CHAPTER VI

Invariance of plurigenera

§1. Background

A deformation (or a smooth deformation) of a compact complex manifold X is by definition a proper smooth surjective morphism $\pi: \mathcal{X} \to S$ of complex analytic varieties together with a point $s \in S$ such that the fiber $\mathcal{X}_s = \pi^{-1}(s)$ is isomorphic to X. The deformation is called projective if π is a projective morphism along X. A compact complex manifold is said to be *in the class* \mathcal{C} if it is bimeromorphically equivalent to a compact Kähler manifold ([18], [143]). We are interested in the following:

1.1. Conjecture The *m*-genus $P_m(X) = h^0(X, mK_X)$ is invariant under a deformation of a compact complex manifold in the class C.

The deformation invariance of the plurigenera of compact complex surfaces was proved by Iitaka [42] by the classification theory of surfaces. Nakamura [94] gave a counterexample to the invariance in the case where X is not in the class C. The invariance of the geometric genus $P_1(X) = p_g(X)$ for X in the class C is derived from the Hodge decomposition $\operatorname{H}^n(X, \mathbb{C}) = \bigoplus_{p+q=n} \operatorname{H}^q(X, \Omega_X^p)$ and the upper semi-continuity of $\operatorname{h}^q(X, \Omega_X^p)$. Levine [75] proved 1.1 for m > 1 in the case where mK_X is linearly equivalent to a reduced normal crossing divisor. Levine applied the Hodge theory to the cyclic covering branched along the divisor in order to show the existence of an infinitesimal lifting of a general section of $\operatorname{H}^0(X, mK_X)$.

A degeneration of compact complex manifolds is by definition a proper surjective morphism $\pi: \mathcal{X} \to S$ with connected fibers from a non-singular complex analytic variety into a non-singular curve that is smooth outside a given point $0 \in S$. We denote by \mathcal{X}_t the scheme-theoretic fiber $\pi^{-1}(t)$. We say that a smooth fiber \mathcal{X}_t ($t \neq 0$) degenerates into the special fiber \mathcal{X}_0 . The degeneration is called projective if π is so. Let $\mathcal{X}_0 = \bigcup \Gamma_i$ be the irreducible decomposition of the special fiber. In the study of degeneration of algebraic surfaces (cf. [15]), the lower semicontinuity of the Kodaira dimension: $\kappa(\mathcal{X}_t) \geq \max \kappa(\Gamma_i)$ is expected to be true. However, there are counterexamples ([108], [109], [140], [19]) in the case where some Γ_i is not in the class \mathcal{C} . The following stronger conjecture is posed in [98]:

1.2. Conjecture If any irreducible component Γ_i of the special fiber \mathcal{X}_0 belongs to the class \mathcal{C} , then

$$P_m(\mathcal{X}_t) \ge \sum P_m(\Gamma_i)$$

for a smooth fiber \mathcal{X}_t . In particular, $\kappa(\mathcal{X}_t) \geq \max \kappa(\Gamma_i)$.

The author considered **1.2** from the viewpoint of the relative minimal model theory in [**96**], [**98**]. For a projective degeneration, **1.2** is reduced to the flip and the abundance conjectures. In the case of a projective deformation of a threefold, the existence of related flips is proved in [**73**] and hence the invariance of plurigenera follows from the abundance theorem [**84**], [**59**] for threefolds. Siu [**130**] has succeeded in proving **1.1** in the case of a projective deformation in which any fiber \mathcal{X}_t is of general type: $\kappa(\mathcal{X}_t) = \dim \mathcal{X}_t$. Siu used *multiplier ideals* together with delicate arguments of L^2 properties which avoid the difficulty in showing the existence of flips. Even though the argument contains analytic methods, the essence is not so transcendental. Kawamata [**60**] gave an algebraic interpretation of Siu's argument and showed that small deformations of canonical singularities are canonical, as an application. The author's preprint [**105**] gave an algebraic modification of Siu's argument which is slightly different from that by Kawamata, and obtained the following stronger results:

- The numerical Kodaira dimension κ_{σ} is lower semi-continuous under a projective degeneration and is invariant under a projective deformation. In particular, a non-singular projective variety deformed to a variety of general type under a projective deformation is also of general type;
- The invariance of plurigenera P_m holds for a projective deformation in which a 'general' fiber F satisfies the abundance: $\kappa(F) = \kappa_{\sigma}(F)$. The lower semi-continuity of P_m holds for a projective degeneration satisfying the same assumption of abundance, for infinitely many m.
- Small deformations of terminal singularities are terminal.

In this chapter, we shall generalize slightly the results of [105]. As in the preprint [105], we need only the theory of resolution of singularities and the flattening theorem by Hironaka ([39], [40], [41]), the theory of linear systems, and the analytic version II.5.12 of Kawamata–Viehweg's vanishing theorem II.5.9 as well as the analytic version V.3.13 of Kollár's injectivity theorem V.3.7.

§2. Special ideals

§2.a. Setting.

2.1. Definition Let $\pi: X \to S$ be a projective surjective morphism from a nonsingular space and let $X = \bigsqcup X_i$ be the decomposition into connected components.

- (1) A divisor L of X is called π -effective if $\pi_* \mathcal{O}_{X_i}(L) \neq 0$ for every i.
- (2) For a π -effective divisor L, we denote by $|L|_{\text{fix}}$ the maximum effective divisor D with the property

$$\pi_*\mathcal{O}_X(L-D) = \pi_*\mathcal{O}_X(L).$$

It is so-called the *relative fixed divisor* of L over S.

2.2. Situation Let $\pi: V \to S$ be a projective surjective morphism from a nonsingular variety with connected fibers, $X = \bigsqcup X_i$ a disjoint union of non-singular prime divisors X_i of V, and Δ an effective \mathbb{R} -divisor of V such that

- (1) $X_i \not\subset \operatorname{Supp} \Delta$ for any i,
- (2) $X \cup \text{Supp } \Delta$ is a normal crossing divisor,
- (3) $\begin{bmatrix} \Delta \end{bmatrix}$ is reduced or $\Delta = 0$, and
- (4) $X \cap \text{Supp } \Delta = \emptyset.$

Let Δ_X be the effective \mathbb{R} -divisor $\Delta|_X$. Then $\operatorname{Supp} \Delta_X$ is a normal crossing divisor, $\Delta_X = 0$, and

$$(K_V + X + \Delta)|_X = K_X + \Delta_X.$$

Moreover, we fix a $(\pi|_X)$ -ample divisor A_0 of X such that $A_0 - (\dim X)H_0$ is $(\pi|_X)$ -ample for a $(\pi|_X)$ -very ample divisor H_0 .

In §§2 and 3, we fix these π , V, S, Δ , $X = \sum X_i$, and Δ_X . We study analytic spaces projective over the fixed space S. However, we change S freely by its open subsets, because most statements to prove are local on S. In particular, the number of connected components of X is assumed to be finite.

2.3. Definition $(\mathbb{E}_V, \mathbb{E}_X, \mathbb{E}, \mathbb{E}_{big} \text{ and } \mathcal{G}[L])$

- (1) Let \mathbb{E}_V be the set of the linear equivalence classes of π -effective divisors of V.
- (2) Let \mathbb{E}_X be the set of the linear equivalence classes of $(\pi|_X)$ -effective divisors of X.
- (3) For a divisor L of V and a component X_i of X, we denote by $\mathcal{G}_i[L]$ the image of the homomorphism

$$\pi_*\mathcal{O}_V(L) \to \pi_*\mathcal{O}_{X_i}(L).$$

We also denote by $\mathcal{G}[L] \subset \bigoplus \mathcal{G}_i[L]$ the image of

$$\pi_*\mathcal{O}_V(L) \to \pi_*\mathcal{O}_X(L).$$

- (4) Let \mathbb{E} be the set of the linear equivalence classes of divisors L of V with $\mathcal{G}_i[L] \neq 0$ for any i.
- (5) Let \mathbb{E}_{big} be the subset of \mathbb{E} consisting of divisors L such that the meromorphic mappings

$$V \dashrightarrow \mathbb{P}_S(\pi_*\mathcal{O}_V(L))$$
 and $X \dashrightarrow \mathbb{P}_S(\mathcal{G}[L])$

are both bimeromorphic mappings into their own images.

2.4. Definition (Conditions \mathbf{E} , \mathbf{G} , and \mathbf{B}) Let L be a divisor of V and let M be a divisor of X.

- (1) Let $\rho: W \to V$ be a bimeromorphic morphism from a non-singular variety and let D be a $(\pi \circ \rho)$ -effective divisor of W. We say that W satisfies the condition \mathbf{E} for D if the following two conditions are satisfied:
 - The union of the ρ -exceptional locus, the proper transform Y of X, and Supp $|D|_{\text{fix}}$ is a normal crossing divisor;

VI. INVARIANCE OF PLURIGENERA

• $D - |D|_{\text{fix}}$ is $(\pi \circ \rho)$ -free.

If $L \in \mathbb{E}_V$ and if W satisfies the condition **E** for ρ^*L , then we say that ρ satisfies the condition **E** for L. In this case, we write $E(L) := |\rho^*L|_{\text{fix}}$.

- (2) Suppose that $M \in \mathbb{E}_X$. A bimeromorphic morphism $f: Y \to X$ from a non-singular space is said to satisfy the condition **G** for M if, for the divisor $G(M) := |f^*M|_{\text{fix}}$, the following two conditions are satisfied:
 - The union of the *f*-exceptional locus and $\operatorname{Supp} G(M)$ is a normal crossing divisor;
 - $f^*M G(M)$ is $((\pi|_X) \circ f)$ -free.
- (3) Suppose that $L \in \mathbb{E}$. A bimeromorphic morphism $f: Y \to X$ from a non-singular space is said to satisfy the condition **B** for L if there is an effective divisor B(L) of Y such that
 - the union of the f-exceptional locus and $\operatorname{Supp} B(L)$ is a normal crossing divisor, and
 - $\mathcal{O}_Y(f^*L B(L))$ is the image of the homomorphism

$$f^*\pi^*\mathcal{G}[L] \to \mathcal{O}_Y(f^*L).$$

Convention

- (1) For a bimeromorphic morphism $\rho: W \to V$ satisfying the condition **E** for a divisor $L \in \mathbb{E}_V$, we denote the proper transform of X by Y and the restriction of ρ by $f: Y \to X$.
- (2) We shall write the total transform $\mu^* E(L)$ of E(L) by the same symbol E(L) for a bimeromorphic morphism $\mu: W' \to W$ such that $\rho \circ \mu$ also satisfies the condition **E** for *L*. Also for G(M) and B(L), we shall also write the total transform by the same symbol.

If $\rho: W \to V$ is a bimeromorphic morphism satisfying the condition **E** for L, then $f: Y \to X$ satisfies the condition **B** for L. Here $B(L) = E(L)|_Y$. Conversely, for any bimeromorphic morphism $f': Y' \to X$ satisfying the condition **B** for L, there exist a bimeromorphic morphism $\rho: W \to V$ satisfying the condition **E** for L and a bimeromorphic morphism $\lambda: Y \to Y'$. Here we have $\lambda^* B(L) = B(L) =$ $E(L)|_Y$.

