
CHAPTER 6

Birational contractions and two-dimensional $\log$

canonical singularities

THEOREM 6.0.6. Let $(X/Z\ni 0, D)$ be a $log$ surface of local type, where $ f:X\rightarrow$

$Z\ni 0$ is a contraction. Assume that $K_{X}+D$ is $lcand-(K_{X}+D)$ is f-nef and
f-big. Then there exists an 1, 2, 3, 4, or 6-complement of $K_{X}+D$ which is
not $klt$ near $f^{-1}(0)$ . Moreover, if there are no nonklt 1 or 2-complements, then
$(X/Z\ni 0, D)$ is exceptional. These complements $K_{X}+D^{+}$ can be taken so that
$a(E, D)=-1$ implies $a(E, D^{+})=-1$ for any divisor $E$ of X(X).

PROOF. Let $H$ be an effective Cartier divisor on $Z$ containing $0$ and let $F$ $:=$

$f^{*}H$ . First we take the $c\in \mathbb{Q}$ such that $K_{X}+D+cF$ is maximally lc (see 5.3.3)
and replace $D$ with $D+cF$ . This gives that LCS(X, $D$ ) $\neq\emptyset$ . Next we replace
(X, $D$ ) with a $\log$ terminal modification. So we may assume that $K_{X}+D$ is dlt
and $\lfloor D\rfloor\neq 0$ . Then Proposition 4.4.3 and Theorem 4.1.10 give us that there exists
a regular complement $K_{X}+D^{+}$ of $K_{X}+D$ . By construction, $\lfloor D^{+}\rfloor\geq\lfloor D\rfloor$ . If
$K_{X}+D$ is not exceptional, then there exists a $\mathbb{Q}$-complement $K_{X}+D^{\prime}$ of $K_{X}+D$

and at least two divisors with discrepancy $a(\cdot, D)=-1$ . Then we can replace $D$

with $D^{\prime}$ . Taking a $\log$ terminal blowup, we obtain that $\lfloor D\rfloor$ is reducible. The rest
follows by Theorem 4.1.10. $\square $

COROLLARY 6.0.7. Let $(Z, Q)$ be a $lc$ , but not $klt$ two-dimensional singularzty.
Then the index of $(Z, Q)$ is 1, 2, 3, 4, or 6.

This fact has three-dimensional generalizations [I].

PROOF. Apply Theorem 6.0.6 to $f=$ id and $K_{Z}$ . We get an n-complement
$K_{Z}+D$ with $n\in\{1,2,3,4,6\}$ . Then $K_{Z}+D$ is lc and $n(K_{Z}+D)\sim 0$ . But if
$D\neq 0,$ $K_{Z}$ is klt (because $Q\in SuppD$ ). $\square $

COROLLARY 6.0.8. Let $(X\ni P)$ be a normal surface germ. Let $D$ be a bound-
ary such that $D\in\Phi_{m}$ and $C$ a reduced Weil divisor on X. Assume that $D$ and $C$

have no common components. Then one of the following holds:
(i) $K_{X}+D+C$ is $lc$; or
(ii) $K_{X}+D+\alpha C$ is not $lc$ for any $\alpha\geq 6/7$ .

Actually, we have more precise result 6.0.9. See [Kol] for three-dimensional
generalizations.
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PROOF. Assume that $K_{X}+D+\alpha C$ is lc for some $\alpha\geq 6/7$ . By Theorem 6.0.6
there is a regular complement $K_{X}+D^{+}+\alpha^{+}C$ near $P$ . Since $D\in\Phi_{m},$ $D^{+}\geq D$ .
By the definition of complements, $\alpha^{+}=1$ . Hence $K_{X}+D+C$ is lc. $\square $

Let $(X\ni 0)$ be a klt singularity and $D$ an effective Weil divisor on $X$ . Assume
that $D$ is $\mathbb{Q}$-Cartier. The $log$ canonical threshold is defined as follows

$c_{o}(X, D)$ $:=\sup$ {$c|K_{X}+cD$ is lc}.

