CHAPTER 11

Appendix

11.1. Existence of complements

Proposition 11.1.1 ([Sh3]). Let $f: X \rightarrow Z \ni$ o be a contraction from a surface and D a boundary on X such that $K_{X}+D$ is lc and $-\left(K_{X}+D\right)$ is f-nef and f-big. Then
(i) the linear system $\left|-m\left(K_{X}+D\right)\right|$ is base point free for some $m \in \mathbb{N}$;
(ii) $K_{X}+D$ is n-complementary near $f^{-1}(o)$ for some $n \in \mathbb{N}$;
(iii) the Mori cone $\overline{N E}(X / Z)$ is polyhedral and generated by irreducible curves.

We hope that this fact has higher dimensional generalizations (cf. [K3], see also M. Reid's Appendix to [Sh2]).

Proof. First we prove (i). We consider only the case of compact X. In the case $\operatorname{dim} Z \geq 1$ there are stronger results (see Theorem 6.0.6). Applying a log terminal modification 3.1.1, we may assume that $K_{X}+D$ is dlt (and X is smooth). Set $C:=\lfloor D\rfloor, B:=\{D\}$. Note that C is connected by Connectedness Lemma. Take sufficiently large and divisible $n \in \mathbb{N}$ and consider the exact sequence

$$
\begin{aligned}
0 \longrightarrow \mathcal{O}_{X}\left(-n\left(K_{X}+D\right)-C\right) & \longrightarrow \mathcal{O}_{X}\left(-n\left(K_{X}+D\right)\right) \\
& \longrightarrow \mathcal{O}_{C}\left(-n\left(K_{X}+D\right)\right) \longrightarrow 0 .
\end{aligned}
$$

By Kawamata-Viehweg Vanishing [KMM, 1-2-6],

$$
\begin{aligned}
H^{1}\left(X, \mathcal{O}_{X}\left(-n\left(K_{X}+D\right)-C\right)\right) & = \\
& H^{1}\left(X, \mathcal{O}_{X}\left(K_{X}+B-(n+1)\left(K_{X}+D\right)\right)\right)=0
\end{aligned}
$$

Therefore $C \cap \mathrm{Bs}\left|-n\left(K_{X}+D\right)\right|=\mathrm{Bs}\left|-n\left(K_{X}+D\right)\right|_{C} \mid$.
We claim that $\mathrm{Bs}\left|-n\left(K_{X}+D\right)\right|_{C} \mid=\varnothing$. Indeed, if C is not a tree of rational curves, then $p_{a}(C)=1$ and C is either a smooth elliptic curve or a wheel of smooth rational curves (see Lemma 6.1.7). Moreover, $\operatorname{Supp} B \cap C=\varnothing$. But then $\left.\left(K_{X}+D\right)\right|_{C}=\left.\left(K_{X}+C\right)\right|_{C}=K_{C}=0$ and $\mathrm{Bs}\left|-n\left(K_{X}+D\right)\right|_{C} \mid=\varnothing$ in this case. Note also that here we have an 1-complement by Lemma 8.3.8. Assume now that C is a tree of smooth rational curves. Then $\left|-n\left(K_{X}+D\right)\right|_{C_{i}} \mid$ is base point free on each component $C_{i} \subset C$ whenever $-n\left(K_{X}+D\right)$ is Cartier. Hence so is $\left|-n\left(K_{X}+D\right)\right|_{C} \mid$. This proves our claim.

Thus we have shown that $C \cap \mathrm{Bs}\left|-n\left(K_{X}+D\right)\right|=\varnothing$. Let $L \in\left|-n\left(K_{X}+D\right)\right|$ be a general member. Then $K_{X}+D+\frac{1}{n} L$ is dlt near C (see 1.3.2). By Connectedness

