CHAPTER VI

Invariance of plurigenera

§1. Background

A deformation (or a smooth deformation) of a compact complex manifold X is by definition a proper smooth surjective morphism $\pi: \mathcal{X} \rightarrow S$ of complex analytic varieties together with a point $s \in S$ such that the fiber $\mathcal{X}_{s}=\pi^{-1}(s)$ is isomorphic to X. The deformation is called projective if π is a projective morphism along X. A compact complex manifold is said to be in the class \mathcal{C} if it is bimeromorphically equivalent to a compact Kähler manifold ($[\mathbf{1 8}],[\mathbf{1 4 3}])$. We are interested in the following:
1.1. Conjecture The m-genus $P_{m}(X)=h^{0}\left(X, m K_{X}\right)$ is invariant under a deformation of a compact complex manifold in the class \mathcal{C}.

The deformation invariance of the plurigenera of compact complex surfaces was proved by Iitaka [42] by the classification theory of surfaces. Nakamura [94] gave a counterexample to the invariance in the case where X is not in the class \mathcal{C}. The invariance of the geometric genus $P_{1}(X)=p_{g}(X)$ for X in the class \mathcal{C} is derived from the Hodge decomposition $\mathrm{H}^{n}(X, \mathbb{C})=\bigoplus_{p+q=n} \mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$ and the upper semi-continuity of ${ }^{q}\left(X, \Omega_{X}^{p}\right)$. Levine [75] proved 1.1 for $m>1$ in the case where $m K_{X}$ is linearly equivalent to a reduced normal crossing divisor. Levine applied the Hodge theory to the cyclic covering branched along the divisor in order to show the existence of an infinitesimal lifting of a general section of $\mathrm{H}^{0}\left(X, m K_{X}\right)$.

A degeneration of compact complex manifolds is by definition a proper surjective morphism $\pi: \mathcal{X} \rightarrow S$ with connected fibers from a non-singular complex analytic variety into a non-singular curve that is smooth outside a given point $0 \in S$. We denote by \mathcal{X}_{t} the scheme-theoretic fiber $\pi^{-1}(t)$. We say that a smooth fiber $\mathcal{X}_{t}(t \neq 0)$ degenerates into the special fiber \mathcal{X}_{0}. The degeneration is called projective if π is so. Let $\mathcal{X}_{0}=\bigcup \Gamma_{i}$ be the irreducible decomposition of the special fiber. In the study of degeneration of algebraic surfaces (cf. [15]), the lower semicontinuity of the Kodaira dimension: $\kappa\left(\mathcal{X}_{t}\right) \geq \max \kappa\left(\Gamma_{i}\right)$ is expected to be true. However, there are counterexamples ([108], $[\mathbf{1 0 9}],[\mathbf{1 4 0}],[\mathbf{1 9}])$ in the case where some Γ_{i} is not in the class \mathcal{C}. The following stronger conjecture is posed in $[\mathbf{9 8}]$:
1.2. Conjecture If any irreducible component Γ_{i} of the special fiber \mathcal{X}_{0} belongs to the class \mathcal{C}, then

$$
P_{m}\left(\mathcal{X}_{t}\right) \geq \sum P_{m}\left(\Gamma_{i}\right)
$$

for a smooth fiber \mathcal{X}_{t}. In particular, $\kappa\left(\mathcal{X}_{t}\right) \geq \max \kappa\left(\Gamma_{i}\right)$.
The author considered 1.2 from the viewpoint of the relative minimal model theory in [96], $\mathbf{9 8}$. For a projective degeneration, 1.2 is reduced to the flip and the abundance conjectures. In the case of a projective deformation of a threefold, the existence of related flips is proved in $[\mathbf{7 3}]$ and hence the invariance of plurigenera follows from the abundance theorem [84], [59] for threefolds. Siu [130] has succeeded in proving $\mathbf{1 . 1}$ in the case of a projective deformation in which any fiber \mathcal{X}_{t} is of general type: $\kappa\left(\mathcal{X}_{t}\right)=\operatorname{dim} \mathcal{X}_{t}$. Siu used multiplier ideals together with delicate arguments of L^{2} properties which avoid the difficulty in showing the existence of flips. Even though the argument contains analytic methods, the essence is not so transcendental. Kawamata [60] gave an algebraic interpretation of Siu's argument and showed that small deformations of canonical singularities are canonical, as an application. The author's preprint [105] gave an algebraic modification of Siu's argument which is slightly different from that by Kawamata, and obtained the following stronger results:

- The numerical Kodaira dimension κ_{σ} is lower semi-continuous under a projective degeneration and is invariant under a projective deformation. In particular, a non-singular projective variety deformed to a variety of general type under a projective deformation is also of general type;
- The invariance of plurigenera P_{m} holds for a projective deformation in which a 'general' fiber F satisfies the abundance: $\kappa(F)=\kappa_{\sigma}(F)$. The lower semi-continuity of P_{m} holds for a projective degeneration satisfying the same assumption of abundance, for infinitely many m.
- Small deformations of terminal singularities are terminal.

In this chapter, we shall generalize slightly the results of [105]. As in the preprint [105], we need only the theory of resolution of singularities and the flattening theorem by Hironaka ([39], [40], [41]), the theory of linear systems, and the analytic version II, 5.12 of Kawamata-Viehweg's vanishing theorem II. 5.9 as well as the analytic version $\mathbf{V}, 3.13$ of Kollár's injectivity theorem $\mathbf{V}, \mathbf{3 . 7}$.

§2. Special ideals

§2.a. Setting.

2.1. Definition Let $\pi: X \rightarrow S$ be a projective surjective morphism from a nonsingular space and let $X=\bigsqcup X_{i}$ be the decomposition into connected components.
(1) A divisor L of X is called π-effective if $\pi_{*} \mathcal{O}_{X_{i}}(L) \neq 0$ for every i.
(2) For a π-effective divisor L, we denote by $|L|_{\text {fix }}$ the maximum effective divisor D with the property

$$
\pi_{*} \mathcal{O}_{X}(L-D)=\pi_{*} \mathcal{O}_{X}(L)
$$

It is so-called the relative fixed divisor of L over S.
2.2. Situation Let $\pi: V \rightarrow S$ be a projective surjective morphism from a nonsingular variety with connected fibers, $X=\bigsqcup X_{i}$ a disjoint union of non-singular prime divisors X_{i} of V, and Δ an effective \mathbb{R}-divisor of V such that
(1) $X_{i} \not \subset \operatorname{Supp} \Delta$ for any i,
(2) $X \cup \operatorname{Supp} \Delta$ is a normal crossing divisor,
(3) $\ulcorner\Delta\urcorner$ is reduced or $\Delta=0$, and
(4) $X \cap \operatorname{Supp} \Delta_{\lrcorner}=\emptyset$.

Let Δ_{X} be the effective \mathbb{R}-divisor $\left.\Delta\right|_{X}$. Then $\operatorname{Supp} \Delta_{X}$ is a normal crossing divisor, $\Delta_{X\lrcorner}=0$, and

$$
\left.\left(K_{V}+X+\Delta\right)\right|_{X}=K_{X}+\Delta_{X}
$$

Moreover, we fix a $\left(\left.\pi\right|_{X}\right)$-ample divisor A_{0} of X such that $A_{0}-(\operatorname{dim} X) H_{0}$ is ($\left.\pi\right|_{X}$)-ample for a ($\left.\pi\right|_{X}$)-very ample divisor H_{0}.
In $\S \S 2$ and 3, we fix these $\pi, V, S, \Delta, X=\sum X_{i}$, and Δ_{X}. We study analytic spaces projective over the fixed space S. However, we change S freely by its open subsets, because most statements to prove are local on S. In particular, the number of connected components of X is assumed to be finite.
2.3. Definition $\left(\mathbb{E}_{V}, \mathbb{E}_{X}, \mathbb{E}, \mathbb{E}_{\text {big }}\right.$ and $\left.\mathcal{G}[L]\right)$
(1) Let \mathbb{E}_{V} be the set of the linear equivalence classes of π-effective divisors of V.
(2) Let \mathbb{E}_{X} be the set of the linear equivalence classes of $\left(\left.\pi\right|_{X}\right)$-effective divisors of X.
(3) For a divisor L of V and a component X_{i} of X, we denote by $\mathcal{G}_{i}[L]$ the image of the homomorphism

$$
\pi_{*} \mathcal{O}_{V}(L) \rightarrow \pi_{*} \mathcal{O}_{X_{i}}(L)
$$

We also denote by $\mathcal{G}[L] \subset \bigoplus \mathcal{G}_{i}[L]$ the image of

$$
\pi_{*} \mathcal{O}_{V}(L) \rightarrow \pi_{*} \mathcal{O}_{X}(L)
$$

(4) Let \mathbb{E} be the set of the linear equivalence classes of divisors L of V with $\mathcal{G}_{i}[L] \neq 0$ for any i.
(5) Let $\mathbb{E}_{\text {big }}$ be the subset of \mathbb{E} consisting of divisors L such that the meromorphic mappings

$$
V \cdots \rightarrow \mathbb{P}_{S}\left(\pi_{*} \mathcal{O}_{V}(L)\right) \quad \text { and } \quad X \cdots \rightarrow \mathbb{P}_{S}(\mathcal{G}[L])
$$

are both bimeromorphic mappings into their own images.
2.4. Definition (Conditions E,G, and B) Let L be a divisor of V and let M be a divisor of X.
(1) Let $\rho: W \rightarrow V$ be a bimeromorphic morphism from a non-singular variety and let D be a $(\pi \circ \rho)$-effective divisor of W. We say that W satisfies the condition \mathbf{E} for D if the following two conditions are satisfied:

- The union of the ρ-exceptional locus, the proper transform Y of X, and Supp $|D|_{\text {fix }}$ is a normal crossing divisor;
- $D-|D|_{\text {fix }}$ is $(\pi \circ \rho)$-free.

If $L \in \mathbb{E}_{V}$ and if W satisfies the condition \mathbf{E} for $\rho^{*} L$, then we say that ρ satisfies the condition \mathbf{E} for L. In this case, we write $E(L):=\left|\rho^{*} L\right|_{\text {fix }}$.
(2) Suppose that $M \in \mathbb{E}_{X}$. A bimeromorphic morphism $f: Y \rightarrow X$ from a non-singular space is said to satisfy the condition \mathbf{G} for M if, for the divisor $G(M):=\left|f^{*} M\right|_{\text {fix }}$, the following two conditions are satisfied:

- The union of the f-exceptional locus and $\operatorname{Supp} G(M)$ is a normal crossing divisor;
- $f^{*} M-G(M)$ is $\left(\left(\left.\pi\right|_{X}\right) \circ f\right)$-free.
(3) Suppose that $L \in \mathbb{E}$. A bimeromorphic morphism $f: Y \rightarrow X$ from a non-singular space is said to satisfy the condition \mathbf{B} for L if there is an effective divisor $B(L)$ of Y such that
- the union of the f-exceptional locus and $\operatorname{Supp} B(L)$ is a normal crossing divisor, and
- $\mathcal{O}_{Y}\left(f^{*} L-B(L)\right)$ is the image of the homomorphism

$$
f^{*} \pi^{*} \mathcal{G}[L] \rightarrow \mathcal{O}_{Y}\left(f^{*} L\right)
$$

Convention

(1) For a bimeromorphic morphism $\rho: W \rightarrow V$ satisfying the condition \mathbf{E} for a divisor $L \in \mathbb{E}_{V}$, we denote the proper transform of X by Y and the restriction of ρ by $f: Y \rightarrow X$.
(2) We shall write the total transform $\mu^{*} E(L)$ of $E(L)$ by the same symbol $E(L)$ for a bimeromorphic morphism $\mu: W^{\prime} \rightarrow W$ such that $\rho \circ \mu$ also satisfies the condition \mathbf{E} for L. Also for $G(M)$ and $B(L)$, we shall also write the total transform by the same symbol.