COROLLARY 6.0.9 (cf. 10.3.7). Let $(X\ni P)$ be a normal $klt$ surface germ. Let
$D$ be a reduced Weil divisor on X. Assume that $c_{P}(X, D)\geq 2/3$ , then

$c_{P}(X, D)\in S$ $:=\{\frac{2}{3},$ $\frac{7}{10},$ $\frac{3}{4},$ $\frac{5}{6},1\}$ .

PROOF. Put $c:=c_{P}(X, D)$ . Assume that $2/3<c<1$ . Clearly, $D$ is reduced.
Let $f:(Y, C)\rightarrow X$ be an inductive blow up of (X, $cD$ ) (see 3.1.5). Then we can
write $f^{*}(K_{X}+cD)=K_{Y}+C+cD_{Y}$ , where $D_{Y}$ is the proper transform of $D$ . If
$K_{Y}+C+cD_{Y}$ is not plt, then by Theorem 6.0.6, $K_{X}+cD$ is 1 or 2-complementary.
Since $c\geq 2/3$ , this gives us that $(cD)^{+}\geq D,$ $K_{X}+D$ is lc and $c=1$ . Hence, we
may assume that $K_{Y}+C+cD_{Y}$ is plt. By 4.4.4, $C$ intersects $SuppD_{Y}$ transversally
and

(6.1) $Diff_{C}(cD)=\sum_{i=1}^{s}\frac{n_{i}-1+c}{n_{i}}P_{i}+\sum_{j=1}^{q}\frac{r_{j}-1}{r_{j}}Q_{j}$ ,

where $\{P_{1}, \ldots, P_{s}\}=C\cap SuppD$ , $n_{i},$ $r_{j}\in N$ ,
$\{Q_{1}, \ldots, Q_{q}\}=SingY\backslash SuppD$ .

$fori=1,$ $2,$

$3SinceC\simeq \mathbb{P}^{1},$ $acontradictionwithc>2/3.Assumethats=2T(61\deg Diff_{C}(cD)=2.Ifs\geq 3,thens=3andin(6..1),\frac{n-1+c}{heninn:}=.\frac{2}{3,)}$

we have $2>\sum\frac{n-1+c}{n:}>\frac{4}{3}$ and $0<\sum\frac{r-1}{r_{j}}<2/3$ . Hence $\sum\leftarrow^{r-1r_{j}}=\frac{1}{2}$ and
$\sum_{i=1}^{2}\frac{n-1+c}{n_{l}}=\frac{3}{2}$ . This yields

$\frac{1}{2}=\frac{1-c}{n_{1}}+\frac{1-c}{n_{2}}<\frac{1}{3n_{1}}+\frac{1}{3n_{2}}$ .

Therefore $n_{1}=n_{2}=1$ and $c=3/4$ . Finally, assume that $s=1$ . Similarly, in (6.1)
we have $1<\sum_{j=1}^{q}\frac{r_{j}-1}{r_{J}}<4/3$ . From this $q=2$ and up to permutations $(r_{1}, r_{2})$ is
one of the following: $(2, 3)$ , $(2, 4)$ , $(2, 5)$ . Thus $\frac{n_{1}-1+c}{n_{1}}=\frac{5}{6}\frac{3}{4}$ or $\frac{7}{10}$ In all cases
$n_{1}=1$ , so $c\in S$ . $\square $

6.1. Classification of two-dimensional $\log$ canonical singularities

Two-dimensional $\log$ terminal singularities ($=quotient$ singularities) were clas-
sified for the first time by Brieskorn [Br] (see also [I1], [Ut, ch. 3]). We reprove
this classification in terms of plt blowups. It is expected that this method has
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higher-dimensional generalizations, cf. [Sh3], [P1]. Recall that two-dimensional
$\log$ terminal singularities are exactly quotient singularities (see [K]).

Let $(Z, Q)$ be a two-dimensional klt singularity. If $K_{Z}$ is l-complementary, then
by 2.1.3 $(Z, Q)$ is analytically isomorphic to a cyclic quotient singularity. Assume
further that $K_{Z}$ is not l-complementary. By Lemma 3.1.4 there exists a plt blowup
$f:(X, C)\rightarrow Z$ (where $C$ is the exceptional divisor of $f$ ). Further, we classify these
blowups and propose the method to construct the minimal resolution. This method
also allows us to describe klt singularities as quotients (see Proposition 6.2.6).

