mathcal{L}^{\vee})\rightarrow H_{\ell}^{lf}(M(\mathcal{A}), \mathcal{L}^{\vee})$ is an isomorphism.
(3) { $[\triangle]|\triangle\in$ bch $(\mathcal{A})$ } forms a basis for $H_{\ell}^{lf}(M(\mathcal{A}), \mathcal{L}^{\vee})$ .

Theorem 1.3.5. Let $\mathcal{A}$ be an essential complexified real arrangement with projec-
tive closure $\mathcal{A}_{\infty}$ . Assume that $\lambda_{X}\not\in \mathbb{Z}\geq 0$ for every dense edge $X\in L(\mathcal{A}_{\infty})$ . Then
the set

$\{\tau^{-1}(B)\in H_{\ell}^{lf}(M, \mathcal{L}^{\vee})|B\in\beta nbc(\mathcal{A})\}$

is a basis for the only nonzero local coefficient homology group, $H_{\ell}^{lf}(M, \mathcal{L}^{\vee})$ .

In Chapter 7 we assume that $\mathcal{A}$ is an essential complexified real arrangement.
Introduce a linear order in $\beta nbc(\mathcal{A})$ using the lexicographic order on the hyper-
planes read from right to left. Write the ordered set $\beta nbc(\mathcal{A})=\{B_{j}\}_{j=1}^{\beta}$ . Write
$\psi_{j}=\zeta(B_{j})$ to get the associated linearly ordered basis of global holomorphic forms
for $H^{\ell}(M, \mathcal{L}),$ $\Psi(\mathcal{A})=\{\psi_{j}\}_{j=1}^{\beta}$ . Write $\triangle_{j}=\tau^{-1}(B_{j})$ to get the associated linearly
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ordered basis of bounded chambers for $H_{\ell}^{lf}(M, \mathcal{L}^{\vee})$ , bch $(\mathcal{A})=\{\triangle_{j}\}_{j=1}^{\beta}$ . Each
bounded chamber has an intrinsic orientation. Define the hypergeometric period
matrix PM $(\mathcal{A}, \lambda)$ by

PM $(\mathcal{A}, \lambda)_{i,j}=\int_{\triangle},$
$\Phi_{\lambda}\psi_{i}$ .

In many cases the individual entries of this matrix are impossible to express in
closed form. However, Varchenko [V1] proved that for certain arrangements the
determinant of this matrix has a beautiful expression and he conjectured a formula
for this determinant for all arrangements. The conjecture was proved by Douai
and Terao [DT]. For $X\in L(\mathcal{A}_{\infty})$ , define

$\rho(X)=|e(M(\mathbb{P}(\mathcal{A}_{\infty})_{X}))e(M((\mathcal{A}_{\infty})^{X}))|$ .

Here $e(M)$ is euler characteristic, $(\mathcal{A}_{\infty})^{X}=\{H\cap X|H\in \mathcal{A}_{\infty}\backslash (\mathcal{A}_{\infty})_{X},$ $ H\cap X\neq$

$\emptyset\}$ , and $\mathbb{P}(\mathcal{A}_{\infty})_{X}$ is the projective quotient of the central arrangement $(\mathcal{A}_{\infty})_{X}$ .
There is a disjoint union $L(\mathcal{A}_{\infty})=L_{+}(\mathcal{A}_{\infty})\cup L_{-}(\mathcal{A}_{\infty})$ where $L_{+}(\mathcal{A}_{\infty})=L(\mathcal{A})$

consists of edges not in $H_{\infty}$ and $L_{-}(\mathcal{A}_{\infty})=L(\mathcal{A}_{\infty^{H_{\infty}}})$ consists of edges in $H_{\infty}$ .
The beta function of $\mathcal{A}$ is the following product of gamma functions:

$B(\mathcal{A}, \lambda)=\prod_{X\in L+(A_{\infty})}\Gamma(\lambda_{X}+1)^{\rho(X)}\prod_{X\in L_{-}(A_{\infty})}\Gamma(-\lambda_{X}+1)^{-\rho(X)}$
.