If $\rho: W \rightarrow V$ is a bimeromorphic morphism satisfying the condition \mathbf{E} for L, then $f: Y \rightarrow X$ satisfies the condition \mathbf{B} for L. Here $B(L)=\left.E(L)\right|_{Y}$. Conversely, for any bimeromorphic morphism $f^{\prime}: Y^{\prime} \rightarrow X$ satisfying the condition \mathbf{B} for L, there exist a bimeromorphic morphism $\rho: W \rightarrow V$ satisfying the condition \mathbf{E} for L and a bimeromorphic morphism $\lambda: Y \rightarrow Y^{\prime}$. Here we have $\lambda^{*} B(L)=B(L)=$ $\left.E(L)\right|_{Y}$.
2.5. Definition (Ideals $\mathcal{I}[M]$ and $\mathcal{J}[L])$ Let M be a divisor of X and let L be a divisor of V.
(1) $\mathcal{I}[M]$ is defined to be the ideal sheaf of X such that $\mathcal{I}[M] \mathcal{O}_{X}(M)$ is the image of the natural homomorphism

$$
\pi^{*} \pi_{*} \mathcal{O}_{X}(M) \rightarrow \mathcal{O}_{X}(M)
$$

(2) $\mathcal{J}[L]$ is defined to be the ideal sheaf of X such that $\mathcal{J}[L] \mathcal{O}_{X}(L)$ is the image of the natural homomorphism

$$
\pi^{*} \mathcal{G}[L] \rightarrow \mathcal{O}_{X}(L)
$$

For any $i, \pi_{*} \mathcal{O}_{X_{i}}(M)=0$ if and only if $\left.\mathcal{I}[M]\right|_{X_{i}}=0$. If $M \in \mathbb{E}_{X}$ and if a bimeromorphic morphism $f: Y \rightarrow X$ satisfies the condition \mathbf{G} for M, then

$$
f^{*} \mathcal{I}[M] /(\text { tor }) \simeq \mathcal{O}_{Y}(-G(M))
$$

The sheaf $\mathcal{J}[L] \mathcal{O}_{X}(L)$ is also the image of the composite

$$
\pi^{*} \pi_{*} \mathcal{O}_{V}(L) \rightarrow \mathcal{O}_{V}(L) \rightarrow \mathcal{O}_{X}(L)
$$

For any $i, \mathcal{G}_{i}[L]=0$ if and only if $\left.\mathcal{J}[L]\right|_{X_{i}}=0$. Suppose that $L \in \mathbb{E}$. Then

$$
f^{*} \mathcal{J}[L] /(\text { tor }) \simeq \mathcal{O}_{Y}(-B(L))
$$

for a bimeromorphic morphism $f: Y \rightarrow X$ satisfying the condition \mathbf{B} for L.
2.6. Definition (Ramification divisors R_{W} and R_{Y}) Let $\rho: W \rightarrow V$ be a bimeromorphic morphism from a non-singular variety such that the proper transform Y of X is non-singular. In this situation, we define an \mathbb{R}-divisor:

$$
R_{W}:=K_{W}+Y-\rho^{*}\left(K_{V}+X+\Delta\right)
$$

Let $f: Y \rightarrow X$ be a bimeromorphic morphism from a non-singular space. We define

$$
R_{Y}:=K_{Y}-f^{*}\left(K_{X}+\Delta_{X}\right) .
$$

Note that the $\left\ulcorner R_{W}\right\urcorner$ is effective on a neighborhood of $\rho^{-1}(X)$ by II, 4.4. A prime divisor Γ of W with mult ${ }_{\Gamma} R_{W}>0$ is ρ-exceptional. We have $R_{Y}=\left.R_{W}\right|_{Y}$ for the proper transform Y of X in W.
2.7. Definition (Ideals $\mathcal{Q}[L, m], \mathcal{I}[M, m]$, and $\mathcal{J}[L, m]$) Let L be a \mathbb{Q}-divisor of V, M a \mathbb{Q}-divisor of X, and m a positive integer with $m L \in \mathbb{E}$ and $m M \in \mathbb{E}_{X}$. Let $\rho: W \rightarrow V$ be a bimeromorphic morphism satisfying the condition \mathbf{E} for $m L$ and let $f: Y \rightarrow X$ be a bimeromorphic morphism satisfying the conditions \mathbf{G} for $m M$ and \mathbf{B} for $m L$. We define the following three ideal sheaves:

$$
\begin{aligned}
\mathcal{Q}[L, m] & :=\rho_{*} \mathcal{O}_{W}\left(\left\ulcorner R_{W}-\frac{1}{m} E(m L)\right\urcorner\right), \\
\mathcal{I}[M, m] & :=f_{*} \mathcal{O}_{Y}\left(\left\ulcorner R_{Y}-\frac{1}{m} G(m M)\right\urcorner\right), \\
\mathcal{J}[L, m] & :=f_{*} \mathcal{O}_{Y}\left(\left\ulcorner R_{Y}-\frac{1}{m} B(m L)\right\urcorner\right) .
\end{aligned}
$$

2.8. Lemma

(1) The ideal sheaf $\mathcal{Q}[L, m]$ is independent of the choice of bimeromorphic morphisms ρ satisfying the condition \mathbf{E} for $m L$.
(2) The ideal sheaf $\mathcal{I}[M, m]$ is independent of the choice of bimeromorphic morphisms f satisfying the condition \mathbf{G} for $m M$. There is an inclusion $\mathcal{I}[m M] \subset \mathcal{I}[m M, 1]$.
(3) The ideal sheaf $\mathcal{J}[L, m]$ is independent of the choice of bimeromorphic morphisms f satisfying the condition \mathbf{B} for $m L$. There is an inclusion $\mathcal{J}[m L] \subset \mathcal{J}[m L, 1]$.

Proof. (1) Let $\mu: W^{\prime} \rightarrow W$ be a bimeromorphic morphism such that $\rho \circ \mu$ satisfies the condition \mathbf{E} for $m L$ and let Y^{\prime} be the proper transform of Y. Then

$$
\begin{aligned}
K_{W}+Y & =\rho^{*}\left(K_{V}+X+\Delta\right)+R_{W} \\
K_{W^{\prime}}+Y^{\prime} & =\rho^{*}\left(K_{V}+X+\Delta\right)+R_{W^{\prime}}
\end{aligned}
$$

Since any component of Y is not contained in $\operatorname{Supp} E(m L)$, we have

$$
K_{W^{\prime}}+Y^{\prime}+\left\ulcorner\mu^{*}\left(R_{W}-\frac{1}{m} E(m L)\right)\right\urcorner \geq \mu^{*}\left(K_{W}+Y+\left\ulcorner R_{W}-\frac{1}{m} E(m L)^{\urcorner}\right)\right.
$$

by II.4.4. Since

$$
R_{W^{\prime}}-\frac{1}{m} E(m L)=K_{W^{\prime}}+Y^{\prime}-\mu^{*}\left(K_{W}+Y\right)+\mu^{*}\left(R_{W}-\frac{1}{m} E(m L)\right)
$$

we have

$$
\begin{aligned}
\left\ulcorner R_{W^{\prime}}-\frac{1}{m} E(m L)\right\urcorner & =K_{W^{\prime}}+Y^{\prime}-\mu^{*}\left(K_{W}+Y\right)+\left\ulcorner\mu^{*}\left(R_{W}-\frac{1}{m} E(m L)\right)\right\urcorner \\
& \geq \mu^{*}\left(\left\ulcorner R_{W}-\frac{1}{m} E(m L)\right\urcorner\right) .
\end{aligned}
$$

Hence

$$
\mu_{*} \mathcal{O}_{W^{\prime}}\left(\left\ulcorner R_{W^{\prime}}-\frac{1}{m} E(m L)\right\urcorner\right) \simeq \mathcal{O}_{W}\left(\left\ulcorner R_{W}-\frac{1}{m} E(m L)^{\urcorner}\right) .\right.
$$

Thus both $\mathcal{Q}[L, m]$ are identical.
(2) and (3) We can show the independence of choices by the same argument as in (1) by using II, 4.3. The inclusions $\mathcal{I}[m M] \subset \mathcal{I}[m M, 1]$ and $\mathcal{J}[m L] \subset \mathcal{J}[m L, 1]$ are derived from the property that $\left\ulcorner R_{Y}\right\urcorner$ is effective.

Convention

- For divisors L of V and M of X, we write $\mathcal{I}\left[\left.L\right|_{X}+M\right]$ by $\mathcal{I}[L+M]$, for short. In the case $\left.L\right|_{X}+M \in \mathbb{E}_{X}$, we write $G\left(\left.L\right|_{X}+M\right)$ by $G(L+M)$.
- If $m\left(\left.L\right|_{X}+M\right) \in \mathbb{E}_{X}$ for \mathbb{Q}-divisors L of V and M of X, we write $\mathcal{I}\left[\left.L\right|_{X}+\right.$ $M, m]$ by $\mathcal{I}[L+M, m]$.

For a bimeromorphic morphism $\rho: W \rightarrow V$ satisfying the condition \mathbf{E} for $m L$ and for the proper transform Y of X, we have

$$
\left.\left\ulcorner R_{W}-\frac{1}{m} E(m L)\right\urcorner\right|_{Y}=\left\ulcorner_{R_{Y}}-\frac{1}{m} B(m L)\right\urcorner .
$$

Thus

$$
\mathcal{J}[L, m] \simeq f_{*} \mathcal{O}_{Y}\left(\left\ulcorner R_{W}-\frac{1}{m} E(m L)\right\urcorner\right) .
$$

§2.b. Inclusions of ideals. We consider the following conditions for a \mathbb{Q} divisor L of V :
(VI-1) $L-\left(K_{V}+X+\Delta\right)$ is π-nef and L is π-pseudo-effective;
(VI-2) $L-\left(K_{V}+X+\Delta\right)$ is π-nef and π-abundant, and $L-\left(K_{V}+X+\Delta\right) \succcurlyeq_{\pi} X$ (cf. $\mathbf{V}, \mathbf{2 . 2 4})$.
Note that if $L-\left(K_{V}+X+\Delta\right)$ is π-nef and π-abundant and if $\pi(X) \neq S$, then L satisfies (VI-2). If $L-\left(K_{V}+X+\Delta\right)$ is π-nef and π-big, then L satisfies (VI-2).

Let L^{\prime} be another \mathbb{Q}-divisor of V. We consider the following conditions for the pair $\left(L, L^{\prime}\right)$:
(VI-3) $L-L^{\prime}-\left(K_{V}+X+\Delta\right)$ is π-nef and L^{\prime} is π-big;
(VI-4) $L-L^{\prime}-\left(K_{V}+X+\Delta\right)$ is π-nef and π-abundant, and $L^{\prime} \succeq_{\pi} X(\mathrm{cf}. \mathbf{V}, \mathbf{2 . 2 4})$;
(VI-5) $L-L^{\prime}$ satisfies (VI-2).
2.9. Proposition Let L^{\prime} be a \mathbb{Q}-divisor, L a \mathbb{Z}-divisor of V, and let n be a positive integer with $n L^{\prime} \in \mathbb{E}$ such that $\left(L, L^{\prime}\right)$ satisfies one of the three conditions (VI-3), (VI-4), and (VI-5). Then

$$
\pi_{*}\left(\mathcal{J}\left[L^{\prime}, n\right] \mathcal{O}_{X}(L)\right) \subset \mathcal{G}[L] \subset \pi_{*} \mathcal{O}_{X}(L)
$$

Suppose in addition that there exist a \mathbb{Q}-divisor M of X and a positive integer m satisfying the following three conditions:
(1) $m M \in \mathbb{E}_{X}$;
(2) $\mathcal{I}[M, m] \subset \mathcal{J}\left[L^{\prime}, n\right]$;
(3) $\left.L\right|_{X}-M-\left(K_{X}+\Delta_{X}\right)-A_{0}$ is $\left(\left.\pi\right|_{X}\right)$-nef.

Then $\mathcal{I}[M, m] \mathcal{O}_{X}(L)$ is $\left(\left.\pi\right|_{X}\right)$-generated, $L \in \mathbb{E}$, and $\mathcal{I}[M, m] \subset \mathcal{J}[L]$.
Proof. We note that $\mathcal{J}\left[L^{\prime}, n\right] \subset \mathcal{J}\left[L^{\prime}, n k\right]$ for $k>0$. Therefore, in the case (VI-3), we may assume that the meromorphic mapping

$$
V \cdots \rightarrow \mathbb{P}_{S}\left(\pi_{*} \mathcal{O}_{V}\left(n L^{\prime}\right)\right)
$$

is a bimeromorphic mapping into its image. Let $\rho: W \rightarrow V$ be a bimeromorphic morphism satisfying the condition \mathbf{E} for $n L^{\prime}$. In the case (VI-4), we may assume that $n \rho^{*} L^{\prime}-E\left(n L^{\prime}\right) \succeq_{\pi} Y$. In any case, the \mathbb{R}-divisor

$$
\begin{aligned}
R_{W}-\frac{1}{n} E\left(n L^{\prime}\right)+\rho^{*} L- & K_{W}-Y \\
& =\rho^{*}\left(L-L^{\prime}-\left(K_{V}+X+\Delta\right)\right)+\frac{1}{n}\left(n \rho^{*} L^{\prime}-E\left(n L^{\prime}\right)\right)
\end{aligned}
$$

is $(\pi \circ \rho)$-nef. In the case (VI-3), the \mathbb{R}-divisor is also $(\pi \circ \rho)$-big and hence

$$
\mathrm{R}^{p}(\pi \circ \rho)_{*} \mathcal{O}_{W}\left(\left\ulcorner_{W}-\frac{1}{n} E\left(n L^{\prime}\right)\right\urcorner+\rho^{*} L-Y\right)=0
$$

for $p>0$ by $\mathbf{I I}, 5.12$. In the cases (VI-4) and (VI-5), the \mathbb{R}-divisor is $(\pi \circ \rho)$ abundant and hence

$$
\begin{aligned}
\mathrm{R}^{p}(\pi \circ \rho)_{*} \mathcal{O}_{W}\left(\left\ulcorner R_{W}-\frac{1}{n} E\left(n L^{\prime}\right)\right\urcorner\right. & \left.+\rho^{*} L-Y\right) \\
& \longrightarrow \mathrm{R}^{p}(\pi \circ \rho)_{*} \mathcal{O}_{W}\left(\left\ulcorner R_{W}-\frac{1}{n} E\left(n L^{\prime}\right)^{\urcorner}+\rho^{*} L\right)\right.
\end{aligned}
$$

is injective for any p by $\overline{\mathbf{V}, \mathbf{3 . 1 3} \text {. Therefore, the homomorphism }}$

$$
\pi_{*}\left(\mathcal{Q}\left[L^{\prime}, n\right] \mathcal{O}_{V}(L)\right) \rightarrow \pi_{*}\left(\mathcal{J}\left[L^{\prime}, n\right] \mathcal{O}_{X}(L)\right)
$$

is surjective in any case. Thus $\pi_{*}\left(\mathcal{J}\left[L^{\prime}, n\right] \mathcal{O}_{X}(L)\right)$ is contained in $\mathcal{G}[L]$.
Let $f: Y \rightarrow X$ be a bimeromorphic morphism satisfying the condition \mathbf{G} for $m M$ and let us consider the \mathbb{R}-divisor

$$
C:=R_{Y}-\frac{1}{m} G(m M)+f^{*}\left(\left.L\right|_{X}\right)
$$

Then

$$
C-K_{Y}-f^{*} A_{0}=\frac{1}{m}\left(m f^{*} M-G(m M)\right)+f^{*}\left(\left.L\right|_{X}-M-\left(K_{X}+\Delta_{X}\right)-A_{0}\right)
$$

is $(\pi \circ f)$-nef. Therefore

$$
f_{*} \mathcal{O}_{Y}\left(\left\ulcorner C^{\top}\right)=\mathcal{I}[M, m] \mathcal{O}_{X}(L)\right.
$$

is $\left(\left.\pi\right|_{X}\right)$-generated by $\bar{V}, \mathbf{3 . 1 9}$ (cf. 2.2, II,5.12). Since we have the inclusion

$$
\pi_{*}\left(\mathcal{J}\left[L^{\prime}, n\right] \mathcal{O}_{X}(L)\right)=\bigoplus \pi_{*}\left(\mathcal{J}\left[L^{\prime}, n\right] \mathcal{O}_{X_{i}}(L)\right) \subset \mathcal{G}[L] \subset \bigoplus \mathcal{G}_{i}[L]
$$