LEMMA 6.1.1. Let $f:X\rightarrow Z\ni 0$ be a $plt$ blowup of a surface $klt$ singularity
and $C$ the (irreducible) exceptional divisor. Then

(i) $X$ has at most three singular points on $C$ ;
(ii) near each singular point the pair $C\subset X$ is analytically isomorphic to $(\{x=$

$0\}\subset \mathbb{C}^{2})/\mathbb{Z}_{m_{i}}(1, a_{i})$ , where $gcd(a_{i}, m_{i})=1$ ;
(iii) if $X$ has one or two singular points on $C$ , then $K_{X}+C$ is l-complementary;
(iv) if $X$ has three singular points on $C$ , then $(m_{1},m_{2}, m_{3})=(2,2, m),$ $(2,3,3)$ ,

(2, 3, 4) or (2, 3, 5) and $K_{X}+C$ is respectively 2, 3, 4, or 6-complementary
in these cases.

PROOF. By Proposition 2.1.2 we get that all singular points $P_{1},$
$\ldots,$

$P_{r}\in X$

are cyclic quotients:

$(X\supset C\ni P_{i})\simeq(\mathbb{C}^{2}\supset\{x=0\}\ni 0)/\mathbb{Z}_{m}.(1, a_{i})$ , $gcd(a_{i}, m_{i})=1$ ,

where the action of $\mathbb{Z}_{m}$ . on $\mathbb{C}^{2}$ is free outside of $0$ . Therefore $C\simeq \mathbb{P}^{1},$ $Diff_{C}(0)=$

$\sum(1-1/m_{i})P_{i}$ , where $K_{C}+Diff_{C}(0)=(K_{X}+C)|c$ is negative on $C$ . From
this it is easy to see that for $(m_{1}, \ldots , m_{r})$ there are only the possibilities $(m)$ ,
$(m_{1}, m_{2}),$ $(2,2, m),$ $(2,3,3),$ $(2,3,4)$ and (2, 3, 5). Since $-(K_{X}+C)$ is $f$-ample,
n-complements for $K_{C}+Diff_{C}(0)$ can be extended to n-complements of $K_{X}+C$ .
By 4.1.10 we have the desired n-complements. This proves (iii) and (iv). $\square $

By our assumptions, $K_{Z}$ is not l-complementary and by Lemma 6.1.1 we have
exactly three singular points on $C$ . Consider now the minimal resolution $g:Y\rightarrow X$

and put $h:=f\circ g:Y\rightarrow Z$ . Then on this resolution $C$ corresponds to some curve,
say $C^{\prime}$ , and the singular points $P_{i},$ $i=1,2,3$ correspond to “tails” meeting $C^{\prime}$ and
consisting of smooth rational curves (see Fig. 6.1)
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$-p$

FIGURE 6.1

Here each oval is a chain for the minimal resolution of $\mathbb{C}^{2}/\mathbb{Z}_{m}$ (see 2.1.1). Thus
for $m\leq 5$ it is one of the following:

$m=2$
$0^{2}-$

$m=3$

(6.2)
$m=4$

$m=5$
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From Corollary 4.1.11 we obtain cases for $(m_{1}, m_{2}, m_{3})$ in figures 6.2-6.5. Since
the intersection matrix of exceptional divisors is negative definite, $p\geq 2$ . Then
taking into account (6.2) it is easy to get the complete list of klt singularities (see
[Br], [I1], [Ut, ch. 3]).

$-a_{1}$ $-a_{2}$

$O$ – $O$ –

FIGURE 6.2.

FIGURE 6.3.

$O-2$

$-a_{r-1}$
$|$

– $O$ – $O-p$

$1$

$O-2$

Case $(2, 2, m)$

Case (2, 3, 3)

THEOREM 6.1.2. Let $(Z, Q)$ be a two-dimensional $log$ terminal singularity.
Then one of the following holds:

(i) $(Z, Q)$ is nonexceptional and then it is either cyclic quotient (case $A_{n}$ see
2.1.1) or the dual gmph of its minimal resolution is as in Fig. 6.2 (case
$D_{n})$ ;

(ii) $(Z, Q)$ is exceptional and then the dual graph of its minimal resolution is as
in Fig. 6.3-6.5 (cases $E_{6}$ , E7, $\mathbb{E}_{8}$ ).
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FIGURE 6.4. Case (2, 3, 4)

FIGURE 6.5. Case (2, 3, 5)

REMARK 6.1.3. (i) Note that our classification uses only the numerical def-
inition of $\log$ terminal singularities (by using numerical pull backs [S1], see
[K]).