Fix a branch of $\alpha_{p}^{\lambda_{p}}$ on each $\triangle_{j}$ . Choose $x_{p,j}\in\triangle_{j}-$ so that $|\alpha_{p}^{\lambda_{p}}(x_{p,j})|\geq|\alpha_{p}^{\lambda_{p}}(y)|$

for all $y\in\triangle_{j}-$ . Define the complex number

$R(\mathcal{A}, \lambda)=\prod_{p=1}^{n}\prod_{j=1}^{\beta}\alpha_{p}^{\lambda_{p}}(x_{p,j})$ .

Theorem 1.3.6. Suppose $\Re\lambda_{p}>0$ for all $p$ and $\lambda_{X}\not\in \mathbb{Z}$ for every dense edge
$X\in L(\mathcal{A}_{\infty})$ . Then

$\det$ PM $(\mathcal{A}, \lambda)=R(\mathcal{A}, \lambda)B(\mathcal{A}, \lambda)$ .

In Part II we work in the dynamic setup. The constructions involve families
of arrangements with a constant combinatorial structure in analogy with the fam-
ily of arrangements of three points in the complex line parametrized by $x$ in the
classical example. There are two fundamental problems. The first problem is to
find an adequate description of the moduli space of combinatorially equivalent ar-
rangements of a fixed type. Given such a moduli space, assume that the weights
are nonresonant. Assign to each point of the moduli space the only nonzero local
system homology group. The Gauss-Manin connection describes the flat sections
of this bundle. The second problem is to calculate the Gauss-Manin connection.

In Chapter 8 we describe the case of arrangements of $n$ points in $\mathbb{C}$ . Define the
arrangement $C$ in $\mathbb{C}^{n+1}$ by

$Q(C)=\prod_{j=1}^{n}(u-t_{j})\prod_{1\leq j<k\leq n}(t_{j}-t_{k})$ ,
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the arrangement $\mathcal{B}$ in $\mathbb{C}^{n}$ by

$Q(\mathcal{B})=\prod_{1\leq j<k\leq n}(t_{j}-t_{k})$
,

and the arrangement $\mathcal{A}_{t}$ in $\mathbb{C}$ by

$Q(\mathcal{A}_{t})=\prod_{j=1}^{n}(u-t_{j})$ .

Here $\mathcal{B}$ is the braid arrangement and $C$ is a discriminantal arrangement. Let
$M=M(C)$ and $B=M(\mathcal{B})$ , the pure braid space. Then the natural projec-
tion induces a fibration $\pi$ : $M\rightarrow B$ whose fiber at $t=(t_{1}, \ldots t_{n})\in B$ is
$M_{t}=M(\mathcal{A}_{t})$ . This justifies calling $B$ the parameter space of all (combinatorially
equivalent) arrangements of $n$ distinct points in $\mathbb{C}$ . In this setup, let $\lambda_{1},$

$\ldots$
$\lambda_{n}$

be nonresonant weights of $\mathcal{A}_{t}$ and let $\mathcal{L}$ be the corresponding local system. Then
$\mathcal{H}^{1}=\bigcup_{t\in B}H^{1}(M_{t}, \mathcal{L})$ is a local system of rank $n-1$ . We showed in Chapter 6
that there exists a global frame

$\varphi_{i}=\frac{\lambda_{i+1}du}{u-t_{i+1}}$ $(i=1, \ldots n-1)$ .

Since $\pi$ is locally trivial, we have the bundle of duals $\mathcal{H}_{1}=\bigcup_{t\in B}H_{1}(M_{t}, \mathcal{L}^{\vee})$ . We
want to describe the sections of $\mathcal{H}_{1}$ by finding differential equations for them. An
isomorphism $\mathcal{H}_{1}\otimes \mathcal{O}_{B}\simeq \mathcal{O}_{B}^{n-1}$ is given by $\gamma-*(\hat{\varphi}_{1}, \ldots\hat{\varphi}_{n-1})^{T}$ , where $\hat{\varphi}_{j}=$

