CHAPTER 6

Birational contractions and two-dimensional log
canonical singularities

THEOREM 6.0.6. Let (X/Z 3 o, D) be a log surface of local type, where f: X —
Z 3 o is a contraction. Assume that Kx + D is lc and —(Kx + D) is f-nef and
f-big. Then there exists an 1, 2, 3, 4, or 6-complement of Kx + D which is
not kit near f~1(0). Moreover, if there are no nonklt 1 or 2-complements, then
(X/Z > o,D) is exceptional. These complements Kx + Dt can be taken so that
a(E, D) = —1 implies a(E,D%) = ~1 for any divisor E of X(X).

PROOF. Let H be an effective Cartier divisor on Z containing o and let F :=
f*H. First we take the ¢ € Q such that Kx + D + cF is maximally lc (see 5.3.3)
and replace D with D + cF. This gives that LCS(X, D) # &. Next we replace
(X, D) with a log terminal modification. So we may assume that Kx + D is dlt
and | D] # 0. Then Proposition 4.4.3 and Theorem 4.1.10 give us that there exists
a regular complement Kx + D of Kx + D. By construction, |[D*] > |D]. If
Kx + D is not exceptional, then there exists a Q-complement Kx + D' of Kx + D

and at least two divisors with discrepancy a(-, D’) = —1. Then we can replace D
with D’. Taking a log terminal blowup, we obtain that |D| is reducible. The rest
follows by Theorem 4.1.10. O

COROLLARY 6.0.7. Let (Z,Q) be a lc, but not kit two-dimensional singularity.
Then the indez of (Z,Q) is 1, 2, 3, 4, or 6.

This fact has three-dimensional generalizations [I].

ProoOF. Apply Theorem 6.0.6 to f = id and Kz. We get an n-complement
Kz + D with n € {1,2,3,4,6}. Then Kz + D is Ic and n(Kz + D) ~ 0. But if
D # 0, Kz is klt (because Q € SuppD). ad

COROLLARY 6.0.8. Let (X 3 P) be a normal surface germ. Let D be a bound-
ary such that D € ®,, and C a reduced Weil divisor on X. Assume that D and C
have no common components. Then one of the following holds:

(i) Kx + D+ C is lc; or

(ii) Kx + D + aC is not lc for any a > 6/7.

Actually, we have more precise result 6.0.9. See [Kol] for three-dimensional
generalizations.
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ProOOF. Assume that Kx + D + aC is lc for some a > 6/7. By Theorem 6.0.6
there is a regular complement Kx + Dt + a*C near P. Since D € ®,,, Dt > D.
By the definition of complements, at = 1. Hence Kx + D + C is lc. O

Let (X 3 o) be a kit singularity and D an effective Weil divisor on X. Assume
that D is Q-Cartier. The log canonical threshold is defined as follows

co(X,D) :=sup{c| Kx + ¢D is Ic}.

COROLLARY 6.0.9 (cf. 10.3.7). Let (X > P) be a normal klt surface germ. Let
D be a reduced Weil divisor on X. Assume that cp(X,D) > 2/3, then

2 7 35
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PROOF. Put ¢ := cp(X, D). Assume that 2/3 < ¢ < 1. Clearly, D is reduced.
Let f: (Y,C) — X be an inductive blow up of (X, cD) (see 3.1.5). Then we can
write f*(Kx + c¢D) = Ky + C + ¢Dy, where Dy is the proper transform of D. If
Ky +C+cDy is not plt, then by Theorem 6.0.6, Kx +cD is 1 or 2-complementary.
Since ¢ > 2/3, this gives us that (cD)* > D, Kx + D is lc and ¢ = 1. Hence, we
may assume that Ky +C +cDy is plt. By 4.4.4, C intersects SuppDy transversally
and

CP(X7D) €S := {

S

q
i — 1
(6.1) Diffic(cD) =3 %ifpi +3° g,
2 J

T

i=1 j=1
where {P,...,P;} =CnNSuppD, mn;,7; €N,
{Qla s ,Qq} = SlIng \ SuppD
Since C ~ P!, degDiff¢(cD) = 2. If s > 3, then s = 3 and in (6.1), B H€ = 2
for ¢ = 1,2,3, a contradiction with ¢ > 2/3. Assume that s = 2. Then in (6.1)
we have 2 > 3 zlie > 4 and 0 < L= < 2/3. Hence Y, “— = } and

