
CHAPTER 3

${\rm Log}$ terminal modifications

3.1. ${\rm Log}$ terminal modifications

Many results of this chapter holds in arbitrary dimension modulo $\log$ MMP.

PROPOSITION-DEFINITION 3.1.1 (cf. [Sh2, 9.1]; see also [Ut, 6.16]). Let
(X, $D$ ) be a $\log$ variety of dimension $\leq 3$ . Assume that $K_{X}+D$ is lc. Then
there exists a $log$ terminal modification of (X, $D$ ); that is, a birational contraction
$g:X^{\prime}\rightarrow X$ and a boundary $D^{\prime}$ on $X^{\prime}$ such that

(i) $K_{X^{\prime}}+D\equiv g^{*}(K_{X}+D)$ ;
(ii) $K_{X^{\prime}}+D$ is dlt;
(iii) $X$ is $\mathbb{Q}$-factorial.

Moreover, if $\dim X=2$ , it is possible to choose $X^{\prime}$ smooth.

PROOF. Consider a $\log$ resolution $h:Y\rightarrow X$ . We have

(3.1) $K_{Y}+D_{Y}=h^{*}(K_{X}+D)+E^{(+)}-E^{(-)}$ ,

where $D_{Y}$ is the proper transform $D$ on $Y$ and $E^{(+)},$ $E^{(-)}$ are effective exceptional
Q-divisors without common components. Then $D_{Y}+E^{(-)}$ is a boundary and
$K_{Y}+D_{Y}+E^{(-)}$ is dlt. Apply $\log$ MMP to $(Y, D_{Y}+E^{(-)})$ over $X$ . We get a
birational contraction $g:X^{\prime}\rightarrow X$ from a normal $\mathbb{Q}$-factorial variety $X^{\prime}$ . Denote
by $D^{\prime}$ the proper transform of $D_{Y}+E^{(-)}$ on $X^{\prime}$ . Then $K_{X^{\prime}}+D^{\prime}$ is dlt and g-nef.
It is also obvious that $g_{*}D^{\prime}=D$ . We prove (i). Since the inverse to the birational
map $h:Y--*X^{\prime}$ does not contract divisors,

$K_{X^{\prime}}+D^{\prime}=h_{*}(K_{Y}+D_{Y}+E^{(-)})=h_{*}(f^{*}(K_{X}+D)+E^{(+)})=$

$g^{*}(K_{X}+D)+h_{*}E^{(+)}$ .

On the other hand, by numerical properties of contractions (see e.g., [Sh2, 1.1])
in the last formula all the coefficients of $h_{*}E^{(+)}$ should be nonpositive, i.e., all of
them are equal to zero.

Finally, we consider the case $\dim X=2$ . If $E^{(+)}\neq 0$ , then $(E^{(+)})^{2}<0$ .
From this $E^{(+)}\cdot E<0$ for some $E$ . Then $E^{2}<0$ and by (3.1), $K_{Y}\cdot E<0$ and
$(K_{Y}+D_{Y}+E^{(-)})\cdot E<0$ . Hence $E$ is a $-1$-curve and steps of $\log$ MMP over
$X$ are contractions of such curves. Continuing the process, we obtain a smooth
surface $X^{\prime}$ . This proves the statement. $\square $
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PROPOSITION 3.1.2 ([Sh4, 3.1], [Ut, 21.6.1]). Notation as in Theorem 3.1.1.
Let $h:Y\rightarrow X$ be any $log$ resolution. Consider a set $\mathcal{E}=\{E_{i}\}$ of exceptional
divisors on $Y$ such that

a) if $a(E_{i}, D)=-1$ , then $E_{i}\in \mathcal{E}$ ;
b) if $E_{i}\in \mathcal{E}$ , then $a(E_{i}, D)\leq 0$ .

Then there exists a blowup $g:X^{\prime}\rightarrow X$ and a boundary $D^{\prime}$ on $X^{\prime}$ such that (i), (ii)
and (iii) of 3.1.1 holds and moreover,

(iv) the exceptional divisors of $g$ are exactly the elements of $\mathcal{E}(i.e.$ , they give the
same discrete valuations of the field $5\mathcal{K}(X))$ .