$\int_{\gamma}\Phi\varphi_{j}$ . Let $d^{\prime}$ be the exterior differential in B. Then we have the following

Theorem 1.3.7. The vector $(\hat{\varphi}_{1}, \ldots\hat{\varphi}_{n-1})^{T}$ satisfies the system of first order
differential equations

$d^{\prime}\left(\begin{array}{l}\hat{\varphi}_{1}\\|\\\hat{\varphi}_{n-1}\end{array}\right)=\Omega\wedge\left(\begin{array}{l}\hat{\varphi}_{1}\\|\\\hat{\varphi}_{n-1}\end{array}\right)$ ,

where $\Omega$ is the $(n-1)\times(n-1)$ matrix of the form

$\Omega=\sum_{i<j}\Omega_{i,j}\frac{d^{\prime}(t_{i}-t_{j})}{t_{i}-t_{j}}$ .

This is a Knizhnik-Zamolodchikov equation, which arose originally in conformal
field theory. The explicit form of $\Omega_{i,j}$ is given in Theorem 8.2.1. The connection
V’ $=d^{\prime}-\Omega\wedge on\mathcal{O}_{B}^{n-1}$ is called the Gauss-Manin connection and the differential
equations above are the equations for flat sections with respect to the connection
$\nabla^{\prime}$ . Since the connection is flat and $d^{\prime}\Omega=0$ , the matrix $\Omega$ satisfies the equation
$\Omega\wedge\Omega=0$ . This is equivalent to the infinitesimal pure braid relations among the
$\Omega_{i,j}(1\leq i<k\leq n)$ introduced by Kohno [Ko4]. The fundamental group of $B$ is
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the pure braid group. Its action on the local system $\mathcal{H}^{1}$ turns out to be the Gassner
representation.

In Chapter 9 we consider the general case of arbitrary $\ell$-arrangements with $n$

hyperplanes. This is clearly a difficult problem, since the natural moduli space
of combinatorially equivalent arrangements is much more intricate than the pure
braid space (for $\ell=1$ ). We use a naive approach to construct the moduli space
of the universal family of arrangements of a given combinatorial type. Let the
ith hyperplane be defined by the equation $t_{i}^{(0)}+\sum_{j=1}t_{i}^{(j)}u_{j}\ell=0$ . Consider the
$(\ell+1)\times(n+1)$ matrix of coefficients, which includes the infinite hyperplane in
the last column

$T=\left(\begin{array}{lllll}t_{1}^{(0)}t_{1}^{(1)} & & & t_{n}^{(0)} & 1\\\vdots & \ddots & & t_{n}^{(1)} & 0\\\vdots & & \ddots & | & |\\t_{1}^{(\ell)} & & & t_{n}^{(\ell)} & 0\end{array}\right)$ .

The matrix $T$ determines a point of $(\mathbb{C}\mathbb{P}^{\ell})^{n}$ by regarding each column, ex-
cept the last one, as the homogeneous coordinates of $\mathbb{C}\mathbb{P}^{\ell}$ . If we only consider
essential arrangements, the combinatorial type of an affine arrangement is com-
pletely described by the vanishing of certain $(\ell+1)$ -minors in $T$ and the non-
vanishing of the other $(\ell+1)$ -minors in T. Geometrically speaking, the moduli
space of combinatorially equivalent essential arrangements is a locally closed sub-

set of $(\mathbb{C}\mathbb{P}^{\ell})^{n}$ parametrized by subsets of $(\left(\begin{array}{ll}[n & +1]\\\ell & +1\end{array}\right))=\{(i_{1}, \ldots i_{\ell+1})|1\leq i_{1}<$

. . . $<i_{\ell+1}\leq n+1$ }. We introduce notation to describe the moduli space. For

$S\subseteq(\left(\begin{array}{ll}[n & +1]\\\ell+1 & \end{array}\right))$ , let $B_{S}$ be the moduli space corresponding to $S$ so that $B_{\phi}$ is

the largest moduli space consisting of arrangements in general position, which is
dense in $(\mathbb{C}\mathbb{P}^{\ell})^{n}$ . It is shown in Proposition 9.1.7 that $\overline{B}_{S}\backslash B_{S}$ is a divisor in $\overline{B}_{S}$ .
In Proposition 9.3.3 we describe explicitly the irreducible components of the divi-
sor and the way its irreducible components intersect each other, provided that the
codimension of $\overline{B}_{S}$ in $(\mathbb{C}\mathbb{P}^{\ell})^{n}$ does not exceed one.