3
Z?: ) .’h_;li = 2. This yields
1 1-c 1l-c 1 1

== + < + —.
2 n, No 3”11 3712

Therefore n; = ny = 1 and ¢ = 3/4. Finally, assume that s = 1. Similarly, in (6.1)
we have 1 < 3°7_, L’;f—l- < 4/3. From this ¢ = 2 and up to permutations (r1,72) is
one of the following: (2,3), (2,4), (2,5). Thus ﬂl—'ﬁ—llﬁ = %, %, or %. In all cases
ni=1,s0c€S. O

6.1. Classification of two-dimensional log canonical singularities

Two-dimensional log terminal singularities (=quotient singularities) were clas-
sified for the first time by Brieskorn [Br] (see also [Il], [Ut, ch. 3]). We reprove
this classification in terms of plt blowups. It is expected that this method has
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higher-dimensional generalizations, cf. [Sh3], [P1]. Recall that two-dimensional
log terminal singularities are exactly quotient singularities (see [K]).

Let (Z, Q) be a two-dimensional kit singularity. If Kz is 1-complementary, then
by 2.1.3 (Z, Q) is analytically isomorphic to a cyclic quotient singularity. Assume
further that Kz is not 1-complementary. By Lemma 3.1.4 there exists a plt blowup
f: (X,C) — Z (where C is the exceptional divisor of f). Further, we classify these
blowups and propose the method to construct the minimal resolution. This method
also allows us to describe klt singularities as quotients (see Proposition 6.2.6).

LEMMA 6.1.1. Let f: X — Z 3 o be a plt blowup of a surface kit singularity
and C the (irreducible) exceptional divisor. Then

(i) X has at most three singular points on C;
(i) near each singular point the pair C C X is analytically isomorphic to ({z =
0} - CQ)/Zmi(l’a’i)) where ng(aiami) = 1;
(iii) #f X has one or two singular points on C, then Kx +C is 1-complementary;
(iv) if X has three singular points on C, then (my,ms,m3) = (2,2,m), (2,3,3),
(2,3,4) or (2,3,5) and Kx + C is respectively 2, 3, 4, or 6-complementary
in these cases.

ProOOF. By Proposition 2.1.2 we get that all singular points P,..., P, € X
are cyclic quotients:

(X >C> PZ) = (C2 2 {.'II = 0} S O)/Zmi(laai)’ ng(aiami) = 11

where the action of Z,,, on C? is free outside of 0. Therefore C ~ P!, Diff¢(0) =
5> (1 — 1/m;)P;, where K¢ + Diff¢(0) = (Kx + C)|c is negative on C. From
this it is easy to see that for (m;,...,m,) there are only the possibilities (m),
(m1,m2), (2,2,m), (2,3,3), (2,3,4) and (2,3,5). Since —(Kx + C) is f-ample,
n-complements for K¢ + Diff ¢(0) can be extended to n-complements of Kx + C.
By 4.1.10 we have the desired n-complements. This proves (iii) and (iv). O

By our assumptions, Kz is not 1-complementary and by Lemma 6.1.1 we have
exactly three singular points on C. Consider now the minimal resolution g: ¥ — X
and put h:= fog: Y — Z. Then on this resolution C corresponds to some curve,
say C', and the singular points P;, ¢ = 1,2, 3 correspond to “tails” meeting C’ and
consisting of smooth rational curves (see Fig. 6.1)
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Here each oval is a chain for the minimal resolution of C2/Z,, (see 2.1.1). Thus

for m < 5 it is one of the following:

-3
m =3 ﬁ O
—2 —2
\ O—O
( —4
(62) e O
ﬁ -2 -2 -2
| O—O—=0
r )
O
m=25 ) —2 -3
Oo—=O
-2 -2 -2
\ O“—O'_O—O
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From Corollary 4.1.11 we obtain cases for (m;, ms, m3) in figures 6.2-6.5. Since
the intersection matrix of exceptional divisors is negative definite, p > 2. Then
taking into account (6.2) it is easy to get the complete list of kit singularities (see
[Br], (I1], [Ut, ch. 3]).

