
CHAPTER III

Zariski-decomposition Problem

We introduce the notion of σ-decomposition in §1 and that of ν-decomposition
in §3 for pseudo-effective R-divisors on non-singular projective varieties. We con-
sider the Zariski-decomposition problem for pseudo-effective R-divisors by studying
properties on σ- and ν-decompositions. The invariant σ along subvarieties is studied
in §2. In §4, we extend the study of these decompositions to the case of relatively
pseudo-effective R-divisors on varieties projective over a fixed base space. In §5,
we consider the pullback of pseudo-effective R-divisors by a projective surjective
morphism and compare the σ-decomposition of the pullback with the original σ-
decomposition.

§1. σ-decomposition

§1.a. Invariants σΓ and τΓ. Let X be a non-singular projective variety of
dimension n and let B be a big R-divisor of X. The linear system |B| is the set of
effective R-divisors linearly equivalent to B. Similarly, we define |B|Q and |B|num

to be the sets of effective R-divisors ∆ satisfying ∆ ∼Q B and ∆ ∼∼∼ B, respectively.
By definition, we may write |B| = | xBy |+ 〈B〉 and

|B|Q =
⋃

m∈N

1

m
|mB|.

There is a positive integer m0 such that |mB| 6= ∅ for m ≥ m0, by II.3.17.

1.1. Definition For a prime divisor Γ, we define:

σΓ(B)Z :=

{
inf{multΓ ∆ | ∆ ∈ |B|}, if |B| 6= ∅,
+∞, if |B| = ∅;

σΓ(B)Q := inf{multΓ ∆ | ∆ ∈ |B|Q};
σΓ(B) := inf{multΓ ∆ | ∆ ∈ |B|num}.

Then these three functions σΓ(·)∗ (∗ = Z, Q, and ∅) satisfy the triangle inequality:

σΓ(B1 +B2)∗ ≤ σΓ(B1)∗ + σΓ(B2)∗.
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1.2. Definition Similarly to the above, we define:

τΓ(B)Z :=

{
sup{multΓ ∆ | ∆ ∈ |B|}, if |B| 6= ∅,
−∞, if |B| = ∅;

τΓ(B)Q := sup{multΓ ∆ | ∆ ∈ |B|Q};
τΓ(B) := sup{multΓ ∆ | ∆ ∈ |B|num}.

Then these three functions τΓ(·)∗ satisfy the triangle inequality:

τΓ(B1 +B2)∗ ≥ τΓ(B1)∗ + τΓ(B2)∗.

The function τΓ(·) is expressed also by

τΓ(B) = max{t ∈ R≥0 | B − tΓ ∈ PE(X)}.
In particular, B − τΓ(B)Γ is pseudo-effective but not big. For t < τΓ(B), we have
τΓ(B − tΓ) = τΓ(B) − t. The inequality (B − τΓ(B)Γ) · An−1 ≥ 0 holds for any
ample divisor A. In particular,

(III-1) τΓ(B) ≤ B ·An−1

Γ ·An−1
< +∞.

The following equalities and inequalities hold for the functions σΓ(·)∗ and τΓ(·)∗:

σΓ(B) ≤ σΓ(B)Q ≤
1

m
σΓ(mB)Z, τΓ(B) ≥ τΓ(B)Q ≥

1

m
τΓ(mB)Z,

σΓ(qB)Q = qσΓ(B)Q, τΓ(qB)Q = qτΓ(B)Q,

σΓ(tB) = tσΓ(B), τΓ(tB) = tτΓ(B),

for m ∈ N, q ∈ Q>0, and t ∈ R>0. Moreover, we have the following equalities by
1.3 below:

σΓ(B)Q = lim
N3m→∞

1

m
σΓ(mB)Z = lim

N3m→∞

1

m
σΓ(mB)Z,(III-2)

τΓ(B)Q = lim
N3m→∞

1

m
τΓ(mB)Z = lim

N3m→∞

1

m
τΓ(mB)Z.(III-3)

1.3. Lemma Let d be a positive integer and let f be a function N≥d → R such

that

f(k1 + k2) ≤ f(k1) + f(k2)

for any k1, k2 ≥ d. Furthermore, suppose that the sequence {f(k)/k} for k ≥ d is

bounded below. Then the limit limk→∞ f(k)/k exists.

Proof. For integers k ≥ 1 and l ≥ d, we have f(kl) ≤ kf(l). Thus f(kl)/(kl) ≤
f(l)/l. In particular, the limit

fl := limk→∞ l−kf(lk)

exists for any l > 1 by the assumption of boundedness. Let a and b be mutually
coprime integers greater than d. Then there is an integer e = e(a, b) > d such that
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any integer m ≥ e is written as m = k1a+ k2b for some integers k1, k2 ≥ 0. Then
f(m) ≤ k1f(a) + k2f(b). Thus

f(m)

m
≤ k1f(a) + k2f(b)

k1a+ k2b
≤ max

{f(a)

a
,
f(b)

b

}
.

In particular, fl ≤ max{fa, fb} for any l > 1. Hence f∞ = fl is independent of the
choice of l. Thus f∞ = limk→∞ f(k)/k. ¤

The following simpler proof is due to S. Mori:

Another proof of 1.3. Let us fix an integer l > d. An integer m > l has an
expression m = ql+ r for 0 ≤ q ∈ Z and l ≤ r ≤ 2l− 1. Thus f(m) ≤ qf(l) + f(r).
Hence

f(m)

m
≤ qf(l) + f(r)

ql + r
=

(
ql

ql + r

)
f(l)

l
+

(
r

ql + r

)
f(r)

r
.

By taking m→∞, we have:

limm→∞
f(m)

m
≤ f(l)

l
.

Thus the limit exists. ¤

1.4. Lemma Let B be a big R-divisor and Γ a prime divisor.

(1) σΓ(A)Q = 0 for any ample R-divisor A.

(2) limε↓0 σΓ(B+ εA) = σΓ(B) and limε↓0 τΓ(B+ εA) = τΓ(B) for any ample

R-divisor A.

(3) σΓ(B)Q = σΓ(B) and τΓ(B)Q = τΓ(B).
(4) The R-divisor B◦ := B − σΓ(B)Γ satisfies σΓ(B◦) = 0 and σΓ′(B◦) =

σΓ′(B) for any other prime divisor Γ′. Furthermore, B◦ is also big.

(5) Let Γ1,Γ2, . . . ,Γl be mutually distinct prime divisors with σΓi
(B) = 0 for

all i. Then, for any ε > 0, there is an effective R-divisor ∆ ∈ |B|Q such

that multΓi
∆ < ε for any i.

Proof. (1) By II.5.2, it suffices to show σΓ(tA)Q = 0 for any t ∈ R>0 and
for a very ample effective divisor A. The equality holds for t ∈ Q. Hence even for
t 6∈ Q, we have

σΓ(tA)Q ≤ limQ3q↑t(t− q)multΓA = 0.

(2) τΓ(B + εA) ≥ τΓ(B) and σΓ(B + εA) ≤ σΓ(B) for any ε ∈ R>0, since
σΓ(εA) = 0. There exist a number δ ∈ R>0 and an effective R-divisor ∆ satisfying
B ∼Q δA+ ∆ by II.3.16. The inequalities

(1 + ε)σΓ(B) ≤ σΓ(B + εδA) + εmultΓ ∆,

(1 + ε)τΓ(B) ≥ τΓ(B + εδA) + εmultΓ ∆,

follow from (1 + ε)B ∼∼∼ B + εδA+ ε∆. Thus we have (2) by taking ε ↓ 0.
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(3) Let A be a very ample divisor. Then τΓ(B + εA)Q ≥ τΓ(B)Q and σΓ(B +
εA)Q ≤ σΓ(B)Q for any ε ∈ Q>0 (cf. (1)). There exists an effective R-divisor ∆
such that B ∼Q δA+ ∆ for some δ ∈ Q>0 by II.3.16. The inequalities

(1 + ε)σΓ(B)Q ≤ σΓ(B + εδA)Q + εmultΓ ∆,

(1 + ε)τΓ(B)Q ≥ τΓ(B + εδA)Q + εmultΓ ∆,

follow from (1 + ε)B ∼Q B + εδA+ ε∆. Thus we have

(III-4) σΓ(B)Q = lim
Q3ε↓0

σΓ(B + εA)Q, and τΓ(B)Q = lim
Q3ε↓0

τΓ(B + εA)Q.

The inequalities σΓ(B)Q ≥ σΓ(B) and τΓ(B)Q ≤ τΓ(B) follow from |B|Q ⊂ |B|num.
For an effective R-divisor ∆ ∈ |B|num, B + εA−∆ is ample for any ε ∈ Q>0. Here
σΓ(B+ εA−∆)Q = 0 by (1) and limε↓0 τΓ(B+ εA−∆)Q = 0 by (III-1). Therefore,
by (III-4), we have σΓ(B)Q ≤ multΓ ∆ ≤ τΓ(B)Q. Thus the equalities in (3) hold.

(4) If ∆ ∈ |mB| for some m ∈ N, then multΓ ∆ ≥ σΓ(mB)Z ≥ mσΓ(B).
Hence ∆ − mσΓ(B)Γ ∈ |mB◦|. In particular, |B◦|Q + σΓ(B)Γ = |B|Q, which
implies the first half assertion of (4). The bigness follows from the isomorphisms
H0(X, xmBy ) ' H0(X, xmB

◦
y ) (cf. II.5.4).

(5) There exist a number m ∈ N and effective R-divisors ∆i ∈ |mB| for 1 ≤
i ≤ l such that multΓi

∆i < mε. For an R-divisor ∆ ∈ |mB|, the condition:
multΓi

∆ < mε, is a Zariski-open condition in the projective space |mB|. Thus we
can find an R-divisor ∆ ∈ |mB| satisfying multΓi

∆ < mε for any i. ¤

1.5. Lemma Let D be a pseudo-effective R-divisor of X.

(1) For any ample R-divisor A,

limε↓0 σΓ(D + εA) ≤ limε↓0 τΓ(D + εA) ≤ D ·An−1

Γ ·An−1
< +∞.

(2) The limits limε↓0 σΓ(D+ εA) and limε↓0 τΓ(D+ εA) do not depend on the

choice of ample divisors A.

Proof. (1) This is a consequence of (III-1).
(2) Let A′ be another ample R-divisor. Then there are an effective R-divisor

∆ and a positive number δ such that A′ ∼∼∼ δA+ ∆. Hence we have

σΓ(D + εδA) + εmultΓ ∆ ≥ σΓ(D + εA′),

τΓ(D + εδA) + εmultΓ ∆ ≤ τΓ(D + εA′).

They induce inequalities limε↓0 σΓ(D+εA) ≥ limε↓0 σΓ(D+εA′) and limε↓0 τΓ(D+
εA) ≤ limε↓0 τΓ(D + εA′). Changing A with A′, we have the equalities. ¤

1.6. Definition For a pseudo-effective R-divisor D and a prime divisor Γ, we
define

σΓ(D) := limε↓0 σΓ(D + εA), and τΓ(D) := limε↓0 τΓ(D + εA).
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Note that if D ∼∼∼ D′, then σΓ(D) = σΓ(D′) and τΓ(D) = τΓ(D′). In particular, σΓ

and τΓ are functions on the closed convex cone PE(X). Here, σΓ is lower convex
and τΓ is upper convex. We have another expression of τΓ:

τΓ(D) = max{t ∈ R≥0 | D − tΓ ∈ PE(X)}.
1.7. Lemma

(1) σΓ : PE(X) → R≥0 is lower semi-continuous and τΓ : PE(X) → R≥0 is

upper semi-continuous. Both functions are continuous on Big(X).
(2) limε↓0 σΓ(D + εE) = σΓ(D) and limε↓0 τΓ(D + εE) = τΓ(D) for any

pseudo-effective R-divisor E.

(3) Let Γ1,Γ2, . . . ,Γl be mutually distinct prime divisors such that σΓi
(D) =

0. Then, for any ample R-divisor A, there exists an effective R-divisor ∆
such that ∆ ∼Q D +A and Γi 6⊂ Supp(∆) for any i.