$\mathcal{G}_{i}[L] \neq 0$ for any i and $\mathcal{I}[M, m] \subset \mathcal{J}[L]$.
Remark In the proof above, the sheaf $\mathcal{J}\left[L^{\prime}, n\right] \mathcal{O}_{X}(L)$ for $n>0$ with $n L^{\prime} \in \mathbb{E}$ is an ω-sheaf in a relative sense of $\mathbf{V} \sqrt{3.8}$.
2.10. Lemma Let L and M be \mathbb{Q}-divisors of X. Assume that
(1) M is $\left(\left.\pi\right|_{X}\right)$-semi-ample,
(2) $a(\alpha L+M) \in \mathbb{E}_{X}$ for some $\alpha \in \mathbb{Q}_{>0}$ and $a \in \mathbb{N}$.

Then, for any $\beta \in \mathbb{Q}$ with $0<\beta<\alpha$, there is a positive integer b such that

$$
b(\beta L+M) \in \mathbb{E}_{X} \quad \text { and } \quad \mathcal{I}[\alpha L+M, a] \subset \mathcal{I}[\beta L+M, b] .
$$

Proof. Let n be a positive integer with $n a \alpha \in \mathbb{N}$ and $b:=n a \alpha \beta^{-1} \in \mathbb{N}$ such that

$$
(b-a n) M=n a\left(\alpha \beta^{-1}-1\right) M
$$

is a π-free \mathbb{Z}-divisor. Then $b(\beta L+M) \in \mathbb{E}_{X}$, since

$$
b(\beta L+M)=a n(\alpha L+M)+(b-a n) M
$$

Let $f: Y \rightarrow X$ be a bimeromorphic morphism satisfying the conditions \mathbf{G} for $a(\alpha L+M), \mathbf{G}$ for $a n(\alpha L+M)$, and \mathbf{G} for $b(\beta L+M)$. Then we have inequalities $\frac{1}{a} G(a(\alpha L+M)) \geq \frac{1}{a n} G(a n \alpha L+a n M) \geq \frac{1}{a n} G(b \beta L+b M) \geq \frac{1}{b} G(b(\beta L+M))$.

Therefore $\mathcal{I}[\alpha L+M, a] \subset \mathcal{I}[\beta L+M, b]$.
2.11. Proposition Let A be a π-ample divisor of V and let M be $a\left(\left.\pi\right|_{X}\right)$ -semi-ample divisor of X such that

$$
\left.A\right|_{X}-\left(K_{X}+\Delta_{X}\right)-A_{0}-M
$$

is $\left(\left.\pi\right|_{X}\right)$-nef. Let L be a divisor of V satisfying either (VI-1) or (VI-2).
(1) If the condition

$$
C\langle l, m\rangle: \quad m\left(\left.l L\right|_{X}+M\right) \in \mathbb{E}_{X}
$$

is satisfied for positive integers l and m, then $\mathcal{I}[l L+M, m] \mathcal{O}_{X}(l L+A)$ is $\left(\left.\pi\right|_{X}\right)$-generated, $l L+A \in \mathbb{E}$, and $\mathcal{I}[l L+M, m] \subset \mathcal{J}[l L+A]$.
(2) For any $l \in \mathbb{N}$,

$$
\mathcal{I}[l L+M] \subset \mathcal{J}[l L+A] .
$$

Proof. (1) We shall prove by induction on l. Assume that $C\langle 1, m\rangle$ is satisfied for some $m \in \mathbb{N}$. We have $\mathcal{J}[A, k]=\mathcal{O}_{X}$ for some $k \in \mathbb{N}$. Hence

$$
\mathcal{I}[L+M, m] \subset \mathcal{J}[A, k] .
$$

Then $(L+A, A)$ satisfies (VI-3) or (VI-5), and ($L+A, A,\left.L\right|_{X}+M, m, k$) satisfies the condition of 2.9 as $\left(L, L^{\prime}, M, m, n\right)$. Thus $\mathcal{I}[L+M, m] \mathcal{O}_{X}(L+A)$ is $\left(\left.\pi\right|_{X}\right)$ generated, $L+A \in \mathbb{E}$, and $\mathcal{I}[L+M, m] \subset \mathcal{J}[L+A]$. Thus (1) is true for $l=1$.

Next we consider the case $l>1$ and assume that (1) is true for $l-1$. If $C\langle l, m\rangle$ is satisfied for some m, then there is a positive integer m^{\prime} such that

$$
m^{\prime}\left(\left.(l-1) L\right|_{X}+M\right) \in \mathbb{E}_{X} \quad \text { and } \quad \mathcal{I}[l L+M, m] \subset \mathcal{I}\left[(l-1) L+M, m^{\prime}\right]
$$

by 2.10. By induction,

$$
(l-1) L+A \in \mathbb{E} \quad \text { and } \quad \mathcal{I}\left[(l-1) L+M, m^{\prime}\right] \subset \mathcal{J}[(l-1) L+A] .
$$

Therefore, we have the inclusion

$$
\mathcal{I}[l L+M, m] \subset \mathcal{J}[(l-1) L+A] \subset \mathcal{J}[(l-1) L+A, 1] .
$$

Here $(l L+A,(l-1) L+A)$ satisfies (VI-3) or (VI-5), since $(l-1) L+A$ is π-big in the case (VI-1). Furthermore, $\left(l L+A,(l-1) L+A,\left.l L\right|_{X}+M, m, 1\right)$ satisfies the condition of 2.9 as $\left(L, L^{\prime}, M, m, n\right)$. Therefore, $\mathcal{I}[l L+M, m] \mathcal{O}_{X}(l L+A)$ is $\left(\left.\pi\right|_{X}\right)$-generated, $l L+A \in \mathbb{E}$, and $\mathcal{I}[l L+M, m] \subset \mathcal{J}[l L+A]$. Thus we have proved by induction.
(2) For a connected component X_{i} of X, we set $\Delta^{(i)}=\Delta+\left(X-X_{i}\right)$. Then we may replace (X, Δ) by $\left(X_{i}, \Delta^{(i)}\right)$ in the situation 2.2. Moreover, the replacement does not affect the conditions (VI-1)-(VI-5). Thus we can apply (1) to the case $X=X_{i}$. Hence if $\left.\mathcal{I}[l L+M]\right|_{X_{i}} \neq 0$, i.e., $\left.\left(l L_{X}+M\right)\right|_{X_{i}} \in \mathbb{E}_{X_{i}}$, then

$$
\left.\left.\mathcal{I}[l L+M]\right|_{X_{i}} \subset \mathcal{I}\left[\left.l L\right|_{X_{i}}+\left.M\right|_{X_{i}}, 1\right] \subset \mathcal{J}[l L+A]\right|_{X_{i}} .
$$

Therefore,

$$
\mathcal{I}[l L+M]=\left.\left.\bigoplus \mathcal{I}[l L+M]\right|_{X_{i}} \subset \bigoplus \mathcal{J}[l L+A]\right|_{X_{i}}=\mathcal{J}[l L+A]
$$

2.12. Corollary Let L be a divisor of V such that $\left.L\right|_{X_{i}}$ is $\left(\left.\pi\right|_{X_{i}}\right)$-pseudoeffective for some i. If L satisfies (VI-2), then L is π-pseudo-effective.

Proof. By the same replacement as above, we can apply $\mathbf{2 . 1 1}$ to the case $X=X_{i}$. If we choose M as a $\left(\left.\pi\right|_{X}\right)$-ample divisor, then for any $l>0, C\langle l, m\rangle$ is satisfied for some $m>0$, since $\left.L\right|_{X}$ is $\left(\left.\pi\right|_{X}\right)$-pseudo-effective. Thus $\mathbf{2 . 1 1}$-(1) implies that $\mathcal{J}[l L+A] \neq 0$ for any $l>0$. Hence L is π-pseudo-effective.

§3. Surjectivity of restriction maps

§3.a. Big case.

3.1. Lemma Let L and L^{\prime} be \mathbb{Q}-divisors of V with $\langle L\rangle \leq \Delta,\left.L\right|_{X\lrcorner} \in \mathbb{E}_{X}$ such that (L, L^{\prime}) satisfies one of the three conditions (VI-3), (VI-4), and (VI-5), and let n be a positive integer with $n L^{\prime} \in \mathbb{E}$. Suppose that there is a bimeromorphic morphism $\rho: W \rightarrow V$ satisfying the condition \mathbf{E} for $n L^{\prime}$ in which $\left.\rho\right|_{Y}=f$ satisfies the condition \mathbf{G} for $\left\llcorner\left. L\right|_{X\lrcorner}\right.$ and the inequality

$$
-G\left(\left\llcorner L_{\lrcorner}\right) \leq\left.\left\ulcorner R_{W}+\rho^{*}\langle L\rangle-\frac{1}{n} E\left(n L^{\prime}\right)\right\urcorner\right|_{Y}=\left\ulcorner R_{Y}+f^{*}\left\langle\left. L\right|_{X}\right\rangle-\frac{1}{n} B\left(n L^{\prime}\right)\right\urcorner\right.
$$

holds. Then $\pi_{*} \mathcal{O}_{V}\left(L_{\lrcorner}\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(L_{\lrcorner}\right)$is surjective.
Proof. Let Δ^{\prime} be the \mathbb{R}-divisor $\Delta-\langle L\rangle$. By replacing Δ with Δ^{\prime}, we may assume that $\langle L\rangle=0$. The inequality above implies that $\mathcal{I}[L] \subset \mathcal{J}\left[L^{\prime}, n\right]$. Hence, by $\mathbf{2 . 9}$, we have the inclusion

$$
\pi_{*} \mathcal{O}_{X}(L)=\pi_{*}\left(\mathcal{I}[L] \mathcal{O}_{X}(L)\right) \subset \mathcal{G}[L]
$$

which means the expected surjectivity.
3.2. Proposition Let L and L^{\prime} be \mathbb{Q}-divisors of V with $\langle L\rangle \leq \Delta$ such that $\left(L, L^{\prime}\right)$ satisfies one of the three conditions (VI-3), (VI-4), and (VI-5). Suppose that there exist positive integers $m, m^{*}, a \mathbb{Z}$-divisor A of V, an effective \mathbb{Q}-divisor Δ^{*} of V, and a bimeromorphic morphism $\rho: W \rightarrow V$ from a non-singular variety satisfying the following conditions:
(1) $m L$ and $m^{*} L^{\prime}$ are \mathbb{Z}-divisors with $m L+A \in \mathbb{E}_{V}, m^{*} L^{\prime} \in \mathbb{E}_{V}$;
(2) $\mathcal{I}[m L] \subset \mathcal{J}[m L+A]$;
(3) Supp Δ^{*} contains no components of X and $\left(V \& X, \Delta+\Delta^{*}\right)$ is log-terminal along X (cf. II.4.8);
(4) ρ satisfies the conditions \mathbf{E} for $m L+A$ and \mathbf{E} for $m^{*} L^{\prime}$ in which the inequality

$$
-\frac{1}{m} E(m L+A) \leq \rho^{*} \Delta^{*}-\frac{1}{m^{*}} E\left(m^{*} L^{\prime}\right)
$$

holds.
Then $\pi_{*} \mathcal{O}_{V}\left(L_{\lrcorner}\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(L_{\lrcorner}\right)$is surjective.