2.5. Definition (Ideals $\mathcal{I}[M]$ and $\mathcal{J}[L]$) Let M be a divisor of X and let L be a divisor of V.

(1) $\mathcal{I}[M]$ is defined to be the ideal sheaf of X such that $\mathcal{I}[M]\mathcal{O}_X(M)$ is the image of the natural homomorphism

$$\pi^*\pi_*\mathcal{O}_X(M) \to \mathcal{O}_X(M).$$

(2) $\mathcal{J}[L]$ is defined to be the ideal sheaf of X such that $\mathcal{J}[L]\mathcal{O}_X(L)$ is the image of the natural homomorphism

$$\pi^* \mathcal{G}[L] \to \mathcal{O}_X(L).$$

For any $i, \pi_* \mathcal{O}_{X_i}(M) = 0$ if and only if $\mathcal{I}[M]|_{X_i} = 0$. If $M \in \mathbb{E}_X$ and if a bimeromorphic morphism $f: Y \to X$ satisfies the condition **G** for M, then

$$f^*\mathcal{I}[M]/(\mathrm{tor}) \simeq \mathcal{O}_Y(-G(M))$$

The sheaf $\mathcal{J}[L]\mathcal{O}_X(L)$ is also the image of the composite

$$\pi^*\pi_*\mathcal{O}_V(L) \to \mathcal{O}_V(L) \to \mathcal{O}_X(L).$$

For any $i, \mathcal{G}_i[L] = 0$ if and only if $\mathcal{J}[L]|_{X_i} = 0$. Suppose that $L \in \mathbb{E}$. Then

$$f^*\mathcal{J}[L]/(\mathrm{tor}) \simeq \mathcal{O}_Y(-B(L))$$

for a bimeromorphic morphism $f: Y \to X$ satisfying the condition **B** for *L*.

2.6. Definition (Ramification divisors R_W and R_Y) Let $\rho: W \to V$ be a bimeromorphic morphism from a non-singular variety such that the proper transform Y of X is non-singular. In this situation, we define an \mathbb{R} -divisor:

$$R_W := K_W + Y - \rho^* (K_V + X + \Delta).$$

Let $f: Y \to X$ be a bimeromorphic morphism from a non-singular space. We define

$$R_Y := K_Y - f^*(K_X + \Delta_X).$$

Note that the $\lceil R_W \rceil$ is effective on a neighborhood of $\rho^{-1}(X)$ by **II.4.4**. A prime divisor Γ of W with mult_{Γ} $R_W > 0$ is ρ -exceptional. We have $R_Y = R_W|_Y$ for the proper transform Y of X in W.

2.7. Definition (Ideals $\mathcal{Q}[L, m]$, $\mathcal{I}[M, m]$, and $\mathcal{J}[L, m]$) Let L be a \mathbb{Q} -divisor of V, M a \mathbb{Q} -divisor of X, and m a positive integer with $mL \in \mathbb{E}$ and $mM \in \mathbb{E}_X$. Let $\rho: W \to V$ be a bimeromorphic morphism satisfying the condition \mathbf{E} for mL and let $f: Y \to X$ be a bimeromorphic morphism satisfying the conditions \mathbf{G} for mM and \mathbf{B} for mL. We define the following three ideal sheaves:

$$\mathcal{Q}[L,m] := \rho_* \mathcal{O}_W(\lceil R_W - \frac{1}{m} E(mL)\rceil),$$

$$\mathcal{I}[M,m] := f_* \mathcal{O}_Y(\lceil R_Y - \frac{1}{m} G(mM)\rceil),$$

$$\mathcal{J}[L,m] := f_* \mathcal{O}_Y(\lceil R_Y - \frac{1}{m} B(mL)\rceil).$$

2.8. Lemma

- (1) The ideal sheaf Q[L,m] is independent of the choice of bimeromorphic morphisms ρ satisfying the condition **E** for mL.
- (2) The ideal sheaf I[M,m] is independent of the choice of bimeromorphic morphisms f satisfying the condition G for mM. There is an inclusion I[mM] ⊂ I[mM,1].
- (3) The ideal sheaf J[L,m] is independent of the choice of bimeromorphic morphisms f satisfying the condition B for mL. There is an inclusion J[mL] ⊂ J[mL, 1].

PROOF. (1) Let $\mu: W' \to W$ be a bimeromorphic morphism such that $\rho \circ \mu$ satisfies the condition **E** for mL and let Y' be the proper transform of Y. Then

$$K_W + Y = \rho^* (K_V + X + \Delta) + R_W,$$

$$K_{W'} + Y' = \rho^* (K_V + X + \Delta) + R_{W'}.$$

Since any component of Y is not contained in $\operatorname{Supp} E(mL)$, we have

$$K_{W'} + Y' + \lceil \mu^* (R_W - \frac{1}{m} E(mL)) \rceil \ge \mu^* (K_W + Y + \lceil R_W - \frac{1}{m} E(mL) \rceil),$$

by II.4.4. Since

$$R_{W'} - \frac{1}{m}E(mL) = K_{W'} + Y' - \mu^*(K_W + Y) + \mu^*(R_W - \frac{1}{m}E(mL)),$$

we have

$$\lceil R_{W'} - \frac{1}{m} E(mL) \rceil = K_{W'} + Y' - \mu^* (K_W + Y) + \lceil \mu^* (R_W - \frac{1}{m} E(mL)) \rceil$$

$$\ge \mu^* (\lceil R_W - \frac{1}{m} E(mL) \rceil).$$

Hence

$$\mu_* \mathcal{O}_{W'}(\lceil R_{W'} - \frac{1}{m} E(mL)\rceil) \simeq \mathcal{O}_W(\lceil R_W - \frac{1}{m} E(mL)\rceil).$$

Thus both $\mathcal{Q}[L,m]$ are identical.

(2) and (3) We can show the independence of choices by the same argument as in (1) by using **II.4.3**. The inclusions $\mathcal{I}[mM] \subset \mathcal{I}[mM,1]$ and $\mathcal{J}[mL] \subset \mathcal{J}[mL,1]$ are derived from the property that $\lceil R_Y \rceil$ is effective.

Convention

- For divisors L of V and M of X, we write $\mathcal{I}[L|_X + M]$ by $\mathcal{I}[L + M]$, for short. In the case $L|_X + M \in \mathbb{E}_X$, we write $G(L|_X + M)$ by G(L + M).
- If $m(L|_X + M) \in \mathbb{E}_X$ for \mathbb{Q} -divisors L of V and M of X, we write $\mathcal{I}[L|_X + M, m]$ by $\mathcal{I}[L + M, m]$.

For a bimeromorphic morphism $\rho: W \to V$ satisfying the condition **E** for mLand for the proper transform Y of X, we have

$$\left\lceil R_W - \frac{1}{m} E(mL) \right\rceil|_Y = \left\lceil R_Y - \frac{1}{m} B(mL) \right\rceil.$$

Thus

$$\mathcal{J}[L,m] \simeq f_* \mathcal{O}_Y(\lceil R_W - \frac{1}{m} E(mL)\rceil).$$

§2.b. Inclusions of ideals. We consider the following conditions for a \mathbb{Q} -divisor L of V:

- (VI-1) $L (K_V + X + \Delta)$ is π -nef and L is π -pseudo-effective;
- (VI-2) $L (K_V + X + \Delta)$ is π -nef and π -abundant, and $L (K_V + X + \Delta) \succeq_{\pi} X$ (cf. **V.2.24**).

Note that if $L - (K_V + X + \Delta)$ is π -nef and π -abundant and if $\pi(X) \neq S$, then L satisfies (VI-2). If $L - (K_V + X + \Delta)$ is π -nef and π -big, then L satisfies (VI-2).

Let L' be another \mathbb{Q} -divisor of V. We consider the following conditions for the pair (L, L'):

(VI-3) $L - L' - (K_V + X + \Delta)$ is π -nef and L' is π -big;

(VI-4) $L-L'-(K_V+X+\Delta)$ is π -nef and π -abundant, and $L' \succeq_{\pi} X$ (cf. V.2.24); (VI-5) L-L' satisfies (VI-2).

2.9. Proposition Let L' be a \mathbb{Q} -divisor, L a \mathbb{Z} -divisor of V, and let n be a positive integer with $nL' \in \mathbb{E}$ such that (L, L') satisfies one of the three conditions (VI-3), (VI-4), and (VI-5). Then

$$\pi_*(\mathcal{J}[L',n]\mathcal{O}_X(L)) \subset \mathcal{G}[L] \subset \pi_*\mathcal{O}_X(L).$$

Suppose in addition that there exist a \mathbb{Q} -divisor M of X and a positive integer m satisfying the following three conditions:

- (1) $mM \in \mathbb{E}_X$;
- (2) $\mathcal{I}[M,m] \subset \mathcal{J}[L',n];$
- (3) $L|_X M (K_X + \Delta_X) A_0$ is $(\pi|_X)$ -nef.

Then $\mathcal{I}[M,m]\mathcal{O}_X(L)$ is $(\pi|_X)$ -generated, $L \in \mathbb{E}$, and $\mathcal{I}[M,m] \subset \mathcal{J}[L]$.

PROOF. We note that $\mathcal{J}[L', n] \subset \mathcal{J}[L', nk]$ for k > 0. Therefore, in the case (VI-3), we may assume that the meromorphic mapping

$$V \dots \to \mathbb{P}_S(\pi_*\mathcal{O}_V(nL'))$$

is a bimeromorphic mapping into its image. Let $\rho: W \to V$ be a bimeromorphic morphism satisfying the condition **E** for nL'. In the case (VI-4), we may assume that $n\rho^*L' - E(nL') \succeq_{\pi} Y$. In any case, the \mathbb{R} -divisor

$$R_W - \frac{1}{n}E(nL') + \rho^*L - K_W - Y$$

= $\rho^*(L - L' - (K_V + X + \Delta)) + \frac{1}{n}(n\rho^*L' - E(nL'))$

is $(\pi \circ \rho)$ -nef. In the case (VI-3), the \mathbb{R} -divisor is also $(\pi \circ \rho)$ -big and hence

$$\mathbf{R}^{p}(\pi \circ \rho)_{*}\mathcal{O}_{W}(\lceil R_{W} - \frac{1}{n}E(nL')\rceil + \rho^{*}L - Y) = 0$$

for p > 0 by **II.5.12**. In the cases (VI-4) and (VI-5), the \mathbb{R} -divisor is $(\pi \circ \rho)$ -abundant and hence

$$\mathbf{R}^{p}(\pi \circ \rho)_{*}\mathcal{O}_{W}(\lceil R_{W} - \frac{1}{n}E(nL')\rceil + \rho^{*}L - Y) \longrightarrow \mathbf{R}^{p}(\pi \circ \rho)_{*}\mathcal{O}_{W}(\lceil R_{W} - \frac{1}{n}E(nL')\rceil + \rho^{*}L)$$

is injective for any p by **V.3.13**. Therefore, the homomorphism

 $\pi_*(\mathcal{Q}[L',n]\mathcal{O}_V(L)) \to \pi_*(\mathcal{J}[L',n]\mathcal{O}_X(L))$

is surjective in any case. Thus $\pi_*(\mathcal{J}[L', n]\mathcal{O}_X(L))$ is contained in $\mathcal{G}[L]$.