Lemma, $K_{X}+D+\frac{1}{n} L$ is lc everywhere. Hence $K_{X}+D+\frac{1}{n} L$ is a \mathbb{Q}-complement of $K_{X}+D$. The fact that $\left|-n\left(K_{X}+D\right)\right|$ is free outside of C can be proved in a usual way (see e.g., [R], [K3]). We omit it.
(ii) is obvious. Let us prove (iii). Clearly, we may assume that $\rho(X) \geq 2$. It follows by 11.2.2 that any $\left(K_{X}+D\right)$-negative extremal ray R is generated by an irreducible curve C. By Proposition 11.2.5, $-\left(K_{X}+D\right) \cdot C \leq 2$. Let $\varphi: X \rightarrow$ $Y \subset \mathbb{P}^{N}$ be the contraction given by the linear system $-m\left(K_{X}+D\right)$ for sufficiently big and divisible $m \in \mathbb{N}$. Then $\operatorname{deg} \varphi(C) \leq 2$. This implies that C belongs to a finite number of algebraic families. Thus the cone $\overline{N E}(X)$ is polyhedral outside of $\overline{N E}(X) \cap\left\{z \mid\left(K_{X}+D\right) \cdot z=0\right\}$. Now consider the extremal ray R such that ($K_{X}+$ $D) \cdot R=0$. By the Hodge Index Theorem, $R^{2}<0$. Thus, by Proposition 11.2.1 R is generated by an irreducible curve, say C. Since $\left(K_{X}+D\right) \cdot C=0$, we have that φ contracts this curve to a point. Therefore there is a finite number of such curves, so $\overline{N E}(X)$ is polyhedral everywhere.

11.2. Minimal Model Program in dimension two

The log Minimal Model Program in dimension two is much easier than in higher dimensions. Following [A] and [KK] (see also [Sh4]) we present two main theorems 11.2.2 and 11.2.3 of MMP in the surface case. First we note that in the surface case it is possible to define the numerical pull back of any \mathbb{Q}-Weil divisor under birational contractions (see e.g., [S1]). Therefore all definitions of 1.1 can be given for arbitrary normal surface (we need not the \mathbb{Q}-Cartier assumption). It turns out a posteriory that any numerically lc pair (X, B) satisfies the property that $K_{X}+B$ is \mathbb{Q}-Cartier [KM, Sect. 4.1], [Ma]. Similarly, the dlt property of (X, D) implies that the surface X is \mathbb{Q}-factorial [KM, Sect. 4.1]. For surfaces there is an alternative way to define the numerical equivalence: two 1-cycles $\Upsilon_{1}, \Upsilon_{2} \in Z_{1}(X / Z)$ are said to be numerically equivalent if $L \cdot \Upsilon_{1}=L \cdot \Upsilon_{2}$ for all Weil divisors L (not only for those, that are \mathbb{Q}-Cartier). This gives also an alternative way to define $N_{1}(X / Z)$, $\rho(X / Z)$, and $\overline{N E}(X / Z)$ and leads to a possibly larger dimensional space $N_{1}(X / Z)$. We use the standard definition of the numerical equivalence and $N_{1}(X / Z)$ [KMM].

The following properties are well known (see e.g., [KM, 1.21-1.22] or [Ko3, Ch. II, Lemma 4.12]).

Proposition 11.2.1 (Properties of the Mori cone). Let X be a normal projective surface.
(i) Let z be an element of $N_{1}(X)$ such that $z^{2}>0$ and $z \cdot H>0$ for some ample divisor H. Then z is contained in the interior of $\overline{N E}(X)$.
(ii) Let $C \subset X$ be an irreducible curve. If $C^{2} \leq 0$, then the class $[C]$ is in the boundary of $\overline{N E}(X)$. If $C^{2}<0$, then the ray $\mathbb{R}_{+}[C]$ is extremal.
(iii) Let $R \subset \overline{N E}(X)$ be an extremal ray such that $R^{2}<0$. Then R is generated by an irreducible curve.

Proof. We prove only (iii). Take a 1 -cycle Z so that $[Z] \in R,[Z] \neq 0$ and Z_{i} a sequence of effective 1-cycles whose limit is Z. Write $Z_{i}=\sum_{j} a_{i, j} C_{j}$, where
C_{j} are distinct irreducible curves. Since $0>Z^{2}=\lim Z \cdot Z_{i}$, there is at least one curve $C=C_{k}$ such that $Z \cdot C<0$. Write $Z_{i}=c_{i} C+\sum_{j \neq k} a_{i, j} C_{j}, c_{i} \geq 0$. Then

$$
0>C \cdot Z=\lim C \cdot Z_{i} \geq\left(\lim c_{i}\right) C^{2}
$$

Thus $C^{2}<0$ and $\lim c_{i}>0$. Pick $0<c<\lim c_{i}$. Then $Z_{i}-c C$ is effective for $i \gg 0$ and $Z=c C+\lim \left(Z_{i}-c C\right)$ Since R is an extremal ray, this implies that $[C] \in R$.

