
CHAPTER 11

Appendix

11.1. Existence of complements

PROPOSITION 11.1.1 ([Sh3]). Let $f:X\rightarrow Z\ni 0$ be a contraction from a sur-
face and $D$ a boundary on $X$ such that $K_{X}+D$ is $lcand-(K_{X}+D)$ is f-nef and
f-big. Then

(i) the linear system $|-m(K_{X}+D)|$ is base point free for some $m\in N$ ;
(ii) $K_{X}+D$ is n-complementary near $f^{-1}(0)$ for some $n\in N$ ;
(iii) the Mori cone $\overline{NE}(X/Z)$ is polyhedral and generated by irreducible curves.

We hope that this fact has higher dimensional generalizations (cf. [K3], see
also M. Reid’s Appendix to [Sh2]).

PROOF. First we prove (i). We consider only the case of compact $X$ . In the
case $\dim Z\geq 1$ there are stronger results (see Theorem 6.0.6). Applying a $\log$

terminal modification 3.1.1, we may assume that $K_{X}+D$ is dlt (and $X$ is smooth).
Set $C$ $:=\lfloor D\rfloor,$ $B$ $:=\{D\}$ . Note that $C$ is connected by Connectedness Lemma.
Take sufficiently large and divisible $n\in N$ and consider the exact sequence

$0\rightarrow \mathcal{O}_{X}(-n(K_{X}+D)-C)\rightarrow \mathcal{O}_{X}(-n(K_{X}+D))$

$\rightarrow \mathcal{O}_{C}(-n(K_{X}+D))\rightarrow 0$ .
By Kawamata-Viehweg Vanishing [KMM, 1-2-6],

$H^{1}(X, \mathcal{O}_{X}(-n(K_{X}+D)-C))=$

$H^{1}(X, \mathcal{O}_{X}(K_{X}+B-(n+1)(K_{X}+D)))=0$ .

Therefore $C\cap Bs|-n(K_{X}+D)|=Bs|-n(K_{X}+D)|c|$ .
We claim that $Bs|-n(K_{X}+D)|c|=\emptyset$ . Indeed, if $C$ is not a tree of rational

curves, then $p_{a}(C)=1$ and $C$ is either a smooth elliptic curve or a wheel of
smooth rational curves (see Lemma 6.1.7). Moreover, $SuppB\cap C=\emptyset$ . But then
$(K_{X}+D)|c=(K_{X}+C)|c=K_{C}=0$ and $Bs|-n(K_{X}+D)|c|=\emptyset$ in this
case. Note also that here we have an l-complement by Lemma 8.3.8. Assume now
that $C$ is a tree of smooth rational curves. Then $|-n(K_{X}+D)|c$ . $|$ is base point
free on each component $C_{i}\subset C$ whenever $-n(K_{X}+D)$ is Cartier. Hence so is
$|-n(K_{X}+D)|c|$ . This proves our claim.

Thus we have shown that $ C\cap Bs|-n(K_{X}+D)|=\emptyset$ . Let $L\in|-n(K_{X}+D)|$ be
a general member. Then $K_{X}+D+\frac{1}{n}L$ is dlt near $C$ (see 1.3.2). By Connectedness
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Lemma, $K_{X}+D+\frac{1}{n}L$ is lc everywhere. Hence $K_{X}+D+\frac{1}{n}L$ is a $\mathbb{Q}$-complement
of $K_{X}+D$ . The fact that $|-n(K_{X}+D)|$ is free outside of $C$ can be proved in a
usual way (see e.g., [R], [K3]). We omit it.