PROOF. Take a sufficiently small $\epsilon>0$ and put

$d_{i}=\left\{\begin{array}{ll}-a(E_{i}, D) & if E_{i}\in \mathcal{E},\\\max\{-a(E_{i}, D)+\epsilon, 0\} & otherwise.\end{array}\right.$

Then
(3.2)

$K_{Y}+D_{Y}+\sum d_{i}E_{i}\equiv h^{*}(K_{X}+D)+\sum_{E_{J}\not\in \mathcal{E}}(d_{j}+a(E_{j}, D))E_{j}$
.

Next, run $(K_{Y}+D_{Y}+\sum d_{i}E_{i})$-MMP over $X$ . By (3.2), each extremal ray is
negative with respect to the proper transform of $\sum_{E_{J}\not\in \mathcal{E}}(d_{j}+a(E_{j}, D))E_{j}$ , an
effective divisor. Such a divisor can be nef only if it is trivial. Hence the process
terminates when the proper transform of $\sum_{E_{J}\not\in \mathcal{E}}(d_{j}+a(E_{j}, D))E_{j}$ becomes zero.

$\square $

$CoROLLARY$-DEFINITION 3.1.3 ([Sh4, 3.1], [Ut, 21.6.1]). Notation as in The-
orem 3.1.1. Then there exists a blowup $g:X^{\prime}\rightarrow X$ and a boundary $D^{\prime}$ on $X^{\prime}$ such
that (i), (ii) and (iii) of 3.1.1 holds and moreover,

(iv)’ if $K_{X}+D$ is dlt, then $f$ can be taken small; if $K_{X}+D$ is not dlt, then for
all exceptional divisors $E_{i}$ of $g$ we have $a(E_{i}, D)=-1$ .

We call $g:X^{\prime}\rightarrow X$ a minimal $log$ terminal modification.
We generalize slightly the last result:

PROPOSITION 3.1.4. Let $X$ be a $no7mal\mathbb{Q}$ -factorial variety of dimension $\leq 3$

and $D$ a boundary on $X$ such that $K_{X}+D$ is $lc$ , but is not $plt$. Assume also that
$X$ has only $klt$ singularities. Then there exists a blowup $f:Y\rightarrow X$ such that

(i) $Y$ is $\mathbb{Q}$ -factorial, $\rho(Y/X)=1$ and the exceptional locus of $f$ is an irreducible
divisor, say $E$;

(ii) $K_{Y}+E+D_{Y}=f^{*}(K_{X}+D)$ is $lc$ , where $D_{Y}$ is the proper transform $ofD$ ;
(iii) $K_{Y}+E+(1-\epsilon)D_{Y}$ is $plt$ and is negative over $X$ for any $\epsilon>0$ .

PROOF. As a first approximation to $Y$ we take a minim.al $\log$ terminal modi-
fication $g:X^{\prime}\rightarrow X$ as in 3.1.3. Then $g^{*}(K_{X}+D)=K_{X^{\prime}}+E+D^{\prime}$ , where $E^{\prime}\neq 0$

is an integral reduced divisor and $D^{\prime}$ is the proper transform of $D$ . In particular,
$\rho(X^{\prime}/X)$ is the number of components of $E^{\prime}$ . Since $X$ has only klt singularities,
$K_{X^{\prime}}=g^{*}K_{X}+\sum a_{i}E_{i}^{\prime}$ , where the $E_{i}$ are components of $E^{\prime}$ and $a_{i}>-1$ for all $i$ .
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Therefore $K_{X}+E=g^{*}K_{X}+\sum(a_{i}+1)E_{i}^{\prime}$ cannot be g-nef by numerical prop-
erties of contractions [Sh2, 1.1]. Run $(K_{X^{\prime}}+E^{\prime})$-MMP over $X$ . At each step, as
above, $K+E$ cannot be nef over $X$ . Hence at the last step we get a divisorial
extremal contraction $f:Y\rightarrow X$ , negative with respect to $K_{Y}+E$ and such that
$\rho(Y/X)=1$ . Since at each step $K+E+D$ is numerically trivial over $X$ , the $\log$

divisor $f^{*}(K_{X}+D)=K_{Y}+E+D_{Y}$ is lc (see Corollary 1.1.7). Obviously, $E$ is
irreducible and $\rho(Y/X)=1$ . Then $K_{Y}+E$ is plt and $K_{Y}+E+D_{Y}$ is lc. By
Proposition 1.1.4, $K_{Y}+E+(1-\epsilon)D$ is plt. $\square $