Proof. (1) Let {Dn}n∈N be a sequence of pseudo-effective R-divisors whose
Chern classes c1(Dn) are convergent to c1(D). Let us take a norm ‖·‖ for the finite-
dimensional real vector space N1(X) and let Ur be the open ball {z ∈ N1(X) ; ‖z‖ <
r} for r ∈ R>0. We fix an ample R-divisor A on X. Then, for any r > 0, there is a
number n0 such that c1(D−Dn) ∈ Ur for n ≥ n0. For any ε > 0, there is an r > 0
such that Ur + εA is contained in the ample cone Amp(X). Applying the triangle
inequalities to D + εA = (D −Dn + εA) +Dn, we have

σΓ(D) = lim
ε↓0

σΓ(D + εA) ≤ lim
n→∞

σΓ(Dn),

τΓ(D) = lim
ε↓0

τΓ(D + εA) ≥ lim
n→∞

τΓ(Dn).

Next assume that D is big. Then there is a positive number δ such that D−δA
is still big. We can take r1 > 0 such that D − δA+ Ur1

⊂ Big(X). For any ε > 0,
there is a real number r ∈ (0, r1) such that Ur + εA ⊂ Amp(X). Applying the
triangle inequalities to Dn +(ε− δ)A = (Dn−D+ εA)+D− δA for ε < δ, we have

lim
n→∞

σΓ(Dn) ≤ σΓ(D − δA), and lim
n→∞

τΓ(Dn) ≥ τΓ(D − δA).

Hence it is enough to show

limt↓0 σΓ(D − tA) = σΓ(D), and limt↓0 τΓ(D − tA) = τΓ(D).

Since D− δA is big, there exists an effective R-divisor ∆ with D− δA ∼∼∼ ∆. Hence
D − tδA ∼∼∼ (1− t)D + t∆ for any t > 0, which induce

σΓ(D − tδA) ≤ (1− t)σΓ(D) + tmultΓ ∆,

τΓ(D − tδA) ≥ (1− t)τΓ(D) + tmultΓ ∆.

By taking t ↓ 0, we are done.
(2) By (1), we have limε↓0 σΓ(D+εE) ≥ σΓ(D) and limε↓0 τΓ(D+εE) ≤ τΓ(D).

On the other hand, σΓ(D+εE) ≤ σΓ(D)+εσΓ(E) and τΓ(D+εE) ≥ τΓ(D)+ετΓ(E)
for any ε > 0. Thus we have the equalities by taking ε ↓ 0.
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(3) Let us take m ∈ N such that mA+Γi is ample for any i. By 1.4-(5), for any
small ε > 0, there exist positive rational numbers λ, δi, and an effective R-divisor B

such that B+
∑l

i=1 δiΓi ∼Q D+λA, Γi 6⊂ SuppB for any i, and m(
∑

i δi)+λ < ε.
Then

B +
∑l

i=1
δi (mA+ Γi) ∼Q D +

(
m
∑l

i=1
δi + λ

)
A.

Thus we can find an expected effective R-divisor. ¤

Remark In (1), the function σΓ : PE(X)→ R≥0 is not necessarily continuous.
An example is given in IV.2.8. However, σΓ is continuous if dimX = 2 by 1.19.
The property (3) is generalized to V.1.3.

1.8. Lemma Let D be a pseudo-effective R-divisor, Γ1,Γ2, . . . ,Γl mutually

distinct prime divisors, and let s1, s2, . . . , sl be real numbers with 0 ≤ si ≤ σΓi
(D).

Then σΓi
(D −∑l

j=1 sjΓj) = σΓi
(D)− si for any i.

Proof. If D is big, this is proved by 1.4-(4). Let ε > 0 be a real number
satisfying si > ε for any i with si > 0. We define si(ε) to be the following number:

si(ε) :=

{
si − ε if si > 0;

0 if si = 0.

Let us consider R-divisors E := D −∑l
j=1 sjΓj and E(ε) := D −∑l

j=1 sj(ε)Γj .

There exist an ample R-divisor A and a real number δ > 0 satisfying σΓi
(D+δA) ≥

si(ε) for all i. Then E(ε) + δA is also big and σΓi
(E(ε) + δA) = σΓi

(D + δA) −
si(ε). Thus σΓi

(E(ε)) = limδ↓0 σΓi
(E(ε) + δA) = σΓi

(D)− si(ε) by 1.7-(2). Then
σΓi

(E) ≤ σΓi
(D)− si by the semi-continuity shown in 1.7-(1). On the other hand,

σΓi
(D) ≤ σΓi

(E) + si follows from D = E +
∑l

j=1 sjΓj by the lower convexity of
σΓi

. ¤

1.9. Corollary Let D be a pseudo-effective R-divisor and let Γ1, Γ2, . . . , Γl

be mutually distinct prime divisors with σΓi
(D) > 0 for any i. Then, for si ∈ R≥0,

σΓi

(
D +

∑
sjΓj

)
= σΓi

(D) + si.

Proof. Let E be the R-divisorD+
∑
sjΓj and let σi = σΓi

(D). For 0 < c < 1,
we have

(1− c)
(
D −

∑
σiΓi

)
+ cE = D +

∑
(−(1− c)σi + csi)Γi.

Let c be a number with 0 < c < σi/(si+σi) for any i. Then −σj < −(1−c)σj+csj <
0. By 1.8, we infer that σΓi

(E) ≥ σi + si. The other inequality is derived from the
lower convexity of σΓi

. ¤

1.10. Proposition Let D be a pseudo-effective R-divisor and let Γ1,Γ2, . . . ,Γl

be mutually distinct prime divisors of X with σΓi
(D) > 0 for any i. Then

σΓi

(∑l

j=1
xjΓj

)
= xi
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for any x1, x2, . . . , xl ∈ R≥0. In particular, c1(Γ1), c1(Γ2), . . . , c1(Γl) are linearly

independent in N1(X).

Proof. Let us take α ∈ R>0 with σΓi
(D) > αxi for any i. Then

σΓi
(D) ≤ σΓi

(
D − α

∑
xjΓj

)
+ ασΓi

(∑
xjΓj

)
.

Thus the equality σΓi
(
∑
xjΓj) = xi follows from 1.8. Suppose that there is a linear

relation ∑s

i=1
aiΓi

∼∼∼
∑l

j=s+1
bjΓj

for some ai, bj ∈ R≥0 and for some 1 ≤ s < l. Then

ak = σΓk

(∑s

i=1
aiΓi

)
= σΓk

(∑l

j=s+1
bjΓj

)
= 0

for k ≤ s. Hence ai = bj = 0 for all i, j. ¤

1.11. Corollary For any pseudo-effective R-divisor D, the number of prime

divisors Γ satisfying σΓ(D) > 0 is less than the Picard number ρ(X).

§1.b. Zariski-decomposition problem.

1.12. Definition Let D be a pseudo-effective R-divisor of a non-singular pro-
jective variety X. We define

Nσ(D) :=
∑

σΓ(D)Γ, and Pσ(D) := D −Nσ(D).

The decomposition D = Pσ(D) + Nσ(D) is called the σ-decomposition of D.
Here, Pσ(D) and Nσ(D) are called the positive and the negative parts of the σ-
decomposition of D, respectively.

1.13. Definition Let Mv′(X) be the convex cone in N1(X) generated by the
first Chern classes c1(L) of all the fixed part free divisors L (i.e., |L|fix = 0). We
denote its closure by Mv(X) and the interior of Mv(X) by Mv(X). The cones
Mv(X) and Mv(X) are called the movable cone and the strictly movable cone,
respectively. An R-divisor D is called movable if c1(D) ∈ Mv(X).

The movable cone was introduced by Kawamata in [58]. There are inclusions
Nef(X) ⊂ Mv(X) ⊂ PE(X) and Amp(X) ⊂ Mv(X) ⊂ Big(X).

1.14. Proposition Let D be a pseudo-effective R-divisor.

(1) Nσ(D) = 0 if and only if D is movable.

(2) If D −∆ is movable for an effective R-divisor ∆, then ∆ ≥ Nσ(D).

Proof. (1) Assume that Nσ(D) = 0. Then, by the proof of 1.7-(3), we infer
that c1(D + A) ∈ Mv′(X) for any ample R-divisor A. Therefore c1(D) ∈ Mv(X).
The converse is derived from 1.7-(1).

(2) By (1), Nσ(D−∆) = 0. Thus σΓ(D) ≤ σΓ(D−∆) + σΓ(∆) ≤ multΓ ∆ for
any prime divisor Γ. Therefore Nσ(D) ≤ ∆. ¤
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1.15. Lemma Let D be a pseudo-effective R-divisor, Γ a prime divisor, and

∆ an effective R-divisor with ∆ ≤ Nσ(D). Then

τΓ(D) = τΓ(D −∆) + multΓ ∆.

In particular, τΓ(D) = τΓ(Pσ(D)) + σΓ(D).

Proof. We know τΓ(D) ≥ σΓ(D) ≥ multΓ ∆. If D − tΓ is pseudo-effective
for some t ∈ R≥0, then σΓ′(D − tΓ) ≥ σΓ′(D) ≥ multΓ′ ∆ for any prime divisor
Γ′ 6= Γ. Thus D − ∆ − (τΓ(D) − multΓ ∆)Γ is pseudo-effective. In particular,
τΓ(D −∆) ≥ τΓ(D)−multΓ ∆. On the other hand,

D −∆− τΓ(D −∆)Γ ≤ D − (τΓ(D −∆) + multΓ ∆)Γ.

Thus we have the equality. ¤

1.16. Definition The σ-decomposition D = Pσ(D) + Nσ(D) for a pseudo-
effective R-divisor is called a Zariski-decomposition if Pσ(D) is nef.

1.17. Remark

(1) If X is a surface, then the movable cone Mv(X) coincides with the nef
cone Nef(X). Therefore 1.14 implies that the σ-decomposition is nothing
but the usual Zariski-decomposition (cf. [151], [20]).

(2) If Pσ(D) is nef, then the decomposition D = Pσ(D)+Nσ(D) is a Zariski-
decomposition in the sense of Fujita [25]. It is not clear that a Zariski-
decomposition in the sense of Fujita is a Zariski-decomposition in our
sense.

(3) If D is a big R-divisor, then the definitions of Zariski-decomposition D =
P +N given in [8], [57], [91], and in [25] coincide with the definition of
ours. This is derived from that

Nσ(B) = lim
m→∞

1

m
| xmBy |fix

for any big R-divisor B, which follows from (III-2) and 1.4-(3).
(4) If D is a big R-divisor, then R(X,D) :=

⊕∞
m=0 H0(X, xmDy ) is a finitely

generated C-algebra if and only if there exists a birational morphism
f : Y → X from a non-singular projective variety such that Pσ(µ∗D) is a
semi-ample Q-divisor. This is derived from II.3.1 applied to the algebraic
case.

Problem (Existence of Zariski-decomposition) For a given pseudo-effective
R-divisor D of X, does there exist a birational morphism µ : Y → X from a non-
singular projective variety with Pσ(µ∗D) being nef?

The author tried to show the existence, but finally found a counterexample for
a big R-divisor ([103], [104]). The counterexample is explained in IV.2.10 below
by the notion of toric bundles.
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1.18. Lemma Let f : X → Y be a generically finite surjective morphism of

non-singular projective varieties, D a pseudo-effective R-divisor of X, and Γ a

prime divisor of Y . Suppose that σΓ′(D) = 0 for any prime divisor Γ′ of X sat-

isfying Γ = f(Γ′). Then σΓ(f∗D) = 0. In particular, if D is movable, then so is

f∗D.

Proof. For any ample divisor H of X, for any positive real number ε, and for
any prime divisor Γ′ with Γ = f(Γ′), there is an effective R-divisor ∆ ∈ |D+ εH|Q
with multΓ′ ∆ = 0, by 1.7-(3). Then f∗∆ ∈ |f∗D + εf∗H|Q and multΓ f∗∆ = 0.
Hence σΓ(f∗D + εf∗H) = 0. Taking ε ↓ 0, we have σΓ(f∗D) = 0. ¤

Remark The push-forward f∗D for a nef divisor D is not necessarily nef.

We shall show the following continuity mentioned before:

1.19. Proposition The function σΓ : PE(X)→ R≥0 for a prime divisor Γ on

a non-singular projective surface X is continuous.

The proof of 1.19 is given after the following:

1.20. Lemma Let D be a nef R-divisor on a non-singular projective surface

X with D2 = 0. Then there exist at most finitely many irreducible curves C with

C2 < 0 such that D − εC is pseudo-effective for some ε > 0.