Let $f: Y \to X$ be a bimeromorphic morphism satisfying the condition **G** for mM and let us consider the \mathbb{R} -divisor

$$C := R_Y - \frac{1}{m}G(mM) + f^*(L|_X).$$

Then

$$C - K_Y - f^* A_0 = \frac{1}{m} (mf^* M - G(mM)) + f^* (L|_X - M - (K_X + \Delta_X) - A_0)$$

is $(\pi \circ f)$ -nef. Therefore

$$f_*\mathcal{O}_Y({}^{\mathsf{T}}C^{\mathsf{T}}) = \mathcal{I}[M,m]\mathcal{O}_X(L)$$

is $(\pi|_X)$ -generated by **V.3.19** (cf. **2.2**, **II.5.12**). Since we have the inclusion

$$\pi_*(\mathcal{J}[L',n]\mathcal{O}_X(L)) = \bigoplus \pi_*(\mathcal{J}[L',n]\mathcal{O}_{X_i}(L)) \subset \mathcal{G}[L] \subset \bigoplus \mathcal{G}_i[L],$$

 \Box

 $\mathcal{G}_i[L] \neq 0$ for any *i* and $\mathcal{I}[M,m] \subset \mathcal{J}[L]$.

Remark In the proof above, the sheaf $\mathcal{J}[L', n]\mathcal{O}_X(L)$ for n > 0 with $nL' \in \mathbb{E}$ is an ω -sheaf in a relative sense of **V.3.8**.

2.10. Lemma Let L and M be \mathbb{Q} -divisors of X. Assume that

(1) M is $(\pi|_X)$ -semi-ample,

(2) $a(\alpha L + M) \in \mathbb{E}_X$ for some $\alpha \in \mathbb{Q}_{>0}$ and $a \in \mathbb{N}$.

Then, for any $\beta \in \mathbb{Q}$ with $0 < \beta < \alpha$, there is a positive integer b such that

 $b(\beta L + M) \in \mathbb{E}_X$ and $\mathcal{I}[\alpha L + M, a] \subset \mathcal{I}[\beta L + M, b].$

PROOF. Let n be a positive integer with $na\alpha \in \mathbb{N}$ and $b := na\alpha\beta^{-1} \in \mathbb{N}$ such that

$$(b-an)M = na(\alpha\beta^{-1} - 1)M$$

is a π -free \mathbb{Z} -divisor. Then $b(\beta L + M) \in \mathbb{E}_X$, since

$$b(\beta L + M) = an(\alpha L + M) + (b - an)M.$$

Let $f: Y \to X$ be a bimeromorphic morphism satisfying the conditions **G** for $a(\alpha L + M)$, **G** for $an(\alpha L + M)$, and **G** for $b(\beta L + M)$. Then we have inequalities

$$\frac{1}{a}G(a(\alpha L+M)) \geq \frac{1}{an}G(an\alpha L+anM) \geq \frac{1}{an}G(b\beta L+bM) \geq \frac{1}{b}G(b(\beta L+M)).$$

Therefore $\mathcal{I}[\alpha L + M, a] \subset \mathcal{I}[\beta L + M, b].$

2.11. Proposition Let A be a π -ample divisor of V and let M be a $(\pi|_X)$ -semi-ample divisor of X such that

$$A|_X - (K_X + \Delta_X) - A_0 - M$$

is $(\pi|_X)$ -nef. Let L be a divisor of V satisfying either (VI-1) or (VI-2).

(1) If the condition

 $C\langle l,m\rangle$: $m(lL|_X+M) \in \mathbb{E}_X$

is satisfied for positive integers l and m, then $\mathcal{I}[lL+M,m]\mathcal{O}_X(lL+A)$ is $(\pi|_X)$ -generated, $lL+A \in \mathbb{E}$, and $\mathcal{I}[lL+M,m] \subset \mathcal{J}[lL+A]$.

(2) For any $l \in \mathbb{N}$,

$$\mathcal{I}[lL+M] \subset \mathcal{J}[lL+A]$$

PROOF. (1) We shall prove by induction on l. Assume that $C\langle 1, m \rangle$ is satisfied for some $m \in \mathbb{N}$. We have $\mathcal{J}[A, k] = \mathcal{O}_X$ for some $k \in \mathbb{N}$. Hence

$$\mathcal{I}[L+M,m] \subset \mathcal{J}[A,k]$$

Then (L + A, A) satisfies (VI-3) or (VI-5), and $(L + A, A, L|_X + M, m, k)$ satisfies the condition of **2.9** as (L, L', M, m, n). Thus $\mathcal{I}[L + M, m]\mathcal{O}_X(L + A)$ is $(\pi|_X)$ generated, $L + A \in \mathbb{E}$, and $\mathcal{I}[L + M, m] \subset \mathcal{J}[L + A]$. Thus (1) is true for l = 1. Next we consider the case l > 1 and assume that (1) is true for l - 1. If $C\langle l, m \rangle$

is satisfied for some m, then there is a positive integer m' such that

$$m'((l-1)L|_X + M) \in \mathbb{E}_X$$
 and $\mathcal{I}[lL + M, m] \subset \mathcal{I}[(l-1)L + M, m']$

by **2.10**. By induction,

$$(l-1)L + A \in \mathbb{E}$$
 and $\mathcal{I}[(l-1)L + M, m'] \subset \mathcal{J}[(l-1)L + A].$

Therefore, we have the inclusion

$$\mathcal{I}[lL+M,m] \subset \mathcal{J}[(l-1)L+A] \subset \mathcal{J}[(l-1)L+A,1].$$

Here (lL + A, (l - 1)L + A) satisfies (VI-3) or (VI-5), since (l - 1)L + A is π -big in the case (VI-1). Furthermore, $(lL + A, (l - 1)L + A, lL|_X + M, m, 1)$ satisfies the condition of **2.9** as (L, L', M, m, n). Therefore, $\mathcal{I}[lL + M, m]\mathcal{O}_X(lL + A)$ is $(\pi|_X)$ -generated, $lL + A \in \mathbb{E}$, and $\mathcal{I}[lL + M, m] \subset \mathcal{J}[lL + A]$. Thus we have proved by induction.

(2) For a connected component X_i of X, we set $\Delta^{(i)} = \Delta + (X - X_i)$. Then we may replace (X, Δ) by $(X_i, \Delta^{(i)})$ in the situation **2.2**. Moreover, the replacement does not affect the conditions (VI-1)–(VI-5). Thus we can apply (1) to the case $X = X_i$. Hence if $\mathcal{I}[lL + M]|_{X_i} \neq 0$, i.e., $(lL_X + M)|_{X_i} \in \mathbb{E}_{X_i}$, then

$$\mathcal{I}[lL+M]|_{X_i} \subset \mathcal{I}[lL|_{X_i}+M|_{X_i},1] \subset \mathcal{J}[lL+A]|_{X_i}.$$

Therefore,

$$\mathcal{I}[lL+M] = \bigoplus \mathcal{I}[lL+M]|_{X_i} \subset \bigoplus \mathcal{J}[lL+A]|_{X_i} = \mathcal{J}[lL+A].$$

2.12. Corollary Let L be a divisor of V such that $L|_{X_i}$ is $(\pi|_{X_i})$ -pseudo-effective for some i. If L satisfies (VI-2), then L is π -pseudo-effective.

PROOF. By the same replacement as above, we can apply **2.11** to the case $X = X_i$. If we choose M as a $(\pi|_X)$ -ample divisor, then for any l > 0, $C\langle l, m \rangle$ is satisfied for some m > 0, since $L|_X$ is $(\pi|_X)$ -pseudo-effective. Thus **2.11**-(1) implies that $\mathcal{J}[lL + A] \neq 0$ for any l > 0. Hence L is π -pseudo-effective. \Box

§3. Surjectivity of restriction maps

§3.a. Big case.

3.1. Lemma Let L and L' be \mathbb{Q} -divisors of V with $\langle L \rangle \leq \Delta$, $\lfloor L |_{X \perp} \in \mathbb{E}_X$ such that (L, L') satisfies one of the three conditions (VI-3), (VI-4), and (VI-5), and let n be a positive integer with $nL' \in \mathbb{E}$. Suppose that there is a bimeromorphic morphism $\rho \colon W \to V$ satisfying the condition \mathbf{E} for nL' in which $\rho|_Y = f$ satisfies the condition \mathbf{G} for $\lfloor L |_{X \perp}$ and the inequality

$$-G(L_{\perp}) \leq \lceil R_W + \rho^* \langle L \rangle - \frac{1}{n} E(nL')^{\rceil}|_Y = \lceil R_Y + f^* \langle L|_X \rangle - \frac{1}{n} B(nL')^{\rceil}$$

holds. Then $\pi_*\mathcal{O}_V(\ \ L_{\}) \to \pi_*\mathcal{O}_X(\ \ L_{\})$ is surjective.

PROOF. Let Δ' be the \mathbb{R} -divisor $\Delta - \langle L \rangle$. By replacing Δ with Δ' , we may assume that $\langle L \rangle = 0$. The inequality above implies that $\mathcal{I}[L] \subset \mathcal{J}[L', n]$. Hence, by **2.9**, we have the inclusion

$$\pi_*\mathcal{O}_X(L) = \pi_*(\mathcal{I}[L]\mathcal{O}_X(L)) \subset \mathcal{G}[L],$$

which means the expected surjectivity.

3.2. Proposition Let L and L' be \mathbb{Q} -divisors of V with $\langle L \rangle \leq \Delta$ such that (L, L') satisfies one of the three conditions (VI-3), (VI-4), and (VI-5). Suppose that there exist positive integers m, m^{*}, a Z-divisor A of V, an effective \mathbb{Q} -divisor Δ^* of V, and a bimeromorphic morphism $\rho: W \to V$ from a non-singular variety satisfying the following conditions:

- (1) mL and m^*L' are \mathbb{Z} -divisors with $mL + A \in \mathbb{E}_V$, $m^*L' \in \mathbb{E}_V$;
- (2) $\mathcal{I}[mL] \subset \mathcal{J}[mL+A];$
- (3) Supp Δ^* contains no components of X and $(V\&X, \Delta + \Delta^*)$ is log-terminal along X (cf. **II.4.8**);
- (4) ρ satisfies the conditions **E** for mL + A and **E** for m^*L' in which the inequality

$$-\frac{1}{m}E(mL+A) \le \rho^* \Delta^* - \frac{1}{m^*}E(m^*L')$$

holds.