DEFINITION 3.1.5. Let $X$ be a normal variety and $f:Y\rightarrow X$ a blowup such
that the exceptional locus of $f$ contains only one irreducible divisor, say $S$ . Assume
that $K_{Y}+S$ is plt and $-(K_{Y}+S)$ is $f$-ample. Then $f:(Y\supset S)\rightarrow X$ is called
a purely $log$ terminal $(plt)$ blowup of $X$ . The blowup $f:(Y, E+D_{Y})\rightarrow(X, D)$

constructed in 3.1.4 is called an inductive blowup of (X, $D$ ). Note that it not
necessarily unique (cf. 6.1.3).

EXAMPLE 3.1.6. Let $f:(Y, S)\rightarrow X$ be a plt blowup and $\varphi:X\rightarrow X$ a finite
\’etale in codimension one cover. Consider the following commutative diagram

$Y^{\prime}\rightarrow^{\psi}Y$

(3.3)
$ f\downarrow$ $ f\downarrow$

$X^{\prime}\rightarrow^{\varphi}X$ ,
where $Y^{\prime}$ is the normalization of $X^{\prime}\times x$ Y. Then $f$

’ : $Y^{\prime}\rightarrow X^{\prime}$ is a plt blowup.
Indeed, $f^{\prime}$ is a contraction and $\psi$ is a finite morphism, \’etale in codimension one
outside of $S$ . Set $S^{\prime}$ $:=\psi^{-1}(S)$ . The ramification formula (1.5), gives $K_{Y^{l}}+S’=$

$\psi^{*}(K_{Y}+S)$ . Therefore $K_{Y^{\prime}}+S$
’ is plt (see Proposition 1.2.1). By Connectedness

Lemma and Theorem 2.2.6, $S^{\prime}$ is irreducible.

EXAMPLE 3.1.7. Let $f^{\prime}$ : $Y^{\prime}\rightarrow X^{\prime}$ be a plt blowup and $G\times Y^{\prime}\rightarrow Y^{\prime}$ an
equivariant action of a finite group such that the induced action $G\times X^{\prime}\rightarrow X^{\prime}$ is free
in codimension one. Put $Y$ $:=Y/G,$ $X$ $:=X^{\prime}/G$ and consider the commutative
diagram (3.3). As in 3.1.6 we obtain that $f:Y\rightarrow X$ is a plt blowup.

PROPOSITION-DEFINITION 3.1.8 ([K2], [Ut]). Let (X, $D$ ) be a klt $\log$ variety
of dimension $\leq 3$ . Then there exists a blowup $f:X^{t}\rightarrow X$ and a boundary $D^{t}$ on
$Y$ such that

(i) $X^{t}$ is $\mathbb{Q}$-factorial;
(ii) $K_{X^{t}}+D^{t}=f^{*}(K_{X}+D)$ ;
(iii) $K_{X^{t}}+D^{t}$ is terminal.

This blowup is called a terminal blowup of (X, $D$ ).

The proof uses Proposition 3.1.2 and the following simple lemma.

LEMMA 3.1.9 ([Shl], [Ut, 2.12.2]). Let (X, $D$ ) be a $kltlog$ variety. Then the
number of divisors $E$ of the function field $\mathfrak{X}(X)$ with $a(E, D)\leq 0$ is finite.



24 3. LOG TERMINAL MODIFICATIONS

SKETCH OF PROOF. Let $f:Y\rightarrow X$ be a $\log$ resolution and $B$ a crepant pull
back of $D$ :

$f^{*}(K_{X}+D)=K_{Y}+B$ , with $f_{*}B=D$ .
Write $B=B^{(+)}-B^{(-)}$ , where $B^{(+)},$ $B^{(-)}$ are effective and have no common
components. We assume that $SuppB^{(+)}$ contains also all $f$-exceptional divisors $E$

with discrepancy $a(E, D)=0$ . By Hironaka it is sufficient to construct $f$ so that
all components of $B^{(+)}$ are disjoint. Let $B_{i},$ $B_{j}$ be two components of $B$ such that
$ B_{i}\cap B_{j}\neq\emptyset$ . Put $b_{i,j}$ $:=a(B_{i}, D)+a(B_{j}, D)$ . We want to change $f:Y\rightarrow X$ so
that $b_{i,j}>0$ whenever $ B_{i}\cap B_{j}\neq\emptyset$ . Let $a:=1+\inf_{E}\{a(E, D)\}$ . Since (X, $D$ ) is
klt, $a>0$ . By blowing-up $B_{i}\cap B_{j}$ we obtain a new $\log$ resolution such that the
proper transforms of $B_{i}$ and $B_{j}$ are disjoint and new exceptional divisor $B_{k}$ has
the discrepancy