Proof. We may assume that D 6∼∼∼ 0. Let S = SD be the set of such curves
C. For C ∈ S, let α > 0 be a number with D − αC being pseudo-effective. Then
0 = D2 ≥ (D − αC) ·D ≥ 0. Hence D · C = 0 and (D − αC)2 < 0. Let N be the
negative part of the Zariski-decomposition of D− αC and let F := αC +N . Then
L := D − F is nef and

0 = D2 = D · F +D · L ≥ F · L+ L2 ≥ L2 ≥ 0.

Any prime component Γ of F is an element of S. Further, D ·Γ = L ·Γ = F ·Γ = 0.
Let C ′ be a curve belonging to S but not contained in SuppF . Similarly let α′ > 0
be a number with D − α′C ′ being pseudo-effective, N ′ the negative part of the
Zariski-decomposition of D − α′C ′, and let F ′ the R-divisor α′C ′ + N ′. Then we
infer that SuppF ∩ SuppF ′ = ∅ from the usual construction (cf. [151], [20]) of
the negative part N ′. In particular, the prime components of SuppN ∪ SuppN ′

are linearly independent in N1(X). Since the Picard number ρ(X) = dim N1(X) is
bounded, there exist only finitely many such negative partsN . Hence S is finite. ¤

Proof of 1.19. We may assume that D is not big by 1.7-(1). Let {Dn}n∈N

be a sequence of pseudo-effective R-divisors such that c1(D) = limn→∞ c1(Dn). If
Γ is an irreducible curve with σΓ(D) > 0, then σΓ(D) ≤ σΓ(Dn) except for finitely
many n by 1.7-(1). In particular Dn−σΓ(D)Γ is pseudo-effective for nÀ 0. Hence
we may assume that σΓ(D) = 0 and moreover that D is nef. Thus D2 = 0. We
set Nn := Nσ(Dn). Then N∞ := limNn exists by 1.20. Here, D − N∞ is nef. If
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N∞ 6= 0, then N2
∞ < 0, since SuppN∞ ⊂ SuppNn for some n. However, N2

∞ = 0
follows from

0 = D2 ≥ (D −N∞)D ≥ (D −N∞)2 ≥ 0.

Therefore, N∞ = 0 and σΓ is continuous. ¤

§2. Invariant σ along subvarieties

In order to analyze the behavior ofNσ under a blowing-up, we need to generalize
the function σΓ. Let W ⊂ X be a subvariety. For a prime divisor Γ, we denote
the multiplicity of Γ along W by multW Γ. For an R-divisor D, we define the
multiplicity multW D of D along W by

∑
Γ(multΓD)(multW Γ), where we take all

the prime components Γ of D.

2.1. Definition Let f : Y → X be a birational morphism from a non-singular
projective variety such that f∗IW /(tor) is an invertible sheaf for the defining ideal
sheaf IW of W . Then f∗IW /(tor) = OY (−E) ⊂ OY for an effective divisor E of Y .
We define EW to be the prime component of E such that, over a dense Zariski-open
subset U ⊂ X with W ∩U being non-singular, EW |f−1U is the proper transform of
the exceptional divisor of the blowing-up along the ideal IW .

Let Γ be a prime divisor of X. Then multW Γ is the maximal number m with
f∗Γ ≥ mEW . Hence multW ∆ = multEW

f∗∆ for any R-divisor ∆. Let A be an
ample R-divisor of X. Then the following equalities hold by 1.7-(2):

σEW
(f∗D) = lim

ε↓0
σEW

(f∗(D + εA)) = lim
ε↓0

inf{multW ∆ | ∆ ∈ |D + εA|num};

τEW
(f∗D) = lim

ε↓0
τEW

(f∗(D + εA)) = lim
ε↓0

sup{multW ∆ | ∆ ∈ |D + εA|num}.

2.2. Definition Let W ⊂ X be a subvariety of codimW ≥ 2. For a pseudo-
effective R-divisor D, we define σW (D) := σEW

(f∗D) and τW (D) := τEW
(f∗D).

2.3. Lemma

(1) σW (D) ≤ σx(D) and τW (D) ≤ τx(D) for any point x ∈W .

(2) There is a countable union S of proper closed analytic subsets of W such

that σW (D) = σx(D) for any x ∈W r S.
(3) The function X 3 x 7→ σx(B) is upper semi-continuous if B is big.

Proof. (1) and (2) Let ∆ =
∑
rjΓj be the prime decomposition of an effective

R-divisor ∆. By definition, multW ∆ =
∑
rj multW Γj . Hence multx ∆ ≥ multW ∆

holds and there exists a Zariski-open dense subset U of W such that multx ∆ =
multW ∆ for x ∈ U . For an ample divisor A, ε ∈ Q>0, and m ∈ N, we write
∆(m, ε) = |m(D + εA)|. Then the inequalities

inf{multx ∆ | ∆ ∈∆(m, ε)} ≥ inf{multW ∆ | ∆ ∈∆(m, ε)},(III-5)

sup{multx ∆ | ∆ ∈∆(m, ε)} ≥ sup{multW ∆ | ∆ ∈∆(m, ε)}
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hold, which imply (1). Since ∆(m, ε) = | xm(D + εA)y |+〈m(D + εA)〉, we can find
a Zariski-open dense subset U(m, ε) ⊂W such that the equality holds in (III-5) for
any x ∈ U(m, ε). Thus (2) holds for W r S =

⋂
U(m, ε).

(3) We have σx(B) = inf{multx ∆ | ∆ ∈ |B|num}, since B is big. Therefore the
result follows from the upper semi-continuity of the function x 7→ multx ∆. ¤

Question Does the property (3) hold also for a pseudo-effective R-divisor?

2.4. Lemma Let f : Y → X be a birational morphism of non-singular projec-

tive varieties.

(1) Suppose that f is the blowing-up at a point x ∈ X. Let ∆ be an effective

divisor of X and let ∆′ be the proper transform in Y . Then multy ∆′ ≤
multx ∆ for any y ∈ f−1(x).

(2) Let y ∈ Y and x ∈ X be points with x = f(y). Then there exist positive

integers k1 and k2 such that

k1 multx ∆ ≤ multy f
∗∆ ≤ k2 multx ∆

for any effective divisor ∆ of X.

Proof. (1) The fiber E := f−1(x) is isomorphic to a projective space. We
have multy ∆′ ≤ multy ∆′|E . Since ∆′|E is an effective divisor of degree multx ∆,
we have multy ∆′|E ≤ multx ∆.

(2) Let mx and my be the maximal ideal sheaves at x and y, respectively. Let k1

be the maximum positive integer satisfying f ∗mx/(tor) ⊂ mk1
y . Let ∆ be an effective

divisor ofX. Then multy f
∗∆ ≥ k1 multx ∆. In order to obtain the other inequality,

we may assume that f is a succession of blowups along non-singular centers since
we can apply the inequality of the left hand side. Further we may assume that f is
only the blowing-up along a non-singular center C 3 x. Assume first that C = {x}.
Then multy f

∗∆ = multy ∆′ + multx ∆ ≤ 2multx ∆ by (1). We can take k2 = 2 in
this case. Next assume that C 6= {x}. Then there is the intersection W of general
very ample divisors such that W 3 x, W 6⊂ ∆, W intersects C transversely at x,
and multx ∆ = multx ∆|W . Then multy f

∗∆ ≤ multy f
∗∆|f−1W . By applying the

case above to W , we have multy f
∗∆ ≤ 2multx ∆|W = 2multx ∆. Thus we are

done. ¤

2.5. Lemma Let D be a pseudo-effective R-divisor of X.

(1) If f : Y → X is a birational morphism from a non-singular projective

variety Y , then Nσ(f∗D) ≥ f∗Nσ(D) and f∗Pσ(f∗D) = Pσ(D). If further

Pσ(D) is nef, then Pσ(f∗D) = f∗Pσ(D).
(2) For any subvariety W ⊂ X, there are equalities

σW (D) = σW (Pσ(D)) + multW Nσ(D),

τW (D) = τW (Pσ(D)) + multW Nσ(D).

(3) Let ρx : Qx(X) → X be the blowing-up at a point x ∈ X and let y be a

point of ρ−1
x (x). Then σy(Pσ(ρ∗xD)) ≤ σx(Pσ(D)).
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(4) Let f : Y → X be a birational morphism from a non-singular projective

variety. If σx(D) = 0, then σy(f∗D) = 0 for any y ∈ f−1(x).

Proof. (1) Let A be an ample divisor of X. If ∆ is an effective R-divisor of Y
such that ∆ ∼∼∼ f∗(D+εA) for some ε ∈ R>0, then ∆ = f∗(f∗∆) and f∗∆ ∼∼∼ D+εA.
Therefore Nσ(f∗(D + εA)) ≥ f∗Nσ(D + εA). The first inequality is obtained by
ε ↓ 0 (cf. 1.7-(2)). Since the difference of two R-divisors lies on the exceptional
locus, we have the equality of f∗Pσ. In case Pσ(D) is nef, the equality for f∗Pσ

follows from 1.14-(2).
(2) In case codimW ≥ 2, let f : Y → X and EW be as in 2.1. In case

codimW = 1, let f = id: Y = X and EW = W . Then

σEW
(f∗D) = σEW

(f∗Pσ(D)) + multEW
f∗Nσ(D),

τEW
(f∗D) = τEW

(f∗Pσ(D)) + multEW
f∗Nσ(D),

by (1), 1.8, and 1.15. Thus we are done by 2.1, 2.2.
(3) and (4) We may assume that c1(D) ∈ Mv(X) by (1) and 1.7. Then (3)

and (4) are derived from 2.4-(1) and 2.4-(2), respectively. ¤

Remark The assertion (4) above is proved directly from V.1.5.

2.6. Definition ([77]) For a pseudo-effective R-divisor D of X, the numerical

base locus of D is defined by

NBs(D) := {x ∈ X | σx(D) > 0}.
If x 6∈ NBs(D), i.e., σx(D) = 0, then D is called nef at x (cf. 2.8 below). If
W ∩NBs(D) = ∅ for a subset W ⊂ X, then D is called nef along W .

2.7. Lemma Let D be a pseudo-effective R-divisor and let W be a subvariety

such that D|W is not pseudo-effective in the sense of II.5.8. Then σW (D) > 0.

Proof. Let f : Y → X be a birational morphism of 2.1 for W . Then f∗D|EW

is not pseudo-effective by II.5.6-(2). Hence σW (D) = σEW
(f∗D) > 0. ¤

2.8. Remark If D is nef at a point x, i.e., σx(D) = 0, then D · C ≥ 0 for
any irreducible curve C passing through x. However, the converse does not hold in
general. For example, there is a pseudo-effective divisor D on some non-singular
projective surface such that D · Γ ≥ 0 for some irreducible component Γ of the
negative part N of the Zariski-decomposition of D. For a general point x ∈ Γ, we
infer that D ·C ≥ 0 for any irreducible curve C passing through x while σx(D) > 0.

2.9. Lemma If D is strictly movable, i.e., c1(D) ∈ Mv(X), then there exist at

most a finite number of subvarieties W of X with σW (D) > 0 and codimW = 2.

Proof. Let Z be the intersection of all the supports of the members of |D|num.
Then codimZ ≥ 2 by 1.7-(3). If σW (D) > 0, then W is an irreducible component
of Z. ¤
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2.10. Lemma Let Γ be a prime divisor and let ∆ be an effective divisor of X
with Γ 6⊂ Supp∆. Let W1, W2, . . . , Wk be irreducible components of ∆|Γ. Then

∑
(multWi

∆)Wi ≤ ∆|Γ
as cycles of codimension two.

Proof. It suffices to show that multW ∆ ≤ multW ∆|Γ for any W = Wi. Let
f : Y → X be a birational morphism of 2.1 for W and let EW be the divisor over
W . Then multW ∆ = multEW

f∗∆ and multW ∆|Γ = multEW ∩Γ′(f∗∆|Γ′) for the
proper transform Γ′ of Γ. Here

(f∗∆− (multW ∆)EW )|Γ′

is an effective divisor, since Γ′ is not a prime component of f∗∆− (multW ∆)EW .
Thus multW ∆ ≤ multW ∆|Γ. ¤

2.11. Proposition (Moriwaki (cf. [93, 4.1])) For a movable big R-divisor B,

the formal cycle ∑
codim W=2

σW (B)W

of codimension two is uniformly convergent in the real vector space N2(X).