(ii) In all cases of noncyclic quotient singularities (i.e. Fig. 6.2-6.5) the plt
blowup is unique.

COROLLARY 6.1.4. Fix $\epsilon$ $>$ $0$ . There is only a finite number of two-
dimensional exceptional $\epsilon- lt$ singularities (up to analytic isomorphisms).

PROOF. Let $E_{0}$ be the “central” exceptional divisor of the minimal resolution
and $E_{1},$ $E_{2},$ $E_{3}$ exceptional divisors adjacent to $E_{0}$ . Write $K_{Y}=h^{*}K_{Z}+\sum a_{i}E_{i}$ .
Intersecting both sides with $E_{0}$ , we obtain

$p-2=-pa_{0}+a_{1}+a_{2}+a_{3}$ .
This yields

$p\epsilon<p(1+a_{0})\leq 2$ , $ p<2/\epsilon$ .
$\square $
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EXERCISE 6.1.5. Classify two-dimensional singularities $(Z, Q)$ with klt $K_{Z}+D$ ,
where

$D=(1-1/m_{1})D_{1}+(1-1/m_{2})D_{2}+(1-1/m_{3})D_{3}$ , $Q\in D_{i}$ .

THEOREM 6.1.6 ([S2], [K], [Ut, Ch. 3]). Let $(Z, Q)$ be a two-dimensional $lc$ ,
but not $klt$ singularity, and let $f:X\rightarrow Z$ be the minimal resolution. Write $K_{X}+$

$D=f^{*}K_{Z}$ and put $C:=\lfloor D\rfloor,$ $B:=\{D\}$ . Then one of the following holds:
$Ell-A_{n}$ : $B=0,$ $p_{a}(C)=1$ and $C$ is either

$Ell$ : a smooth elliptic curve (simple elliptic singularity),
$\overline{A}_{n}$ : a rational curve with a node, or a wheel of smooth rational curves

(cusp singularity);
$\overline{D}_{n}$ : the dual graph of $f^{-1}(Q)$ is given by

$-2$ $O$

$1$

$-a_{0}$ $O$ – . ..
$1$

$-2$ $O$

or (when $n=4$)

$O$ $-2$

$1$

– $O$ $-a_{n-4}$

$1$

$O$ $-2$

$O$ $-2$

$1$

$-2O-O-O-2$
$1$

$O-2$
$Exc$ : the dual graph of $f^{-1}(Q)$ is as in Fig. 6.1, where $(m_{1}, m_{2}, m_{3})$ is one of

the following: (3, 3, 3) (case $\tilde{E}_{6}$ ), $(2,4,4)$ (case $\tilde{E}_{7}$ ), or (2, 3, 6) (case $\tilde{E}_{8}$ ),
cf. 4.1.12.

SKETCH OF PROOF. Similar to the proof of Theorem 6.1.2. Instead of plt
blowup we can use a minimal $\log$ terminal modification $f:X\rightarrow Z$ . Let $K_{X}+C=$
$f^{*}K_{Z}$ be the crepant pull back. Then $C$ is a reduced divisor and $K_{X}+C$ is dlt. If
$C$ is reducible, we can use Lemmas 6.1.7 and 6.1.9 below. If $C$ is irreducible, then
either $C$ is a smooth elliptic curve (and $X$ is also smooth) or $C\simeq \mathbb{P}^{1}$ . In the second
case as in the proof of we Theorem 6.1.2 have cases according to 4.1.12. We need
to check only that $p\geq 2$ in Fig. 6.1. This follows by the fact that the intersection
matrix is negative definite. $\square $



6.1. TWO-DIMENSIONAL LOG CANONICAL SINGULARITIES 53

LEMMA 6.1.7. Let $(X/Z, D)$ be a $log$ surface such that $K_{X}+D$ is $dlt$ and
$-(K_{X}+D)$ is $nef$ over $Z,$ $C$ $:=\lfloor D\rfloor\neq\emptyset$ and $B$ $:=\{D\}$ . Assume that $C$ is
compact, connected and not a tree of smooth rational curves. Then $X$ is smooth
along $C,$ $C\cap SuppB=\emptyset,$ $p_{a}(C)=1$ and $C$ is either a smooth elliptic curve or a
wheel of smooth rational curves.

