CHAPTER 5

Log del Pezzo surfaces

In the present chapter we discuss some properties of log del Pezzo surfaces.

5.1. Definitions and examples

DEFINITION 5.1.1. A projective log surface (X, D) is called

e a log del Pezzo surface if Kx + D is Ic and —(Kx + D) is nef and big;
o a log Enriques surface if Kx + D islc and Kx + D = 0.

Higher dimensional analogs of these are called log Fano and log Calabi-Yau vari-
eties, respectively. Usually we omit D if D = 0.

If (X, D) is a log del Pezzo, then by Proposition 11.1.1 there exists some Q-
complement Kx + Dt of Kx + D. The pair (X, D7) is a log Enriques surface.

Examples of log del Pezzo surfaces are the classical ones, weighted projective
planes P(ay, a2, a3) with boundary D = )" d;D;, where D; := {z; =0} and 3. d; <
3, Hirzebruch surfaces F, with boundary aX,, where ¥, is the negative section
and (n —2)/n<a <1

Let f: (X',D") — (X, D) be a birational log crepant morphism; that is,

Kx + D' = f*(Kx + D), with f.D' = D.

Then (X, D) is a log del Pezzo if and only if so is (X', D’) (see 1.1.5). Conversely,
if f: X’ —» X is a birational morphism and (X’,D’) is a log del Pezzo then so is
(X, f«D'). Many examples can also be obtained by taking finite quotients; see 1.2.

EXAMPLE 5.1.2. Let G C PGL2(C) be a finite subgroup, X := P?/G and
f:P? — X the natural projection. As in 1.2, we define a boundary D on X by
the condition Kp: = f*(Kx + D), where D = Y (1 — 1/r;)D;, all the D, are
images of lines on P2, and r; is the ramification index over D,. For example, if
G is the symmetric group &3, acting on P? by permutations of coordinates, X
is the weighted projective plane P(1,2,3) = ProjC[o,,02,03], where the o; are
the symmetric functions on coordinates on P2. The divisor D has exactly one
component D; with coefficient 1/2, where D, is determined by the equation

afag — 403 — 40?0‘3 — 27a§ + 18010203 =0

(the equation of the discriminant). The surface X has exactly two singular points
which are Du Val of types A; and A,. Therefore X is a Gorenstein del Pezzo
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surface of degree K% = 6. The curve D; is contained in the smooth locus and has
a unique singularity at (1,1/3,1/27), which is a cusp.

LEMMA 5.1.3. Let (X, D) be a log del Pezzo surface. Assume additionally ei-
ther Kx + D is kit or Kx + D is dit and —(Kx + D) is ample. Then

(i) Pic(X) is a finitely generated free abelian group;
(ii) the numerical equivalence in Pic(X) coincides with linear one;
(iii) group of classes of Weil divisors Weily, (X) is finitely generated.

Recall that two-dimensional log terminal singularities are automatically Q-
factorial.

SKETCH OF PROOF. From the exponential sequence and Kawamata-Viehweg
vanishing we have Pic(X) ~ H?(X,Z). Assume that D € Pic(X) is n-torsion.
Then again Kawamata-Viehweg vanishing and by Riemann-Roch, |D| # @. There-
fore D ~ 0. (iii) follows by [K, Lemma 1.1]. O

5.2. Boundedness of log del Pezzos

It is well known that the degree K% of classical del Pezzo surfaces is bounded
by 9. This however is not true for log del Pezzo surfaces. Indeed, we can take
(Fr,(1—2/n)%g), where F,, is the Hirzebruch surface and X is the negative section.
Then —(K + (1 — 2/n)%,) is nef and big. It is easy to compute that

(K +(1-2/n)%0)% =n +4+4/n,

so it is unbounded. However, results of Alexeev and Nikulin (see [A]) show that
the degree (K x + D)? of log del Pezzo surfaces is bounded by a constant Const(¢)
if Kx + D is e-1t. More precisely we have

THEOREM 5.2.1 ([A], see also [KeM, Sect. 9]). Fiz ¢ > 0. Let (X,D =
>~ d;D;) be a projective log surface such that —(Kx + D) is nef, Kx + D is e-
It and d; < 1 —¢e. Then the class {X} is bounded in the algebraic moduli sense
except for the case when D =0 and Kx ~ 0.