(ii) is obvious. Let us prove (iii). Clearly, we may assume that $\rho(X)\geq 2$ . It
follows by 11.2.2 that any $(K_{X}+D)$-negative extremal ray $R$ is generated by an
irreducible curve $C$ . By Proposition 11.2.5, $-(K_{X}+D)\cdot C\leq 2$ . Let $\varphi:X\rightarrow$

$Y\subset \mathbb{P}^{N}$ be the contraction given by the linear $system-m(K_{X}+D)$ for sufficiently
big and divisible $ m\in$ N. Then $\deg\varphi(C)\leq 2$ . This implies that $C$ belongs to a
finite number of algebraic families. Thus the cone $\overline{NE}(X)$ is polyhedral outside of
$\overline{NE}(X)\cap\{z|(K_{X}+D)\cdot z=0\}$ . Now consider the extremal ray $R$ such that $(K_{X}+$

$D)\cdot R=0$ . By the Hodge Index Theorem, $R^{2}<0$ . Thus, by Proposition 11.2.1
$R$ is generated by an irreducible curve, say $C$ . Since $(K_{X}+D)\cdot C=0$ , we have
that $\varphi$ contracts this curve to a point. Therefore there is a finite number of such
curves, so $\overline{NE}(X)$ is polyhedral everywhere. $\square $

11.2. Minimal Model Program in dimension two

The $\log$ Minimal Model Program in dimension two is much easier than in higher
dimensions. Following [A] and [KK] (see also [Sh4]) we present two main theorems
11.2.2 and 11.2.3 of MMP in the surface case. First we note that in the surface
case it is possible to define the numerical pull back of any $\mathbb{Q}$-Weil divisor under
birational contractions (see e.g., [S1]). Therefore all definitions of 1.1 can be given
for arbitrary normal surface (we need not the $\mathbb{Q}$-Cartier assumption). It turns out a
posteriory that any numerically lc pair (X, $B$ ) satisfies the property that $K_{X}+B$ is
$\mathbb{Q}$-Cartier [KM, Sect. 4.1], [Ma]. Similarly, the dlt property of (X, $D$ ) implies that
the surface $X$ is $\mathbb{Q}$-factorial [KM, Sect. 4.1]. For surfaces there is an alternative
way to define the numerical equivalence: two l-cycles $\prime r_{1},$ $\prime r_{2}\in Z_{1}(X/Z)$ are said
to be numerically equivalent if $L\cdot\prime r_{1}=L\cdot\prime r_{2}$ for all Weil divisors $L$ (not only for
those, that are $\mathbb{Q}$-Cartier). This gives also an alternative way to define $N_{1}(X/Z)$ ,
$\rho(X/Z)$ , and $\overline{NE}(X/Z)$ and leads to a possibly larger dimensional space $N_{1}(X/Z)$ .
We use the standard definition of the numerical equivalence and $N_{1}(X/Z)$ [KMM].

The following properties are well known (see e.g., [KM, 1.21-1.22] or [Ko3,
Ch. II, Lemma 4.12]).

PROPOSITION 11.2.1 (Properties of the Mori cone). Let $X$ be a normal projec-
tive surface.

(i) Let $z$ be an element of $N_{1}(X)$ such that $z^{2}>0$ and $z\cdot H>0$ for some
ample divisor H. Then $z$ is contained in the interior of $\overline{NE}(X)$ .

(ii) Let $C\subset X$ be an irreducible curve. If $C^{2}\leq 0$ , then the class $[C]$ is in the
boundary of $\overline{NE}(X)$ . If $C^{2}<0$ , then the my $R+[C]$ is extremal.

(iii) Let $R\subset\overline{NE}(X)$ be an extremal ray such that $R^{2}<0$ . Then $R$ is generated
by an irreducible curve.

PROOF. We prove only (iii). Take a l-cycle $Z$ so that $[Z]\in R,$ $[Z]\neq 0$ and
$Z_{i}$ a sequence of effective l-cycles whose limit is $Z$ . Write $Z_{i}=\sum_{j}a_{i},{}_{j}C_{j}$ , where
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$C_{j}$ are distinct irreducible curves. Since $0>Z^{2}=\lim Z\cdot Z_{i}$ , there is at least one
curve $C=C_{k}$ such that $Z\cdot C<0$ . Write $Z_{i}=c_{i}C+\sum_{j\neq k}a_{i},{}_{j}C_{j},$ $c_{i}\geq 0$ . Then

$0>C\cdot Z=\lim C\cdot Z_{i}\geq(\lim c_{i})C^{2}$ .