$a(B_{k}, D)=1+a(B_{i}, D)+a(B_{j}, D)$ .
Then we have

$b_{i,k}=a(B_{i}, D)+1+a(B_{i}, D)+a(B_{j}, D)\geq b_{i,j}+a$ .
Similarly, $b_{j,k}\geq b_{i,j}+a$ . Thus after a finite number of such blowing ups we get
the situation when $b_{i,k}>0$ whenever $ B_{i}\cap B_{k}\neq\emptyset$ . In particular, all components
of $B^{(+)}$ are disjoint. $\square $

One can see that if $(X_{1}^{t}, D_{1}^{t})$ is another terminal blowup, then the induced
map $X^{t}--*X_{1}^{t}$ is an isomorphism in codimension one. In particular, the terminal
blowup is unique in the surface case.

3.2. Weighted blowups

Consider a cyclic quotient singularity $X$ $:=\mathbb{C}^{n}/\mathbb{Z}_{m}(a_{1}, \ldots, a_{n})$ , where $a_{i}\in N$

and $gcd(a_{1}, \ldots, a_{n})=1$ (the case $m=1$ , i.e., $X\simeq \mathbb{C}^{n}$ , is also possible). Let
$x_{1},$

$\ldots,$
$x_{n}$ be eigen-coordinates in $\mathbb{C}^{n}$ , for $\mathbb{Z}_{m}$ . The weighted blowup of $X$ with

weights $a_{1},$
$\ldots,$

$a_{n}$ is a projective birational morphism $f:Y\rightarrow X$ such that $Y$ is
covered by affine charts $U_{1},$

$\ldots,$
$U_{n}$ , where

$U_{i}=\mathbb{C}_{y_{1},\ldots,y_{n}}^{n}/\mathbb{Z}_{a}$ . $(-a_{1}, \ldots, m, . . . -a_{n})$ .
$\uparrow$

$\dot{\iota}$

The coordinates in $X$ and in $U_{i}$ are related by

$x_{i}=y_{i}^{a./m}$ , $x_{j}=y_{j}y_{i}^{a_{J}/m}$ , $j\neq i$ .

The exceptional locus $E$ of $f$ is an irreducible divisor and $E\cap U_{i}=\{y_{i}=0\}/\mathbb{Z}_{a:}$ .
The morphism $f:Y\rightarrow X$ is toric, i.e., there is an equivariant natural action of
$(\mathbb{C}^{*})^{n}$ . It is easy to show that $E$ is the weighted projective space $\mathbb{P}(a_{1}, \ldots, a_{n})$ and
$\mathcal{O}_{E}(bE)=\mathcal{O}_{\mathbb{P}}(-mb)$ , if $b$ is divisible by $1cm(a_{1}, \cdots a_{n})$ (and then $bE$ is a Cartier
divisor).
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Note that the blowup constructed above depends on a choice of numbers
$a_{1},$

$\ldots,$ $a_{n},$ $andnotjustontheirvalues$ $mod m$ .

LEMMA 3.2.1. In the above conditions we have
(i) $K_{Y}=f^{*}K_{X}+(-1+\sum a_{i}/m)E$ ;
(ii) if $D=\{x_{i}=0\}/\mathbb{Z}_{m}$ and $D_{Y}$ is the proper transform of $D$ , then $D_{Y}=$

$f^{*}D-\frac{a}{}m\Delta E$ .

PROOF. The relation in (i) follows from the equality
$dx_{1}\wedge\cdots\wedge dx_{n}=y_{1}^{(\Sigma a_{i}/m-1)}dy_{1}\wedge\cdots\wedge dy_{n}$ .

The assertion (ii) can be proved similarly. $\square $

Any weighted blowup $f:Y\rightarrow \mathbb{C}^{n}/\mathbb{Z}_{m}$ of a cyclic quotient singularity is a plt
blowup.