Proof. If $\pi_{*} \mathcal{O}_{X_{i}}\left(L_{\lrcorner}\right)=0$, then we can replace (Δ, X) by $\left(\Delta+X_{i}, X-X_{i}\right)$. Thus we may assume that $\left.L L\right|_{X\lrcorner} \in \mathbb{E}_{X}$. Then $m L+A \in \mathbb{E}$ and $m^{*} L^{\prime} \in \mathbb{E}$ by (2) and (4). We may assume that the restriction $\left.\rho\right|_{Y}=f$ satisfies the conditions \mathbf{G} for $\left\llcorner\left. L\right|_{X\lrcorner}\right.$ and \mathbf{G} for $\left.m L\right|_{X}$. Then (2) induces the inequalities:

$$
\frac{1}{m} B(m L+A) \leq \frac{1}{m} G(m L) \leq G\left(L_{\lrcorner} L_{\lrcorner}\right)+\left.\left(\rho^{*}\langle L\rangle\right)\right|_{Y}
$$

Therefore

$$
\begin{equation*}
-G\left(L_{\lrcorner}\right) \leq\left.\left(\rho^{*}\langle L\rangle-\frac{1}{m} E(m L+A)_{\lrcorner}\right)\right|_{Y} . \tag{VI-6}
\end{equation*}
$$

We have

$$
\begin{align*}
\left\ulcorner R_{W}-\rho^{*} \Delta^{*\urcorner}+\rho^{*}\langle L\rangle+\rho^{*} \Delta^{*}-\frac{1}{m^{*}}\right. & \left.E\left(m^{*} L^{\prime}\right)\right\rfloor \tag{VI-7}\\
& \leq\left\ulcorner R_{W}+\rho^{*}\langle L\rangle-\frac{1}{m^{*}} E\left(m^{*} L^{\prime}\right)^{\urcorner}\right.
\end{align*}
$$

in which the inequality $\left\ulcorner R_{W}-\rho^{*} \Delta^{*\urcorner} \geq 0\right.$ holds along $\rho^{-1}(X)$ by (3). The restriction of (VI-7) to Y, (VI-6), and the inequality in (4) induce

$$
-G\left(L_{\lrcorner}\right) \leq\left\ulcorner R_{W}+\rho^{*}\langle L\rangle-\left.\frac{1}{m^{*}} E\left(m^{*} L^{\prime}\right)^{\urcorner}\right|_{Y} .\right.
$$

Thus the result follows from 3.1 .
3.3. Lemma Let L and L^{\prime} be \mathbb{Q}-divisors of V with $\langle L\rangle \leq \Delta$ such that $\left(L, L^{\prime}\right)$ satisfies one of the three conditions (VI-3), (VI-4), and (VI-5). Suppose that there exist

- a rational number $0<\beta<1$, positive integers m, m^{\prime}, and an integer b,
- \mathbb{Z}-divisors A and D of V, and
- a bimeromorphic morphism $\rho: W \rightarrow V$ from a non-singular variety satisfying the following conditions:
(1) $m L, m^{\prime} L$, and $b L^{\prime}$ are \mathbb{Z}-divisors with $m L+A \in \mathbb{E}_{V}, m^{\prime} L+b L^{\prime} \in \mathbb{E}_{V}$;
(2) $m \beta \leq m^{\prime}+b \beta$ and $L^{\prime}-\beta L$ is π-semi-ample;
(3) $\mathcal{I}[m L] \subset \mathcal{J}[m L+A]$;
(4) D is an effective divisor containing no components of X and $(V \& X, \Delta+$ $(1 / m) D)$ is log-terminal along X;
(5) ρ satisfies the conditions \mathbf{E} for $m L+A$ and \mathbf{E} for $m^{\prime} L+b L^{\prime}$ in which the inequality

$$
-E(m L+A) \leq \rho^{*} D-E\left(m^{\prime} L+b L^{\prime}\right)
$$

holds.
Then $\pi_{*} \mathcal{O}_{V}\left(L_{\lrcorner}\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(L_{\llcorner } L_{\lrcorner}\right)$is surjective.
Proof. Let k be a positive integer such that $k \beta \in \mathbb{Z}, k \beta L$, and $k L^{\prime}$ are \mathbb{Z} divisors, and that $k\left(L^{\prime}-\beta L\right)$ is a π-free \mathbb{Z}-divisor. We may assume that ρ satisfies
the conditions \mathbf{E} for $m L+A, \mathbf{E}$ for $m^{\prime} L+b L^{\prime}, \mathbf{E}$ for $m^{\prime} k \beta L+b k \beta L^{\prime}$, and \mathbf{E} for $k\left(m^{\prime}+b \beta\right) L^{\prime}$, then we have

$$
\begin{aligned}
\frac{1}{m} E\left(m^{\prime} L+b L^{\prime}\right) & \geq \frac{1}{m k \beta} E\left(m^{\prime} k \beta L+b k \beta L^{\prime}\right) \geq \frac{1}{m k \beta} E\left(k\left(m^{\prime}+b \beta\right) L^{\prime}\right) \\
& \geq \frac{1}{k\left(m^{\prime}+b \beta\right)} E\left(k\left(m^{\prime}+b \beta\right) L^{\prime}\right)
\end{aligned}
$$

Therefore, if we set $m^{*}:=k\left(m^{\prime}+b \beta\right)$ and $\Delta^{*}=(1 / m) D$, then all the conditions of $\mathbf{3 . 2}$ are satisfied.
3.4. Lemma Let L be a π-big \mathbb{Z}-divisor of V such that $k L \in \mathbb{E}_{\text {big }}$ for some $k \in \mathbb{N}$ and let A be a divisor of V. Then, locally over S, there exist a positive integer a with aL $\in \mathbb{E}_{\text {big }}$ and an effective divisor D of V containing no components of X such that $a L \sim A+D$.

Proof. We may assume that S is Stein and A is π-very ample, since $A+A^{\prime}$ is so for some π-very ample divisor A^{\prime}. For an integer a with $a L \in \mathbb{E}_{\text {big }}$, let $\rho: W \rightarrow V$ be a bimeromorphic morphism satisfying the condition \mathbf{E} for $a L$. Then $a \rho^{*} L-E(a L)$ is $(\pi \circ \rho)$-big and $(\pi \circ \rho)$-free, and $E(a L)$ contains no components of Y. Let

$$
W \xrightarrow{\varphi} Z \rightarrow \mathbb{P}_{S}\left(\pi_{*} \mathcal{O}_{V}(a L)\right)
$$

be the Stein factorization of the morphism given by $a \rho^{*} L-E(a L)$, where φ is a bimeromorphic morphism contracting no components of Y. Here $a \rho^{*} L-E(a L) \sim$ $\varphi^{*} H$ for a divisor H of Z, which is relatively ample over S. Now the support of the cokernel of

$$
\varphi_{*} \mathcal{O}_{W}\left(-\rho^{*} A-Y_{i}\right) \rightarrow \varphi_{*} \mathcal{O}_{W}\left(-\rho^{*} A\right)
$$

is $\varphi\left(Y_{i}\right)$. Hence

$$
\pi_{*} \mathcal{O}_{W}\left(m \varphi^{*} H-\rho^{*} A-Y_{i}\right) \rightarrow \pi_{*} \mathcal{O}_{W}\left(m \varphi^{*} H-\rho^{*} A\right)
$$

is not isomorphic for $m \gg 0$. Therefore, Y_{i} is not contained in the relative fixed part $\left|m \varphi^{*} H-\rho^{*} A\right|_{\text {fix }}$. Hence there is an effective divisor D^{\prime} on W such that Supp D^{\prime} contains no components of Y and $m \varphi^{*} H-\rho^{*} A \sim D^{\prime}$ for some $m>0$. Here, the effective divisor $D:=\rho_{*}\left(m E(a L)+D^{\prime}\right)$ contains no components of X and $a m L \sim A+D$.

Remark Suppose that $d=\operatorname{dim} V-\operatorname{dim} S>0$ and that $\pi\left(X_{i}\right)$ is a prime divisor for any component X_{i} of X. Then, for a π-big divisor L of $V, k L \in \mathbb{E}_{\mathrm{big}}$ for some $k>0$ if and only if, for any i,

$$
\varlimsup_{m \rightarrow \infty} m^{-d} \operatorname{rank} \mathcal{G}_{i}[m L]>0
$$

3.5. Lemma Suppose that $d=\operatorname{dim} V-\operatorname{dim} S>0$. Let L, C be \mathbb{Z}-divisors of V, Θ a prime divisor of V dominating S, and X_{i} a component of X with $\pi\left(X_{i}\right)$ being a divisor of S. Suppose that

$$
\varlimsup_{m \rightarrow \infty} m^{-d} \operatorname{rank} \mathcal{G}_{i}[m L+C+\Theta]>0
$$

where $\operatorname{rank} \mathcal{G}_{i}[m L+C+\Theta]$ is the rank as a torsion-free sheaf of $\pi\left(X_{i}\right)$. Then

$$
\varlimsup_{m \rightarrow \infty} m^{-d} \operatorname{rank} \mathcal{G}_{i}[m L+C]>0
$$

Proof. We consider the following commutative diagram:

Let \mathcal{E}_{m} be the image of the homomorphism

$$
\pi_{*} \mathcal{O}_{V}(m L+C+\Theta) \rightarrow \pi_{*} \mathcal{O}_{\Theta}(m L+C+\Theta)
$$

Then this is a torsion-free sheaf of S and

$$
\varlimsup_{m \rightarrow \infty} m^{-d} \operatorname{rank} \mathcal{E}_{m}=0
$$

since $\operatorname{rank} \mathcal{E}_{m}$ is at most

$$
\operatorname{dim} \mathrm{H}^{0}\left(V_{s} \cap \Theta, m L+C+\left.\Theta\right|_{V_{s} \cap \Theta}\right)
$$

for a general fiber $V_{s}=\pi^{-1}(s)$. By the commutative diagram above, we infer that there is a surjective homomorphism

$$
\mathcal{E}_{m} \otimes \mathcal{O}_{\pi\left(X_{i}\right)} \rightarrow \mathcal{G}_{i}[m L+C+\Theta] / \mathcal{G}_{i}[m L+C]
$$

Thus we have the expected estimate of $\operatorname{rank} \mathcal{G}_{i}[m L+C]$.
3.6. Lemma Let Λ be a π-nef and π-big divisor of V. Suppose that X_{i} is not π-exceptional and $\left.\Lambda\right|_{X_{i}}$ is $\left(\left.\pi\right|_{X_{i}}\right)$-big for any i. Then, locally on S, there exist an effective divisor D containing no X_{i} and a positive integer a such that $a \Lambda-D$ is π-ample.

Proof. We can take a prime divisor Θ such that $\Theta-A-K_{V}-X_{i}$ is π-ample for a π-ample divisor A and for any i. Hence

$$
\pi_{*} \mathcal{O}_{V}(m \Lambda-A+\Theta) \rightarrow \pi_{*} \mathcal{O}_{X_{i}}(m \Lambda-A+\Theta)
$$

is surjective for any $m \geq 0$ and i by II,5.12. Hence, by $3.5, \mathcal{G}_{i}[a \Lambda-A] \neq 0$ for some $a>0$ and for any i with $\pi\left(X_{i}\right)$ being a prime divisor. Thus there is an effective divisor $D \in|a \Lambda-A|$ containing no X_{i} with $\operatorname{codim} \pi\left(X_{i}\right)=1$. By the same argument as III, 3.8, we can change a and D so that any component X_{i} with $\pi\left(X_{i}\right)=S$ is not contained in Supp D.
3.7. Theorem Let L be a π-pseudo-effective \mathbb{Z}-divisor of V such that L $\left(K_{V}+X+\Delta\right)$ is π-nef. Let Λ be a π-nef and π-big \mathbb{Q}-divisor of V such that $\Delta \geq\langle\Lambda\rangle$ and $k \Lambda \in \mathbb{E}_{\text {big }}$ for some $k \in \mathbb{N}$. Then the homomorphism

$$
\pi_{*} \mathcal{O}_{V}\left(l L+\Lambda_{\lrcorner}\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(l L+\Lambda_{\lrcorner}\right)
$$

is surjective for $l \gg 0$. If $\left.L\right|_{X}$ is $\left(\left.\pi\right|_{X}\right)$-pseudo-effective, then the homomorphism above is surjective for any $l>0$.

Remark If X_{i} is not π-exceptional for any i, then, by 3.6, we can replace the condition " $k \Lambda \in \mathbb{E}_{\text {big }}$ for some $k \in \mathbb{N}$ " by " $\left.\Lambda\right|_{X_{i}}$ is $\left(\left.\pi\right|_{X_{i}}\right)$-big for any i."

Proof. If $\left.L\right|_{X_{i}}$ is not $\left(\left.\pi\right|_{X_{i}}\right)$-pseudo-effective, then $\pi_{*} \mathcal{O}_{X_{i}}\left(l L+\Lambda_{\lrcorner}\right)=0$ except for a finite number of positive integers l. Hence we can replace X with $X-X_{i}$ and Δ with $\Delta+X_{i}$. Thus we may assume that $\left.L\right|_{X}$ is $\left(\left.\pi\right|_{X}\right)$-pseudo-effective.