PROOF. One has
$0\leq 2p_{a}(C)-2+\deg Diff_{C}(B)=(K_{X}+C+B)\cdot C\leq 0$ .

This yields $p_{a}(C)=0$ and $Diff_{S}(B)=0$ . In particular, $C$ is contained in the smooth
locus of $X$ and C\cap SuppB=. Moreover, it follows from $(K_{X}+C+B)\cdot C=0$

that $(K_{X}+C+B)\cdot C_{i}=0$ for any component $C_{i}\subset C$ . Similarly we can write
$0\leq 2p_{a}(C_{i})-2+\deg Diff_{C}.(C-C_{i})=(K_{X}+C)\cdot C_{i}=0$ .

If $C=C_{i}$ is irreducible, then $p_{a}(C)=1$ and $C$ is a smooth elliptic curve (because
$K_{X}+C$ is dlt). If $Ci\subset C$ , then $p_{a}(C_{i})=0,$ $C_{i}\simeq \mathbb{P}^{1}$ and $\deg Diff_{C_{i}}(C-C_{i})=2$ .
Since $K_{X}+C$ is dlt, $\hat{C}_{i}$ intersects $C-C_{i}$ transversally at two points. The only
possibility is when $C$ is a wheel of smooth rational curves. $\square $

REMARK 6.1.8. Assuming that $K_{X}+D$ is only analytically dlt, we have addi-
tionally the case when $C$ is a rational curve with a node.

Similar to 6.1.7 one can prove the following

LEMMA 6.1.9. Let $(X/Z, D)$ be a $log$ surface such that $K_{X}+D$ is $dlt$ and
numerically trivial over $Z,$ $C$ $:=\lfloor D\rfloor\neq\emptyset$ and $B$ $:=\{D\}$ . Assume that $B\in\Phi_{m}$ ,
$C$ is compact and it is a (connected and reducible) tree of smooth rational curves.
Then $C$ is a chain. Further, write $C=\sum_{i=1}^{r}$ Ci where $C_{1},$ $C_{r}$ are ends. Then

(i) $Diff_{C}(B)=\frac{1}{2}P_{1}^{1}+\frac{1}{2}P_{2}^{1}+\frac{1}{2}P_{1}^{r}+\frac{1}{2}P_{2}^{r}$ , where $P_{1}^{1},$ $P_{2}^{1}\in C_{1},$ $P_{1}^{r},$ $P_{2}^{r}\in C_{r}$ are
smooth points of $C$ ;

(ii) $C\cap(SingX\cup SuppB)\subset\{P_{1}^{1}, P_{2}^{1}, P_{1}^{r}, P_{2}^{r}\}$ ;
(iii) for each $P_{j}^{i},$ $(i,j)\in\{(1,1), (1,2), (r, 1), (r, 2)\}$ we have one of the following:

(a) $X$ is smooth at $P_{j}^{i}$ and there is exactly one component $B_{k}$ of $B$ pass-
ing through $P_{j}^{i}$ , in this case $C_{i}$ intersects $B_{k}$ transversally and the
coefficient of $B_{k}$ is equal to 1/2;

(b) $X$ has at $P_{j}^{i}DuVal$ point of type $A_{1}$ and no components of $B$ pass
through $P_{j}^{i}$ .

In particular, if $B=0$ , then (X, $C$ ) looks like that on Fig. 5.6, $X$ is singular only
at $P_{1}^{1},$ $P_{2}^{1}\in C_{1},$ $P_{1}^{r},$ $P_{2}^{r}\in C_{r}$ and these singularities are $DuVal$ of type $A_{1}$ .