EXAMPLE 3.2.2. Let $X\subset \mathbb{C}^{3}$ be a Du Val singularity given by one of the
equations

$D_{n}(n\geq 4)$ : $x^{2}+y^{2}z+z^{n-1}=0$ ,
$E_{6}$ : $x^{2}+y^{3}+z^{4}=0$ ,
$E_{7}$ : $x^{2}+y^{3}+yz^{3}=0$ ,
$E_{8}$ : $x^{2}+y^{3}+z^{5}=0$ .

Let $f:Y\rightarrow X$ be the weighted blowup with weights $(n-1, n-2,2),$ $(6,4,3)$ ,
(9, 6, 4), (15, 10, 6) in cases $D_{n},$ $E_{6},$ $E_{7},$ $E_{8}$ , respectively. Then $f$ is a plt blowup.
We will see below that it is unique. In the case $D_{n}$ any weighted blowup with
weights $(w+1, w, 2)$ , where $w=1,$ $\ldots,$ $n-2$ gives a blowup with irreducible
exceptional divisor $C$ such that $K_{Y}+C$ is lc. It is proved in [IP] that for any
hypersurface canonical singularity given in $\mathbb{C}^{n}$ by a nondegenerate function, there
exists a weighted blowup which gives a plt blowup.

3.3. Generalizations of Connectedness Lemma

Now we generalize Connectedness Lemma to the case nef anticanonical divisor.
We prove them in dimension two. However there are similar results in arbitrary
dimension (modulo $\log$ MMP) [F].

PROPOSITION 3.3.1 ([Sh2, 6.9]). Let $(X/Z\ni 0, D)$ be a $log$ surface, where $Z$

is a curve. Assume that $K_{X}+D$ is $lc$ and $-(K_{X}+D)$ is $nef$ over Z. Then
in a neighborhood of the fiber over $0$ the locus of $lc$ singularities of (X, $D$ ) has at
most two connected components. Moreover, if LCS(X, $D$ ) has exactly two connected
components, then (X, $D$ ) is $plt$ and LCS(X, $D$ ) $=\lfloor D\rfloor$ is a disjoint union of two
sections (and a general fiber of $X\rightarrow Z$ is $\mathbb{P}^{1}$ ).

PROOF. Let $(Y, D_{Y})\rightarrow(X, D)$ be a minimal $\log$ terminal modification (see
3.1.3). Since the fibers of $g$ are connected and LCS(X, $D$ ) $=g(LCS(Y, D_{Y}))$ , it is
sufficient to prove the assertion for $(Y, D_{Y})$ . Let $h:Y\rightarrow Z$ be the composition
map. Set $C_{Y}$ $:=\lfloor D_{Y}\rfloor$ and $B_{Y}$ $:=\{D_{Y}\}$ . Then $LCS(Y, D_{Y})=C_{Y}$ . Assume that
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$C_{Y}$ is disconnected. Run $(K_{Y}+B_{Y})$-MMP over $Z$ . If the fiber $h^{-1}(0)$ is reducible,
then there is its component $F\not\subset C_{Y}$ meeting $C_{Y}$ . Then $F$ is an extremal curve.
Let $Y\rightarrow Y_{1}$ be its contraction. Since $F\cdot(K_{Y}+D_{Y})=0$ and $F\not\subset C_{Y}$ , the dlt
property of $K_{Y}+D_{Y}$ is preserved (see 1.1.7). On the other hand, by Connectedness
Lemma 2.3.1, $F$ meets only one connected component of $C_{Y}$ . Hence the number
of connected components of $C_{Y}$ remains the same. Continuing the process, we
obtain a contraction $\overline{h}:\overline{Y}\rightarrow Z$ with irreducible fiber $\overline{h}^{-1}(0)$ . Since $K_{\overline{Y}}+D_{\overline{Y}}$ is
nef, for a general fiber $L$ of $\overline{h}$ we have $L\cdot C_{\overline{Y}}\leq L\cdot D_{\overline{Y}}=-K_{\overline{Y}}\cdot L\leq 2$ . By
our assumption, the fiber $\overline{h}^{-1}(0)$ does not contain $C_{\overline{Y}}$ . Hence $C_{\overline{Y}}$ has exactly two
connected components, which are sections $of\overline{Y}\rightarrow Z$ . It is also clear that $(K_{\overline{Y}}, C_{\overline{Y}})$

is plt. The components of $C_{Y}$ cannot be contractible over $Z$ . Hence $Y\rightarrow X$ is the
identity map. This proves the statement. $\square $