PROOF. If $\pi_*\mathcal{O}_{X_i}(\lfloor L \rfloor) = 0$, then we can replace (Δ, X) by $(\Delta + X_i, X - X_i)$. Thus we may assume that $\lfloor L |_{X \lrcorner} \in \mathbb{E}_X$. Then $mL + A \in \mathbb{E}$ and $m^*L' \in \mathbb{E}$ by (2) and (4). We may assume that the restriction $\rho|_Y = f$ satisfies the conditions **G** for $\lfloor L |_{X \lrcorner}$ and **G** for $mL|_X$. Then (2) induces the inequalities:

$$\frac{1}{m}B(mL+A) \le \frac{1}{m}G(mL) \le G(\lfloor L \rfloor) + (\rho^* \langle L \rangle)|_Y.$$

Therefore

(VI-6)
$$-G(\lfloor L \rfloor) \leq (\lfloor \rho^* \langle L \rangle - \frac{1}{m} E(mL + A) \rfloor)|_Y.$$

We have

(VI-7)
$$[R_W - \rho^* \Delta^*] + [\rho^* \langle L \rangle + \rho^* \Delta^* - \frac{1}{m^*} E(m^* L')]$$
$$\leq [R_W + \rho^* \langle L \rangle - \frac{1}{m^*} E(m^* L')],$$

in which the inequality $\lceil R_W - \rho^* \Delta^* \rceil \ge 0$ holds along $\rho^{-1}(X)$ by (3). The restriction of (VI-7) to Y, (VI-6), and the inequality in (4) induce

$$-G(L_{\perp}) \leq \lceil R_W + \rho^* \langle L \rangle - \frac{1}{m^*} E(m^*L')^{\rceil} |_Y$$

Thus the result follows from **3.1**.

3.3. Lemma Let L and L' be Q-divisors of V with $\langle L \rangle \leq \Delta$ such that (L, L') satisfies one of the three conditions (VI-3), (VI-4), and (VI-5). Suppose that there exist

- a rational number $0 < \beta < 1$, positive integers m, m', and an integer b,
- \mathbb{Z} -divisors A and D of V, and
- a bimeromorphic morphism $\rho \colon W \to V$ from a non-singular variety

satisfying the following conditions:

- (1) mL, m'L, and bL' are \mathbb{Z} -divisors with $mL + A \in \mathbb{E}_V$, $m'L + bL' \in \mathbb{E}_V$;
- (2) $m\beta \leq m' + b\beta$ and $L' \beta L$ is π -semi-ample;
- (3) $\mathcal{I}[mL] \subset \mathcal{J}[mL+A];$
- (4) D is an effective divisor containing no components of X and $(V\&X, \Delta + (1/m)D)$ is log-terminal along X;
- (5) ρ satisfies the conditions **E** for mL + A and **E** for m'L + bL' in which the inequality

$$-E(mL+A) \le \rho^* D - E(m'L+bL')$$

holds.

PROOF. Let k be a positive integer such that $k\beta \in \mathbb{Z}$, $k\beta L$, and kL' are \mathbb{Z} -divisors, and that $k(L' - \beta L)$ is a π -free \mathbb{Z} -divisor. We may assume that ρ satisfies

the conditions **E** for mL + A, **E** for m'L + bL', **E** for $m'k\beta L + bk\beta L'$, and **E** for $k(m' + b\beta)L'$, then we have

$$\frac{1}{m}E(m'L+bL') \ge \frac{1}{mk\beta}E(m'k\beta L+bk\beta L') \ge \frac{1}{mk\beta}E(k(m'+b\beta)L')$$
$$\ge \frac{1}{k(m'+b\beta)}E(k(m'+b\beta)L').$$

Therefore, if we set $m^* := k(m' + b\beta)$ and $\Delta^* = (1/m)D$, then all the conditions of **3.2** are satisfied.

3.4. Lemma Let L be a π -big \mathbb{Z} -divisor of V such that $kL \in \mathbb{E}_{big}$ for some $k \in \mathbb{N}$ and let A be a divisor of V. Then, locally over S, there exist a positive integer a with $aL \in \mathbb{E}_{big}$ and an effective divisor D of V containing no components of X such that $aL \sim A + D$.

PROOF. We may assume that S is Stein and A is π -very ample, since A + A'is so for some π -very ample divisor A'. For an integer a with $aL \in \mathbb{E}_{big}$, let $\rho: W \to V$ be a bimeromorphic morphism satisfying the condition **E** for aL. Then $a\rho^*L - E(aL)$ is $(\pi \circ \rho)$ -big and $(\pi \circ \rho)$ -free, and E(aL) contains no components of Y. Let

$$W \xrightarrow{\varphi} Z \to \mathbb{P}_S(\pi_*\mathcal{O}_V(aL))$$

be the Stein factorization of the morphism given by $a\rho^*L - E(aL)$, where φ is a bimeromorphic morphism contracting no components of Y. Here $a\rho^*L - E(aL) \sim \varphi^*H$ for a divisor H of Z, which is relatively ample over S. Now the support of the cokernel of

$$\varphi_*\mathcal{O}_W(-\rho^*A - Y_i) \to \varphi_*\mathcal{O}_W(-\rho^*A)$$

is $\varphi(Y_i)$. Hence

$$\pi_*\mathcal{O}_W(m\varphi^*H - \rho^*A - Y_i) \to \pi_*\mathcal{O}_W(m\varphi^*H - \rho^*A)$$

is not isomorphic for $m \gg 0$. Therefore, Y_i is not contained in the relative fixed part $|m\varphi^*H - \rho^*A|_{\text{fix}}$. Hence there is an effective divisor D' on W such that Supp D' contains no components of Y and $m\varphi^*H - \rho^*A \sim D'$ for some m > 0. Here, the effective divisor $D := \rho_*(mE(aL) + D')$ contains no components of Xand $amL \sim A + D$.

Remark Suppose that $d = \dim V - \dim S > 0$ and that $\pi(X_i)$ is a prime divisor for any component X_i of X. Then, for a π -big divisor L of V, $kL \in \mathbb{E}_{\text{big}}$ for some k > 0 if and only if, for any i,

$$\overline{\lim}_{m \to \infty} m^{-d} \operatorname{rank} \mathcal{G}_i[mL] > 0.$$

3.5. Lemma Suppose that $d = \dim V - \dim S > 0$. Let L, C be \mathbb{Z} -divisors of V, Θ a prime divisor of V dominating S, and X_i a component of X with $\pi(X_i)$ being a divisor of S. Suppose that

$$\overline{\lim}_{m \to \infty} m^{-d} \operatorname{rank} \mathcal{G}_i[mL + C + \Theta] > 0,$$

where rank $\mathcal{G}_i[mL + C + \Theta]$ is the rank as a torsion-free sheaf of $\pi(X_i)$. Then $\lim_{m \to \infty} m^{-d} \operatorname{rank} \mathcal{G}_i[mL + C] > 0.$

PROOF. We consider the following commutative diagram:

Let \mathcal{E}_m be the image of the homomorphism

$$\pi_*\mathcal{O}_V(mL+C+\Theta) \to \pi_*\mathcal{O}_\Theta(mL+C+\Theta).$$

Then this is a torsion-free sheaf of S and

$$\lim_{m \to \infty} m^{-d} \operatorname{rank} \mathcal{E}_m = 0,$$

since rank \mathcal{E}_m is at most

$$\dim \mathrm{H}^0(V_s \cap \Theta, mL + C + \Theta|_{V_s \cap \Theta})$$

for a general fiber $V_s = \pi^{-1}(s)$. By the commutative diagram above, we infer that there is a surjective homomorphism

$$\mathcal{E}_m \otimes \mathcal{O}_{\pi(X_i)} \twoheadrightarrow \mathcal{G}_i[mL + C + \Theta]/\mathcal{G}_i[mL + C]$$

Thus we have the expected estimate of rank $\mathcal{G}_i[mL+C]$.

3.6. Lemma Let Λ be a π -nef and π -big divisor of V. Suppose that X_i is not π -exceptional and $\Lambda|_{X_i}$ is $(\pi|_{X_i})$ -big for any i. Then, locally on S, there exist an effective divisor D containing no X_i and a positive integer a such that $a\Lambda - D$ is π -ample.

PROOF. We can take a prime divisor Θ such that $\Theta - A - K_V - X_i$ is π -ample for a π -ample divisor A and for any *i*. Hence

$$\pi_*\mathcal{O}_V(m\Lambda - A + \Theta) \to \pi_*\mathcal{O}_{X_i}(m\Lambda - A + \Theta)$$

is surjective for any $m \ge 0$ and *i* by **II.5.12**. Hence, by **3.5**, $\mathcal{G}_i[a\Lambda - A] \ne 0$ for some a > 0 and for any *i* with $\pi(X_i)$ being a prime divisor. Thus there is an effective divisor $D \in |a\Lambda - A|$ containing no X_i with $\operatorname{codim} \pi(X_i) = 1$. By the same argument as **III.3.8**, we can change *a* and *D* so that any component X_i with $\pi(X_i) = S$ is not contained in Supp *D*.

3.7. Theorem Let L be a π -pseudo-effective \mathbb{Z} -divisor of V such that $L - (K_V + X + \Delta)$ is π -nef. Let Λ be a π -nef and π -big \mathbb{Q} -divisor of V such that $\Delta \geq \langle \Lambda \rangle$ and $k\Lambda \in \mathbb{E}_{\text{big}}$ for some $k \in \mathbb{N}$. Then the homomorphism

$$\pi_*\mathcal{O}_V(lL+ \Lambda_{\perp}) \to \pi_*\mathcal{O}_X(lL+ \Lambda_{\perp})$$

is surjective for $l \gg 0$. If $L|_X$ is $(\pi|_X)$ -pseudo-effective, then the homomorphism above is surjective for any l > 0.

Remark If X_i is not π -exceptional for any i, then, by **3.6**, we can replace the condition " $k\Lambda \in \mathbb{E}_{\text{big}}$ for some $k \in \mathbb{N}$ " by " $\Lambda|_{X_i}$ is $(\pi|_{X_i})$ -big for any i."

PROOF. If $L|_{X_i}$ is not $(\pi|_{X_i})$ -pseudo-effective, then $\pi_*\mathcal{O}_{X_i}(lL+ \bot_{\Delta}) = 0$ except for a finite number of positive integers l. Hence we can replace X with $X - X_i$ and Δ with $\Delta + X_i$. Thus we may assume that $L|_X$ is $(\pi|_X)$ -pseudo-effective.

First we consider the case l = 1. The \mathbb{R} -divisor

$$L + \lfloor \Lambda \rfloor - (K_V + X + \Delta - \langle \Lambda \rangle) = L - (K_V + X + \Delta) + \Lambda$$

is π -nef and π -big. Thus $(\Delta - \langle \Lambda \rangle, L + \lfloor \Lambda \rfloor, 0, 1)$ satisfies the condition of **2.9** as (Δ, L, L', m) . Hence

$$\pi_*\mathcal{O}_X(L+ \Lambda_{\perp}) \subset \mathcal{G}[L+ \Lambda_{\perp}].$$

Therefore we have the surjectivity for l = 1.