In Chapter 10 we describe the Gauss-Manin connection in general and find
formulas to describe the logarithmic poles of the connection. Fix an essential
affine $\ell$-arrangement $\mathcal{A}$ with $n$ hyperplanes. Let $\pi$ : $M\rightarrow B$ be the complete
family of affine arrangements in $\mathbb{C}^{\ell}$ with $n$ hyperplanes which are combinatorially
equivalent to $\mathcal{A}$ . As we saw in Chapter 9, $B$ is a locally closed subset of $(\mathbb{C}\mathbb{P}^{\ell})^{n}$

and its “boundary” $D=\overline{B}\backslash B$ is a divisor. Let $D=\bigcup_{s=1}^{t}D_{s}$ be its irreducible
decomposition. As in Chapter 8, let $\lambda_{1},$ $\cdots$ $\lambda_{n}$ be nonresonant weights of $\mathcal{A}_{t}$ and
$\mathcal{L}$ be the corresponding rank one local system. Then $\mathcal{H}^{\ell}=\bigcup_{t\in B}H^{\ell}(M_{t}, \mathcal{L})$ is a
local system of rank $\beta(\mathcal{A})=|\chi(M_{t})|$ . We know from Section 6.3 that there exists
a global $\beta nbc$ frame $[--\cup 1],$ $[--\cup 2],$

$\ldots$
$[--\cup\beta]$ . Since $\pi$ is locally trivial, we have the

bundle of duals $\mathcal{H}_{\ell}=\bigcup_{t\in B}H_{\ell}(M_{t}, \mathcal{L}^{\vee})$ . Let $\sigma$ be a local section of $\mathcal{H}_{\ell}$ . Let $d^{\prime}$
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be the exterior differential in B. Then we have the following system of first order
differential equations

$d^{\prime}\left(\begin{array}{ll}\int_{\sigma} & \Phi_{\lambda\cup 1}^{-}-\\ & .\cdot\\ & .\cdot\\\int_{\sigma} & \Phi_{\lambda\cup\beta}^{-}-\end{array}\right)=\Omega\wedge\left(\begin{array}{ll}\int_{\sigma} & \Phi_{\lambda\cup 1}^{-}-\\ & .\cdot\\ & .\cdot\\\int_{\sigma} & \Phi_{\lambda\cup\beta}^{-}-\end{array}\right)$

where $\Omega$ is the $\beta\times\beta$ matrix of differential l-forms. The connection V’ $=d^{\prime}-\Omega\wedge$

on $\mathcal{O}_{B}^{\beta}$ is the Gauss-Manin connection and the differential equations above are the
equations of flat sections. This equation generalizes the Knizhnik-Zamolodchikov
equations. As we see in Theorems 10.2.1 and 10.2.2, the connection matrix $\Omega$ turns
out to have logarithmic poles along the boundary divisor $D=\overline{B}\backslash B$ . In Sections
10.3 and 10.4 we obtain explicit formulas for the connection matrix in the case of
codimension $\leq 1$ . We use the $\beta nbc$ basis of Chapter 6 together with the geometric
results on $D$ from Chapter 9. We follow Aomoto and Kita [AK] in the general
position case ( $=$ the codimension zero case) and [T] to describe the codimension
one case.

It follows from the general theory, that the entries of the connection matrix are
polynomials with rational coefficients in the variables $\lambda_{H}$ , where $H\in \mathcal{A}$ and $\lambda_{X}^{-1}$ ,
where $\lambda_{X}$ runs over the set of dense edges. Remarkably, in all our calculations the
matrix entries are integer linear combinations of the weights. We conjecture that
this is the case in general.