FIGURE 6.2. Case (2,2,m)

-2
FIGURE 6.3. Case (2,3,3)

THEOREM 6.1.2. Let (Z,Q) be a two-dimensional log terminal singularity.
Then one of the following holds:

(i) (Z,Q) is nonezxceptional and then it is either cyclic quotient (case A, see
2.1.1) or the dual graph of its minimal resolution is as in Fig. 6.2 (case
D, );

(ii) (Z,Q) is ezceptional and then the dual graph of its minimal resolution is as
in Fig. 6.3-6.5 (cases Eg, E7, Eg).
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( cz; ) @; { cc‘~’/z4‘)

-2

FIGURE 6.4. Case (2,3,4)

( c2/zs ) O (  «c2zs )

-2

FIGURE 6.5. Case (2,3,5)

REMARK 6.1.3. (i) Note that our classification uses only the numerical def-
inition of log terminal singularities (by using numerical pull backs [S1], see
[K])-

(ii) In all cases of noncyclic quotient singularities (i.e. Fig. 6..2—6.5) the plt
blowup is unique.

COROLLARY 6.1.4. Fiz ¢ > 0. There is only a finite number of two-
dimensional exceptional e-lt singularities (up to analytic isomorphisms).

PROOF. Let Ej be the “central” exceptional divisor of the minimal resolution
and E;, E3, E3 exceptional divisors adjacent to Ey. Write Ky = h*Kz + 5 a; E;.
Intersecting both sides with Ey, we obtain

p— 2= —pag + a; + as + as.
This yields
pe < p(l+ap) <2, p<2/e.
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EXERCISE 6.1.5. Classify two-dimensional singularities (Z, Q) with klt K+ D,
where

D:(l—-l/ml)Dl+(1—1/m2)D2+(1—1/m3)D3, Q € D,.

THEOREM 6.1.6 ([S2], [K], [Ut, Ch. 3]). Let (Z,Q) be a two-dimensional lc,
but not kit singularity, and let f: X — Z be the minimal resolution. Write K x +
D = f*Kz and put C := |D|, B := {D}. Then one of the following holds:

Ell— A,: B=0, Pa(C) =1 and C is either

Ell: a smooth elliptic curve (simple elliptic singularity),
ﬁn: a rational curve with a node, or a wheel of smooth rational curves
(cusp singularity);
D,: the dual graph of f~1(Q) is given by

—2 O O -2

—Q9 O - o T O —Qn_—4

-2 O O -2

or (whenn =4)

Exc: the dual graph of f~1(Q) is as in Fig. 6.1, where (m,, my, m3) is one of
the following: (3,3,3) (case Eg), (2,4,4) (case E7), or (2,3,6) (case Eg),
of 4.1.12.

SKETCH OF PROOF. Similar to the proof of Theorem 6.1.2. Instead of plt
blowup we can use a minimal log terminal modification f: X — Z. Let Kx +C =
f*Kz be the crepant pull back. Then C is a reduced divisor and Kx + C is dlt. If
C is reducible, we can use Lemmas 6.1.7 and 6.1.9 below. If C is irreducible, then
either C is a smooth elliptic curve (and X is also smooth) or C ~ P!. In the second
case as in the proof of we Theorem 6.1.2 have cases according to 4.1.12. We need
to check only that p > 2 in Fig. 6.1. This follows by the fact that the intersection
matrix is negative definite. O
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LEMMA 6.1.7. Let (X/Z,D) be a log surface such that Kx + D is dit and
—(Kx + D) is nef over Z, C := |D| # & and B := {D}. Assume that C is
compact, connected and not a tree of smooth rational curves. Then X is smooth
along C, C N SuppB = &, p,(C) =1 and C is either a smooth elliptic curve or a
wheel of smooth rational curves.

PROOF. One has
0 <2p,(C)—2+degDiff¢(B)=(Kx+C+B)-C<0.

This yields p,(C ) = 0 and Diff s(B) = 0. In particular, C is contained in the smooth
locus of X and C N SuppB = &. Moreover, it follows from (Kx +C + B)-C =0
that (Kx + C + B) - C; = 0 for any.component C; C C. Similarly we can write

0 < 2p,(C;) — 2+ degDiff¢,(C - C;)) = (Kx +C)-C; =0.

If C = C; is irreducible, then p,(C) = 1 and C is a smooth elliptic curve (because
Kx + C is dlt). If C; € C, then p,(C;) =0, C; ~ P! and degDiff¢,(C — C;) = 2.

Since Kx + C is dlt, C; intersects C — C; transversally at two points. The only
possibility is when C is a wheel of smooth rational curves. (|

REMARK 6.1.8. Assuming that Kx + D is only analytically dlt, we have addi-
tionally the case when C is a rational curve with a node.