Theorem 11.2.2 (The Cone Theorem). Let X be a normal projective surface and $K_{X}+B$ be an effective \mathbb{R}-Cartier divisor. Let A be an ample divisor on X. Then for any $\varepsilon>0$ the Mori-Kleiman cone of effective curves $\overline{N E}(X)$ in $N_{1}(X)$ can be written as

$$
\overline{N E}(X)=\overline{N E}_{K+B+\varepsilon A}(X)+\sum R_{k}
$$

where, as usual, the first part consists of cycles that have positive intersection with $K+B+\varepsilon A$ and R_{k} are finitely many extremal rays. Each of the extremal rays is generated by an effective curve.

Theorem 11.2.3 (Contraction Theorem). Let X be a projective surface with log canonical $K_{X}+B$. Let R be a $\left(K_{X}+B\right)$-negative extremal ray. Then there exists a nontrivial projective morphism $\phi: X \rightarrow Z$ such that $\phi_{*}\left(\mathcal{O}_{X}\right)=\mathcal{O}_{Z}$ and $\phi(C)=p t$ if and only if the class of C belongs to R. Moreover, if ϕ is birational and $K_{X}+B$ is lc (resp. klt) then $K_{Z}+\phi_{*} B$ is lc (resp. klt).

Remark 11.2.4. Notation as above.
(i) If $\operatorname{dim} Z=1$, then all fibers of ϕ are irreducible smooth rational curves and X has only rational singularities [KK].
(ii) If $\operatorname{dim} Z=2$, then $C \simeq \mathbb{P}^{1}$ and $K_{Z}+\phi_{*} B$ is plt at $\phi(C)$.

Proposition 11.2.5 (Properties of extremal curves). Let (X, B) be a normal projective log surface and $R a\left(K_{X}+B\right)$-negative extremal ray on X. Assume that $K_{X}+B$ is lc. If $R^{2} \leq 0$, then for any irreducible curve C such that $[C] \in R$ we have $-\left(K_{X}+D\right) \cdot C \leq 2$. If $R^{2}>0$, then X is covered by a family of rational curves C_{λ} such that $-\left(K_{X}+D\right) \cdot C_{\lambda} \leq 3$.

Proof. Let $\mu: \tilde{X} \rightarrow X$ be the minimal resolution and $K_{\tilde{X}}+\tilde{B}=\mu^{*}\left(K_{X}+B\right)$ the crepant pull back.

Consider the case $R^{2} \leq 0$. Let \tilde{C} be the proper transform of C. Then

$$
-\left(K_{X}+B\right) \cdot C=-\left(K_{\tilde{X}}+\tilde{B}\right) \cdot \tilde{C} \leq-\left(K_{\tilde{X}}+\tilde{C}\right) \cdot \tilde{C} \leq 2
$$

because $\tilde{C}^{2} \leq C^{2} \leq 0$ and \tilde{B} is a boundary.

Now we assume that $R^{2}>0$. Then $-\left(K_{X}+B\right)$ is ample (see 11.2.1). Thus (X, B) is a \log del Pezzo surface. By Corollary 5.4.3, \tilde{X} is birationally ruled. It is well known, that in this situation \tilde{X} is covered by a family of rational curves \tilde{C}_{λ} such that $-K_{\tilde{X}} \cdot \tilde{C}_{\lambda} \leq 3$. Take $C_{\lambda}=\mu\left(\tilde{C}_{\lambda}\right)$. Then

$$
-\left(K_{X}+B\right) \cdot C_{\lambda}=-\left(K_{\tilde{X}}+\tilde{B}\right) \cdot \tilde{C}_{\lambda} \leq-K_{\tilde{X}} \cdot \tilde{C}_{\lambda} \leq 3
$$