Proof. Let Fm be the fixed divisor |mB|fix = | xmBy |fix+〈mB〉 for m ∈ N(B).
There exist an integer m0 ∈ N and a reduced divisor F such that SuppFm = F for
any m ≥ m0. Let W be a subvariety of codimW = 2 with σW (B) > 0. If W 6⊂ F ,
then W ⊂ Bs | xmBy | for any m ≥ m0. Thus the number of W with W 6⊂ F is
finite. Let ∆ be a general member of | xmBy |red. Then

∑
W⊂Γ,codim W=2

(multW ∆)W ≤ ∆|Γ
for any prime component Γ of F , by 2.10. Since

0 < σW (B) ≤ 1

m
σW (mB)Z =

1

m
multW ∆ +

1

m
multW Fm,

the formal cycle B · F −∑W⊂F σW (B)W is pseudo-effective in N2(X). ¤

2.12. Proposition For a movable R-divisor D, the formal cycle
∑

codim W=2
σW (D)2W

of codimension two is uniformly convergent in the real vector space N2(X).

Proof. Let W1, W2, . . . , Wk be finitely many subvarieties of codimension two
in X. There exist a birational morphism f : Y → X and prime divisors E1, E2,
. . . , Ek of Y satisfying the following conditions (cf. 2.1):

(1) Y is non-singular and projective;
(2) f(Ei) = Wi for any i;
(3) there is a Zariski-open subset U ⊂ X with codim(Z rU) ≥ 3 such that f

restricted to f−1U is the blowing-up along the smooth center U ∩⋃Wi.
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Then Nσ(f∗D) =
∑
σWi

(D)Ei + N ′ for an effective f -exceptional R-divisor N ′

with codim f(SuppN ′) ≥ 3. Hence

f∗(Nσ(f∗D)2) =
∑

σWi
(D)2f∗(E

2
i ) = −

∑
σWi

(D)2Wi.

Moreover, the equality

D2 + f∗(Nσ(f∗D)2) = f∗(Pσ(f∗D)2)

follows from

f∗D2 +Nσ(f∗D)2 = Pσ(f∗D)2 + 2f∗D ·Nσ(f∗D).

Hence

f∗(Pσ(f∗D)2) = D2 −
∑

σWi
(D)2Wi

is a pseudo-effective R-cycle of codimension two. ¤

2.13. Corollary Let D be a pseudo-effective R-divisor of X. Then, for any

ε > 0, there exists a birational morphism h : Z → X from a non-singular projective

variety such that σW (Pσ(h∗D)) < ε for any the subvariety W of codimension two

with h∗W 6= 0.

Proof. We may assume that D is movable. The number of subvarieties W ′

of codimension two of X with σW ′(D) ≥ ε is finite. Let W ′
1, W

′
2, . . . , W ′

l be all
of such subvarieties. Let h : Z → X be a birational morphism from a non-singular
projective variety. Then D2 + h∗(Nσ(h∗D)2) = h∗(Pσ(h∗D)2) is pseudo-effective.
Suppose that ν : Z ′ → Z is a birational morphism from a non-singular projective
variety satisfying the following condition similar to that in the proof 2.12: There
exist a finite number of subvarieties Wi ⊂ Z of codimension two such that ν is the
blowing-up along

⋃
Wi over a Zariski-open subset U ⊂ Z with codim(Z r U) ≥ 3.

Then

h′∗(Pσ(h′
∗
D)2) ≤ h∗(Pσ(h∗D)2)

for the composite h′ : Z ′ → Z → X by the same argument as in 2.12. We set

ti(h) := max{t ∈ R≥0 | h∗(Pσ(h∗D)2)− tW ′
i is pseudo-effective}.

We may assume that the birational morphism h : Z → X satisfies ti(h) < ti(h
′)+ε2

for any such birational morphism Z ′ → Z above and for any i.
Let W be a subvariety of Z of codimension two with h∗W 6= 0. If h(W ) 6= W ′

i

for any i, then σW (Pσ(h∗D)) < ε by 2.5-(3). Thus we may assume that h(W ) = W ′
i

for some i. There is a birational morphism µ : Y → Z from a non-singular projective
variety such that µ is isomorphic to the blowing-up along W over a Zariski-open
subset U ⊂ Z with codim(Z r U) ≥ 3. Let f be the composite h ◦ µ. Then
Pσ(f∗D) = Pσ(µ∗Pσ(h∗D)) and

f∗(Pσ(f∗D)2) = h∗(Pσ(h∗D)2)− σW (Pσ(h∗D))2h∗W

by the same argument as in 2.12. Hence

deg(W → h(W )) · σW (Pσ(h∗D))2 ≤ ti(h)− ti(f) < ε2. ¤
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Remark Let β be a pseudo-effective algebraic R-cycle of codimension q of X.
Suppose that cl(β) is contained in the interior Int PEq(X) of PEq(X) in Nq(X).
Then there is an effective R-cycle δ such that cl(δ) = cl(β). For a subvariety W of
codimension q, we define

σW (β) := inf{multW δ | δ ≥ 0, cl(δ) = cl(β)},
τW (β) := sup{t ∈ R≥0 | β − tW is pseudo-effective}.

As in the same argument as before, σW and τW can be defined also for pseudo-
effective R-cycles. The following properties hold:

(1) σW : PEq(X) → R≥0 is lower semi-continuous and τW : PEq(E) → R≥0

is upper semi-continuous. Both are continuous on Int PEq(X);
(2) limε↓0 σW (ζ+εη) = σW (ζ) and limε↓0 τW (ζ+εη) = τW (ζ) for any pseudo-

effective R-cycle η;
(3) Let W1, W2, . . . , Wl be mutually distinct subvarieties of codimension q

and let s1, s2, . . . , sl be real numbers with 0 ≤ si ≤ σWi
(ζ). Then

σWi
(ζ −∑ sjWj) = σWi

(ζ)− si;
(4) IfW1, W2, . . . , Wl are mutually distinct subvarieties of codimension q with

σWi
(ζ) > 0, then their cohomology classes cl(Wi) are linearly independent.

In particular, we can define the σ-decomposition ζ = Pσ(ζ) +Nσ(ζ) by

Nσ(ζ) =
∑

codim W=q
σW (ζ)W.

Remark Let X be a compact Kähler manifold of dimension n. For an integer
k ≥ 0, let PCk(X) ⊂ Hk,k(X,R) := H2k(X,R) ∩ Hk,k(X) be the closed convex
cone of the cohomology classes of d-closed positive real currents of type (k, k).
Instead of the multiplicity, we consider the Lelong number ρW (T ) of such current
T along a subvariety W . The previous argument works well and we can define the
σ-decomposition for the currents. This is an extension of the σ-decomposition for
algebraic cycles.

§3. ν-decomposition

Let X be a non-singular projective variety and let D be a pseudo-effective
R-divisor of X. Then, for a prime divisor Γ, the restriction Pσ(D)|Γ is pseudo-
effective in the sense of II.5.8. Let S(D) be the set of effective R-divisors ∆ such
that (D −∆)|Γ is pseudo-effective for any prime divisor Γ. Then Nσ(D) ∈ S(D).
We set

Nν(D) :=
∑

Γ: prime divisor
inf{multΓ ∆ | ∆ ∈ S(D)}Γ.

Then this is an R-divisor and Nν(D) ≤ Nσ(D). In particular, Pν(D) := D−Nν(D)
is also pseudo-effective.

3.1. Lemma Nν(D) ∈ S(D).
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Proof. For any prime divisor Γ and for any positive number ε, there is an
effective R-divisor ∆ ∈ S(D) such that δ := multΓ ∆−multΓNν(D) ≤ ε. Thus

(D −Nν(D))|Γ − δΓ|Γ = (D −∆)|Γ + (∆′ −Nν(D)′)|Γ
is pseudo-effective for R-divisors ∆′ = ∆ − (multΓ ∆)Γ and Nν(D)′ = Nν(D) −
(multΓNν(D))Γ. Therefore Nν(D) ∈ S(D). ¤

3.2. Definition The decomposition D = Pν(D) + Nν(D) is called the ν-
decomposition of D. The R-divisors Pν(D) and Nν(D) are called the positive and
the negative parts of the ν-decomposition of D, respectively.

3.3. Lemma Let D = Pν(D) + Nν(D) be the ν-decomposition of a pseudo-

effective R-divisor and let Γ be a prime component of Nν(D). Then Pν(D)|Γ is not

big.

Proof. Assume the contrary. Then there is a positive number ε such that
(Pν(D) + εΓ)|Γ is still big. If Γ′ is another prime divisor, then (Pν(D) + εΓ)|Γ′ is
pseudo-effective. It contradicts the definition of Nν(D). ¤

3.4. Question If D|Γ is pseudo-effective for any prime divisor Γ, then is D
pseudo-effective?

3.5. Lemma Let B be a big R-divisor with Nν(B) = 0 and let F =
∑
aiΓi be

the prime decomposition of an effective R-divisor F such that B|Γi
is not big for

any i. Then Nν(B + F ) = F .

Proof. By the definition of Nν , it is enough to show that (B + F )|Γi
is not

pseudo-effective for some i. There is an effective R-divisor ∆ such that B − ∆ is
ample. Then ∆|Γi

is not pseudo-effective for any i. Moreover, (B + r∆)|Γi
is not

pseudo-effective for any r > 0 by the equality

B =
1

r + 1
(B + r∆) +

r

r + 1
(B −∆).

Let r be the maximum of {aj/(multΓj
∆)} and let i be an index attaining the

maximum. Then (B + F )|Γi
is not pseudo-effective, since (r∆ − F )|Γi

is effective
and B + r∆ = B + F + (r∆− F ). ¤

3.6. Corollary (cf. [26, Lemma 1], [76, Theorem 2]) Let H be a nef and big

R-divisor and let E, G, and ∆ be effective R-divisors. Suppose that

(1) E and G have no common prime component,

(2) Hn−1E = 0, where n = dimX,

(3) ∆ ∼∼∼ H + E −G.

Then E ≤ ∆.

Proof. Apply 3.5 to B := H and F := E. Then Nν(∆+G) = E ≤ ∆+G. ¤

3.7. Proposition Let B be a big R-divisor and let N be an effective R-divisor

such that P = B −N is nef and big. Then the following conditions are equivalent :
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(1) P |Γ is not big for any prime component of N ;
(2) N = Nν(B);
(3) B = P +N is a Zariski-decomposition.

Proof. (1) ⇒ (2) follows from 3.5. (2) ⇒ (3) is trivial.
(3)⇒ (1): We may assume that SuppN ∪Supp〈P 〉 is a simple normal crossing

divisor, by taking a suitable blowing-up. For a prime component Γ of N , let us
consider the exact sequence

0→ OX( xmPy )→ OX( xmPy + Γ)→ OΓ( xmPy + Γ)→ 0.

By II.5.13, we have

lim
m→∞

1

mn−1
h1(X, xmPy ) = 0, and lim

m→∞

1

mn−1
h0(Γ,OΓ( xmPy + Γ)) = 0.

Thus P |Γ are not big. ¤

3.8. Corollary Let P be a nef and big R-divisor and let Γ be a prime divisor

such that P |Γ is big. Then, for any ample divisor A, there exists an effective R-

divisor E such that Γ 6⊂ SuppE and aP ∼ A+ E for some a ∈ N.

Proof. Suppose that σΓ(P+εΓ) > 0 for any ε > 0. Then P is the positive part
of the Zariski-decomposition of P +Γ. This contradicts 3.7. Hence σΓ(P + δΓ) = 0
for some δ > 0. We may assume that there is an effective R-divisor G such that
Γ 6⊂ SuppG and G ∼Q P + δΓ. There is an effective R-divisor ∆ such that P − ε∆
is ample for any 0 < ε < 1. Here

σΓ(mP + ∆) ≤ σΓ(mP + (multΓ ∆)Γ) = 0

for m À 0. Thus there is an effective R-divisor E1 ∼Q bP + ∆ with Γ 6⊂ SuppE1

for some b ∈ N. Further mP −E1 ∼Q (m− b)P −∆ is ample for m > b+ 1. Thus
c((b+ 2)P −E1)−A ∼ E2 for an effective R-divisor E2 with Γ 6⊂ SuppE2 and for
some c ∈ N. Thus a = c(b+ 2) and E = cE1 + E2 satisfy the condition. ¤

3.9. Definition A pseudo-effective R-divisor D of a non-singular projective
variety X is called numerically movable if D|Γ is pseudo-effective for any prime
divisor Γ. We denote by NMv(X) the set of the first Chern classes of numerically
movable pseudo-effective R-divisors of X, which is a closed convex cone contained
in PE(X).