Next, we assume that l > 1. Let A_1 be a π -very ample divisor of V such that

$$4_1|_X - (K_X + \Delta_X) - A_0$$

is $(\pi|_X)$ -nef. Let b be a positive integer with $b\Lambda$ being a \mathbb{Z} -divisor. Then

$$mlL + b\Lambda + 2A_1 \in \mathbb{E}$$
 and $\mathcal{I}[mlL + b\Lambda + A_1] \subset \mathcal{J}[mlL + b\Lambda + 2A_1]$

for any $m \in \mathbb{N}$ by **2.11**. In particular,

$$\mathcal{I}[m(lL+\Lambda)] \subset \mathcal{I}[m(lL+\Lambda)+A_1] \subset \mathcal{J}[m(lL+\Lambda)+2A_1]$$

for $m \in b\mathbb{N}$. There is an $a \in b\mathbb{N}$ such that $(a - b)\Lambda - 4A_1$ is linearly equivalent to an effective divisor D_1 containing no components of X locally over S by **3.4**. In particular, $\Lambda - \varepsilon D_1$ is π -ample for $0 < \varepsilon \leq 1/(a - b)$. There is an effective divisor D of V locally over S containing no components of X such that

$$D \sim a(lL + \Lambda) - 2A_1 = (alL + b\Lambda + 2A_1) + (a - b)\Lambda - 4A_1.$$

From the linear equivalence $(m + a)(lL + \Lambda) \sim D + m(lL + \Lambda) + 2A_1$ for $m \in b\mathbb{N}$, we infer that $(m + a)(lL + \Lambda) \in \mathbb{E}$ and the inequality

$$-E(m(lL+\Lambda)+2A_1) \le \rho^*D - E((m+a)(lL+\Lambda))$$

holds for a bimeromorphic morphism $\rho: W \to V$ satisfying the conditions **E** for $m(lL + \Lambda) + 2A_1$ and **E** for $(m + a)(lL + \Lambda)$. Let ε be a positive rational number such that $l\varepsilon < 1/(a - b)$ and $(V\&X, \Delta + \varepsilon D_1)$ is log-terminal along X. We can choose m so that $(V\&X, \Delta + \varepsilon D_1 + (1/m)D)$ is log-terminal along X. Hence the condition of **3.3** is satisfied for

$$(\Delta + \varepsilon D_1, lL + \Lambda, (l-1)L + \Lambda - \varepsilon D_1, (l-1)/l, m, m + a, 0, 2A_1, D)$$

as $(\Delta, L, L', \beta, m, m', b, A, D).$

Thus the surjectivity follows.

3.8. Corollary Let L be a \mathbb{Z} -divisor of V such that $L - (K_V + X + \Delta)$ is π -nef and π -big, and $k(L - (K_V + X + \Delta)) \in \mathbb{E}_{big}$ for some $k \in \mathbb{N}$. Then the homomorphism $\pi_* \mathcal{O}_V(lL) \to \pi_* \mathcal{O}_X(lL)$ is surjective for any $l \in \mathbb{N}$.

PROOF. We may assume that $L|_X$ is $(\pi|_X)$ -pseudo-effective. Then, by **2.12**, L is π -pseudo-effective. Locally on S, there is an effective divisor D linearly equivalent to $k(L - (K_V + X + \Delta))$ that contains no components of X by **3.4**. Let $\rho: W \to X$ be a bimeromorphic morphism from a non-singular variety such that the union of the ρ -exceptional locus, $\rho^{-1}(X)$, and $\rho^{-1}(\operatorname{Supp} D)$ is a normal crossing divisor. Let Y be the proper transform of X as before. Let R_+ and R_- , respectively, be the positive and the negative parts of the prime decomposition of $\lceil R_W \rceil$. Then R_+ is ρ -exceptional and $\operatorname{Supp} R_- \cap \rho^{-1}(X) = \emptyset$. There is an integer $m \gg k$ such that

$$\left\langle -(R_W - \frac{1}{m}\rho^*D) \right\rangle = \left\langle \langle -R_W \rangle + \frac{1}{m}\rho^*D \right\rangle \ge \frac{1}{m}\rho^*D.$$

Then $\lceil R_W - (1/m)\rho^*D \rceil = \lceil R_W \rceil$. We set

$$L_W := \rho^* L + R_+, \quad \Lambda := (1/m)\rho^* D, \quad \Delta'_W := \left\langle -(R_W - \frac{1}{m}\rho^* D) \right\rangle + R_-.$$

Then

$$L_W - (K_W + Y + \Delta'_W) = \rho^* (L - (K_V + X + \Delta + \frac{1}{m}D)) \sim_{\mathbb{Q}} (\frac{1}{k} - \frac{1}{m})\rho^* D$$

is $(\pi \circ \rho)$ -nef and $(\pi \circ \rho)$ -big, and $\langle \Lambda \rangle = \Lambda \leq \Delta'_W$. Thus, by **3.7**,

$$\pi_*\rho_*\mathcal{O}_W(lL_W) \to \pi_*\rho_*\mathcal{O}_Y(lL_W)$$

is surjective for any $l \in \mathbb{N}$. The expected surjectivity follows from the isomorphisms $\mathcal{O}_V(lL) \simeq \rho_* \mathcal{O}_W(lL_W)$ and $\mathcal{O}_X(lL) \simeq \rho_* \mathcal{O}_Y(lL_W)$.

3.9. Theorem Let L be a π -big divisor of V such that $kL \in \mathbb{E}_{big}$ for some $k \in \mathbb{N}$ and $L - (K_V + X + \Delta)$ is π -nef. Then the homomorphism

$$_*\mathcal{O}_V(lL) \to \pi_*\mathcal{O}_X(lL)$$

is surjective for any integer l > 1. If L satisfies (VI-2) in addition, then the homomorphism is surjective also for l = 1.

PROOF. In the case l = 1, this is derived from **2.9**, since (L, 0, 1) satisfies the condition of **2.9** as (L, L', n). Suppose that l > 1. By **2.11**, there is a π ample divisor A of V such that $mL + A \in \mathbb{E}$ and $\mathcal{I}[mL] \subset \mathcal{J}[mL + A]$ for any m > 0. By **3.4**, there exist a positive integer a and an effective divisor D of Vcontaining no components of X such that $A + D \sim alL$. Thus, for any m > 0, $mlL + A, (m + a)lL \in \mathbb{E}$, and

$$-E(mlL + A) \le \rho^* D - E((m+a)lL)$$

for a bimeromorphic morphism $\rho: W \to V$ satisfying the conditions **E** for mlL + A and **E** for (m + a)lL. If m is sufficiently large, then $(V\&X, \Delta + (1/m)D)$ is log-terminal along X. Then (lL, (l-1)L, (l-1)/l, m, m + a, 0, A, D) satisfies the condition of **3.3** as $(L, L', \beta, m, m', b, A, D)$. Hence the surjectivity follows. \Box

3.10. Theorem Let L be a divisor of V such that L satisfies the condition (VI-2). Suppose that $\pi(X_i)$ is a prime divisor of S and $L|_{X_i}$ is $(\pi|_{X_i})$ -big for any component X_i . Then $\pi_*\mathcal{O}_V(lL) \to \pi_*\mathcal{O}_X(lL)$ is surjective for any $l \ge 1$.

PROOF. If π is generically finite, then this follows from **3.9**. Suppose that $d = \dim V - \dim S > 0$. We may assume that L is π -pseudo-effective. Let Θ be a π -ample prime divisor of V. Then

$$\pi_*\mathcal{O}_V(mL+\Theta) \to \pi_*\mathcal{O}_{X_i}(mL+\Theta)$$

is surjective for m > 0 by **3.7**. Thus $kL \in \mathbb{E}_{big}$ for some k by **3.5**. Hence the condition of **3.9** is satisfied.

Example Let $f: Z \to S$ be a generically finite proper surjective morphism of normal complex analytic varieties. For a Cartier divisor L, a prime divisor Γ , and for an effective \mathbb{R} -divisor Δ of Z, suppose that

- (1) $(Z\&\Gamma, \Delta)$ is log-terminal,
- (2) $L (K_Z + \Gamma + \Delta)$ is *f*-nef.

Then the restriction homomorphism $f_*\mathcal{O}_Z(mL) \to f_*\mathcal{O}_{\Gamma}(mL)$ is surjective for any $m \geq 0$. This is shown as follows: Let $\mu: V \to Z$ be a bimeromorphic morphism from a non-singular variety projective over S and let X be the proper transform of Γ . We may assume that X is non-singular and there exist effective \mathbb{R} -divisor Δ_V and a μ -exceptional effective divisor E such that $X \cup \text{Supp } \Delta_V \cup \text{Supp } E$ is a normal crossing divisor, $\lfloor \Delta_{V \rfloor} = 0$, and

$$K_V + X + \Delta_V = \mu^* (K_Z + \Gamma + \Delta) + E.$$

We set $L_V := \mu^* L + E$. Then $f_* \mu_* \mathcal{O}_V(mL_V) \to f_* \mu_* \mathcal{O}_X(mL_V)$ is surjective for any m > 0 by **3.7** (or by **3.8**, **3.9**, **3.10**). This induces the expected surjection, since $\mu_* \mathcal{O}_V(mE) \simeq \mathcal{O}_Z$ for $m \ge 0$ and Γ is normal (cf. II.4.9).

§3.b. Abundant case.

3.11. Situation In addition to 2.2, we consider the commutative diagram

(VI-8)
$$V \xleftarrow{\rho} W$$
$$\pi \downarrow \qquad \varphi \downarrow$$
$$S \xleftarrow{\phi} Z,$$

where the following conditions are satisfied:

- (1) W and Z are non-singular;
- (2) ρ is a projective bimeromorphic morphism, ϕ is a projective morphism, and φ is a fiber space;
- (3) $\varphi(Y) \neq Z;$
- (4) any φ -exceptional divisor is exceptional for the bimeromorphic morphism $W \to V_1$ into the normalization V_1 of the image of $(\rho, \varphi) \colon W \to V \times Z$.

3.12. Lemma In the situation **3.11**, let L be a π -pseudo-effective Z-divisor of V such that

- (1) Supp $N_{\sigma}(L; V/S)$ does not contain any X_i ,
- (2) $\kappa_{\sigma}(\rho^*L; W/Z) = \kappa(\rho^*L; W/Z) = 0.$

Let A be a π -ample divisor of V such that $mL + A \in \mathbb{E}$ for any m > 0 and let H be a ϕ -ample divisor of Z. Then, there exist positive integers m_0 , d, k and an effective divisor D of V containing no X_i such that

$$-|mm_0L + A|_{\text{fix}} \le \rho^* D - |\rho^*(mm_0L) + \varphi^*(dH)|_{\text{fix}}$$

for $m \ge k$, if S is replaced by a relatively compact open subset. In particular, if ρ satisfies the conditions \mathbf{E} for $\rho^*(mm_0L) + \varphi^*(dH)$ and \mathbf{E} for $mm_0L + A$ for an $m \ge k$, then

$$-E(mm_0L + A) \le \rho^*D - E(\rho^*(mm_0L) + \varphi^*(dH))$$

and $Y_i \not\subset \text{Supp} E(\rho^*(mm_0L) + \varphi^*(dH))$ for any *i*.