First we consider the case $l=1$. The \mathbb{R}-divisor

$$
L+\Lambda_{\lrcorner}-\left(K_{V}+X+\Delta-\langle\Lambda\rangle\right)=L-\left(K_{V}+X+\Delta\right)+\Lambda
$$

is π-nef and π-big. Thus $(\Delta-\langle\Lambda\rangle, L+\llcorner \rfloor, 0,1)$ satisfies the condition of 2.9 as $\left(\Delta, L, L^{\prime}, m\right)$. Hence

$$
\pi_{*} \mathcal{O}_{X}\left(L+\Lambda_{\lrcorner}\right) \subset \mathcal{G}\left[L+\Lambda_{\lrcorner}\right]
$$

Therefore we have the surjectivity for $l=1$.
Next, we assume that $l>1$. Let A_{1} be a π-very ample divisor of V such that

$$
\left.A_{1}\right|_{X}-\left(K_{X}+\Delta_{X}\right)-A_{0}
$$

is $\left(\left.\pi\right|_{X}\right)$-nef. Let b be a positive integer with $b \Lambda$ being a \mathbb{Z}-divisor. Then

$$
m l L+b \Lambda+2 A_{1} \in \mathbb{E} \quad \text { and } \quad \mathcal{I}\left[m l L+b \Lambda+A_{1}\right] \subset \mathcal{J}\left[m l L+b \Lambda+2 A_{1}\right]
$$

for any $m \in \mathbb{N}$ by 2.11. In particular,

$$
\mathcal{I}[m(l L+\Lambda)] \subset \mathcal{I}\left[m(l L+\Lambda)+A_{1}\right] \subset \mathcal{J}\left[m(l L+\Lambda)+2 A_{1}\right]
$$

for $m \in b \mathbb{N}$. There is an $a \in b \mathbb{N}$ such that $(a-b) \Lambda-4 A_{1}$ is linearly equivalent to an effective divisor D_{1} containing no components of X locally over S by 3.4. In particular, $\Lambda-\varepsilon D_{1}$ is π-ample for $0<\varepsilon \leq 1 /(a-b)$. There is an effective divisor D of V locally over S containing no components of X such that

$$
D \sim a(l L+\Lambda)-2 A_{1}=\left(a l L+b \Lambda+2 A_{1}\right)+(a-b) \Lambda-4 A_{1}
$$

From the linear equivalence $(m+a)(l L+\Lambda) \sim D+m(l L+\Lambda)+2 A_{1}$ for $m \in b \mathbb{N}$, we infer that $(m+a)(l L+\Lambda) \in \mathbb{E}$ and the inequality

$$
-E\left(m(l L+\Lambda)+2 A_{1}\right) \leq \rho^{*} D-E((m+a)(l L+\Lambda))
$$

holds for a bimeromorphic morphism $\rho: W \rightarrow V$ satisfying the conditions \mathbf{E} for $m(l L+\Lambda)+2 A_{1}$ and \mathbf{E} for $(m+a)(l L+\Lambda)$. Let ε be a positive rational number such that $l \varepsilon<1 /(a-b)$ and $\left(V \& X, \Delta+\varepsilon D_{1}\right)$ is log-terminal along X. We can choose m so that $\left(V \& X, \Delta+\varepsilon D_{1}+(1 / m) D\right)$ is log-terminal along X. Hence the condition of $\mathbf{3 . 3}$ is satisfied for

$$
\begin{array}{r}
\left(\Delta+\varepsilon D_{1}, l L+\Lambda,(l-1) L+\Lambda-\varepsilon D_{1},(l-1) / l, m, m+a, 0,2 A_{1}, D\right) \\
\quad \text { as } \quad\left(\Delta, L, L^{\prime}, \beta, m, m^{\prime}, b, A, D\right) .
\end{array}
$$

Thus the surjectivity follows.
3.8. Corollary Let L be a \mathbb{Z}-divisor of V such that $L-\left(K_{V}+X+\Delta\right)$ is π-nef and π-big, and $k\left(L-\left(K_{V}+X+\Delta\right)\right) \in \mathbb{E}_{\text {big }}$ for some $k \in \mathbb{N}$. Then the homomorphism $\pi_{*} \mathcal{O}_{V}(l L) \rightarrow \pi_{*} \mathcal{O}_{X}(l L)$ is surjective for any $l \in \mathbb{N}$.

Proof. We may assume that $\left.L\right|_{X}$ is $\left(\left.\pi\right|_{X}\right)$-pseudo-effective. Then, by $\mathbf{2 . 1 2}, L$ is π-pseudo-effective. Locally on S, there is an effective divisor D linearly equivalent to $k\left(L-\left(K_{V}+X+\Delta\right)\right)$ that contains no components of X by 3.4. Let $\rho: W \rightarrow X$ be a bimeromorphic morphism from a non-singular variety such that the union of the ρ-exceptional locus, $\rho^{-1}(X)$, and $\rho^{-1}(\operatorname{Supp} D)$ is a normal crossing divisor. Let Y be the proper transform of X as before. Let R_{+}and R_{-}, respectively, be the positive and the negative parts of the prime decomposition of $\left\ulcorner R_{W}\right\urcorner$. Then R_{+}is ρ-exceptional and $\operatorname{Supp} R_{-} \cap \rho^{-1}(X)=\emptyset$. There is an integer $m \gg k$ such that

$$
\left\langle-\left(R_{W}-\frac{1}{m} \rho^{*} D\right)\right\rangle=\left\langle\left\langle-R_{W}\right\rangle+\frac{1}{m} \rho^{*} D\right\rangle \geq \frac{1}{m} \rho^{*} D .
$$

Then $\left\ulcorner R_{W}-(1 / m) \rho^{*} D\right\urcorner=\left\ulcorner R_{W}\right\urcorner$. We set

$$
L_{W}:=\rho^{*} L+R_{+}, \quad \Lambda:=(1 / m) \rho^{*} D, \quad \Delta_{W}^{\prime}:=\left\langle-\left(R_{W}-\frac{1}{m} \rho^{*} D\right)\right\rangle+R_{-} .
$$

Then

$$
L_{W}-\left(K_{W}+Y+\Delta_{W}^{\prime}\right)=\rho^{*}\left(L-\left(K_{V}+X+\Delta+\frac{1}{m} D\right)\right) \sim_{\mathbb{Q}}\left(\frac{1}{k}-\frac{1}{m}\right) \rho^{*} D
$$

is $(\pi \circ \rho)$-nef and $(\pi \circ \rho)$-big, and $\langle\Lambda\rangle=\Lambda \leq \Delta_{W}^{\prime}$. Thus, by 3.7,

$$
\pi_{*} \rho_{*} \mathcal{O}_{W}\left(l L_{W}\right) \rightarrow \pi_{*} \rho_{*} \mathcal{O}_{Y}\left(l L_{W}\right)
$$

is surjective for any $l \in \mathbb{N}$. The expected surjectivity follows from the isomorphisms $\mathcal{O}_{V}(l L) \simeq \rho_{*} \mathcal{O}_{W}\left(l L_{W}\right)$ and $\mathcal{O}_{X}(l L) \simeq \rho_{*} \mathcal{O}_{Y}\left(l L_{W}\right)$.
3.9. Theorem Let L be a π-big divisor of V such that $k L \in \mathbb{E}_{\text {big }}$ for some $k \in \mathbb{N}$ and $L-\left(K_{V}+X+\Delta\right)$ is π-nef. Then the homomorphism

$$
\pi_{*} \mathcal{O}_{V}(l L) \rightarrow \pi_{*} \mathcal{O}_{X}(l L)
$$

is surjective for any integer $l>1$. If L satisfies (VI-2) in addition, then the homomorphism is surjective also for $l=1$.

Proof. In the case $l=1$, this is derived from $\mathbf{2 . 9}$, since $(L, 0,1)$ satisfies the condition of 2.9 as $\left(L, L^{\prime}, n\right)$. Suppose that $l>1$. By $\mathbf{2 . 1 1}$, there is a π ample divisor A of V such that $m L+A \in \mathbb{E}$ and $\mathcal{I}[m L] \subset \mathcal{J}[m L+A]$ for any $m>0$. By 3.4, there exist a positive integer a and an effective divisor D of V containing no components of X such that $A+D \sim a l L$. Thus, for any $m>0$, $m l L+A,(m+a) l L \in \mathbb{E}$, and

$$
-E(m l L+A) \leq \rho^{*} D-E((m+a) l L)
$$

for a bimeromorphic morphism $\rho: W \rightarrow V$ satisfying the conditions \mathbf{E} for $m l L+$ A and \mathbf{E} for $(m+a) l L$. If m is sufficiently large, then $(V \& X, \Delta+(1 / m) D)$ is log-terminal along X. Then $(l L,(l-1) L,(l-1) / l, m, m+a, 0, A, D)$ satisfies the condition of 3.3 as $\left(L, L^{\prime}, \beta, m, m^{\prime}, b, A, D\right)$. Hence the surjectivity follows.
3.10. Theorem Let L be a divisor of V such that L satisfies the condition (VI-2). Suppose that $\pi\left(X_{i}\right)$ is a prime divisor of S and $\left.L\right|_{X_{i}}$ is $\left(\left.\pi\right|_{X_{i}}\right)$-big for any component X_{i}. Then $\pi_{*} \mathcal{O}_{V}(l L) \rightarrow \pi_{*} \mathcal{O}_{X}(l L)$ is surjective for any $l \geq 1$.

Proof. If π is generically finite, then this follows from 3.9. Suppose that $d=\operatorname{dim} V-\operatorname{dim} S>0$. We may assume that L is π-pseudo-effective. Let Θ be a π-ample prime divisor of V. Then

$$
\pi_{*} \mathcal{O}_{V}(m L+\Theta) \rightarrow \pi_{*} \mathcal{O}_{X_{i}}(m L+\Theta)
$$

is surjective for $m>0$ by 3.7. Thus $k L \in \mathbb{E}_{\text {big }}$ for some k by 3.5. Hence the condition of $\mathbf{3 . 9}$ is satisfied.

Example Let $f: Z \rightarrow S$ be a generically finite proper surjective morphism of normal complex analytic varieties. For a Cartier divisor L, a prime divisor Γ, and for an effective \mathbb{R}-divisor Δ of Z, suppose that
(1) $(Z \& \Gamma, \Delta)$ is log-terminal,
(2) $L-\left(K_{Z}+\Gamma+\Delta\right)$ is f-nef.

Then the restriction homomorphism $f_{*} \mathcal{O}_{Z}(m L) \rightarrow f_{*} \mathcal{O}_{\Gamma}(m L)$ is surjective for any $m \geq 0$. This is shown as follows: Let $\mu: V \rightarrow Z$ be a bimeromorphic morphism from a non-singular variety projective over S and let X be the proper transform of Γ. We may assume that X is non-singular and there exist effective \mathbb{R}-divisor Δ_{V} and a μ-exceptional effective divisor E such that $X \cup \operatorname{Supp} \Delta_{V} \cup \operatorname{Supp} E$ is a normal crossing divisor, $\Delta_{V\lrcorner}=0$, and

$$
K_{V}+X+\Delta_{V}=\mu^{*}\left(K_{Z}+\Gamma+\Delta\right)+E .
$$

We set $L_{V}:=\mu^{*} L+E$. Then $f_{*} \mu_{*} \mathcal{O}_{V}\left(m L_{V}\right) \rightarrow f_{*} \mu_{*} \mathcal{O}_{X}\left(m L_{V}\right)$ is surjective for any $m>0$ by 3.7 (or by $\mathbf{3 . 8}, 3.9,3.10$). This induces the expected surjection, since $\mu_{*} \mathcal{O}_{V}(m E) \simeq \mathcal{O}_{Z}$ for $m \geq 0$ and Γ is normal (cf. II,4.9).

§3.b. Abundant case.

3.11. Situation In addition to 2.2 , we consider the commutative diagram

where the following conditions are satisfied:
(1) W and Z are non-singular;
(2) ρ is a projective bimeromorphic morphism, ϕ is a projective morphism, and φ is a fiber space;
(3) $\varphi(Y) \neq Z$;
(4) any φ-exceptional divisor is exceptional for the bimeromorphic morphism $W \rightarrow V_{1}$ into the normalization V_{1} of the image of $(\rho, \varphi): W \rightarrow V \times Z$.
3.12. Lemma In the situation $\mathbf{3 . 1 1}$, let L be a π-pseudo-effective \mathbb{Z}-divisor of V such that
(1) $\operatorname{Supp} N_{\sigma}(L ; V / S)$ does not contain any X_{i},
(2) $\kappa_{\sigma}\left(\rho^{*} L ; W / Z\right)=\kappa\left(\rho^{*} L ; W / Z\right)=0$.