3.10. Remark (cf. 1.14) For a pseudo-effective R-divisor D, we have:

(1) c1(Pν(D)) ∈ NMv(X);
(2) if c1(D −∆) ∈ NMv(X) for an effective R-divisor ∆, then ∆ ≥ Nν(D).

3.11. Lemma Let D be a numerically movable R-divisor such that |D|num 6= ∅.
Then there exist at most finitely many subvarieties W of codimension two such that

D|W is not pseudo-effective.
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Proof. Let ∆ be a member of |D|num. If D|W is not pseudo-effective, then
W ⊂ Γ for a component Γ of ∆. Let µ : Z → Γ be a birational morphism from a non-
singular projective variety and let W ′ be the proper transform of W . Then µ∗D|W ′

is not pseudo-effective. Hence W ′ is a prime component of Nσ(µ∗D). In particular,
Γ contains at most finitely many irreducible subvarieties W of codimension two in
X with D|W being not pseudo-effective. ¤

3.12. Remark The ν-decomposition of a given pseudo-effective R-divisor D
is calculated as follows: In step 1, let D1 = {Γ1,Γ2, . . . ,Γm1

} be the set of prime
divisors Γ such that D|Γ is not pseudo-effective. If D1 is empty, then D = Pν(D),
and we stop here. Otherwise, the set T1 defined as
{(
ri
)m1

i=1
∈ (R≥0)

m1

∣∣∣
(
D −

∑m1

i=1
riΓi

)∣∣
Γj

is pseudo-effective for 1 ≤ j ≤ m1

}

is not empty. For 1 ≤ j ≤ m1, we set

t
(1)
j := inf{t ≥ 0 | t = rj for some (ri) ∈ T1}.

Then (t
(1)
i ) ∈ T1 by the same argument as in the proof of 3.1. We consider the

pseudo-effective R-divisor

D(1) := D −
∑m1

i=1
t
(1)
i Γi.

In step 2, let D2 = {Γm1+1,Γm1+2, . . . ,Γm2
} be the set of prime divisors Γ such

that D(1)|Γ is not pseudo-effective. If D2 is empty, then D(1) = Pν(D), and we stop
here. Otherwise, then the set T2 defined as
{(
ri
)m2

i=1
∈ (R≥0)

m2

∣∣∣
(
D(1) −

∑m2

i=1
riΓi

)∣∣
Γj

is pseudo-effective for 1 ≤ j ≤ m2

}

is not empty. For 1 ≤ j ≤ m2, we set

t
(2)
j := inf{t ≥ 0 | t = rj for some (ri) ∈ T2}.

Then (t
(2)
i ) ∈ T2 and we have the pseudo-effective R-divisor

D(2) := D(1) −
∑m2

i=1
t
(2)
i Γi.

In step 3, we consider the set D3 of prime divisors Γ such that D(2)|Γ is not pseudo-
effective. In this way, we obtain the sets Dk, Tk, and the pseudo-effective R-divisors
D(k). Since the prime divisors contained in some Dk are components of Nσ(D),
this process terminates in a suitable step. The last R-divisor D(k) is the positive
part Pν(D).

Remark

(1) The construction of Zariski-decomposition on surfaces ([151], [20]) is

given by the same way as 3.12. In the case, t
(1)
i , t

(2)
i · · ·, are calculated by

linear equations.
(2) If Pν(D) ∈ Mv(X), then the ν-decomposition is the σ-decomposition by

1.14 and 3.10.
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(3) In general, Nσ(D) 6= Nν(D). For example, for the blowing-up f : Y → X
at a point x ∈ X, we have Nν(f∗D) = f∗Nν(D). However Nσ(f∗D) 6=
f∗Nσ(D) if σx(D) > 0.

§4. Relative version

§4.a. Relative σ-decomposition. Let π : X → S be a proper surjective mor-
phism of complex analytic varieties. Assume that X is non-singular. Let B be a
π-big R-divisor with π∗OX( xBy ) 6= 0 and Γ a prime divisor of X. Let mB be the
maximum non-negative integer m such that the natural injection

π∗OX( xBy −mΓ) ↪→ π∗OX( xBy )

is isomorphic. Note that if the injection is isomorphic over an open subset U ⊂ S
with U ∩ π(Γ) 6= ∅, then it is isomorphic over S. In fact, for i < mB , the cokernel
of

π∗OX( xBy − (i+ 1)Γ) ↪→ π∗OX( xBy − iΓ)

is contained in the torsion-free sheaf π∗OΓ( xBy − iΓ) of π(Γ).
For an open subset U ⊂ S and for an R-divisor D of X, we write XU = π−1U

and DU = D|π−1U . Let |B/S,U| be the set of effective R-divisors ∆ defined on XU

such that ∆ ∼ BU . If U is a Stein space with π(Γ)∩ U 6= ∅ and if π∗OX( xBy ) 6= 0,
then |B/S,U| 6= ∅ and

mB + multΓ〈B〉 = max
{
t ∈ R≥0

∣∣ ∆ ≥ tΓU for any ∆ ∈ |B/S,U|
}
.

The following numbers are defined similarly to 1.1:

σΓ(B;X/S)Z :=

{
+∞, if π∗OX( xBy ) = 0,

mB + multΓ〈B〉, otherwise;

σΓ(B;X/S) := limm→∞(1/m)σΓ(mB;X/S)Z.

4.1. Lemma If U ⊂ S is a connected open subset with U ∩ π(Γ) 6= ∅, then

σΓ′(BU ;XU/U) = σΓ(B;X/S)

for an irreducible component Γ′ of ΓU .

Proof. This is derived from the property: if ∆ is an effective R-divisor of X
and if ∆|U ≥ mΓ′ for some m > 0, then ∆ ≥ mΓ. ¤

If S is Stein and ifA is a π-ample divisor ofX, then σΓ(B;X/S) = limε↓0 σΓ(B+
εA;X/S) by the same argument as in 1.4-(2), -(3). If ∆ is an effective R-divisor
of X such that B − ∆ is π-numerically trivial over an open subset U ⊂ S with
U ∩ π(Γ) 6= ∅, then σΓ(B;X/S) ≤ multΓ ∆ by the same argument as in 1.4-(3).
Moreover, σΓ(B;X/S) is the infimum of multΓ ∆ for such ∆ provided that S is
Stein.

Suppose that π : X → S is a locally projective morphism. Let D be a π-pseudo-
effective R-divisor of X. Let U ⊂ S be a Stein open subset with U ∩ π(Γ) 6= ∅ such
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that there is a relatively ample divisor A of XU over U . Let ΓU =
⋃

Γj be the
irreducible decomposition. By the previous argument, we infer that the limit

σΓ(D;X/S) := limε↓0 σΓj
(DU + εA;XU/U)

does not depend on the choices of the Stein open subsets U , the relatively ample
divisor A of XU , and the irreducible component Γj of Γ ∩XU . It is not clear that
σΓ(D;X/S) < +∞. By the same argument as in 1.8 and 1.10, we have:

4.2. Lemma Let D be a π-pseudo-effective R-divisor and let Γ1,Γ2, · · · ,Γl be

mutually distinct prime divisors of X.

(1) If si are real numbers with 0 ≤ si ≤ σΓi
(D;X/S), then, for any i,

σΓi

(
D −

∑l

j=1
sjΓj ;X/S

)
= σΓi

(D;X/S)− si.

(2) Suppose that σΓi
(D;X/S) > 0 for any i. Then, for any xi ≥ 0,

σΓi

(∑l

j=1
xjΓj ;X/S

)
= xi.

In particular,
∑l

i=1 xiΓi is π-numerically trivial over an open subset U ⊂
S if and only if xi = 0 for all i with π(Γi) ∩ U 6= ∅.

4.3. Lemma σΓ(D;X/S) < +∞ provided that one of the following conditions

is satisfied :

(1) π(Γ) = S;
(2) There exists an effective R-divisor ∆ such that D−∆ is relatively numer-

ically trivial over an open subset U with U ∩ π(Γ) 6= ∅;
(3) SuppD does not dominate S;
(4) codimπ(Γ) = 1.

Proof. Case (1) It follows from 1.5-(1) applied to the restriction of D to a
‘general’ fiber of π.

Case (2) Trivial.
Case (3) Since π∗OX( xDy ) 6= 0, there is an effective R-divisor ∆ such that

∆ ∼ D, locally on S. Thus it is reduced to Case (2).
Case (4) We may assume that π has connected fibers and a relatively ample

divisor A and that S is normal. Let Γ0 := Γ,Γ1,Γ2, . . . ,Γl be all the prime divisors
of X with π(Γi) = π(Γ). Then there exist positive integers ai, a reflexive sheaf
L of rank one of S, and a Zariski-open subset U of S such that L|U is invertible,
codim(S r U) ≥ 2, and

π∗(L|U ) ' OX

(∑l

i=0
aiΓi

) ∣∣∣
XU

.

By taking a blowing-up of X, we may assume that the image of the evaluation
mapping

π∗π∗OX

(∑l

i=0
aiΓi

)
→ OX

(∑l

i=0
aiΓi

)
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is an invertible subsheaf. Then the image is written by OX(
∑l

i=0 aiΓi −E) for an

effective divisor E with codimπ(E) ≥ 2. Since
∑l

i=0 aiΓi − E is π-nef, we have

σΓj
(
∑l

i=0 aiΓi;X/S) ≤ σΓj
(E;X/S) = 0. Thus σΓj

(D;X/S) = 0 for some Γj . For
any ε > 0,

(
D + εA−

∑l

i=0
σΓi

(D + εA;X/S)Γi

) ∣∣∣
Γj

is (π|Γj
)-pseudo-effective. Hence if π(Γk ∩ Γj) = π(Γ), then σΓk

(D;X/S) < +∞.
Since π has connected fibers, we have σΓ(D;X/S) < +∞. ¤

Question Is there an example in which σΓ(D;X/S) = +∞?

Let us consider the formal sum

Nσ(D;X/S) :=
∑

Γ: prime divisor
σΓ(D;X/S)Γ.

Let us fix a point P ∈ S and recall the real vector space N1(X/S;P ) ([98], Chap-
ter II, §5.d). By 4.2 and by dim N1(X/S;P ) < ∞, there exist only a finite
number of prime divisors Γ such that σΓ(D;X/S) > 0 and π(Γ) 3 P . Therefore,
if σΓ(D;X/S) < +∞ for all prime divisors Γ, then Nσ(D;X/S) is an effective R-
divisor. In this case, we can define the relative σ-decomposition D = Pσ(D;X/S)+
Nσ(D;X/S). Also we can define the relative ν-decomposition as in §3. Suppose
that Pσ(D;X/S) is π-nef over the point P . Then Pσ(D;X/S)+εA is π-ample over
P for any π-ample divisor A and for any ε > 0. Thus σx(Pσ(D;X/S);X/S) = 0
for any x ∈ π−1(P ) and Pσ(D;X/S) is π-nef over a ‘general’ point s ∈ S. Let
ν : Y → X be a bimeromorphic morphism from a non-singular variety Y locally
projective over S. Then Pσ(ν∗D;Y/S) ≤ ν∗Pσ(D;X/S) by 2.5-(1), and the dif-
ference does not lie over P . Thus the relative σ-decomposition is called a relative

Zariski-decomposition over P . We have the following problem:

Problem Let π : X → C be a projective surjective morphism from a non-
singular variety into a non-singular curve, P ∈ C a point, and D a divisor of X
such that D is π-nef over P . Then does there exist an open neighborhood U of P
such that D is π-nef over U?

The set of points of C over which D is not π-nef, is countable. The problem asks
whether the set is discrete or not. The divisor D is π-pseudo-effective. If D admits
a relative Zariski-decomposition over C, then {x ∈ X | σx(D;X/S) > 0} is a
Zariski-closed subset of X away from π−1(P ) and the answer of the problem is yes.
If dimX = 2, the answer is yes. If D is π-numerically trivial over P , then the
answer is also yes by II.5.15. If there is an effective R-divisor ∆ such that D −∆
is π-numerically trivial over P , then the problem is reduced to a lower-dimensional
case. In particular, for the case dimX = 3, the the answer is unknown only in the
case: D|π−1(t) is not numerically trivial and not big for general t ∈ C.
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§4.b. Threefolds. We note some special properties on threefolds. Let X be
a complex analytic manifold of dimension three and let D be an R-divisor.