PROOF. There is a \mathbb{Q} -divisor Ξ_0 on Z such that

$$\rho^*L \sim_{\mathbb{O}} \varphi^*\Xi_0 + N_\sigma(\rho^*L; W/Z)$$

by **V.2.26**. Let m_0 be a positive integer such that $N := m_0 N_\sigma(\rho^* L; W/Z)$ and $\Xi := m_0 \Xi_0$ are \mathbb{Z} -divisors and the linear equivalence $\rho^*(m_0 L) \sim \varphi^* \Xi + N$ holds. Note that Supp N contains no proper transforms Y_i . There is a positive integer k such that $\sigma_{\Gamma}(\rho^* A + kN; W/Z) > 0$ for any prime component Γ of Supp N. Thus

$$\varphi_*\mathcal{O}_W(\rho^*A+kN) \to \varphi_*\mathcal{O}_W(\rho^*A+mN)$$

is isomorphic for any $m \ge k$. There is a φ -exceptional effective divisor E'' such that $\varphi_* \mathcal{O}_W(\rho^*A + kN + E'')$ is reflexive. Here, $\rho^*A + kN$ is the pullback of a Cartier divisor of V_1 and E'' is exceptional for $W \to V_1$. Thus

$$\mathcal{F} := \varphi_* \mathcal{O}_W(\rho^* A + kN)$$

is reflexive. Since we may assume that ${\cal S}$ is Stein, there exists a surjective homomorphism

$$\mathcal{O}_Z^{\oplus r} \to \mathcal{F}^{\vee} \otimes \mathcal{O}_Z(dH)$$

for some positive integers r and d. By taking its dual, we have an exact sequence

$$0 \to \mathcal{F} \to \mathcal{O}_Z(dH)^{\oplus r} \to \mathcal{F}' \to 0,$$

in which \mathcal{F}' is torsion-free. Let $\widetilde{\mathcal{F}'}$ be the quotient $\varphi^* \mathcal{F}'/(\text{tor})$ by the torsion part and let $\widetilde{\mathcal{F}}$ be the kernel of

$$\varphi^* \mathcal{O}_Z(dH) \to \widetilde{\mathcal{F}'}.$$

Then $\mathcal{F} \simeq \varphi_* \widetilde{\mathcal{F}}$ and we have a φ -exceptional effective divisor \widehat{E} of W and a commutative diagram

(VI-9)
$$\begin{array}{ccc} \varphi^{*}\mathcal{F} & \longrightarrow & \widetilde{\mathcal{F}} \\ & & & \downarrow \\ & & & \downarrow \\ \mathcal{O}_{W}(\rho^{*}A + kN) & \longrightarrow & \mathcal{O}_{W}(\rho^{*}A + kN + \widehat{E}), \end{array}$$

where φ_* of the bottom and the right arrows are isomorphisms. We fix an integer $m \geq k$. By replacing W by a blowing-up, we may assume that the image of the homomorphism

$$\varphi^* \phi^* \phi_* \mathcal{O}_Z(m\Xi + dH) \to \mathcal{O}_W(\varphi^*(m\Xi + dH))$$

is invertible. In other words, we assume that W satisfies the condition \mathbf{E} for $\varphi^*(m\Xi+dH)$. Moreover, we assume that W satisfies the condition \mathbf{E} for mm_0L+A . Let Θ_m be the relative fixed divisor $|\varphi^*(m\Xi+dH)|_{\text{fix}} = E(\varphi^*(m\Xi+dH))$. From the commutative diagram

we infer that the injection

$$\phi_*\varphi_*(\widetilde{\mathcal{F}}\otimes\mathcal{O}_W(\varphi^*(m\Xi)-\Theta_m))\to\phi_*\varphi_*(\widetilde{\mathcal{F}}\otimes\mathcal{O}_W(\varphi^*(m\Xi)))$$

is isomorphic. Therefore,

$$\pi_*\rho_*\mathcal{O}_W(\rho^*A + kN + \widehat{E} + m\varphi^*\Xi - \Theta_m) \to \pi_*\rho_*\mathcal{O}_W(\rho^*A + kN + \widehat{E} + m\varphi^*\Xi)$$

is an isomorphism by (VI-9). Since \widehat{E} is ρ -exceptional, $\widehat{E} + E(mm_0L + A)$ is the relative fixed divisor of $\rho^*(mm_0L + A) + \widehat{E}$ over S. Thus we have an inequality

$$E(mm_0L + A) + E \ge (m - k)N + \Theta_m.$$

On the other hand, $mN + \Theta_m$ is the relative fixed divisor of $\varphi^*(m\Xi + dH) + mN \sim mm_0\rho^*L + d\varphi^*H$ and hence W satisfies the condition **E** for $\rho^*(mm_0L) + \varphi^*(dH)$. Therefore,

$$-E(mm_0L+A) \le E + kN - E(\rho^*(mm_0L) + \varphi^*(dH)).$$

There is an effective divisor D on V such that $\operatorname{Supp} D$ contains no X_i and $\rho^* D \ge \widehat{E} + kN$. Thus we are done.

3.13. Lemma In the situation **3.11**, suppose that any X_i is not π -exceptional. Let Λ be a π -nef and π -abundant \mathbb{Z} -divisor of V such that

- (1) $\rho^*\Lambda$ is \mathbb{Q} -linearly equivalent to the pullback of a ϕ -nef and ϕ -big \mathbb{Q} -divisor of Z,
- (2) $\kappa(\Lambda|_{X_i}; X_i/\pi(X_i)) \ge \dim Z 1 \dim \pi(X_i).$

Then there is an effective divisor D on W locally over S such that $\rho^*\Lambda - \varepsilon D$ for $0 < \varepsilon \ll 1$ is \mathbb{Q} -linearly equivalent to the pullback of a ϕ -ample \mathbb{Q} -divisor and Supp D contains no components Y_i of Y.

PROOF. Let Ξ be the ϕ -nef and ϕ -big divisor of Z with $\rho^* \Lambda \sim_{\mathbb{Q}} \varphi^* \Xi$. Then $\Xi|_{\varphi(X_i)}$ is ϕ -big. Hence there is an effective divisor D' on Z such that $\operatorname{Supp} D'$ contains no $\varphi(X_i)$ and $\Xi - \varepsilon D'$ is ϕ -ample by **3.6**. Thus $D = \varphi^* D'$ satisfies the condition. \Box

3.14. Theorem Let L be a π -pseudo-effective divisor and let Λ be a π -nef and π -abundant \mathbb{Q} -divisor of V with $\Delta \geq \langle \Lambda \rangle$. Suppose that

- (1) any X_i is not π -exceptional,
- (2) $L (K_V + X + \Delta)$ is π -nef and π -abundant,
- (3) $L|_X$ is $(\pi|_X)$ -pseudo-effective,
- (4) $\kappa(\Lambda; V/S) = \kappa_{\sigma}(kL + \Lambda; V/S)$ for some k > 0,
- (5) $\kappa(\Lambda|_{X_i}; X_i/\pi(X_i)) = \kappa(\Lambda; V/S) + \dim S \dim \pi(X_i) 1$ for any X_i .

Then the restriction homomorphism

$$\pi_*\mathcal{O}_V(lL+ \Lambda_) \to \pi_*\mathcal{O}_X(lL+ \Lambda_)$$

is surjective for any $l \geq 1$.

PROOF. In the case: dim $V = \dim S$, this is already proved in **3.7**. Thus we may assume that dim $V > \dim S$.

Step 1 A reduction. We may replace V by a blowing-up as follows: let $\rho_1 \colon W_1 \to V$ be a projective bimeromorphic morphism from a non-singular variety such that the union of the ρ_1 -exceptional locus, $\rho_1^{-1}(\operatorname{Supp} \Delta)$, and the proper transform Y_1 of X is a normal crossing divisor. Let R_+ and R_- , respectively, be the positive and the negative parts of the prime decomposition of $\lceil R_1 \rceil$ for the \mathbb{R} -divisor $R_1 = K_{W_1} + Y_1 - \rho_1^*(K_V + X + \Delta)$. Here, R_+ is ρ_1 -exceptional and $\operatorname{Supp} R_- \cap \rho_1^{-1}(X) = \emptyset$. Setting

$$L_1 := \rho_1^* L + R_+, \quad \Delta_1 := \langle -R_1 \rangle + R_-,$$

we have the equality

$$L_1 - (K_{W_1} + Y_1 + \Delta_1) = \rho^* (L - (K_V + X + \Delta))$$

and an isomorphism

$$\rho_{1*}\mathcal{O}_{W_1}(lL_1 + \llcorner \rho_1^*\Lambda_{\lrcorner}) \simeq \mathcal{O}_V(lL + \llcorner \Lambda_{\lrcorner}).$$

Hence we can replace $(V, X, \Delta, L, \Lambda)$ by $(W_1, Y_1, \Delta_1, L_1, \rho_1^*\Lambda)$. Therefore, we may assume that there exist a projective morphism $p: T \to S$ from a non-singular variety and a fiber space $\psi: V \to T$ over S such that Λ is \mathbb{Q} -linearly equivalent to the pullback of a *p*-nef and *p*-big \mathbb{Q} -divisor of T. Then the condition (5) is equivalent to that $\psi(X_i)$ is a prime divisor for any *i*. Since $\Lambda \succeq_{\pi} X, L + \Lambda$ satisfies the condition (VI-2). Thus if l = 1, then the surjectivity follows from **2.9**. So, we may assume $l \geq 2$.

By **3.13**, we can find an effective divisor D_1 and $\varepsilon \in \mathbb{Q}_{>0}$ such that

- $X_i \not\subset \operatorname{Supp} D_1$ for any i,
- $\Lambda \varepsilon l D_1$ is the pullback of a ψ -ample \mathbb{Q} -divisor of T,
- $(V\&X, \Delta + \varepsilon D_1)$ is log-terminal along X.

Since $L - \psi^* K_T - (K_{V/T} + X + \Delta)$ is π -nef, we have

$$\kappa_{\sigma}(L - X + \psi^* Q; V/S) = \kappa_{\sigma}(L; V/T) + \dim T - \dim S$$

for an \mathbb{R} -divisor Q on T with $Q + K_T$ being p-big by **V.4.1**. The condition (4) implies that $\kappa_{\sigma}(L + \alpha\Lambda; V/S) = \kappa_{\sigma}(\Lambda; V/S)$ for any $\alpha > 0$. Hence, by **V.4.8**,

$$\kappa_{\sigma}(L; V/T) = \kappa(L; V/T) = 0$$

By considering the flattening $\mu: Z \to T$ of ψ , we have the commutative diagram (VI-8) such that $\phi = p \circ \mu$.

Step 2. The case: Λ is a \mathbb{Z} -divisor. Let A be a π -very ample divisor of V. Applying **3.7** to $j\Lambda + A$ as Λ , we infer that $mlL + j\Lambda + A \in \mathbb{E}$ and

$$\mathcal{I}[mlL+j\Lambda] \subset \mathcal{I}[mlL+j\Lambda+A] = \mathcal{J}[mlL+j\Lambda+A]$$

for any $m \in \mathbb{N}$ and $j \in \mathbb{Z}_{\geq 0}$. Let H be a ϕ -ample divisor on Z. Applying **3.12** to $lL + j\Lambda$, we have positive integers m_0 , d, k, and an effective divisor D of V containing no X_i satisfying the following conditions: If $m \geq k$ and if ρ satisfies the conditions \mathbf{E} for $mm_0(lL + \Lambda)$ and \mathbf{E} for $mm_0\rho^*(lL + \Lambda) + \varphi^*(dH)$, then

$$-E(mm_0(lL+\Lambda)+A) \le \rho^*D - E(mm_0\rho^*(lL+\Lambda)+\varphi^*(dH)).$$

There exist a positive integer a and an effective divisor D' of V such that $a(\Lambda - \varepsilon l D_1) \sim \varphi^*(dH) + D'$ and $X_i \not\subset \text{Supp } D'$ for any i. Then

$$E(mm_0(lL+\Lambda) + a(\Lambda - \varepsilon lD_1)) \le E(mm_0(lL+\Lambda) + \varphi^*(dH)) + \rho^*D'$$

and thus

$$-E(mm_0(lL+\Lambda)+A) \le \rho^*(D+D') - E(mm_0(lL+\Lambda)+a(\Lambda-\varepsilon lD_1)),$$

if ρ satisfies also the condition **E** for $mm_0(lL + \Lambda) + a(\Lambda - \varepsilon lD_1)$. We can choose $m \gg 1$ so that $(V\&X, \Delta + \varepsilon D_1 + (1/mm_0)(D + D'))$ is log-terminal. Here

$$mm_0(lL + \Lambda) + a(\Lambda - \varepsilon lD_1) = m'(lL + \Lambda) + b'((l-1)L + \Lambda - \varepsilon D_1)$$

for $m' = mm_0 - a(l-1)$ and b' = al. Thus we can apply **3.3** to

Hence, the surjectivity follows.