Let A be a π-ample divisor of V such that $m L+A \in \mathbb{E}$ for any $m>0$ and let H be a ϕ-ample divisor of Z. Then, there exist positive integers m_{0}, d, k and an effective divisor D of V containing no X_{i} such that

$$
-\left|m m_{0} L+A\right|_{\mathrm{fix}} \leq \rho^{*} D-\left|\rho^{*}\left(m m_{0} L\right)+\varphi^{*}(d H)\right|_{\mathrm{fix}}
$$

for $m \geq k$, if S is replaced by a relatively compact open subset. In particular, if ρ satisfies the conditions \mathbf{E} for $\rho^{*}\left(m m_{0} L\right)+\varphi^{*}(d H)$ and \mathbf{E} for $m m_{0} L+A$ for an $m \geq k$, then

$$
-E\left(m m_{0} L+A\right) \leq \rho^{*} D-E\left(\rho^{*}\left(m m_{0} L\right)+\varphi^{*}(d H)\right)
$$

and $Y_{i} \not \subset \operatorname{Supp} E\left(\rho^{*}\left(m m_{0} L\right)+\varphi^{*}(d H)\right)$ for any i.
Proof. There is a \mathbb{Q}-divisor Ξ_{0} on Z such that

$$
\rho^{*} L \sim_{\mathbb{Q}} \varphi^{*} \Xi_{0}+N_{\sigma}\left(\rho^{*} L ; W / Z\right)
$$

by V, 2.26. Let m_{0} be a positive integer such that $N:=m_{0} N_{\sigma}\left(\rho^{*} L ; W / Z\right)$ and $\Xi:=m_{0} \Xi_{0}$ are \mathbb{Z}-divisors and the linear equivalence $\rho^{*}\left(m_{0} L\right) \sim \varphi^{*} \Xi+N$ holds. Note that $\operatorname{Supp} N$ contains no proper transforms Y_{i}. There is a positive integer k such that $\sigma_{\Gamma}\left(\rho^{*} A+k N ; W / Z\right)>0$ for any prime component Γ of $\operatorname{Supp} N$. Thus

$$
\varphi_{*} \mathcal{O}_{W}\left(\rho^{*} A+k N\right) \rightarrow \varphi_{*} \mathcal{O}_{W}\left(\rho^{*} A+m N\right)
$$

is isomorphic for any $m \geq k$. There is a φ-exceptional effective divisor $E^{\prime \prime}$ such that $\varphi_{*} \mathcal{O}_{W}\left(\rho^{*} A+k N+E^{\prime \prime}\right)$ is reflexive. Here, $\rho^{*} A+k N$ is the pullback of a Cartier divisor of V_{1} and $E^{\prime \prime}$ is exceptional for $W \rightarrow V_{1}$. Thus

$$
\mathcal{F}:=\varphi_{*} \mathcal{O}_{W}\left(\rho^{*} A+k N\right)
$$

is reflexive. Since we may assume that S is Stein, there exists a surjective homomorphism

$$
\mathcal{O}_{Z}^{\oplus r} \rightarrow \mathcal{F}^{\vee} \otimes \mathcal{O}_{Z}(d H)
$$

for some positive integers r and d. By taking its dual, we have an exact sequence

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{O}_{Z}(d H)^{\oplus r} \rightarrow \mathcal{F}^{\prime} \rightarrow 0
$$

in which \mathcal{F}^{\prime} is torsion-free. Let $\widetilde{\mathcal{F}^{\prime}}$ be the quotient $\varphi^{*} \mathcal{F}^{\prime} /$ (tor) by the torsion part and let $\widetilde{\mathcal{F}}$ be the kernel of

$$
\varphi^{*} \mathcal{O}_{Z}(d H) \rightarrow \widetilde{\mathcal{F}^{\prime}}
$$

Then $\mathcal{F} \simeq \varphi_{*} \widetilde{\mathcal{F}}$ and we have a φ-exceptional effective divisor \widehat{E} of W and a commutative diagram

where φ_{*} of the bottom and the right arrows are isomorphisms. We fix an integer $m \geq k$. By replacing W by a blowing-up, we may assume that the image of the homomorphism

$$
\varphi^{*} \phi^{*} \phi_{*} \mathcal{O}_{Z}(m \Xi+d H) \rightarrow \mathcal{O}_{W}\left(\varphi^{*}(m \Xi+d H)\right)
$$

is invertible. In other words, we assume that W satisfies the condition \mathbf{E} for $\varphi^{*}(m \Xi+d H)$. Moreover, we assume that W satisfies the condition \mathbf{E} for $m m_{0} L+A$. Let Θ_{m} be the relative fixed divisor $\left|\varphi^{*}(m \Xi+d H)\right|_{\text {fix }}=E\left(\varphi^{*}(m \Xi+d H)\right)$. From the commutative diagram

we infer that the injection

$$
\phi_{*} \varphi_{*}\left(\widetilde{\mathcal{F}} \otimes \mathcal{O}_{W}\left(\varphi^{*}(m \Xi)-\Theta_{m}\right)\right) \rightarrow \phi_{*} \varphi_{*}\left(\widetilde{\mathcal{F}} \otimes \mathcal{O}_{W}\left(\varphi^{*}(m \Xi)\right)\right)
$$

is isomorphic. Therefore,

$$
\pi_{*} \rho_{*} \mathcal{O}_{W}\left(\rho^{*} A+k N+\widehat{E}+m \varphi^{*} \Xi-\Theta_{m}\right) \rightarrow \pi_{*} \rho_{*} \mathcal{O}_{W}\left(\rho^{*} A+k N+\widehat{E}+m \varphi^{*} \Xi\right)
$$

is an isomorphism by (VI-9). Since \widehat{E} is ρ-exceptional, $\widehat{E}+E\left(m m_{0} L+A\right)$ is the relative fixed divisor of $\rho^{*}\left(m m_{0} L+A\right)+\widehat{E}$ over S. Thus we have an inequality

$$
E\left(m m_{0} L+A\right)+\widehat{E} \geq(m-k) N+\Theta_{m}
$$

On the other hand, $m N+\Theta_{m}$ is the relative fixed divisor of $\varphi^{*}(m \Xi+d H)+m N \sim$ $m m_{0} \rho^{*} L+d \varphi^{*} H$ and hence W satisfies the condition \mathbf{E} for $\rho^{*}\left(m m_{0} L\right)+\varphi^{*}(d H)$. Therefore,

$$
-E\left(m m_{0} L+A\right) \leq \widehat{E}+k N-E\left(\rho^{*}\left(m m_{0} L\right)+\varphi^{*}(d H)\right)
$$

There is an effective divisor D on V such that $\operatorname{Supp} D$ contains no X_{i} and $\rho^{*} D \geq$ $\widehat{E}+k N$. Thus we are done.
3.13. Lemma In the situation 3.11, suppose that any X_{i} is not π-exceptional. Let Λ be a π-nef and π-abundant \mathbb{Z}-divisor of V such that
(1) $\rho^{*} \Lambda$ is \mathbb{Q}-linearly equivalent to the pullback of a ϕ-nef and ϕ-big \mathbb{Q}-divisor of Z,
(2) $\kappa\left(\left.\Lambda\right|_{X_{i}} ; X_{i} / \pi\left(X_{i}\right)\right) \geq \operatorname{dim} Z-1-\operatorname{dim} \pi\left(X_{i}\right)$.

Then there is an effective divisor D on W locally over S such that $\rho^{*} \Lambda-\varepsilon D$ for $0<\varepsilon \ll 1$ is \mathbb{Q}-linearly equivalent to the pullback of a ϕ-ample \mathbb{Q}-divisor and Supp D contains no components Y_{i} of Y.

Proof. Let Ξ be the ϕ-nef and ϕ-big divisor of Z with $\rho^{*} \Lambda \sim_{\mathbb{Q}} \varphi^{*} \Xi$. Then $\left.\Xi\right|_{\varphi\left(X_{i}\right)}$ is ϕ-big. Hence there is an effective divisor D^{\prime} on Z such that Supp D^{\prime} contains no $\varphi\left(X_{i}\right)$ and $\Xi-\varepsilon D^{\prime}$ is ϕ-ample by 3.6. Thus $D=\varphi^{*} D^{\prime}$ satisfies the condition.
3.14. Theorem Let L be a π-pseudo-effective divisor and let Λ be a π-nef and π-abundant \mathbb{Q}-divisor of V with $\Delta \geq\langle\Lambda\rangle$. Suppose that
(1) any X_{i} is not π-exceptional,
(2) $L-\left(K_{V}+X+\Delta\right)$ is π-nef and π-abundant,
(3) $\left.L\right|_{X}$ is $\left(\left.\pi\right|_{X}\right)$-pseudo-effective,
(4) $\kappa(\Lambda ; V / S)=\kappa_{\sigma}(k L+\Lambda ; V / S)$ for some $k>0$,
(5) $\kappa\left(\left.\Lambda\right|_{X_{i}} ; X_{i} / \pi\left(X_{i}\right)\right)=\kappa(\Lambda ; V / S)+\operatorname{dim} S-\operatorname{dim} \pi\left(X_{i}\right)-1$ for any X_{i}.

Then the restriction homomorphism

$$
\pi_{*} \mathcal{O}_{V}\left(l L+\Lambda_{\lrcorner}\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(l L+\Lambda_{\lrcorner}\right)
$$

is surjective for any $l \geq 1$.
Proof. In the case: $\operatorname{dim} V=\operatorname{dim} S$, this is already proved in 3.7. Thus we may assume that $\operatorname{dim} V>\operatorname{dim} S$.

Step 1 A reduction. We may replace V by a blowing-up as follows: let $\rho_{1}: W_{1} \rightarrow$ V be a projective bimeromorphic morphism from a non-singular variety such that the union of the ρ_{1}-exceptional locus, $\rho_{1}^{-1}(\operatorname{Supp} \Delta)$, and the proper transform Y_{1} of X is a normal crossing divisor. Let R_{+}and R_{-}, respectively, be the positive and the negative parts of the prime decomposition of $\left\ulcorner R_{1}\right\urcorner$ for the \mathbb{R}-divisor $R_{1}=$ $K_{W_{1}}+Y_{1}-\rho_{1}^{*}\left(K_{V}+X+\Delta\right)$. Here, R_{+}is ρ_{1}-exceptional and $\operatorname{Supp} R_{-} \cap \rho_{1}^{-1}(X)=\emptyset$. Setting

$$
L_{1}:=\rho_{1}^{*} L+R_{+}, \quad \Delta_{1}:=\left\langle-R_{1}\right\rangle+R_{-},
$$

we have the equality

$$
L_{1}-\left(K_{W_{1}}+Y_{1}+\Delta_{1}\right)=\rho^{*}\left(L-\left(K_{V}+X+\Delta\right)\right)
$$

and an isomorphism

$$
\rho_{1 *} \mathcal{O}_{W_{1}}\left(l L_{1}+\rho_{1}^{*} \Lambda_{\lrcorner}\right) \simeq \mathcal{O}_{V}\left(l L+\Lambda_{\lrcorner}\right)
$$

Hence we can replace $(V, X, \Delta, L, \Lambda)$ by $\left(W_{1}, Y_{1}, \Delta_{1}, L_{1}, \rho_{1}^{*} \Lambda\right)$. Therefore, we may assume that there exist a projective morphism $p: T \rightarrow S$ from a non-singular variety and a fiber space $\psi: V \rightarrow T$ over S such that Λ is \mathbb{Q}-linearly equivalent to the pullback of a p-nef and p-big \mathbb{Q}-divisor of T. Then the condition (5) is equivalent to that $\psi\left(X_{i}\right)$ is a prime divisor for any i. Since $\Lambda \succcurlyeq_{\pi} X, L+\Lambda$ satisfies the condition (VI-2). Thus if $l=1$, then the surjectivity follows from 2.9. So, we may assume $l \geq 2$.

By 3.13, we can find an effective divisor D_{1} and $\varepsilon \in \mathbb{Q}>0$ such that

- $X_{i} \not \subset \operatorname{Supp} D_{1}$ for any i,
- $\Lambda-\varepsilon l D_{1}$ is the pullback of a ψ-ample \mathbb{Q}-divisor of T,
- $\left(V \& X, \Delta+\varepsilon D_{1}\right)$ is log-terminal along X.

Since $L-\psi^{*} K_{T}-\left(K_{V / T}+X+\Delta\right)$ is π-nef, we have

$$
\kappa_{\sigma}\left(L-X+\psi^{*} Q ; V / S\right)=\kappa_{\sigma}(L ; V / T)+\operatorname{dim} T-\operatorname{dim} S
$$

for an \mathbb{R}-divisor Q on T with $Q+K_{T}$ being p-big by V.4.1. The condition (4) implies that $\kappa_{\sigma}(L+\alpha \Lambda ; V / S)=\kappa_{\sigma}(\Lambda ; V / S)$ for any $\alpha>0$. Hence, by V.4.8,

$$
\kappa_{\sigma}(L ; V / T)=\kappa(L ; V / T)=0
$$

By considering the flattening $\mu: Z \rightarrow T$ of ψ, we have the commutative diagram (VI-8) such that $\phi=p \circ \mu$.