REMARK 6.1.10. $-(i)_{-}We$ have $nK_{Z}\sim 0$ , where $n=1,2,3,4,6$ in cases
$Ell-\tilde{A}_{n},\overline{D}_{n},$ $E_{6},$ $E_{7}$ , and $\tilde{E}_{8}$ , respectively (see Corollary 6.0.7). This
gives that any two-dimensional lc but not klt singularity is a quotient of a
singularity of type $Ell-A_{n}$ by a cyclic group of order 1, 2,3-, 4, or 6.

(ii) The singularity $(Z, Q)$ is exceptional exactly in cases $Ell,$ $D_{4},\tilde{E}_{6},\overline{E}_{7}$ , and
$\tilde{E}_{8}$ .
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$C_{1}$ $C_{r}$

FIGURE 6.6

Recall that a normal surface singularity $Z\ni Q$ is said to be mtional [Ar] (resp.
elliptic) if $R^{1}f_{*}\mathcal{O}_{X}=0$ (resp. $R^{1}f_{*}\mathcal{O}_{X}$ is one-dimensional) for any resolution
$f:X\rightarrow Z$ .

COROLLARY 6.1.11 ([K]). Let $(Z\ni Q)$ be a two-dimensional $lc$ singularity
and $f:X\rightarrow Z$ its minimal resolution. Write $K_{X}+D=f^{*}K_{Z}$ . Then one of the
following holds:

(i) $\{D\}\neq 0$ and $Z\ni Q$ is a rational singularity;
(ii) $\{D\}=0$ and $D$ is either a smooth elliptic curve (type $Ell$), a mtional curve

with a node or a wheel of smooth rational curves (type $\tilde{A}_{n}$). In this case,
$(Z\ni Q)$ is a Gorenstein elliptic singularity.

Note that exceptional $\log$ canonical singularities are rational except for the
case $Ell$ .

EXERCISE 6.1.12. Prove that the following hypersurface singularities are lc but
not klt:

$x^{3}+y^{3}+z^{3}+axyz=0$ , $a^{3}+27\neq 0$ ;
$x^{2}+y^{4}+z^{4}+ay^{2}z^{2}=0$ , $a^{2}\neq 4$ ;
$x^{2}+y^{3}+z^{6}+ay^{2}z^{2}=0$ , $4a^{3}+27\neq 0$ .

6.2. Two-dimensional $\log$ terminal singularities as quotients

Now we discuss the relation between two-dimensional $\log$ terminal singularities
and quotient singularities. We use the following standard notation:
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$\mathfrak{S}_{n}$ symmetric group;
$\mathfrak{A}_{n}$ alternating group;
$\mathfrak{D}_{n}=\langle\alpha, \beta|\alpha^{n}=\beta^{2}=1, \beta\alpha\beta=\alpha^{-1}\rangle$ dihedral group of order $2n$ .

PROPOSITION 6.2.1. Notation as in Lemma 6.1.1. Then we have
(i) if $X$ has three singular points on $C,$ $f:X\rightarrow Z$ is the quotient of the minimal

resolution of the cyclic quotient singularity $\mathbb{C}^{2}/\mathbb{Z}_{r}(1,1)$ by the group $\mathfrak{D}_{m},$ $\mathfrak{A}_{4}$ ,
$\mathfrak{S}_{4}$ and $\mathfrak{A}_{5}$ , in cases $(m_{1}, m_{2}, m_{3})=(2,2,m),$ $(2,3,3),$ $(2,3,4)$ or (2, 3, 5),
respectively;

(ii) if $moreover-K_{X}$ is f-ample, then $X$ has at most two singular points on $C$

(and $K_{X}+C$ is l-complementary).

PROOF. Consider $X$ as a small analytic neighborhood of $C\simeq \mathbb{P}^{1}$ . We calculate
the fundamental group of $X\backslash \{P_{1}, P_{2}, P_{3}\}$ . Denote by $\Gamma(m_{1}, m_{2}, m_{3})$ the group
generated by $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ with relations

$\alpha_{1}^{m_{1}}=\alpha_{2}^{m_{2}}=\alpha_{3}^{m_{3}}=\alpha_{1}\alpha_{2}\alpha_{3}=1$ .
LEMMA 6.2.2 (cf. [Mo, 0.4.13.3]).