4.4. Proposition Suppose that X is projective and D is numerically movable.

Let C1, C2, . . . , Cl be irreducible curves with D ·Ci < 0 for any i. Then there exists

a bimeromorphic morphism π : X → Z into a normal compact complex analytic

threefold such that π(Ci) is a point for any i and that π induces an isomorphism

X r
⋃
Ci ' Z r

⋃
π(Ci).

Proof. We may assume that D is big. Thus, for any i, there is a prime divisor
Γi such that Γi · Ci < 0. Note that (tD + A)|Γi

is big for any t > 0 and for any
ample divisor A of X. Thus there exists an effective Cartier divisor Ei of Γi such
that the intersection number (Ei · Ci)Γi

in Γi is negative. Let Ji be the defining
ideal of Ei on X. From the exact sequence

0→ OX(−Γi)⊗OCi
→ Ji ⊗OCi

→ OΓi
(−Ei)⊗OCi

→ 0,

we infer that Ji ⊗OCi
is an ample vector bundle. There is an ideal J ⊂ OX such

that
∑Jj ⊂ J , SuppOX/J =

⋃
Cj , and that Supp(J /∑Jj) does not contain

any Ci. Then the torsion-free part ν∗i J /(tor) is also ample for the normalization

νi : C̃i → Ci ⊂ X. We can contract the curves Ci by the contraction criterion in
[2], [17] (cf. [102, 1.4]). ¤

Remark For an R-divisor of a non-singular projective threefold, the condition
of numerically movable is close to that of nef. If D is a numerically movable and
big R-divisor, then there is at most a finite number of irreducible curves C with
D · C < 0 by 3.11. These curves are all contractible by 4.4.

Let f : X → Z be a bimeromorphic morphism onto a normal variety such that
the f -exceptional locus is a non-singular projective curve C. This morphism f is
called the contraction of C, and C is called an exceptional curve in X (cf. [102]).
Let P be the point f(C). We shall consider the relative Zariski-decomposition
problem over P for a divisor on X. Since N1(X/Z;P ) is one-dimensional, we treat
a line bundle L of X with L·C < 0. Under the situation, we have Nσ(L;X/Z) = 0.
In order to obtain a relative Zariski-decomposition of L, we need to blow up along
C. We follow the notation in [102, §2]. Let µ1 : X1 → X be the blowing-up along
C and let E1 be the exceptional divisor µ−1

1 (C) ' PC(IC/I2
C), where IC is the

defining ideal of C in X.

4.5. Lemma If the conormal bundle IC/I2
C is semi-stable, then

Nν(µ∗
1L;X1/Z) =

−2(L · C)

deg(IC/I2
C)
E1

and the positive part Pν(µ∗
1L;X1/Z) is relatively nef over P . In particular, L admits

a relative Zariski-decomposition over P .
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Proof. Since IC/I2
C is semi-stable, all the effective divisors of E1 are nef by

[82, 3.1]. For a real number x, we set ∆ := (µ∗
1L − xE1)|E1

. Then ∆ is pseudo-
effective if and only if ∆2 ≥ 0 and x > 0. This is equivalent to:

xdeg(IC/I2
C) + 2 deg(L|C) ≥ 0.

Therefore, Nν(µ∗
1L;X1/Z) is written as above and Pν(µ∗

1L;X1/Z)|E1
is nef. ¤

Next assume that the conormal bundle IC/I2
C is not semi-stable. The Harder–

Narasimhan filtration of the conormal bundle induces an exact sequence

0→ L0 → IC/I2
C →M0 → 0,

where L0 and M0 are line bundles of C with degL0 > degM0. The section C1 of
the ruling E1 → C corresponding to the surjection IC/I2

C →M0 satisfies

OX1
(C1)⊗OC1

'M0 ⊗ L−1
0 .

Thus C1 is a negative section: C2
1 < 0 in E1.

4.6. Lemma L admits a relative Zariski-decomposition over P provided that

2 degM0 ≥ degL0.

Proof. Let µ2 : X2 → X1 be the blowing-up along C1, E2 the µ2-exceptional
divisor, and E′

1 the proper transform of E1. Let us consider the exact sequence

0→ O(−E1)⊗OC1
→ IC1

/I2
C1
→ OC1

⊗OE1
(−C1)→ 0.

If 2 deg(M0) > deg(L0), then C2 := E′
1 ∩ E2 is the negative section of E2. If

2 deg(M0) = deg(L0), then E2 is the ruled surface over C associated with the
semi-stable vector bundle IC1

/I2
C1

. Therefore, by [102, 2.4], we obtain a birational
morphism ϕ : Y → X2 from a non-singular variety such that

(1) ϕ−1(E′
1∪E2) is a union of relatively minimal ruled surfaces Fj (1 ≤ j ≤ k)

over C for some k ≥ 2,
(2) Fk is a ruled surface associated with a semi-stable vector bundle of C,
(3) Fj for j < k admits a negative section which is the complete intersection

of Fj and other Fi.

For an R-divisor ∆ of Y , if ∆|Fj
is pseudo-effective for any 1 ≤ j ≤ k, then ∆|Fj

is
nef for any j. Thus the relative ν-decomposition over P of the pullback of L to Y
is a relative Zariski-decomposition. ¤

4.7. Proposition If X is isomorphic to an open neighborhood of the zero

section of a geometric vector bundle V of rank two on C, then L admits a relative

Zariski-decomposition over P .

Proof. Let E be a locally free sheaf of rank two of C such that V = V(E∨) =
L(E) (cf. II.1.7). Let p : P(E)→ C be the associated P1-bundle. Then the natural
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surjective homomorphism p∗E → OE(1) defines a commutative diagram

L −−−−→ V
y

y

P(E) −−−−→ C,

where L = L(OE(1)) is the geometric line bundle over P(E) associated with OE(−1).
The morphism L → V is isomorphic to the blowing-up along the zero section C
(cf. IV.3.1). Thus we may assume that X = V, X1 = L, and that E1 is the zero
section of L → P(E). Let C1 ⊂ P(E) be the negative section and let F1 ⊂ X1 be
its pullback by X1 = L → P(E). Then the complete intersection F1 ∩ E1 is the
negative section C1 ⊂ E1. The curve C1 is also the negative section of F1, since it is
contractible. Let µ2 : X2 → X1 be the blowing-up along C1. Then µ∗

2F1 = F ′
1 +E2,

µ∗
2E1 = E′

1 +E2, and F ′
1∩E′

1 = ∅, for E2 := µ−1
2 (C1) and for the proper transforms

F ′
1 and E′

1 of F1 and E1, respectively. The negative section C2 of E2 is either
F ′

1 ∩ E2 or E′
1 ∩ E2. Next, we consider the blowing-up along C2. In this way, we

have a sequence of blowups

Xk
µk−−→ Xk−1 → · · · → X1

µ1−→ X0 = X

whose center Ci ⊂ Xi is the negative section of the µi-exceptional divisor Ei for
i ≥ 1. Here, Ci is the complete intersection of Ei either with the proper transform
of some other Ej or with the proper transform of F1. By [102, 2.4], there is a
number k such that Ek admits no negative sections. If ∆ is an R-divisor of Xk

such that ∆|E′
i

is pseudo-effective for the proper transform E ′
i of Ei for any i, then

∆|E′
i

is nef for any i. Hence the relative ν-decomposition over P of the pullback of
L to Xk is a relative Zariski-decomposition. ¤

4.8. Lemma If there exist two prime divisors ∆1 and ∆2 with ∆1 · C < 0,
∆2 ·C < 0, and ∆1 ∩∆2 = C, then L admits a relative Zariski-decomposition over

P .

Proof. Let us choose positive integers m1 and m2 satisfying m1(∆1 · C1) =
m2(∆2 · C2) and let f : V → X be the blowing-up of X along the ideal sheaf
J := OX(−m1∆1) + OX(−m2∆2). Let G be the effective Cartier divisor defined
by the invertible ideal sheaf JOV . Note that V and G are Cohen–Macaulay. Since
J ⊗ OC ' OC(−m1∆1) ⊕ OC(−m2∆2), E := Gred is the ruled surface over C
associated with the semi-stable vector bundle J ⊗ OC . There is a filtration of
coherent subsheaves

OG = F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fk ⊃ Fk+1

such that Fi/Fi+1 is a non-zero torsion-free OE-module for i ≤ k and SuppFk+1 6=
E. We have Fk+1 = 0, since OG is Cohen–Macaulay. Let α be the minimum of
real numbers x ≥ 0 such that f∗L|E − xG|E is pseudo-effective. Then α ∈ Q>0.
For any β ∈ Q>0 with β < α, there is an integer b ∈ N such that

H0(E, f∗L⊗m ⊗OV (−mβG)⊗Fi/Fi+1) = 0
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for any m ≥ b with mβ ∈ Z and for any 0 ≤ i ≤ k. Hence

H0(V, f∗L⊗m ⊗OV (−mβG)) ' H0(V, f∗L⊗m) ' H0(X,L⊗m).

Let ρ : Y → V be a bimeromorphic morphism from a non-singular variety. Then

Nσ(ρ∗f∗L) ≥ αρ∗G.

On the other hand, ρ∗f∗L−αρ∗G is relatively nef over P . Hence the nef Q-divisor
is the positive part of a relative Zariski-decomposition over P . ¤

Example There is an example where the assumption of 4.8 is not satisfied:
Let 0 → OC → E → OC → 0 be the non-trivial extension over an elliptic curve
C and let E be the geometric vector bundle V(E ⊗ N ) associated with the locally
free sheaf E ⊗ N , where N is a negative line bundle on C. Then the zero-section
of E is an exceptional curve, but there exist no such prime divisors ∆1,∆2 on any
neighborhood of the zero-section as in 4.8.

Example If there is a bimeromorphic morphism X ′ → Z that is isomorphic
outside P and is not isomorphic to the original f , then the assumption of 4.8 is
satisfied. But the converse does not hold in general. For example, let E be the
geometric vector bundle V(OC ⊕M) associated with OC ⊕M on an elliptic curve
C such that M has degree zero but is not a torsion element of Pic(C). Then a
relative Zariski-decomposition for a divisor L on X with L · C < 0 exists by 4.7,
but its positive part is not relatively semi-ample over Z. Thus it is impossible to
obtain the morphism X ′ → Z above.

§5. Pullbacks of divisors

§5.a. Remarks on exceptional divisors. We give some remarks on excep-
tional divisors along Fujita’s argument in [25]. Let π : X → S be a proper surjective
morphism of normal complex analytic varieties and let D be an R-divisor of X with
π(SuppD) 6= S. If codimπ(SuppD) ≥ 2, then D is called π-exceptional or excep-

tional for π. Suppose that codimπ(SuppD) = 1 and let Θ be a prime divisor
contained in π(SuppD). If there is a prime divisor Γ ⊂ X with π(Γ) = Θ and
Γ 6⊂ SuppD, then D is called of insufficient fiber type along Θ. If such Θ exists, D
is called of insufficient fiber type. We assume that X is non-singular and projective
over S, and we set n = dimX and d = dimS. The proofs of 5.1 and 5.2 below are
similar to that of [25, (1.5)]:

5.1. Lemma Let ∆ be a π-exceptional effective R-divisor of X. Then there is

a prime component Γ such that ∆|Γ is not (π|Γ)-pseudo-effective over π(Γ).

Proof. We may replace S by an open subset. Thus we assume that S is a
Stein space. By assumption, e := dimπ(Supp ∆) ≤ d − 2. Let H1, H2, . . . , He be
general prime divisors such that π(Supp ∆)∩⋂e

i=1Hi is zero-dimensional and that
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the pullback π−1(
⋂e

i=1Hi) is a non-singular subvariety of X of codimension e. Let
A1, A2, . . . , An−e−2 be general π-ample divisors of X. Then the intersection

Y :=
⋂n−e−2

j=1
Aj ∩

⋂e

i=1
π−1Hi

is a non-singular surface with dimπ(Y ) = 2. For a prime component Γ of ∆, the
restriction Γ∩Y is (π|Y )-exceptional provided that π(Γ)∩⋂e

i=1Hi 6= ∅. Therefore,
there is a component Γ such that ∆ ·γ < 0 for an irreducible component γ of Γ∩Y .
Thus ∆|Γ is not (π|Γ)-pseudo-effective. ¤

5.2. Lemma Let ∆ be an effective R-divisor of X with π(Supp∆) 6= S and let

Θ be a prime divisor contained in π(Supp ∆). Suppose that ∆ is not π-numerically

trivial over a general point of Θ. Then there is a prime component Γ of ∆ such

that π(Γ) = Θ and ∆|Γ is not (π|Γ)-pseudo-effective.