In the case when D = 0 and —Kx is ample we have more effective Nikulin’s
results.

THEOREM 5.2.2 ([N2]). Let X be a projective surface with only kit singularities
such that —Kx is ample and X™® — X a minimal resolution. Then

3141 ife=2,
. 5317 ife =3,
P(X™) < 9§ 17735 if e =4,

192e(e=3)(0c=27) 1 1536e%(e — 3) + 1820e + 69 if e > 5,

where e is the mazimal multiplicity of the singularities of X and e(e) is some
function of e.
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Nikulin [N1] obtained also a better bound (linear in e)
p(X™in) < 352e + 1284
in the case when all the discrepancies of X satisfy the inequalities
a(E,0) < —1/2 or a(E,0) > 0.

Proofs of theorems 5.2.1, 5.2.2 use weighted graph technique and Nikulin’s dia-
gram method. In the case p(X) = 1 Theorem 5.2.2 was proved also in [KeM,

Sect. 9] by using nonnegativity of ég(fl}((log D)) and Bogomolov type inequality
&E(Q% (log D)) < 3é,(Q (log D)) (see also [Ut, Ch. 10] and [K1]). As an easy
consequence of this theory we have the following

THEOREM 5.2.3 ([KeM, 9.2]). Let (X,C) be a log surface with p(X) = 1 such
that Kx + C is lc, Kx is kit and C = ) C; is reduced. Then

mp — 1
E < Xtop(X) - Xtop(c)
mp
Pe(X\C)

where mp is the order of the local fundamental group w1 (Up \ {P}) (Up is a suffi-
ciently small neighborhood of P). If X is rational and p,(C) = 0, then

1 <3 ifc=o0
(5.1) > = <1 if#{C}=1
pe(x\c) P =0 if #{C:;} =2

Using this fact one can easily show the following;:

COROLLARY 5.2.4. Let X be a log del Pezzo surface with p(X) = 1 such that
Kx is kit. Then the number of singular points of X is at most 5.

ProoFr. By Theorem 5.2.3 the number of singular points is < 6. Assume that

X has exactly six singular points P;,...,Ps. Then by inequality (5.1) we have
mp, = --- = mp, = 2. This means that P,,..., Ps are ordinary double points. In
partlcular K x is Cartier. Applying Noether’s formula to the minimal resolution X
of X, we obtain K% = K% = 10— p(X)=10-1-6 =3. Let L C X bea —1-curve
and L C X its 1mage Then —Kx - L = —K3 L = 1. Since p(X) = 1, we have
= —3Kx, so L? = 1. On the other hand, 2L is Cartier, a contradiction. 0

5.3. On the existence of regular complements

PROPOSITION 5.3.1 (Inductive Theorem, Weak Form [Sh3]). Let (X, D) be a
log del Pezzo surface. If Kx + D is not kit, then there exists a regular complement
of Kx + D (i.e. n-complement with n € Ry). Moreover, if Kx + D is not 1
or 2-complementary, then there is at most one divisor of X(X) with discrepancy
a(" D) = -

In [KeM] such a log divisor Kx + D was called a tiger. This is a sort of
antithesis to Reid’s general elephant (see 4.1.1).
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Proor. Replacing (X, D) with a log terminal modification, we may assume
that Kx + D is dlt. Then | D] # 0. In this situation we can apply Proposition 4.4.3
and 4.1.10. The last statement follows by Connectedness Lemma. O

COROLLARY 5.3.2. Let (X, D) be a log del Pezzo surface with D € ®,,. Write,
as usual, D = C + B, where C := | D], B := {D}. Assume that |-nKx — nC —
|[(n+ 1)B] | # @ for some n € Ry. Then Kx + D has a regular complement.