Similar to 6.1.7 one can prove the following

LEMMA 6.1.9. Let (X/Z,D) be a log surface such that Kx + D is dit and
numerically trivial over Z, C := |D]| # @ and B := {D}. Assume that B € ®n,,
C is compact and it is a (connected and reducible) tree of smooth rational curves.
Then C is a chain. Further, write C = Z:zl C; where Cy, C, are ends. Then

(i) Diff¢(B) = 1P! + 3P} + 1 P + P}, where P} ,P; € C1, P{,P; € C; are

smooth points of C;
(i) C N (SingX U SuppB) C {PL, P}, P],P5};
(iii) for each P}, (i,5) € {(1,1),(1,2),(r,1),(r,2)} we have one of the following:
(a) X is smooth at Pj and there is exactly one component By of B pass-
ing through P;, in this case C; intersects By transversally and the
coefficient of By, is equal to 1/2;
(b) X has at P; Du Val point of type A, and no components of B pass
through P}.
In particular, if B = 0, then (X, C) looks like that on Fig. 6.6, X is singular only
at P, P} € C1, PJ,P] € C, and these singularities are Du Val of type A, .

REMARK 6.1.10. (i) We have nKz ~ 0, where n = 1,2,3,4,6 in cases
Ell — Zn, D, Ee, E;, and FEj, respectively (see Corollary 6.0.7). This
gives that any two-dimensional lc but not kit singularity is a quotient of a
singularity of type Ell — A, by a cyclic group of order 1, 2, 3, 4, or 6.

(ii) The singularity (Z, Q) is exceptional exactly in cases Ell Dy, Eg, Eq, and
Es.
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Q1

Ci C,

FIGURE 6.6

Recall that a normal surface singularity Z 3 Q is said to be rational [Ar] (resp.
elliptic) if R'f,Ox = 0 (resp. R!f.Ox is one-dimensional) for any resolution
f: X—-Z.

COROLLARY 6.1.11 ([K]). Let (Z 3 Q) be a two-dimensional lc singularity
and f: X — Z its minimal resolution. Write Kx + D = f*Kz. Then one of the

following holds:
(i) {D} #0 and Z 5 Q is a rational singularity;
(ii) {D} =0 and D is either a smooth elliptic curve (type Ell), a rational curve
with a node or a wheel of smooth rational curves (type A,). In this case,
(Z 2 Q) is a Gorenstein elliptic singularity.

Note that exceptional log canonical singularities are rational except for the
case Fll.

EXERCISE 6.1.12. Prove that the following hypersurface singularities are lc bﬁt
not klt:

2+ Y3+ 2% +aryz =0, ad+27+#£0;
2+ yt + 2t +ay?22 =0, a? #4;
2+ 43 + 2% +ay?22 =0, 4a®+27+#0.

6.2. Two-dimensional log terminal singularities as quotients

Now we discuss the relation between two-dimensional log terminal singularities
and quotient singularities. We use the following standard notation:
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S, symmetric group;
2An alternating group;
Dn=(a,8|a™=p%2=1,8aB=a"!) dihedral group of order 2n.

PROPOSITION 6.2.1. Notation as in Lemma 6.1.1. Then we have
(i) if X has three singular points on C, f: X — Z is the quotient of the minimal
resolution of the cyclic quotient singularity C?/Z,(1,1) by the group ©,,, As,
64 and A5, in cases (m1,mq, m3) = (2,2,m), (2,3,3), (2,3,4) or (2,3,5),
respectively;
(ii) if moreover —Kx is f-ample, then X has at most two singular points on C
(and Kx + C is 1-complementary).

ProOOF. Consider X as a small analytic neighborhood of C' ~ P!. We calculate
the fundamental group of X \ {P,, P;, Ps}. Denote by I'(m;, mo, m3) the group
generated by a;, a3, az with relations

m m3 __ —
o =a3? = a3® = aqyosaz = 1.

LEMMA 6.2.2 (cf. [Mo, 0.4.13.3]).
T (X \ {P1, P2, P3}) ~ T'(my, ma, m3).