Step 3. General case. Let b be a positive integer with $b\Lambda$ being a \mathbb{Z} -divisor. We may assume that $\pi_*\mathcal{O}_{X_i}(lL + \lfloor \Lambda \rfloor) \neq 0$ for any i. Then $\pi_*\mathcal{O}_{X_i}(m(lL + \Lambda)) \neq 0$ for any m > 0 divisible by b and for any i. Thus we infer that $m(lL + \Lambda) \in \mathbb{E}$ and $\mathcal{I}[m(lL + \Lambda)] = \mathcal{J}[m(lL + \Lambda)]$ by applying Step 2 to $m\Lambda$ instead of Λ . If m > 0 is divisible by $b, m\varepsilon \in \mathbb{Z}$, and Bs $|m(\Lambda - \varepsilon D_1)| = \emptyset$, and if ρ satisfies the conditions **E** for $m(l-1)(lL + \Lambda)$ and **E** for $ml((l-1)L + \Lambda)$, then

$$-E(m(l-1)(lL+\Lambda)) \le m\varepsilon\rho^*D_1 - E(ml((l-1)L+\Lambda)).$$

Note that $(V\&X, \Delta + \Delta^*)$ is log-terminal for $\Delta^* := (\varepsilon/(l-1))D_1$. Then we infer that $(lL + \Lambda, (l-1)L + \Lambda, m(l-1), ml, \Delta^*, 0)$ satisfies the condition of **3.2** as $(L, L', m, m^*, \Delta^*, A)$. Thus the surjectivity follows.

3.15. Lemma In the situation **3.11**, suppose that dim $V > \dim S$. Let L be a π -pseudo-effective divisor of V, C a divisor of V, Θ a prime divisor of V, and $X_i \subset X$ a component of X satisfying the following conditions:

- (1) $\pi(X_i)$ is a prime divisor of S;
- (2) $\kappa_{\sigma}(\rho^*L; W/Z) = \kappa(\rho^*L; W/Z) = 0;$
- (3) $\pi(\Theta) = S$ and $\varphi(\Theta')$ is a prime divisor of Z for the proper transform Θ' of Θ in W;

Then

(4)

$$\overline{\lim_{n \to \infty}} m^{-(\dim Z - \dim S)} \operatorname{rank} \mathcal{G}_i[mL + C + \Theta] > 0.$$

$$\overline{\lim}_{m \to \infty} m^{-(\dim Z - \dim S)} \operatorname{rank} \mathcal{G}_i[mL + C] > 0.$$

PROOF. By **V.2.26**, we may assume that $\rho^*L \sim \varphi^*\Xi + N$ for a divisor Ξ on Z and the effective divisor $N = N_{\sigma}(\rho^*L; W/Z)$. There exists a positive integer b such that

$$\pi_* \rho_* \mathcal{O}_W(m\varphi^* \Xi + bN + \rho^*(C + \Theta)) \to \pi_* \mathcal{O}_V(mL + C + \Theta)$$

is isomorphic for $m \ge 0$. Thus we may assume that W = V and $L = \varphi^* \Xi$ for a ϕ -pseudo-effective divisor Ξ . We consider the following commutative diagram of exact sequences:

 $\mathcal{O}_{X_i}(mL+C) \longrightarrow \mathcal{O}_{X_i}(mL+C+\Theta) \longrightarrow \mathcal{O}_{X_i\cap\Theta}(mL+C+\Theta).$

Let \mathcal{E}_m be the image of the homomorphism

$$\pi_*\mathcal{O}_V(mL+C+\Theta) \to \pi_*\mathcal{O}_\Theta(mL+C+\Theta).$$

Then this is a torsion-free sheaf of S and

$$\overline{\lim}_{m \to \infty} m^{-(\dim Z - \dim S)} \operatorname{rank} \mathcal{E}_m = 0,$$

since

$$\operatorname{rank} \mathcal{E}_m \leq \operatorname{rank} \pi_* \mathcal{O}_{\Theta}(mL + C + \Theta) = \operatorname{rank} \phi_* \left(\mathcal{O}_Z(m\Xi) \otimes \varphi_* \mathcal{O}_{\Theta}(C + \Theta) \right).$$

By the commutative diagram above, we infer that there is a surjection

$$\mathcal{E}_m \otimes \mathcal{O}_{\pi(X_i)} \twoheadrightarrow \mathcal{G}_i[mL + C + \Theta] / \mathcal{G}_i[mL + C].$$

Thus we have the estimate of $\mathcal{G}_i[mL+C]$ by (4).

3.16. Theorem Let L be a π -abundant divisor of V. Suppose that

- (1) $\pi(X_i)$ is a prime divisor of S for any X_i ,
- (2) $L (K_V + X + \Delta)$ is π -nef and π -abundant,
- (3) $\kappa(L|_{X_i}; X_i/\pi(X_i)) \ge \kappa(L; V/S)$ for any *i*.

Then the restriction homomorphism $\pi_*\mathcal{O}_V(lL) \to \pi_*\mathcal{O}_X(lL)$ is surjective for any $l \ge 1$.

PROOF. The result for the case: l = 1 is derived from **2.9**, since L satisfies the condition (VI-2). Thus we may assume l > 1. Furthermore, we may assume dim $V - \dim S > \kappa(L; V/S)$ by **3.10**. By **V.4.2**, L is geometrically π -abundant. Thus we have a commutative diagram (VI-8) such that $\kappa(L; V/S) = \dim Z - \dim S$ and $\kappa_{\sigma}(\rho^*L; W/Z) = \kappa(\rho^*L; W/Z) = 0$. We may assume W = V by the same argument as in *Step 1* of the proof of **3.14**. By applying **3.14** to $\Lambda = \varphi^*H$ for a ϕ -very ample divisor H on Z, we infer that

$$\pi_*\mathcal{O}_V(mL + \varphi^*H) \to \pi_*\mathcal{O}_X(mL + \varphi^*H)$$

is surjective for m > 0. In particular,

$$\mathcal{I}[mL] \subset \mathcal{I}[mL + \varphi^*H] = \mathcal{J}[mL + \varphi^*H].$$

The surjection and the condition (3) imply the estimate

$$\lim_{m \to \infty} m^{-(\dim Z - \dim S)} \operatorname{rank} \mathcal{G}_i[mL + \varphi^* H] > 0$$

for any i. By applying ${\bf 3.15}$ to $C=-\varphi^*H$ and a general member Θ of $|2\varphi^*H|,$ we have

$$\lim_{m \to \infty} m^{-(\dim Z - \dim S)} \operatorname{rank} \mathcal{G}_i[mL - \varphi^* H] > 0.$$

In particular, there exist a positive integer a and an effective divisor D such that $alL \sim D + \varphi^* H$ and $\operatorname{Supp} D$ contains no X_i . Thus $(m+a)lL \in \mathbb{E}$ for any m > 0. Moreover, if $\rho: W \to V$ is a bimeromorphic morphism satisfying the conditions \mathbf{E} for $mlL + \varphi^* H$ and \mathbf{E} for (m+a)lL, then

$$-E(mlL + \varphi^*H) \le \rho^*D - E((m+a)lL).$$

We choose m so large that $(V\&X, \Delta + (1/m)D)$ is log-terminal. Then the condition of **3.3** is satisfied for

$$(lL, (l-1)L, (l-1)/l, m, m+a, 0, \varphi^*H, D)$$
 as $(L, L', \beta, m, m', b, A, D).$

Hence the surjectivity follows.

§4. Degeneration of projective varieties

In this section, we consider a projective surjective morphism $\mathcal{X} \to S$ with connected fibers from a normal complex analytic variety onto a non-singular curve, and a point $0 \in S$. Let \mathcal{X}_s denote the scheme-theoretic fiber over $s \in S$ and let $\mathcal{X}_0 = \bigcup \Gamma_i$ be the irreducible decomposition of the special fiber. In this situation, after replacing S by an open neighborhood of 0, we have a bimeromorphic morphism $\nu: V \to \mathcal{X}$ from a non-singular variety such that

- (1) the proper transform X_i of Γ_i is non-singular,
- (2) X_i are disjoint to each other,
- (3) the composite $\pi: V \to \mathcal{X} \to S$ is projective.

Note that $\pi^{-1}(s)$ is a non-singular projective model of the normal projective variety \mathcal{X}_s for general $s \in S$. For a projective variety Γ with singularities, the Kodaira dimension $\kappa(\Gamma)$, the numerical Kodaira dimension $\kappa_{\sigma}(\Gamma)$, and the *m*-genus $P_m(\Gamma)$, respectively, are defined as the corresponding invariants for a non-singular model of Γ (cf. Chapter III, §4.a, and V.2.29).

4.1. Theorem The numerical Kodaira dimension κ_{σ} is lower semi-continuous in the sense that, for a general fiber \mathcal{X}_s ,

$$\kappa_{\sigma}(\mathcal{X}_s) \geq \max \kappa_{\sigma}(\Gamma_i).$$

PROOF. We may assume that K_{X_i} is pseudo-effective for some *i*. By setting $X := \sum X_i, L := K_V + X$, and $\Delta := 0$, we apply results in §2. Then *L* is π -pseudo-effective by **2.12**. Therefore, for any π -ample divisor *A* of *V* and for $m \gg 0$, the restriction homomorphism

$$\pi_*\mathcal{O}_V(mL+A)\otimes\mathbb{C}(0)\to\bigoplus_i\mathrm{H}^0(X_i,mK_{X_i}+A|_{X_i}),$$

is surjective by **3.7**. The direct image $\pi_* \mathcal{O}_V(mL + A)$ is a locally free sheaf of rank

$$\dim \mathrm{H}^{0}(V_{s}, mK_{V_{s}} + A|_{V_{s}}),$$

for a general fiber V_s of π . Thus the lower semi-continuity follows.

As a consequence, we have:

4.2. Theorem The numerical Kodaira dimension κ_{σ} is invariant under a smooth projective deformation.

In particular, if a smooth fiber is of general type, then any other smooth fiber is also of general type.

4.3. Theorem Let I be the set of indices i such that Γ_i is of general type. If $I \neq \emptyset$, then, for any m > 0,

$$P_m(\mathcal{X}_s) \ge \sum_{i \in I} P_m(\Gamma_i).$$

PROOF. We set $X := \sum_{i \in I} X_i$, $\Delta := 0$, and $L := K_V + X$. Now $L|_{X_i}$ is big for any *i*. Thus *L* is π -big by **4.1**. The restriction homomorphism

$$\pi_*\mathcal{O}_V(mL) \to \bigoplus_{i \in I} \mathrm{H}^0(X_i, mK_{X_i})$$

is surjective for any m > 0, by **3.10**. Hence the inequality follows since $P_m(\mathcal{X}_s) = \operatorname{rank} \pi_* \mathcal{O}_V(mL)$.