$\pi_{1}(X\backslash \{P_{1}, P_{2}, P_{3}\})\simeq\Gamma(m_{1}, m_{2}, m_{3})$ .
PROOF. Let $U_{i}\subset X$ be a small neighborhood of $P_{i}$ and $U_{i^{O}}$ $:=U_{i}\backslash \{P_{i}\}$ . From

Theorem 2.1.2 we have $\pi_{1}(U_{i}^{o})\simeq \mathbb{Z}_{m}.\cdot$ Denote by $\alpha_{i}$ the generators of these groups.
The set $X\backslash \{P_{1}, P_{2}, P_{3}\}$ is homotopically equivalent to $\mathbb{P}^{1}\backslash \{P_{1}, P_{2}, P_{3}\}$ glued along
$\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ with sets $U_{1}^{0},$ $U_{2}^{0},$ $U_{3}^{0}$ . Denote loops around $P_{i}$ (with the appropriate
orientation) also by $\alpha_{i}$ . Then $\pi_{1}(\mathbb{P}^{1}\backslash \{P_{1}, P_{2}, P_{3}\})\simeq\langle\alpha_{1}, \alpha_{2}, \alpha_{3}|\alpha_{1}\alpha_{2}\alpha_{3}=1\rangle$ .
From the description of points2.1.2it fo11ows a1so that the map

$\pi_{1}(C\cap U_{i}^{o})\simeq \mathbb{Z}\rightarrow\pi_{1}(U_{i}^{o})\simeq \mathbb{Z}_{m_{i}}$

is surjective. Now the lemma follows by Van Kampen’s theorem. $\square $

Now for (i) we notice that the groups $\Gamma(2,2, m),$ $\Gamma(2,3,3),$ $\Gamma(2,3,4)$ and
$\Gamma(2,3,5)$ have finite quotient groups isomorphic to $\mathfrak{D}_{m},$ $\mathfrak{A}_{4},$ $\mathfrak{S}_{4}$ and $\mathfrak{A}_{5}$ , respec-
tively, such that the images of the elements $\alpha_{i}$ have orders $m_{i}$ . This follows from the
fact that there exist actions of $\mathfrak{D}_{m},$ $\mathfrak{U}_{4},$ $\mathfrak{S}_{4}$ and $\mathfrak{A}_{5}$ on $\mathbb{P}^{1}$ with ramification points
of orders $(m_{1}, m_{2}, m_{3})$ . Then this finite group determines a finite cover $\hat{X}\rightarrow X$

unramified outside of $P_{1},$ $P_{2},$ $P_{3}$ , where $\hat{X}$ is smooth. The Stein factorization gives
a contraction $\hat{X}\rightarrow\hat{Z}$ of an irreducible curve $\mathbb{P}^{1}\simeq\hat{C}\subset\hat{X}$ . If $\hat{C}^{2}=-r$ , then
this contraction is the minimal resolution of the singularity $\mathbb{C}^{2}/\mathbb{Z}_{r}(1,1)$ . Finally, if
$-K_{X}$ is ample, then so $is-K_{\hat{X}}$ . Thus $r=1$ , i.e., $Z\ni 0$ is a smooth point. But the
groups $\mathfrak{D}_{m},$ $\mathfrak{A}_{4},$ $\mathfrak{S}_{4}$ and $\mathfrak{A}_{5}$ cannot act on $(Z\ni 0)\simeq(\mathbb{C}^{2},0)$ freely in codimension
one. This proves (ii). $\square $

COROLLARY 6.2.3 ([KMM, 0-2-17]). Any two-dimensional $klt$ singularity is a
quotient singularity.