PROOF. Let U; C X be a small neighborhood of P; and U? := U; \ {P;}. From
Theorem 2.1.2 we have 71 (U?) ~ Z,,,. Denote by «; the generators of these groups.
The set X \ {P;, P,, P5} is homotopically equivalent to P1\ {P;, P;, P;} glued along
ai, oz, a3z with sets U2, U2, UQ. Denote loops around P; (with the appropriate
orientation) also by a;. Then 71 (P! \ {P, P2, P3}) ~ (a1,a2,03 | aqyazaz = 1).
From the description of points 2.1.2 it follows also that the map

m(CNUY)~Z - m((U}) ~ Zp,
is surjective. Now the lemma, follows by Van Kampen’s theorem. O

Now for (i) we notice that the groups I'(2,2,m), I'(2,3,3), I'(2,3,4) and
I'(2,3,5) have finite quotient groups isomorphic to D,,, A4, S4 and As, respec-
tively, such that the images of the elements «; have orders m;. This follows from the
fact that there exist actions of D,,, 4, G4 and A5 on P! with ramification points
of orders (mi, ma,m3). Then this finite e group determines a finite cover X=X
unramified outside of Py, P, P3, where X is smooth. The Stein factorization gives
a contraction X — Z of an irreducible curve P! ~ ¢ c X. If €2 = —r, then
this contraction is the minimal resolution of the singularity C2?/Z.(1,1). Finally, if
—Kx is ample, then sois —K¢. Thusr =1, i.e.,, Z 3 o is a smooth point. But the
groups ®,,, 24, 64 and A cannot act on (Z 3 o) ~ (C2,0) freely in codimension
one. This proves (ii). a

COROLLARY 6.2.3 ([KMM, 0-2-17]). Any two-dimensional kit singularity is a
quotient singularity.

COROLLARY 6.2.4 ([Br]). Let (Z,Q) be a two-dimensional kit singularity.
Then m1(Z \ {Q}) is finite.
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EXAMPLE 6.2.5. Let a,b,m € N, gcd(a,b) = 1. Consider a cyclic quotient
singularity 0 3 Z = C?/Z,(a,b) (the case m = 1 is not excluded). Any weighted
blowup f: X — Z with weights (a,b) is an extremal contraction with exceptional
divisor C ~ P'. By Lemma 3.2.1, Kx = f*Kz + ((a + b)/m — 1)C. Hence for
a + b > m the divisor —Kx is f-ample.

PROPOSITION 6.2.6 (cf. Conjecture 2.2.18). Let f: X — Z be a birational
contraction of normal surfaces. Assume that f contracts an irreducible curve C
(i.e. p(X/Z)=1) and Kx + C is a plt and f-antiample (i.e., f is a pit blowup;
see 3.1.4). Assume also that X has at most two singular points on C. Then f is
a weighted blowup.

REMARK 6.2.7. The condition of the antiampleness of Kx + C is equivalent
to the klt property of f(C) € Z. The condition that X has < 2 singular points is
equivalent to that Z 3 f(C) is a cyclic quotient singularity (or smooth).

PROOF. By Proposition 6.2.1, Kx + C and Kz are 1-complementary. There-
fore there are two curves Cy, Cs such that Kx +C+Cy+Cs is Ic and linearly trivial
over Z. Moreover, by Theorem 2.1.3 up to analytic isomorphisms we may assume
that (Z, f(C1) + f(C2)) is a toric pair. For example, assume that X has exactly
two singular points. Consider the minimal resolution p: X' — X and f': X' —» Z
the composition. It is sufficient to show that the morphism f’ is toric. By 2.1.3, in
a fiber over o € Z we have the following configuration of curves:

where the black vertex corresponds to a fiber (and has self-intersection number
a < —1), white vertices correspond to exceptional divisors and have self-intersection

numbers b; < —2, and the vertices © correspond to the curves Cy, Cs. If a < —1,
f is the minimal resolution of a cyclic quotient singularity o € Z and in this case
the morphism f’ is toric. If @ = —1, then f': X' — Z factors through the minimal
resolution g: Y — Z of the singularity o € Z (which is a toric morphism) and
X' — Y is a composition of blowups with centers at points of intersections of
curves. Such blowups preserve the action of the two-dimensional torus, hence f’ is
a toric morphism. O

EXAMPLE 6.2.8 ([Mor]). Let f: X — Z 3 o be a Kx-negative extremal bi-
rational contraction of surfaces. Assume that X has only Du Val singularities.
Then

(i) Z is smooth;

(ii) f is a weighted blowup (see 3.2) with weights (1,q) (and then X contains
only one singular point, which is of type A,_,).

EXERCISE 6.2.9 (cf. 2.2.18). Let f: X — Z > o be a birational two-
dimensional contraction and D a boundary on X such that Kx + D ‘is lc and
—(Kx + D) is nef over Z. Prove that

pnum(X/Z) +2 Z Zdia
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where pnum(X/Z) is the rank of the quotient of Weil(X) modulo numerical equiv-
alence. Moreover, the equality holds only if (X/Z > o, | D]) is a toric pair.