Step 2. The case: Λ is a \mathbb{Z}-divisor. Let A be a π-very ample divisor of V. Applying 3.7 to $j \Lambda+A$ as Λ, we infer that $m l L+j \Lambda+A \in \mathbb{E}$ and

$$
\mathcal{I}[m l L+j \Lambda] \subset \mathcal{I}[m l L+j \Lambda+A]=\mathcal{J}[m l L+j \Lambda+A]
$$

for any $m \in \mathbb{N}$ and $j \in \mathbb{Z}_{\geq 0}$. Let H be a ϕ-ample divisor on Z. Applying $\mathbf{3 . 1 2}$ to $l L+j \Lambda$, we have positive integers m_{0}, d, k, and an effective divisor D of V containing no X_{i} satisfying the following conditions: If $m \geq k$ and if ρ satisfies the conditions \mathbf{E} for $m m_{0}(l L+\Lambda)$ and \mathbf{E} for $m m_{0} \rho^{*}(l L+\Lambda)+\varphi^{*}(d H)$, then

$$
-E\left(m m_{0}(l L+\Lambda)+A\right) \leq \rho^{*} D-E\left(m m_{0} \rho^{*}(l L+\Lambda)+\varphi^{*}(d H)\right)
$$

There exist a positive integer a and an effective divisor D^{\prime} of V such that $a(\Lambda-$ $\left.\varepsilon l D_{1}\right) \sim \varphi^{*}(d H)+D^{\prime}$ and $X_{i} \not \subset \operatorname{Supp} D^{\prime}$ for any i. Then

$$
E\left(m m_{0}(l L+\Lambda)+a\left(\Lambda-\varepsilon l D_{1}\right)\right) \leq E\left(m m_{0}(l L+\Lambda)+\varphi^{*}(d H)\right)+\rho^{*} D^{\prime}
$$

and thus

$$
-E\left(m m_{0}(l L+\Lambda)+A\right) \leq \rho^{*}\left(D+D^{\prime}\right)-E\left(m m_{0}(l L+\Lambda)+a\left(\Lambda-\varepsilon l D_{1}\right)\right)
$$

if ρ satisfies also the condition \mathbf{E} for $m m_{0}(l L+\Lambda)+a\left(\Lambda-\varepsilon l D_{1}\right)$. We can choose $m \gg 1$ so that $\left(V \& X, \Delta+\varepsilon D_{1}+\left(1 / m m_{0}\right)\left(D+D^{\prime}\right)\right)$ is log-terminal. Here

$$
m m_{0}(l L+\Lambda)+a\left(\Lambda-\varepsilon l D_{1}\right)=m^{\prime}(l L+\Lambda)+b^{\prime}\left((l-1) L+\Lambda-\varepsilon D_{1}\right)
$$

for $m^{\prime}=m m_{0}-a(l-1)$ and $b^{\prime}=a l$. Thus we can apply 3.3 to

$$
\begin{array}{r}
\left(\Delta+\varepsilon D_{1}, l L+\Lambda,(l-1) L+\Lambda-\varepsilon D_{1},(l-1) / l, m m_{0}, m^{\prime}, b^{\prime}, A, D+D^{\prime}\right) \\
\quad \text { as }\left(\Delta, L, L^{\prime}, \beta, m, m^{\prime}, b, A, D\right)
\end{array}
$$

Hence, the surjectivity follows.
Step 3. General case. Let b be a positive integer with $b \Lambda$ being a \mathbb{Z}-divisor. We may assume that $\pi_{*} \mathcal{O}_{X_{i}}\left(l L+\Lambda_{\lrcorner}\right) \neq 0$ for any i. Then $\pi_{*} \mathcal{O}_{X_{i}}(m(l L+\Lambda)) \neq 0$ for any $m>0$ divisible by b and for any i. Thus we infer that $m(l L+\Lambda) \in \mathbb{E}$ and $\mathcal{I}[m(l L+\Lambda)]=\mathcal{J}[m(l L+\Lambda)]$ by applying Step 2 to $m \Lambda$ instead of Λ. If $m>0$ is divisible by $b, m \varepsilon \in \mathbb{Z}$, and $\operatorname{Bs}\left|m\left(\Lambda-\varepsilon D_{1}\right)\right|=\emptyset$, and if ρ satisfies the conditions \mathbf{E} for $m(l-1)(l L+\Lambda)$ and \mathbf{E} for $m l((l-1) L+\Lambda)$, then

$$
-E(m(l-1)(l L+\Lambda)) \leq m \varepsilon \rho^{*} D_{1}-E(m l((l-1) L+\Lambda))
$$

Note that $\left(V \& X, \Delta+\Delta^{*}\right)$ is log-terminal for $\Delta^{*}:=(\varepsilon /(l-1)) D_{1}$. Then we infer that $\left(l L+\Lambda,(l-1) L+\Lambda, m(l-1), m l, \Delta^{*}, 0\right)$ satisfies the condition of $\mathbf{3 . 2}$ as $\left(L, L^{\prime}, m, m^{*}, \Delta^{*}, A\right)$. Thus the surjectivity follows.
3.15. Lemma In the situation 3.11, suppose that $\operatorname{dim} V>\operatorname{dim} S$. Let L be a π-pseudo-effective divisor of V, C a divisor of V, Θ a prime divisor of V, and $X_{i} \subset X$ a component of X satisfying the following conditions:
(1) $\pi\left(X_{i}\right)$ is a prime divisor of S;
(2) $\kappa_{\sigma}\left(\rho^{*} L ; W / Z\right)=\kappa\left(\rho^{*} L ; W / Z\right)=0$;
(3) $\pi(\Theta)=S$ and $\varphi\left(\Theta^{\prime}\right)$ is a prime divisor of Z for the proper transform Θ^{\prime} of Θ in W;
(4)

$$
\varlimsup_{m \rightarrow \infty} m^{-(\operatorname{dim} Z-\operatorname{dim} S)} \operatorname{rank} \mathcal{G}_{i}[m L+C+\Theta]>0
$$

Then

$$
\varlimsup_{m \rightarrow \infty} m^{-(\operatorname{dim} Z-\operatorname{dim} S)} \operatorname{rank} \mathcal{G}_{i}[m L+C]>0
$$

Proof. By $\mathbf{V}, \mathbf{2 . 2 6}$, we may assume that $\rho^{*} L \sim \varphi^{*} \Xi+N$ for a divisor Ξ on Z and the effective divisor $N=N_{\sigma}\left(\rho^{*} L ; W / Z\right)$. There exists a positive integer b such that

$$
\pi_{*} \rho_{*} \mathcal{O}_{W}\left(m \varphi^{*} \Xi+b N+\rho^{*}(C+\Theta)\right) \rightarrow \pi_{*} \mathcal{O}_{V}(m L+C+\Theta)
$$

is isomorphic for $m \geq 0$. Thus we may assume that $W=V$ and $L=\varphi^{*} \Xi$ for a ϕ-pseudo-effective divisor Ξ. We consider the following commutative diagram of exact sequences:

Let \mathcal{E}_{m} be the image of the homomorphism

$$
\pi_{*} \mathcal{O}_{V}(m L+C+\Theta) \rightarrow \pi_{*} \mathcal{O}_{\Theta}(m L+C+\Theta)
$$

Then this is a torsion-free sheaf of S and

$$
\varlimsup_{m \rightarrow \infty} m^{-(\operatorname{dim} Z-\operatorname{dim} S)} \operatorname{rank} \mathcal{E}_{m}=0
$$

since

$$
\operatorname{rank} \mathcal{E}_{m} \leq \operatorname{rank} \pi_{*} \mathcal{O}_{\Theta}(m L+C+\Theta)=\operatorname{rank} \phi_{*}\left(\mathcal{O}_{Z}(m \Xi) \otimes \varphi_{*} \mathcal{O}_{\Theta}(C+\Theta)\right)
$$

By the commutative diagram above, we infer that there is a surjection

$$
\mathcal{E}_{m} \otimes \mathcal{O}_{\pi\left(X_{i}\right)} \rightarrow \mathcal{G}_{i}[m L+C+\Theta] / \mathcal{G}_{i}[m L+C] .
$$

Thus we have the estimate of $\mathcal{G}_{i}[m L+C]$ by (4).
3.16. Theorem Let L be a π-abundant divisor of V. Suppose that
(1) $\pi\left(X_{i}\right)$ is a prime divisor of S for any X_{i},
(2) $L-\left(K_{V}+X+\Delta\right)$ is π-nef and π-abundant,
(3) $\kappa\left(\left.L\right|_{X_{i}} ; X_{i} / \pi\left(X_{i}\right)\right) \geq \kappa(L ; V / S)$ for any i.

Then the restriction homomorphism $\pi_{*} \mathcal{O}_{V}(l L) \rightarrow \pi_{*} \mathcal{O}_{X}(l L)$ is surjective for any $l \geq 1$.

Proof. The result for the case: $l=1$ is derived from 2.9, since L satisfies the condition (VI-2). Thus we may assume $l>1$. Furthermore, we may assume $\operatorname{dim} V-\operatorname{dim} S>\kappa(L ; V / S)$ by 3.10. By $\mathbf{V} \sqrt[4.2]{ }, L$ is geometrically π-abundant. Thus we have a commutative diagram (VI-8) such that $\kappa(L ; V / S)=\operatorname{dim} Z-\operatorname{dim} S$ and $\kappa_{\sigma}\left(\rho^{*} L ; W / Z\right)=\kappa\left(\rho^{*} L ; W / Z\right)=0$. We may assume $W=V$ by the same argument as in Step 1 of the proof of $\mathbf{3 . 1 4}$. By applying $\mathbf{3 . 1 4}$ to $\Lambda=\varphi^{*} H$ for a ϕ-very ample divisor H on Z, we infer that

$$
\pi_{*} \mathcal{O}_{V}\left(m L+\varphi^{*} H\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(m L+\varphi^{*} H\right)
$$

is surjective for $m>0$. In particular,

$$
\mathcal{I}[m L] \subset \mathcal{I}\left[m L+\varphi^{*} H\right]=\mathcal{J}\left[m L+\varphi^{*} H\right] .
$$

The surjection and the condition (3) imply the estimate

$$
\varlimsup_{m \rightarrow \infty} m^{-(\operatorname{dim} Z-\operatorname{dim} S)} \operatorname{rank} \mathcal{G}_{i}\left[m L+\varphi^{*} H\right]>0
$$

for any i. By applying $\mathbf{3 . 1 5}$ to $C=-\varphi^{*} H$ and a general member Θ of $\left|2 \varphi^{*} H\right|$, we have

$$
\varlimsup_{m \rightarrow \infty} m^{-(\operatorname{dim} Z-\operatorname{dim} S)} \operatorname{rank} \mathcal{G}_{i}\left[m L-\varphi^{*} H\right]>0
$$

In particular, there exist a positive integer a and an effective divisor D such that $a l L \sim D+\varphi^{*} H$ and $\operatorname{Supp} D$ contains no X_{i}. Thus $(m+a) l L \in \mathbb{E}$ for any $m>0$. Moreover, if $\rho: W \rightarrow V$ is a bimeromorphic morphism satisfying the conditions \mathbf{E} for $m l L+\varphi^{*} H$ and \mathbf{E} for $(m+a) l L$, then

$$
-E\left(m l L+\varphi^{*} H\right) \leq \rho^{*} D-E((m+a) l L)
$$

We choose m so large that $(V \& X, \Delta+(1 / m) D)$ is log-terminal. Then the condition of $\mathbf{3 . 3}$ is satisfied for

$$
\left(l L,(l-1) L,(l-1) / l, m, m+a, 0, \varphi^{*} H, D\right) \quad \text { as } \quad\left(L, L^{\prime}, \beta, m, m^{\prime}, b, A, D\right) .
$$

Hence the surjectivity follows.

$\S 4$. Degeneration of projective varieties

In this section, we consider a projective surjective morphism $\mathcal{X} \rightarrow S$ with connected fibers from a normal complex analytic variety onto a non-singular curve, and a point $0 \in S$. Let \mathcal{X}_{s} denote the scheme-theoretic fiber over $s \in S$ and let $\mathcal{X}_{0}=\bigcup \Gamma_{i}$ be the irreducible decomposition of the special fiber. In this situation, after replacing S by an open neighborhood of 0 , we have a bimeromorphic morphism $\nu: V \rightarrow \mathcal{X}$ from a non-singular variety such that
(1) the proper transform X_{i} of Γ_{i} is non-singular,
(2) X_{i} are disjoint to each other,
(3) the composite $\pi: V \rightarrow \mathcal{X} \rightarrow S$ is projective.

Note that $\pi^{-1}(s)$ is a non-singular projective model of the normal projective variety \mathcal{X}_{s} for general $s \in S$. For a projective variety Γ with singularities, the Kodaira dimension $\kappa(\Gamma)$, the numerical Kodaira dimension $\kappa_{\sigma}(\Gamma)$, and the m-genus $P_{m}(\Gamma)$, respectively, are defined as the corresponding invariants for a non-singular model of Γ (cf. Chapter III, $\S 4 . \mathbf{a}$, and V,2.29).
4.1. Theorem The numerical Kodaira dimension κ_{σ} is lower semi-continuous in the sense that, for a general fiber \mathcal{X}_{s},

$$
\kappa_{\sigma}\left(\mathcal{X}_{s}\right) \geq \max \kappa_{\sigma}\left(\Gamma_{i}\right) .
$$

Proof. We may assume that $K_{X_{i}}$ is pseudo-effective for some i. By setting $X:=\sum X_{i}, L:=K_{V}+X$, and $\Delta:=0$, we apply results in $\S \mathbf{2}$. Then L is π-pseudoeffective by 2.12. Therefore, for any π-ample divisor A of V and for $m \gg 0$, the restriction homomorphism

$$
\pi_{*} \mathcal{O}_{V}(m L+A) \otimes \mathbb{C}(0) \rightarrow \bigoplus_{i} \mathrm{H}^{0}\left(X_{i}, m K_{X_{i}}+\left.A\right|_{X_{i}}\right)
$$

is surjective by 3.7. The direct image $\pi_{*} \mathcal{O}_{V}(m L+A)$ is a locally free sheaf of rank

$$
\operatorname{dim} \mathrm{H}^{0}\left(V_{s}, m K_{V_{s}}+\left.A\right|_{V_{s}}\right)
$$

for a general fiber V_{s} of π. Thus the lower semi-continuity follows.
As a consequence, we have:
4.2. Theorem The numerical Kodaira dimension κ_{σ} is invariant under a smooth projective deformation.
In particular, if a smooth fiber is of general type, then any other smooth fiber is also of general type.
4.3. Theorem Let I be the set of indices i such that Γ_{i} is of general type. If $I \neq \emptyset$, then, for any $m>0$,

$$
P_{m}\left(\mathcal{X}_{s}\right) \geq \sum_{i \in I} P_{m}\left(\Gamma_{i}\right)
$$

Proof. We set $X:=\sum_{i \in I} X_{i}, \Delta:=0$, and $L:=K_{V}+X$. Now $\left.L\right|_{X_{i}}$ is big for any i. Thus L is π-big by 4.1. The restriction homomorphism

$$
\pi_{*} \mathcal{O}_{V}(m L) \rightarrow \bigoplus_{i \in I} \mathrm{H}^{0}\left(X_{i}, m K_{X_{i}}\right)
$$

is surjective for any $m>0$, by $\mathbf{3 . 1 0}$. Hence the inequality follows since $P_{m}\left(\mathcal{X}_{s}\right)=$ $\operatorname{rank} \pi_{*} \mathcal{O}_{V}(m L)$.