Similarly we have

PROPOSITION 3.3.2 ([Sh2, 6.9]). Let (X, $D$ ) be a projective $log$ surface such
that $K_{X}+D$ is $lcand-(K_{X}+D)$ is $nef$. Then the locus of $log$ canonical singularities
of (X, $D$ ) has at most two connected components. Moreover, if LCS(X, $D$ ) has
exactly two connected components and $K_{X}+D$ is $dlt$, then (X, $D$ ) is $plt$ and there
exists a contraction $f:X\rightarrow Z$ with a general fiber $\mathbb{P}^{1}$ onto a curve $Z$ of genus $0$

or 1 such that LCS(X, $D$ ) $=\lfloor D\rfloor$ is a disjoint union of two sections.

PROOF. As in the proof of 3.3.1, $g:(Y, D_{Y})\rightarrow(X, D)$ a minimal $\log$ terminal
modification. Again set $C_{Y}$ $:=\lfloor D_{Y}\rfloor$ and $B_{Y}$ $:=\{D_{Y}\}$ . Assume that $C_{Y}$ is
disconnected. Run $(K_{Y}+B_{Y})$-MMP. All intermediate contractions is $(K_{Y}+D_{Y})$ -

nonpositive. Therefore the $\log$ canonical property of $K_{Y}+D_{Y}$ is preserved (see
1.1.6). Since at each step $K_{Y}+B_{Y}$ is klt, $K_{Y}+C_{Y}+B_{Y}$ is klt outside of $C_{Y}$

and $LCS(Y, D_{Y})=C_{Y}$ . By Connectedness Lemma 2.3.1, each contractible curve
meets only one connected component of $C_{Y}$ . Therefore the number of connected
components of $LCS(Y, D_{Y})$ is preserved. At the last step there are two possibilities:

1) $\rho(\overline{Y})=1$ , then irreducible components of $LCS(\overline{Y}, D_{\overline{Y}})$ are intersect each
other and gives only one connected component of LCS(X, $D$ );

2) $\rho(\overline{Y})=2$ and there is a nonbirational contraction $\overline{h}:\overline{Y}\rightarrow Z$ onto a curve.
Here we can apply Proposition 3.3.1.

$\square $

${\rm Log}$ surfaces $(X/Z, D)$ , such that $K_{X}+D$ is lc and numerically trivial are called
monopoles if LCS(X, $D$ ) is connected and dipoles if LCS(X, $D$ ) has two connected
components. From 3.3.2 we can see that dipoles have a simpler structure.

EXAMPLE 3.3.3. Let $Z$ be a rational or elliptic curve and $X$ $:=\mathbb{P}(\mathcal{O}_{Z}\oplus \mathcal{F})$ ,
where $\mathcal{F}$ is an invertible sheaf of degree $d\geq 0$ . There are two nonintersecting
sections $C_{1},$ $C_{2}$ . If $g(Z)=1$ , then $K_{X}+C_{1}+C_{2}=0$ (see [Ha, Ch. 5, \S 2]) and
LCS(X, $C_{1}+C_{2}$ ) has two connected components, i.e. (X, $C_{1}+C_{2}$ ) is a dipole.
Similarly, in the case of a rational curve $Z$ , we can take the $\log$ divisor $K_{X}+C_{1}+$
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$C_{2}+\sum b_{i}F_{i}$ , where $F_{i}$ are different fibers of $X\rightarrow Z,$ $\sum b_{i}=2,$ $b_{i}<1,$ $\forall i$ . Then
(X, $C_{1}+C_{2}+\sum b_{i}F_{i}$ ) is also a dipole. We may construct many examples of dipoles
by blowing up points on $C_{i}$ or blowing down the negative section of $X\rightarrow Z$ . For
example, we can take a cone over a projectively normal elliptic curve $Z_{d}\subset \mathbb{P}^{d-1}$ ,
and its general hyperplane section as boundary.

EXAMPLE 3.3.4 (see [B1], cf. [Um]). Let $X$ be alog Enriques surface (i.e., $K_{X}$

is lc and numerically trivial, see 5.1.1). Then $X$ has at most two nonklt points.
Moreover, if $X$ has exactly two nonklt points, then they are simple elliptic singu-
larities (see Theorem 6.1.6).