Note that the inverse implication follows by (4.1).

DEFINITION 5.3.3 ([Ut, 18.2]). A log divisor Kx + D + )_ b;B; is said to be
mazimally log canonical if Kx + D + >_b,B; is not lc, where b, > b; with in-
equality holding for at least one index ¢. Note that this definition depends on the
decomposition D + > b; B;, not only on the sum D + Y b;B;.

ProoOF. If Kx + D is not klt, the assertion follows by Proposition 5.3.1. Thus
we may assume that Kx + D is klt (in particular, C = 0). Let

D e |-nKx — |(n+ 1)B]|
As in (4.1) and (4.2) put

D = % (Ln + 1)B] + D).

Note that D’ > D (because D € ®,,, see 4.2.8). If Kx + D’ is lc, then this is a
regular complement. Assume that Kx + D’ is not lc. Take a so that Kx + D +
a(D' — D) is maximally lc. It is clear that 0 < @ < 1 and —(Kx + D + a(D' — D))
is nef and big. Now we can apply Proposition 5.3.1 to Kx + D + a(D’' — D) to get
the desired regular complement. O

COROLLARY 5.3.4 ([Sh3], cf. Corollary 8.4.3). Let (X,D) be a log del Pezzo
surface. If (Kx + D)? > 4, then it is nonexceptional. In this case, there exists a
regular complement of Kx + D. Moreover, there exists such a complement which
s not klt.

PRoOOF. Riemann-Roch gives that dim| — n(Kx + D)| is sufficiently large,
where n is divisible enough and n» > 0. Then standard arguments show that
Kx + D+ aH is not klt for some H € | —n(Kx + D)| and a < 1/n (see e.g. [Ko2,
Lemma 6.1] or the proof of Corollary 8.4.3). O

COROLLARY 5.3.5. Let X be a log del Pezzo surface. Assume that K% > 4.
Then |-nKx| # @ for some n € R,.

EXERCISE 5.3.6. Let G C PGL3(C) be a finite subgroup. Then G acts natu-
rally on P! x P! so that the action is free in codimension one. Prove that the quotient
X = (P! x P!)/G is a log del Pezzo and Kx is 1, 2, 3, 4, or 6-complementary.
Hint. Apply Proposition 5.3.1 to Kx + A, where A is the image of the diagonal.
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5.3.7. Log del Pezzo surfaces can be classified in terms of complements. A
log del Pezzo (or log Enriques) surface (X, D) is said to be regular if Kx + D is
r-complementary for some r € Ry. Shokurov [Sh3] proposed the following rough
classification of them.

Let (X, D) be a log surface having a regular r-complement Kx + G (i.e., with
T € R2). Let A(X,G) be the set of divisors with discrepancy a(-,G) = —1.

We say that Kx + G is of type

AT : if r =1 and A(X,G) is infinite;

E17.: if r =1 and A(X, G) is finite;

D7.: if r = 2 and A(X, G) is infinite;

E27,: if r = 2 and A(X, G) is finite;

E3;,, E47., E67 : if r = 3,4, 6, respectively,
where n is the number of components of |G| and m is the number of exceptional
divisors with a(-,G) = —1 on a minimal log terminal modification. Thus n+m = 0
if and only if Kx 4+ G is klt. In cases E1-67, we always have n +m < 2. Moreover,
n +m = 2 only in the dipole case. For example, a weighted projective plane
P(a, b, c) has a natural structure of toric 1-complement of type A2 . More general,
any toric surface has a complement of type A”,. Note that this division into cases
gives is very rough classification, more delicate invariant of a nonexceptional log
variety is the simplicial topological space introduced in [Sh3, Sect. 7], see also [I].

EXERCISE 5.3.8 ([Sh3], cf. 2.2.18). Let (X, D) be a log del Pezzo surface such
that Kx + D is dit and —(Kx + D) is ample. Prove that |D] has at most two
components. Moreover, if | D] has exactly two components, then Kx + D is 1 or
2-complementary. If Kx + D is 1-complementary, then (X, |D*]) is a toric pair
(see 2.2.18). Hint. Use Adjunction and 4.4.3.