Thus $C^{2}<0$ and $\lim c_{i}>0$ . Pick $0<c<\lim c_{i}$ . Then $Z_{i}-cC$ is effective for
$i\gg 0$ and $Z=cC+\lim(Z_{i}-cC)$ Since $R$ is an extremal ray, this implies that
$[C]\in R$ . $\square $

THEOREM 11.2.2 (The Cone Theorem). Let $X$ be a normal projective surface
and $K_{X}+B$ be an effective R-Cartier divisor. Let $A$ be an ample divisor on $X$ .
Then for any $\epsilon>0$ the Mori-Kleiman cone of effective curves $\overline{NE}(X)$ in $N_{1}(X)$

can be written as

$\overline{NE}(X)=\overline{NE}_{K+B+\epsilon A}(X)+\sum R_{k}$

where, as usual, the first part consists of cycles that have positive intersection with
$K+B+\epsilon A$ and $R_{k}$ are finitely many extremal rays. Each of the extremal $mys$ is
generated by an effective curve.

THEOREM 11.2.3 (Contraction Theorem). Let $X$ be a projective surface with
$log$ canonical $K_{X}+B$ . Let $R$ be a $(K_{X}+B)$ -negative extremal ray. Then there
exists a nontriivial projective morphism $\phi:X\rightarrow Z$ such that $\phi_{*}(\mathcal{O}_{X})=\mathcal{O}_{Z}$ and
$\phi(C)=pt$ if and only if the class of $C$ belongs to R. Moreover, if $\phi$ is birational
and $K_{X}+B$ is $lc$ (resp. $klt$) then $K_{Z}+\phi_{*}B$ is $lc$ (resp. $klt$).

REMARK 11.2.4. Notation as above.

(i) If $\dim Z=1$ , then all fibers of $\phi$ are irreducible smooth rational curves and
$X$ has only rational singularities [KK].

(ii) If $\dim Z=2$ , then $C\simeq \mathbb{P}^{1}$ and $K_{Z}+\phi_{*}B$ is plt at $\phi(C)$ .

PROPOSITION 11.2.5 (Properties of extremal curves). Let (X, $B$ ) be a normal
projective $log$ surface and $R$ a $(K_{X}+B)$ -negative extremal ray on X. Assume that
$K_{X}+B$ is $lc$ . If $R^{2}\leq 0$ , then for any irreducible curve $C$ such that $[C]\in R$ we
have $-(K_{X}+D)\cdot C\leq 2$ . If $R^{2}>0$ , then $X$ is covered by a family of rational
curves $C_{\lambda}$ such $that-(K_{X}+D)\cdot C_{\lambda}\leq 3$ .

PROOF. Let $\mu:\tilde{X}\rightarrow X$ be the minimal resolution and $K_{\overline{X}}+\tilde{B}=\mu^{*}(K_{X}+B)$

the crepant pull back.
Consider the case $R^{2}\leq 0$ . Let $\tilde{C}$ be the proper transform of $C$ . Then

$-(K_{X}+B)\cdot C=-(K_{\overline{X}}+\tilde{B})\cdot\tilde{C}\leq-(K_{\overline{X}}+\tilde{C})\cdot\tilde{C}\leq 2$

because $\tilde{C}^{2}\leq C^{2}\leq 0$ and $\tilde{B}$ is a boundary.
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Now we assume that $R^{2}>0$ . Then $-(K_{X}+B)$ is ample (see 11.2.1). Thus
(X, $B$ ) is a $\log$ del Pezzo surface. By Corollary 5.4.3, $\tilde{X}$ is birationally ruled. It is
well known, that in this situation $\tilde{X}$ is covered by a family of rational curves $\tilde{C}_{\lambda}$

such that $-K_{\overline{X}}\cdot\tilde{C}_{\lambda}\leq 3$ . Take $C_{\lambda}=\mu(\tilde{C}_{\lambda})$ . Then
$-(K_{X}+B)\cdot C_{\lambda}=-(K_{\overline{X}}+\tilde{B})\cdot\tilde{C}_{\lambda}\leq-K_{\overline{X}}\cdot\tilde{C}_{\lambda}\leq 3$ .

$\square $