Proof. Assume the contrary. We may also assume that S is Stein. Then there
is a non-singular curve C ⊂ S such that Z := π−1(C) is a non-singular subvariety of
codimension d− 1, Θ∩C is zero-dimensional, and that ∆|Z∩Γ is relatively pseudo-
effective over Θ∩C for any prime component Γ. Let A1, A2, . . . , An−d−1 be general
π-ample divisors of X such that

Y := Z ∩
⋂n−d−1

j=1
Aj

is a non-singular surface, π(Y ) = C, and that ∆|Y ∩Γ is relatively pseudo-effective.
Since any fiber of Y → C is one-dimensional, ∆|Y ∩Γ is nef. Hence ∆|Y is (π|Y )-nef
over C and π(Supp(∆|Y )) = Θ∩C. Therefore ∆ is π-numerically trivial over Θ∩C.
This is a contradiction. ¤

5.3. Corollary If ∆ is an effective R-divisor of insufficient fiber type over S,

then ∆|Γ is not (π|Γ)-pseudo-effective for some prime component Γ of ∆.

5.4. Definition Let D be an effective R-divisor of X. If there is a sequence
of projective surjective morphisms φk : Xk → Xk+1 (0 ≤ k ≤ l) satisfying the
following two conditions, then D is called successively π-exceptional :

(1) π is isomorphic to the composite X = X0 → X1 → · · · → Xl+1 = S;
(2) Any prime component Γ of D is exceptional for some

πk+1 := φk ◦ · · · ◦ φ0 : X → Xk+1 (0 ≤ k ≤ l).
An effective R-divisor ∆ is called weakly π-exceptional if there is such a sequence of
projective surjective morphisms satisfying the condition (1) above and the following
condition (2′) instead of (2) above:

(2′) There is a decomposition ∆ = ∆0 + ∆1 + · · ·+ ∆l of effective R-divisors
such that any two distinct ∆i and ∆j have no common prime components,
and that, for any 1 ≤ k ≤ l,
(a) codimπk(Supp ∆k) = 1, and
(b) πk∗(∆k) is exceptional or of insufficient fiber type over Xk+1.
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Remark A successively π-exceptional divisor is not necessarily π-exceptional.
There is an example where a prime component Γ is exceptional over X1 but domi-
nates X2.

5.5. Proposition If ∆ is a weakly π-exceptional effective R-divisor, then ∆|Γ
is not (π|Γ)-pseudo-effective for some prime component Γ of ∆.

Proof. Since the condition is local on S, we may assume that S is a Stein
space. We prove by induction on the number l in 5.4. The case l = 0 is done in 5.1

and 5.3. Assume that l is positive and the statement holds for l−1. We decompose
π by πl : X → Xl and φl : Xl → Xl+1 = S. We set D0 = ∆0 + ∆1 + · · · + ∆l−1

and D1 = ∆l. Then D0 is weakly πl-exceptional. Suppose that there is a prime
component Γ of D0 such that πl(Γ) ⊂ πl(SuppD1). We consider new R-divisors
D′

0 := D0−(multΓD0)Γ andD′
1 := D1+(multΓD0)Γ. Then πl∗D

′
1 is φl-exceptional

or of insufficient type over Xl+1 = S. Thus we may replace D0 by D′
0 and D1 by

D′
1, respectively. If D0 = 0, then ∆ = ∆l satisfies the required condition by 5.1

and 5.3. Hence we may assume that D0 6= 0 and πl(Γ) 6⊂ πl(SuppD1) for any
prime component Γ of D0. There is a φl-ample divisor H such that π∗

l H ≥ D1

and Γ 6⊂ π∗
l H for any prime component Γ of D0. By induction, (D0 + π∗

l H)|Γ is
not (πl|Γ)-pseudo-effective for some prime component Γ of D0. Thus ∆|Γ is not
(π|Γ)-pseudo-effective. ¤

5.6. Corollary (cf. Fujita’s lemma [61, 1-3-2]) π∗OD(D) = 0 for a weakly

π-exceptional effective divisor D.

Proof. By 5.5, π∗OΓ(D) = 0 for some prime component Γ of D. Thus
π∗OD−Γ(D − Γ) ' π∗OD(D). Since D − Γ is also a weakly π-exceptional effective
divisor, we are done by induction. ¤

5.7. Proposition (cf. [25, (1.9)]) Let ∆ be a weakly π-exceptional effective

R-divisor of X. Then ∆ = Nσ(∆;X/S) = Nν(∆;X/S).

Proof. Let {Γ1,Γ2, . . . ,Γm1
} be the set of prime components Γ of ∆ such

that ∆|Γ is not (π|Γ)-pseudo-effective. This is not empty by 5.5. Let αi be the
number

inf
{
α > 0

∣∣ (∆− αΓi)|Γi
is (π|Γi

)-pseudo-effective
}
.

Then αi ≤ multΓi
∆. By the same argument as in 3.12, we infer that ∆(1)|Γi

is
(π|Γi

)-pseudo-effective for any 1 ≤ i ≤ m1, for the effective R-divisor

∆(1) = ∆−
∑m1

i=1
αiΓi.

Next, we consider the set {Γm1+1,Γm1+2, . . . ,Γm2
} of prime components Γ of ∆(1)

such that ∆(1)|Γ is not π-pseudo-effective. It is also not empty if ∆(1) 6= 0. For

1 ≤ i ≤ m2, let α
(1)
i be the number

inf
{
α > 0

∣∣ (∆(1) − αΓi)|Γi
is (π|Γi

)-pseudo-effective
}
.
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Then, by the same argument as in 3.12, we infer that ∆(2)|Γi
is (π|Γi

)-pseudo-
effective for 1 ≤ i ≤ m2, for the effective R-divisor

∆(2) := ∆(1) −
∑m2

i=1
α

(1)
i Γi.

As in 3.12, we finally have ∆ = Nν(∆;X/S). ¤

5.8. Lemma Suppose that π : X → S has connected fibers and S is non-

singular. Let D be an effective R-divisor of X not dominating S. Suppose that

D|Γ is relatively pseudo-effective over π(Γ) for any prime component Γ of D. Then

there exist an effective R-divisor ∆ on S and a π-exceptional effective R-divisor E
such that D = π∗∆− E.

Proof. Let S◦ ⊂ S be the maximum Zariski-open subset over which π is flat.
Let Θ ⊂ S be a prime divisor and let IΘ be the set of prime components Γ of
D satisfying Θ = π(Γ). Suppose that IΘ 6= ∅. If Γ is a prime divisor of X with
π(Γ) = Θ, then Γ ∈ IΘ by 5.3. Let us define aΓ := multΓD and bΓ := multΓ π

∗Θ
for Γ ∈ IΘ, and rΘ := min{aΓ/bΓ | Γ ∈ IΘ}. Then the multiplicity

multΓ(D − rΘπ∗Θ) = aΓ − rΘbΓ
is non-negative for any Γ ∈ IΘ and is zero for some Γ0 ∈ IΘ. Thus D − rΘπ∗Θ is
an effective R-divisor over S◦. Since (D − rΘπ∗Θ)|Γ′ is relatively pseudo-effective
over Θ for any Γ′ ∈ IΘ, D − rΘπ∗Θ is not of insufficient fiber type over S◦. Hence
aΓ = rΘbΓ for any Γ ∈ IΘ. Therefore, D =

∑
Θ rΘπ

∗Θ + E1 − E2 for some π-
exceptional effective R-divisors E1 and E2 without common prime components.
Then E1|Γ is also relatively pseudo-effective over π(Γ) for any component Γ of E1.
Thus E1 = 0 by 5.1. ¤

5.9. Corollary Suppose that π : X → S has connected fibers. Let D be a π-nef

effective R-divisor of X not dominating S. Then there exist

(1) bimeromorphic morphisms µ : S ′ → S and ν : X ′ → X from non-singular

varieties,

(2) a morphism π′ : X ′ → S′ over S,

(3) an effective R-divisor ∆ on S ′

such that ν∗D = π′∗∆.

Proof. Let µ : S′ → S be a bimeromorphic morphism from a non-singular
variety flattening π and let π′ : X ′ → S′ be a bimeromorphic transform of π by
µ. We may assume that X ′ is non-singular. Let ν : X ′ → X be the induced
bimeromorphic morphism. By 5.8, there exist an effective R-divisor ∆ and a π-
exceptional effective R-divisor E such that ν∗D = π′∗∆ − E. Let V → X ×Y Y ′

be the normalization of the main component of X ×Y Y ′ and let ν1 : X ′ → V and
πV : V → S′ be the induced morphisms. Then we have ν1∗ν

∗D = π∗
V ∆ by taking

ν1∗. Hence we have E = 0 by taking ν∗1 . ¤
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§5.b. Mumford pullback. Let π : X → S be a proper surjective morphism
of normal complex analytic varieties. Suppose that π is a bimeromorphic morphism
from a non-singular surface. Then the numerical pullback or the Mumford pullback

π∗(D) of a divisor D of S is defined as a Q-divisor of X satisfying the following
two conditions:

(1) π∗(π
∗(D)) = D;

(2) π∗(D) is π-numerically trivial.

It exists uniquely. Hence, every divisor of a normal surface is numerically Q-Cartier.
We give a generalization of the Mumford pullback to the case of proper surjective
morphism from a non-singular variety of arbitrary dimension. However, the sec-
ond condition above must be weakened. Suppose that π : X → S is a projective
surjective morphism and X is non-singular.

5.10. Lemma Let D be an R-divisor of X.

(1) Suppose that D is a Cartier divisor and π∗OX(D) 6= 0. Then there is a

π-exceptional effective divisor E such that

(π∗OX(D))∧ ' π∗OX(D + E).

(2) Assume that, for any π-exceptional effective R-divisor E, there is a prime

component Γ of E such that (D+E)|Γ is not (π|Γ)-pseudo-effective. Then

π∗OX( xDy ) is a reflexive sheaf.

(3) For any relatively compact open subset U ⊂ S, there exists a π-exceptional

effective divisor E on π−1U such that

(π∗OX( xtDy ))∧|U ' π∗Oπ−1U ( xtD|U + tEy )

for any t ∈ R>0.

(4) If Nν(D;X/S) = 0, then π∗OX( x−Dy ) is reflexive.

Proof. (1) Let K and G be the kernel and the image of

π∗π∗OX(D)→ OX(D),

respectively. Then G is a torsion-free sheaf of rank one. Let G ′ be the cokernel of
the composite

K → π∗π∗OX(D)→ π∗((π∗OX(D))∧).

Then G → G′ is isomorphic over π−1U for a Zariski-open subset U ⊂ S with
codim(SrU) ≥ 2. Thus G ′∧ = G∧⊗OX(E) for an effective divisor E supported in
π−1(SrU). Therefore, G′∧ ⊂ OX(D+E). In particular, we have homomorphisms

(π∗OX(D))∧ → π∗G′ → π∗OX(D + E)

which are isomorphic over U . Hence (π∗OX(D))∧ = π∗OX(D + E).
(2) By (1), we have a π-exceptional effective divisor E such that (π∗OX( xDy ))∧

' π∗OX( xDy + E). By assumption, E ≤ Nν(D + E,X/S) ≤ Nσ(D + E;X/S).
Therefore, π∗OX( xDy + E) ' π∗OX( xDy ).

(3) Let E be the set of π-exceptional prime divisors. We may assume E 6= ∅
by (1). Moreover, we may assume that E is a finite set, since we can replace S by



108 III. ZARISKI-DECOMPOSITION PROBLEM

an open neighborhood of the compact set U . Suppose that there is a π-exceptional
effective divisor E such that E|Γ is not (π|Γ)-pseudo-effective for any Γ ∈ E . Then
multΓE > 0 for any Γ ∈ E . Moreover, there is an integer b > 0 such that (D+βE)|Γ
is not (π|Γ)-pseudo-effective for any Γ ∈ E and for any β ≥ b. We setDt = t(D+bE)
for a given number t ∈ R>0. For an arbitrary π-exceptional effective R-divisor G,
let c ∈ R>0 be the maximum satisfying cE ≥ G. Then a prime divisor Γ ∈ E is not
contained in Supp(cE −G). Thus (Dt +G)|Γ is not (π|Γ)-pseudo-effective, since

(Dt +G)|Γ + (cE −G)|Γ = t(D + (b+ c/t)E)|Γ.
Thus π∗OX( xDty ) is reflexive by (2).