5.4. Nonrational log del Pezzo surfaces

Of course we cannot expect to get a reasonable classification of all log del Pez-
zos. Below we describe nonrational ones. Results of Ch. 9.3 shows that exceptional
log del Pezzos (see 4.5.1) at least in principle can be classified. By Kawamata-
Viehweg vanishing we have

LEMMA 5.4.1. Let (X, D) be a log del Pezzo surface. Assume that Kx + D is
dlt. Then X is rational if and only if H'(X,Ox) = 0. Moreover, X is rational if
either Kx + D is kit or —(Kx + D) is ample.

PROPOSITION 5.4.2. Let (X, D) be a log del Pezzo surface such that Kx + D
is dlt. Put C := |D] and B := {D}. Assume that X is nonrational. Then
(i) p(X) >2;
(ii) of p(X) = 2, then X is smooth, X ~ P(E), where £ is a rank two vector
bundle on an elliptic curve, all components of D are horizontal and C = X,
is the negative section, which does not intersect other components of D;
(iii) #f p(X) > 3, then there exists a contraction with rational fibers g: X — X’
onto a log del Pezzo (X', D' = C' + B’) with p(X') = 2. Moreover, C' is a
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smooth elliptic curve contained in the smooth locus of X (and then it is a
section of the composition map f: X — X' — Z and it does not intersects

other components of D );
(iv) H(X,0x) ~C.

ProoOF. First note that C # 0, because Kx + D is not klt and C is connected
by 2.3.1.
The assertion (i) follows by Lemma 5.4.1.

. To prove (ii) we note that there exists an extremal (K x + D)-negative contrac-
tion f: X — Z. By (i), f is not birational. Hence Z is a curve of genus g(Z) > 1
and fibers of f are irreducible. If C is contained in fibers of f, then —(K x + D —eC)
is nef and big. By Lemma 5.4.1, X is rational in this case. So we assume that
there is a component C’ C C such that f(C') = Z. Thus p,(C') > 1. Let F be a
general fiber. Then C'- F < D - F < 2. It follows that C' - FF = 1. Further,

0 <2p,(C") — 2+ degDiff 1 (0) = (Kx + C") - C’
< (Kx-i-D)‘C, <o.

From this we have that C’ is smooth elliptic curve, g(Z) = 1, C’ is contained in
the smooth part of X and does not intersect other components of D. In particular,
C’' = C. Since C is the section, f: X — Z has no multiple fibers. Therefore X is
smooth and X =~ P(£), where £ is a rank two vector bundle on Z. From K% =0
and (Kx + C)? > 0 we have C? < 0.

As for (iii), run (Kx + D)-MMP g: X — X’. At the end we obtain (X', D’)
with an extremal contraction X’ — Z as in (ii). By Lemma 5.4.1 C' := g(C) # 0
cannot be contracted to a point on X’. As in (ii), by Adjunction we have

0> (Kx +D)-C>(Kx +C)-C =2p,(C) — 2 + deg Diff (0) > 0.

This yields p,(C) = p.(Z) = 1 and Diff¢(0) = 0. Hence C is a smooth elliptic
curve, X is smooth along C' and C' does not intersect other components of D.
Finally, (iv) follows by (iii) because R! f,Ox = 0. a

COROLLARY 5.4.3. Let (X,D) be a log del Pezzo surface. Then X is rational
or 1s birationally isomorphic to a ruled surface over an elliptic curve.

‘COROLLARY 5.4.4. Let (X,D = C + B) be a log del Pezzo surface. Assume
that X is nonrational. If p(X) = 1, then X is a generalized cone over an elliptic
curve (the contraction of the negative section on P(£); see Proposition 5.4.2).

EXERCISE 5.4.5. Let (X, D) be a log del Pezzo surface. Assume that X is non-
rational. Prove that Kx + D is 1-complementary. Hint. Apply Proposition 4.4.3.