COROLLARY 6.2.4 ([Br]). Let $(Z, Q)$ be a two-dimensional $klt$ singularity.
Then $\pi_{1}(Z\backslash \{Q\})$ \’is finite.
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EXAMPLE 6.2.5. Let $a,$ $b,$ $m\in N,$ $gcd(a, b)=1$ . Consider a cyclic quotient
singularity $0\ni Z=\mathbb{C}^{2}/\mathbb{Z}_{m}(a, b)$ (the case $m=1$ is not excluded). Any weighted
blowup $f:X\rightarrow Z$ with weights $(a, b)$ is an extremal contraction with exceptional
divisor $C\simeq \mathbb{P}^{1}$ . By Lemma 3.2.1, $K_{X}=f^{*}K_{Z}+((a+b)/m-1)C$ . Hence for
$a+b>m$ the divisor $-K_{X}$ is $f$-ample.

PROPOSITION 6.2.6 (cf. Conjecture 2.2.18). Let $f:X\rightarrow Z$ be a birational
contraction of normal surfaces. Assume that $f$ contracts an irreducible curve $C$

$(i.e. \rho(X/Z)=1)$ and $K_{X}+C$ is a $plt$ and f-antiample ($i.e.,$ $f$ is a $plt$ blowup;
see 3.1.4). Assume also that $X$ has at most two singular points on C. Then $f$ is
a weighted blowup.

REMARK 6.2.7. The condition of the antiampleness of $K_{X}+C$ is equivalent
to the klt property of $f(C)\in Z$ . The condition that $X$ has $\leq 2$ singular points is
equivalent to that $Z\ni f(C)$ is a cyclic quotient singularity (or smooth).

PROOF. By Proposition 6.2.1, $K_{X}+C$ and $K_{Z}$ are l-complementary. There-
fore there are two curves $C_{1},$ $C_{2}$ such that $K_{X}+C+C_{1}+C_{2}$ is lc and linearly trivial
over $Z$ . Moreover, by Theorem 2.1.3 up to analytic isomorphisms we may assume
that $(Z, f(C_{1})+f(C_{2}))$ is a toric pair. For example, assume that $X$ has exactly
two singular points. Consider the minimal resolution $\mu:X^{\prime}\rightarrow X$ and $f^{\prime}$ : $X^{\prime}\rightarrow Z$

the composition. It is sufficient to show that the morphism $f^{\prime}$ is toric. By 2.1.3, in
a fiber over $0\in Z$ we have the following configuration of curves:

$\ominus$ – $O$ . .. $O$ – $\bullet$ – $O$ . .. $O$ – $\ominus$ ,

where the black vertex corresponds to a fiber (and has self-intersection number
$a\leq-1)$ , white vertices correspond to exceptional divisors and have self-intersection
numbers $b_{i}\leq-2$ , and the vertices $\ominus$ correspond to the curves $C_{1},$ $C_{2}$ . If $a<-1$ ,
$f$ is the minimal resolution of a cyclic quotient singularity $0\in Z$ and in this case
the morphism $f^{\prime}$ is toric. If $a=-1$ , then $f$

’ : $X^{\prime}\rightarrow Z$ factors through the minimal
resolution $g:Y\rightarrow Z$ of the singularity $0\in Z$ (which is a toric morphism) and
$X^{\prime}\rightarrow Y$ is a composition of blowups with centers at points of intersections of
curves. Such blowups preserve the action of the two-dimensional torus, hence $f^{\prime}$ is
a toric morphism. $\square $

EXAMPLE 6.2.8 ([Mor]). Let $f:X\rightarrow Z\ni 0$ be a $K_{X}$ -negative extremal bi-
rational contraction of surfaces. Assume that $X$ has only Du Val singularities.
Then

(i) $Z$ is smooth;
(ii) $f$ is a weighted blowup (see 3.2) with weights (1, q) (and then $X$ contains

only one singular point, which is of type $A_{q-1}$ ).

EXERCISE 6.2.9 (cf. 2.2.18). Let $f:X$ $\rightarrow$ $Z$ $\ni$ $0$ be a birational two-
dimensional contraction and $D$ a boundary on $X$ such that $K_{X}+D$ is lc and
$-(K_{X}+D)$ is nef over $Z$ . Prove that

$\rho_{num}(X/Z)+2\geq\sum d_{i}$ ,
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where $\rho_{num}(X/Z)$ is the rank of the quotient of Weil(X) modulo numerical equiv-
alence. Moreover, the equality holds only if $(X/Z\ni 0, \lfloor D\rfloor)$ is a toric pair.