As a consequence of 4.2 and 4.3, we have:

4.4. Theorem The plurigenera P_m are invariant under a smooth projective deformation of an algebraic variety of general type.

Next, we shall treat the case in which the abundance $\kappa_{\sigma}(\mathcal{X}_s) = \kappa(\mathcal{X}_s)$ holds for a 'general' fiber \mathcal{X}_s .

4.5. Theorem Suppose that $\kappa(\mathcal{X}_s) = \kappa_{\sigma}(\mathcal{X}_s)$ for a 'general' fiber \mathcal{X}_s . Let I be the set of indices i with $\kappa_{\sigma}(\Gamma_i) = \kappa(\mathcal{X}_s)$. Then, for any m > 0,

$$P_m(\mathcal{X}_s) \ge \sum_{i \in I} P_m(\Gamma_i).$$

PROOF. We set $X := \sum_{i \in I} X_i$, $\Delta := 0$, and $L := K_V + X$, where L is π -abundant. Then the restriction homomorphism

$$\pi_* \mathcal{O}_V(mL) \to \bigoplus_{i \in I} \mathrm{H}^0(X_i, mK_{X_i})$$

is surjective for any m > 0, by **3.16**. Hence the inequality follows since $P_m(\mathcal{X}_s) = \operatorname{rank} \pi_* \mathcal{O}_V(mL)$.

4.6. Corollary The plurigenera P_m are invariant under a smooth projective fibration of algebraic varieties in which the abundance $\kappa_{\sigma}(\mathcal{X}_s) = \kappa(\mathcal{X}_s)$ holds for a 'general' fiber \mathcal{X}_s .

§5. Deformation of singularities

Let S be a normal variety, $\Theta \subset S$ a prime divisor, and $\pi: V \to S$ a projective bimeromorphic morphism from a non-singular variety such that the proper transform X of Θ is non-singular. Then, by **3.9**, the homomorphism

(VI-10)
$$\pi_*\mathcal{O}_V(m(K_V+X)) \to \pi_*\mathcal{O}_X(mK_X)$$

is surjective for any m > 0. Furthermore, if A is a π -ample divisor of V, then

(VI-11)
$$\pi_*\mathcal{O}_V(m(K_V+X)+A) \to \pi_*\mathcal{O}_X(mK_X+A)$$

is also surjective for m > 0 by **3.7**.

Let Δ be an effective \mathbb{R} -divisor of S whose support does not contain Θ . Suppose that

- (1) $K_S + \Theta + \Delta$ is \mathbb{R} -Cartier,
- $(2) \ \ _\Delta_=0,$
- (3) Θ is normal,
- (4) the union of $\pi^{-1}(\operatorname{Supp} \Delta \cup \Theta)$ and the π -exceptional locus is a normal crossing divisor.

For the \mathbb{R} -divisor

$$R := K_V + X - \pi^* (K_S + \Theta + \Delta),$$

we set $\Delta_{\Theta} := -(\pi|_X)_*(R|_X)$. Then we have

$$R|_X - K_X = -(\pi|_X)^*(K_\Theta + \Delta_\Theta)$$
 and $(K_S + \Theta + \Delta)|_\Theta \sim_{\mathbb{R}} K_\Theta + \Delta_\Theta.$

The following result is known as the inversion of adjunction (cf. [132], [74]):

5.1. Proposition If $(\Theta, \Delta_{\Theta})$ is log-terminal, then $(S\&\Theta, \Delta)$ is log-terminal along Θ (cf. II.4.8).

PROOF. It is enough to show $\lceil R \rceil \geq 0$ over a neighborhood of Θ . Since $R - X - K_V$ is π -nef, we have the surjection

$$\pi_*\mathcal{O}_V(\lceil R \rceil) \twoheadrightarrow \pi_*\mathcal{O}_X(\lceil R \rceil)$$

by the vanishing theorem **II.5.12**. By assumption, $\lceil R \rceil$ is a π -exceptional divisor and $\lceil R \mid_X \rceil$ is an effective $(\pi \mid_X)$ -exceptional divisor. Therefore, for the natural injection

$$\pi_*\mathcal{O}_V(\lceil R \rceil) \hookrightarrow \pi_*\mathcal{O}_V \simeq \mathcal{O}_S$$

the tensor product

$$\pi_*\mathcal{O}_V({}^{^{\mathsf{T}}}R^{^{\mathsf{T}}})\otimes\mathcal{O}_\Theta\to\mathcal{O}_\Theta$$

is surjective. Therefore, $\pi_* \mathcal{O}_V(\lceil R \rceil) \hookrightarrow \mathcal{O}_S$ is isomorphic along Θ . Thus $\lceil R \rceil \ge 0$ over Θ .

By using (VI-10) and (VI-11), we have the following inversions of adjunction.

5.2. Theorem Let S be a normal variety and let Θ be a prime divisor. Suppose that $K_S + \Theta$ is \mathbb{Q} -Cartier and Θ is Cartier in codimension two in S.

(1) If Θ has only canonical singularities, then $S\&\Theta$ is canonical along Θ .

(2) If Θ has only terminal singularities, then $S\&\Theta$ is terminal along Θ .

PROOF. (1) Let *m* be a positive integer such that $m(K_S + \Theta)$ is Cartier. By assumption,

$$\mathcal{O}_{\Theta}(m(K_S + \Theta)) \simeq \mathcal{O}_{\Theta}(mK_{\Theta}) \simeq \pi_* \mathcal{O}_X(mK_X).$$

Since (VI-10) is surjective, the homomorphism

$$\pi_*\mathcal{O}_V(m(K_V+X))\otimes\mathcal{O}_\Theta\to\mathcal{O}_S(m(K_S+\Theta))\otimes\mathcal{O}_\Theta$$

is also surjective. Hence $\pi_* \mathcal{O}_V(m(K_V + X)) \simeq \mathcal{O}_S(m(K_S + \Theta))$ along Θ . Therefore $S\&\Theta$ is canonical along Θ .

(2) For the bimeromorphic morphism $\pi \colon V \to S$, we may assume that there is an effective divisor E such that

- -E is π -ample,
- Supp E is the π -exceptional locus,
- $X \cap \text{Supp } E$ is also $(\pi|_X)$ -exceptional.

Thus the homomorphism

$$\pi_*\mathcal{O}_V(m(K_V+X)-E) \to \pi_*\mathcal{O}_X(mK_X-E|_X)$$

is of the form (VI-11) and hence is surjective for any m > 0. There is a positive integer m such that $m(K_S + \Theta)$ is Cartier, $\mathcal{O}_{\Theta}(m(K_S + \Theta)) \simeq \mathcal{O}_{\Theta}(mK_{\Theta})$, and $\pi_*\mathcal{O}_X(mK_X - E|_X) \simeq \mathcal{O}_{\Theta}(mK_{\Theta})$. Thus the homomorphism

$$\pi_*\mathcal{O}_V(m(K_V+X)-E)\otimes\mathcal{O}_\Theta\to\mathcal{O}_S(m(K_S+\Theta))\otimes\mathcal{O}_\Theta$$

is surjective. Hence $\pi_* \mathcal{O}_V(m(K_V + X) - E) \simeq \mathcal{O}_S(m(K_S + \Theta))$ along Θ . Therefore $S\&\Theta$ is terminal along Θ .

5.3. Corollary

VI. INVARIANCE OF PLURIGENERA

- Small deformations of canonical singularities are canonical ([60], cf. [61, 7-2-4]).
- (2) Small deformations of terminal singularities are terminal.

PROOF. In the situation above, suppose that Θ is a Cartier divisor of S and that Θ is a normal variety with only canonical singularities. The complement $S^{\circ} \subset S$ of Sing Θ is non-singular. Let $j: S^{\circ} \hookrightarrow S$ be the immersion and let m be a positive integer with mK_{Θ} being Cartier. We have a commutative diagram

The left vertical arrow is just (VI-10) and is surjective. Hence

$$\mathcal{O}_S(m(K_S + \Theta)) \otimes \mathcal{O}_\Theta \to \mathcal{O}_\Theta(mK_\Theta)$$

is surjective and moreover is an isomorphism, since Θ is Cartier (cf. **II.2.2**-(2)). Therefore, mK_S is Cartier along Θ . By **5.2**, S has only canonical singularities or only terminal singularities according as Θ has so.

5.4. Definition (Knöller [65]) Let (X, P) be a normal isolated singularity. For $m \in \mathbb{N}$ and for a resolution of the singularity $\mu: Y \to X$, the *m*-genus γ_m is defined by

$$\gamma_m(X, P) := \operatorname{length} \mathcal{O}_X(mK_X)_P / \mu_* \mathcal{O}_Y(mK_Y)_P.$$

This is independent of the choice of resolutions.

Ishii [44] has proved the following theorem under some assumption [44, 1.9]. However the assumption is satisfied since (VI-10) is surjective.

5.5. Theorem The m-genus γ_m is upper semi-continuous under a flat deformation in the following sense: let $f: S \to T$ be a flat morphism into an open neighborhood $T \subset \mathbb{C}$ of the origin 0 such that the central fiber $f^{-1}(0) = S_0$ is scheme-theoretically a normal variety with only one singular point P. Then there is an open neighborhood $U \subset S$ of P such that the inequality

$$\gamma_m(S_0, P) \ge \sum_{Q \in \operatorname{Sing} S_t \cap U} \gamma_m(S_t, Q)$$

holds for any other fiber $S_t = f^{-1}(t)$.

PROOF. We write $\Theta = S_0$ and use the same notation as before. Let C_m be the cokernel of the natural injection

$$\pi_*\mathcal{O}_V(m(K_V+X)) \to \mathcal{O}_S(m(K_S+\Theta)).$$

Then $\operatorname{Supp} \mathcal{C}_m$ is finite over a neighborhood of $0 \in T$. By replacing T, we may assume that $\operatorname{Supp} \mathcal{C}_m$ is finite over T and $f_*\mathcal{C}_m$ is a coherent \mathcal{O}_T -module. Then

$$\operatorname{rank}_{\mathcal{O}_T} f_* \mathcal{C}_m = \sum_{Q \in S_t} \gamma_m(S_t, Q) \quad \text{for } t \neq 0, \quad \text{and}$$

 $\operatorname{length}_{\mathcal{O}_{\Theta,P}}(\mathcal{C}_m \otimes \mathcal{O}_{\Theta})_P = \dim f_*\mathcal{C}_m \otimes \mathbb{C}(0) \geq \operatorname{rank}_{\mathcal{O}_T} f_*\mathcal{C}_m.$

In the commutative diagram

the left vertical arrow of is surjective. The right vertical arrow is injective, since Θ is normal and Cartier. Therefore, we have an injection

$$\mathcal{C}_m \otimes \mathcal{O}_\Theta \hookrightarrow \mathcal{O}_\Theta(mK_\Theta)/\pi_*\mathcal{O}_X(mK_X),$$

which induces the upper semi-continuity of γ_m .