As a consequence of 4.2 and 4.3, we have:
4.4. Theorem The plurigenera P_{m} are invariant under a smooth projective deformation of an algebraic variety of general type.

Next, we shall treat the case in which the abundance $\kappa_{\sigma}\left(\mathcal{X}_{s}\right)=\kappa\left(\mathcal{X}_{s}\right)$ holds for a 'general' fiber \mathcal{X}_{s}.
4.5. Theorem Suppose that $\kappa\left(\mathcal{X}_{s}\right)=\kappa_{\sigma}\left(\mathcal{X}_{s}\right)$ for a 'general' fiber \mathcal{X}_{s}. Let I be the set of indices i with $\kappa_{\sigma}\left(\Gamma_{i}\right)=\kappa\left(\mathcal{X}_{s}\right)$. Then, for any $m>0$,

$$
P_{m}\left(\mathcal{X}_{s}\right) \geq \sum_{i \in I} P_{m}\left(\Gamma_{i}\right)
$$

Proof. We set $X:=\sum_{i \in I} X_{i}, \Delta:=0$, and $L:=K_{V}+X$, where L is π abundant. Then the restriction homomorphism

$$
\pi_{*} \mathcal{O}_{V}(m L) \rightarrow \bigoplus_{i \in I} \mathrm{H}^{0}\left(X_{i}, m K_{X_{i}}\right)
$$

is surjective for any $m>0$, by 3.16. Hence the inequality follows since $P_{m}\left(\mathcal{X}_{s}\right)=$ $\operatorname{rank} \pi_{*} \mathcal{O}_{V}(m L)$.
4.6. Corollary The plurigenera P_{m} are invariant under a smooth projective fibration of algebraic varieties in which the abundance $\kappa_{\sigma}\left(\mathcal{X}_{s}\right)=\kappa\left(\mathcal{X}_{s}\right)$ holds for a 'general' fiber \mathcal{X}_{s}.

§5. Deformation of singularities

Let S be a normal variety, $\Theta \subset S$ a prime divisor, and $\pi: V \rightarrow S$ a projective bimeromorphic morphism from a non-singular variety such that the proper transform X of Θ is non-singular. Then, by $\mathbf{3 . 9}$, the homomorphism

$$
\begin{equation*}
\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(m K_{X}\right) \tag{VI-10}
\end{equation*}
$$

is surjective for any $m>0$. Furthermore, if A is a π-ample divisor of V, then

$$
\begin{equation*}
\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)+A\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(m K_{X}+A\right) \tag{VI-11}
\end{equation*}
$$

is also surjective for $m>0$ by 3.7.
Let Δ be an effective \mathbb{R}-divisor of S whose support does not contain Θ. Suppose that
(1) $K_{S}+\Theta+\Delta$ is \mathbb{R}-Cartier,
(2) $\left\llcorner\Delta_{\lrcorner}=0\right.$,
(3) Θ is normal,
(4) the union of $\pi^{-1}(\operatorname{Supp} \Delta \cup \Theta)$ and the π-exceptional locus is a normal crossing divisor.
For the \mathbb{R}-divisor

$$
R:=K_{V}+X-\pi^{*}\left(K_{S}+\Theta+\Delta\right)
$$

we set $\Delta_{\Theta}:=-\left(\left.\pi\right|_{X}\right)_{*}\left(\left.R\right|_{X}\right)$. Then we have

$$
\left.R\right|_{X}-K_{X}=-\left(\left.\pi\right|_{X}\right)^{*}\left(K_{\Theta}+\Delta_{\Theta}\right) \quad \text { and }\left.\quad\left(K_{S}+\Theta+\Delta\right)\right|_{\Theta} \sim_{\mathbb{R}} K_{\Theta}+\Delta_{\Theta}
$$

The following result is known as the inversion of adjunction (cf. [132], [74]):
5.1. Proposition If $\left(\Theta, \Delta_{\Theta}\right)$ is log-terminal, then $(S \& \Theta, \Delta)$ is log-terminal along Θ (cf. II, 4.8).

Proof. It is enough to show $\ulcorner R\urcorner \geq 0$ over a neighborhood of Θ. Since $R-$ $X-K_{V}$ is π-nef, we have the surjection

$$
\pi_{*} \mathcal{O}_{V}(\ulcorner R\urcorner) \rightarrow \pi_{*} \mathcal{O}_{X}(\ulcorner R\urcorner)
$$

by the vanishing theorem II. 5 .12. By assumption, $\ulcorner R\urcorner$ is a π-exceptional divisor and $\left\ulcorner\left. R\right|_{X}\right\urcorner$ is an effective $\left(\left.\pi\right|_{X}\right)$-exceptional divisor. Therefore, for the natural injection

$$
\pi_{*} \mathcal{O}_{V}(\ulcorner R\urcorner) \hookrightarrow \pi_{*} \mathcal{O}_{V} \simeq \mathcal{O}_{S}
$$

the tensor product

$$
\pi_{*} \mathcal{O}_{V}(\ulcorner R\urcorner) \otimes \mathcal{O}_{\Theta} \rightarrow \mathcal{O}_{\Theta}
$$

is surjective. Therefore, $\pi_{*} \mathcal{O}_{V}(\ulcorner R\urcorner) \hookrightarrow \mathcal{O}_{S}$ is isomorphic along Θ. Thus $\ulcorner R\urcorner \geq 0$ over Θ.

By using (VI-10) and (VI-11), we have the following inversions of adjunction.
5.2. Theorem Let S be a normal variety and let Θ be a prime divisor. Suppose that $K_{S}+\Theta$ is \mathbb{Q}-Cartier and Θ is Cartier in codimension two in S.
(1) If Θ has only canonical singularities, then $S \& \Theta$ is canonical along Θ.
(2) If Θ has only terminal singularities, then $S \& \Theta$ is terminal along Θ.

Proof. (1) Let m be a positive integer such that $m\left(K_{S}+\Theta\right)$ is Cartier. By assumption,

$$
\mathcal{O}_{\Theta}\left(m\left(K_{S}+\Theta\right)\right) \simeq \mathcal{O}_{\Theta}\left(m K_{\Theta}\right) \simeq \pi_{*} \mathcal{O}_{X}\left(m K_{X}\right)
$$

Since (VI-10) is surjective, the homomorphism

$$
\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)\right) \otimes \mathcal{O}_{\Theta} \rightarrow \mathcal{O}_{S}\left(m\left(K_{S}+\Theta\right)\right) \otimes \mathcal{O}_{\Theta}
$$

is also surjective. Hence $\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)\right) \simeq \mathcal{O}_{S}\left(m\left(K_{S}+\Theta\right)\right)$ along Θ. Therefore $S \& \Theta$ is canonical along Θ.
(2) For the bimeromorphic morphism $\pi: V \rightarrow S$, we may assume that there is an effective divisor E such that

- $-E$ is π-ample,
- $\operatorname{Supp} E$ is the π-exceptional locus,
- $X \cap \operatorname{Supp} E$ is also $\left(\left.\pi\right|_{X}\right)$-exceptional.

Thus the homomorphism

$$
\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)-E\right) \rightarrow \pi_{*} \mathcal{O}_{X}\left(m K_{X}-\left.E\right|_{X}\right)
$$

is of the form (VI-11) and hence is surjective for any $m>0$. There is a positive integer m such that $m\left(K_{S}+\Theta\right)$ is Cartier, $\mathcal{O}_{\Theta}\left(m\left(K_{S}+\Theta\right)\right) \simeq \mathcal{O}_{\Theta}\left(m K_{\Theta}\right)$, and $\pi_{*} \mathcal{O}_{X}\left(m K_{X}-\left.E\right|_{X}\right) \simeq \mathcal{O}_{\Theta}\left(m K_{\Theta}\right)$. Thus the homomorphism

$$
\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)-E\right) \otimes \mathcal{O}_{\Theta} \rightarrow \mathcal{O}_{S}\left(m\left(K_{S}+\Theta\right)\right) \otimes \mathcal{O}_{\Theta}
$$

is surjective. Hence $\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)-E\right) \simeq \mathcal{O}_{S}\left(m\left(K_{S}+\Theta\right)\right)$ along Θ. Therefore $S \& \Theta$ is terminal along Θ.

5.3. Corollary

(1) Small deformations of canonical singularities are canonical ([60], cf. [61, 7-2-4]).
(2) Small deformations of terminal singularities are terminal.

Proof. In the situation above, suppose that Θ is a Cartier divisor of S and that Θ is a normal variety with only canonical singularities. The complement $S^{\circ} \subset S$ of Sing Θ is non-singular. Let $j: S^{\circ} \hookrightarrow S$ be the immersion and let m be a positive integer with $m K_{\Theta}$ being Cartier. We have a commutative diagram

The left vertical arrow is just (VI-10) and is surjective. Hence

$$
\mathcal{O}_{S}\left(m\left(K_{S}+\Theta\right)\right) \otimes \mathcal{O}_{\Theta} \rightarrow \mathcal{O}_{\Theta}\left(m K_{\Theta}\right)
$$

is surjective and moreover is an isomorphism, since Θ is Cartier (cf. II,2.2-(2)). Therefore, $m K_{S}$ is Cartier along Θ. By 5.2, S has only canonical singularities or only terminal singularities according as Θ has so.
5.4. Definition (Knöller [65]) Let (X, P) be a normal isolated singularity. For $m \in \mathbb{N}$ and for a resolution of the singularity $\mu: Y \rightarrow X$, the m-genus γ_{m} is defined by

$$
\gamma_{m}(X, P):=\text { length } \mathcal{O}_{X}\left(m K_{X}\right)_{P} / \mu_{*} \mathcal{O}_{Y}\left(m K_{Y}\right)_{P}
$$

This is independent of the choice of resolutions.
Ishii [44] has proved the following theorem under some assumption [44, 1.9]. However the assumption is satisfied since (VI-10) is surjective.
5.5. Theorem The m-genus γ_{m} is upper semi-continuous under a flat deformation in the following sense: let $f: S \rightarrow T$ be a flat morphism into an open neighborhood $T \subset \mathbb{C}$ of the origin 0 such that the central fiber $f^{-1}(0)=S_{0}$ is scheme-theoretically a normal variety with only one singular point P. Then there is an open neighborhood $U \subset S$ of P such that the inequality

$$
\gamma_{m}\left(S_{0}, P\right) \geq \sum_{Q \in \operatorname{Sing} S_{t} \cap U} \gamma_{m}\left(S_{t}, Q\right)
$$

holds for any other fiber $S_{t}=f^{-1}(t)$.
Proof. We write $\Theta=S_{0}$ and use the same notation as before. Let \mathcal{C}_{m} be the cokernel of the natural injection

$$
\pi_{*} \mathcal{O}_{V}\left(m\left(K_{V}+X\right)\right) \rightarrow \mathcal{O}_{S}\left(m\left(K_{S}+\Theta\right)\right)
$$

Then $\operatorname{Supp} \mathcal{C}_{m}$ is finite over a neighborhood of $0 \in T$. By replacing T, we may assume that $\operatorname{Supp} \mathcal{C}_{m}$ is finite over T and $f_{*} \mathcal{C}_{m}$ is a coherent \mathcal{O}_{T}-module. Then

$$
\begin{aligned}
\operatorname{rank}_{\mathcal{O}_{T}} f_{*} \mathcal{C}_{m} & =\sum_{Q \in S_{t}} \gamma_{m}\left(S_{t}, Q\right) \quad \text { for } t \neq 0, \quad \text { and } \\
\text { length }_{\mathcal{O}_{\Theta, P}}\left(\mathcal{C}_{m} \otimes \mathcal{O}_{\Theta}\right)_{P} & =\operatorname{dim} f_{*} \mathcal{C}_{m} \otimes \mathbb{C}(0) \geq \operatorname{rank}_{\mathcal{O}_{T}} f_{*} \mathcal{C}_{m} .
\end{aligned}
$$

In the commutative diagram

the left vertical arrow of is surjective. The right vertical arrow is injective, since Θ is normal and Cartier. Therefore, we have an injection

$$
\mathcal{C}_{m} \otimes \mathcal{O}_{\Theta} \hookrightarrow \mathcal{O}_{\Theta}\left(m K_{\Theta}\right) / \pi_{*} \mathcal{O}_{X}\left(m K_{X}\right)
$$

which induces the upper semi-continuity of γ_{m}.