Therefore, it is enough to find such a divisor E. Let ν : S ′ → S be a bimero-
morphic morphism flattening π. We may assume that ν is projective and there is a
ν-exceptional effective Cartier divisor ∆ of S ′ with −∆ being ν-ample. Let V be the
normalization of the main component of X×S S

′ and let µ : V → X and ϕ : V → S′

be the induced morphisms. We consider E := µ∗(ϕ
∗∆). Then ϕ∗∆ ≥ µ∗E by 5.8,

since −ϕ∗∆ is µ-nef. Suppose that E|Γ is (π|Γ)-pseudo-effective for some Γ ∈ E .
Then ϕ∗∆|Γ′ is relatively pseudo-effective over π(Γ) for the proper transform Γ′ of
Γ in V . Hence the relatively nef divisor −ϕ∗∆|Γ′ over π(Γ) is numerically trivial
along a general fiber of Γ′ → π(Γ). This is a contradiction, since −∆ is ν-ample
and ϕ(Γ′) is a prime divisor for the equi-dimensional morphism ϕ : V → S ′. Hence
E|Γ is not pseudo-effective for any Γ ∈ E .

(4) Let E be a π-exceptional effective R-divisor and let Γ be a prime component.
If (−D+E)|Γ is (π|Γ)-pseudo-effective, then E|Γ is (π|Γ)-pseudo-effective. Therefore
the result follows from 5.1 and (2) above. ¤

5.11. Corollary Suppose that π has connected fibers. Let B be an R-divisor

of S. Then there exists an R-divisor D of X such that

(1) SuppD is contained in the union of π-exceptional prime divisors and of

π−1(SuppB),
(2) π∗OX( xtDy ) ' OS( xtBy ) for any t ∈ R>0,
(3) D|Γ is (π|Γ)-pseudo-effective for any prime divisor Γ.

Moreover, the maximum π~(B) of such R-divisors D exists.

Proof. There is an R-divisor D0 of X such that

• codimπ(Γ) ≥ 2 or π(Γ) is a prime divisor contained in SuppB for any
prime component Γ of SuppD0,

• D0 = π∗B over a non-singular Zariski-open subset S◦ ⊂ S of codim(S r
S◦) ≥ 2.

Let D1 be the R-divisor −Pν(−D0;X/S). Note that this is a usual R-divisor, by
4.3-(3). Then π∗OX( xtD1y ) ' OS( xtBy ) for any t > 0 by 5.10. We define

π~(B) := Pν(D1;X/S) = Pν(−Pν(−D0;X/S);X/S).

Then the R-divisor π~(B) satisfies the required three conditions above. Let D
be an R-divisor satisfying the same three conditions. Since D = D0 over the S◦,
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there are effective π-exceptional R-divisors E1 and E2 having no common prime
components such that D = D1 + E1 − E2. Then, by 5.1, we have E1 = 0, since
(D −D1)|Γ is π|Γ-pseudo-effective. Hence D + E2 = D1 and D ≤ π~(B). ¤

5.12. Definition The R-divisor π~(B) in 5.11 is called the Mumford pullback

of B. The Mumford pullback is defined also in the case where general fibers are
not connected, as follows: let X → V → S be the Stein factorization of π and we
write the morphisms by f : X → V and τ : V → S. Since τ is a finite morphism,
we can define τ~(B) as the closure of τ∗(B) over a Zariski-open subset S◦ of
codim(S r S◦) ≥ 2. The Mumford pullback π~(B) is defined to be f~(τ~(B)).

Remark (1) For R-divisors B, B1, B2 of S,

π~(−B) = Pν(−π~(B);X/S),

π~(B1 +B2) = Pν(−Pν(−π~(B1)− π~(B2);X/S);X/S).

(2) If Γ is a π-exceptional prime divisor, then π~(B)|Γ is not (π|Γ)-big, by
3.3.

(3) If π is a bimeromorphic morphism, then

Pσ(π~(B);X/S) ≤ D ≤ π~(B)

for any R-divisor D satisfying the conditions of 5.11, since every divisor
of X is relatively big over S.

5.13. Lemma Let Γ be a π-exceptional prime divisor with codimπ(Γ) = 2.
Then

multΓ Pσ(π~(B);X/S) = multΓ π
~(B),

multΓ(π~(B1) + π~(B2)) = multΓ π
~(B1 +B2)

for any R-divisors B, B1, B2 of S. If λ : Z → X is a bimeromorphic morphism

from a non-singular variety Z, then multΓ π
~(B) = multΓ′(π ◦ λ)~(B) for the

proper transform Γ′ of Γ.

Proof. First we treat the case where π is bimeromorphic. Then general fibers
of Γ → π(Γ) are one-dimensional. Now π~(B)|Γ is (π|Γ)-pseudo-effective but not
(π|Γ)-big. Hence π~(B) · γ = 0 for any irreducible component γ of a general fiber
of π|Γ. Therefore π~(B) is π-numerically trivial outside a Zariski-closed subset of
S of codimension greater than two. Therefore Pσ(π~(B);X/S) = π~(B) outside
the set. In particular, multΓ Pσ(π~(B);X/S) = multΓ π

~(B).
Next, we consider the general case. Let ν : Y → S be a bimeromorphic mor-

phism flattening π. Then, for the normalization V of the main component of
X ×S Y , the induced morphism q : V → Y is equi-dimensional. Let ϕ : Z → V
be a bimeromorphic morphism from a non-singular variety and let φ : V → X,
λ : Z → X, and p : Z → Y be induced morphisms. By definition,

(ν ◦ p)~(B) = Pν(−Pν(−p∗(ν~(B));Z/S);Z/S).
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Therefore it is (ν ◦ p)-numerically trivial over a Zariski-open subset U ⊂ S with
codim(S r U) ≥ 3. Let D := λ∗((ν ◦ p)~(B)). Then λ∗D = (ν ◦ p)~(B) over U .
Hence π~(B) = Pν(−Pν(−D;X/S);X/S) is also π-numerically trivial over U and
λ∗π~(B) = (ν ◦ p)~(B) = p∗ν~(B) over U . ¤

Let S be a normal projective variety of d = dimS ≥ 2. Let B1 and B2 be Weil
divisors and let D1, D2, . . . , Dd−2 be Cartier divisors of S. For a bimeromorphic
morphism π : X → S from a non-singular projective variety, the intersection number

π~(B1) · π~(B2) · π∗D1 · · ·π∗Dd−2

is rational. It is independent of the choice of π. Thus we can define the intersection
number (B1 ·B2 ·D1 · · ·Dd−2) as above.

Remark A divisor D of a normal complex analytic variety S is numerically Q-
Cartier if and only if π~(D) is π-numerically trivial for a bimeromorphic morphism
π : X → S from a non-singular variety.

§5.c. σ-decompositions of pullbacks. We study the σ-decomposition of the
pullback of a pseudo-effective R-divisor by a projective surjective morphism. For
the sake of simplicity, here, we consider in the projective algebraic category. Let
f : Y → X be a surjective morphism of non-singular projective varieties and let D
be a pseudo-effective R-divisor of X.

5.14. Lemma If E is a pseudo-effective R-divisor of Y with Nσ(E;Y/X) = E,

then Nσ(f∗D + E) = Nσ(f∗D) + E.

Proof. This is derived from Nσ(D′) ≥ Nσ(D′;Y/X) for any pseudo-effective
R-divisor D′. ¤

Note that a weakly f -exceptional effective R-divisor E satisfies Nσ(E;Y/X) = E.

5.15. Lemma Let Γ be a prime divisor of X and let Γ′ be a prime divisor of

Y with f(Γ′) = Γ. Then

σΓ′(f∗D) = (multΓ′ f∗Γ)σΓ(D).

Proof. For a divisor ∆, we have multΓ′ f∗∆ = (multΓ′ f∗Γ)multΓ ∆. There-
fore, the equality holds if f is a birational morphism, and the inequality σΓ′(f∗D) ≤
(multΓ′ f∗Γ)σΓ(D) holds in general. Suppose that f is generically finite. By con-
sidering the Galois closure, we may assume f is Galois and the Galois group G acts
on Y holomorphically. The negative part Nσ(f∗D) is G-invariant. Therefore

Nσ(f∗D) = f∗N + E

for an effective R-divisor N of X and an f -exceptional R-divisor E. Then N ≤
Nσ(D) by the argument above. Since f∗Pσ(f∗D) is movable by 1.18,

(deg f)N = f∗Nσ(f∗D) ≥ (deg f)Nσ(D).

Hence N = Nσ(D) and σΓ′(f∗D) = (multΓ′ f∗D)σΓ(D).
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Next suppose that dimY > dimX ≥ 1. Then D − (σ′/µ)Γ is pseudo-effective
for σ′ := σΓ′(f∗D) and µ := multΓ′ f∗Γ. Thus f∗D−σ′Γ′ = f∗(D−(σ′/µ)Γ)+R for
an effective R-divisor R which is of insufficient fiber type over X. Hence Nσ(f∗D−
σ′Γ′;Y/X) = Nσ(R;Y/X) = R. Since Nσ(f∗D − σ′Γ′) ≥ Nσ(f∗D − σ′Γ′;Y/X) =
R, we have σΓ′(f∗(D − (σ′/µ)Γ)) = 0. For a general ample divisor H of Y , H
dominates X, Γ′ ∩H dominates Γ, and

σΓ′′(f∗(D − (σ′/µ)Γ)|H) = 0,

for any prime component Γ′′ of Γ′ ∩H. By induction on dimY − dimX, we infer
that σΓ(D − (σ′/µ)Γ) = σΓ(D)− σ′/µ = 0. ¤

5.16. Theorem Let f : Y → X be a surjective morphism of non-singular

projective varieties and let D be a pseudo-effective R-divisor of X. Then Nσ(f∗D)−
f∗Nσ(D) is an f -exceptional effective R-divisor.

Proof. Let E be the R-divisor Nσ(f∗D) − f∗Nσ(D) and let Γ be a prime
divisor of Y . If Γ dominates X, then

σΓ(f∗D) = multΓNσ(f∗D) = multΓ f
∗Nσ(D) = 0.

Hence Γ is not a component of E. If f(Γ) is a prime divisor, then Γ is not a
component of E by 5.15. Hence every component of E is f -exceptional. Let E1

and E2 be the positive and the negative parts of the prime decomposition of E,
respectively: E = E1 − E2. Suppose that E2 6= 0. Then E2|Γ is relatively pseudo-
effective over f(Γ) for any component Γ of E2. This contradicts 5.1. ¤

5.17. Corollary Let f : Y → X and g : Z → Y be surjective morphisms of

non-singular projective varieties. Suppose that Pσ(f∗D) is nef for a pseudo-effective

R-divisor D of X. Then Pσ(g∗f∗D) = g∗Pσ(f∗D).

5.18. Corollary Let f : Y → X be a surjective morphism of non-singular

projective varieties and let D be a pseudo-effective R-divisor of X. If Pσ(f∗D) is

nef, then there is a birational morphism λ : Z → X such that Pσ(λ∗D) is nef.

Proof. By considering a flattening of f , we have the following commutative
diagram:

M
ν−−−−→ V −−−−→ Y

g

y q

y f

y

Z Z
λ−−−−→ X,

where Z and M are non-singular projective varieties, V is a normal projective
variety, λ : Z → X, ν : M → V are birational morphisms, and q : V → Z is an
equi-dimensional surjective morphism. Let µ : M → V → Y be the composite.
Since Pσ(f∗D) is nef, Nσ(µ∗f∗D) = µ∗Nσ(f∗D). By 5.16, E = Nσ(µ∗f∗D) −
g∗Nσ(λ∗D) is an effective R-divisor with codim g(E) ≥ 2. Thus ν∗Nσ(µ∗f∗D) =
q∗Nσ(λ∗D). Therefore E = 0, Pσ(λ∗D) is nef, and µ∗Pσ(f∗D) = g∗Pσ(λ∗D). ¤


