CHAPTER 1
Preliminary results

1.1. Singularities of pairs

List of notations.
numerical equivalence

~ linear equivalence

~g Q-linear equivalence

K(X) function field of X

D=D D and D’ gives the same valuation of X(X)

p(X) Picard number of X, rank of the Néron-Severi group
Z(X/Z) group of 1-cycles on X over Z (see [KMM])

N (X/2) quotient of Z;(X/Z) modulo numerical equivalence (cf. )
NE(X/Z) Mori cone (see [KMM])

Weil(X) group of Weil divisors, i.e., the free abelian group

generated by prime divisors on X
Weiljin (X) quotients of Weil(X) modulo linear and algebraic
Weilyig (X) equivalence respectively.

All varieties are assumed to be algebraic varieties defined over the field C. By a
contraction we mean a projective morphism f: X — Z of normal varieties such
that f,Ox = Oz (i.e., having connected fibers). We call a birational contraction a
blowdown or blowup, depending on our choice of initial variety.

A boundary on a variety X is a Q-Weil divisor D = ) d;D; with coefficients
0 <d; < 1. If we have only d; < 1, we say that D is a subboundary. All varieties
are usually considered supplied with boundary (or subboundary) as an additional
structure. If D is a boundary, then we say that (X, D) is a log variety or log pair.
Moreover, if we have a contraction f: X — Z, then we say that (X, D) is a log
variety over Z and denote it simply by (X/Z, D). If dim Z > 0, we often consider
Z as a germ near some point o € Z. To specify this we denote the corresponding
log variety by (X/Z 3 o, D).

Given a birational morphism f: X — Y, the boundary Dy on Y is usually
considered as the image of the boundary Dx on X: Dy = f.Dx. The integral part
of a Q-divisor D = 3_d;D; is defined in the usual way: |D] :=>" |d;] D;, where
|d;| is the greatest integer such that |d;] < d;. The (round up) upper integral part
[D] and the fractional part {D} are similarly defined.
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6 1. PRELIMINARY RESULTS

A log resolution is a resolution f: X - X of singularities of X such that the
union (U 51) U Exc(f) of proper transforms* of all the D; and the exceptional

locus the exceptional locus Exc(f) is a divisor with simple normal crossings.

Let X be a normal variety, D a Q-divisor on X, and f: XX any projective
birational morphism, where X and X are normal. Assume that K x + D is Q-
Cartier. Then we can write

(1.1) Kz +D=f"(Kx+D)+ Y a(E,D)E,
E

where D is the proper transform D and a(E,D) € Q. The numbers a(E, D)
depends only on X, D and the discrete valuation of the field X(X) corresponding
to E (i.e., they do not depend on f). They are called discrepancies or discrepancy
coefficients. Define

discrep(X, D) := infg{a(E, D) | E is an exceptional divisor over X}.

We also put for nonexceptional divisors

a(E, D) := { 5

Let us say that the pair (X, D) has
terminal singularities, if discrep(X, D) > 0;
canonical singularities, if discrep(X, D) > 0;
Kawamata log terminal (kit) singularities, if discrep(X, D) > —1 and | D] <
0;
purely log terminal (plt) singularities, if discrep(X, D) > —1;
log canonical (Ilc) singularities, if discrep(X, D) > —1;
e-log terminal (e-lt) singularities, T if discrep(X, D) > —1 + ¢;
e-log canonical (e-lc) singularities, if discrep(X, D) > —1 + ¢;
divisorial log terminal (dlt) singularities, if a(E;, D) > —1 for all exceptional
divisors E; of some log resolution f whose exceptional locus consists of
divisors (or it is empty).

d; if E=D;;

otherwise.

In these cases we also say simply that Kx + D is lc (resp. klt, etc.) We usually
omit D if it is trivial.

1.1.1. For the kit and Ic properties the inequalities a(E,D) > —1 (> —1)
can be checked for exceptional divisors of some log resolution (see [KMM, 0-2-
12]). The plt property of (X, D) is equivalent to the existence of a log resolution
f: X — X such that a(E, D) > —1 for all exceptional divisors of f and the proper
transform I_’l\?/_| of | D} on X is smooth. It is easy to see that if Kx + D is lc, then
D is a subboundary. In the two-dimensional case we can use Mumford’s numerical

*The proper transform is sometimes also called the birational or strict transform.
tNote that our definition of e-It pairs is weaker than that given by Alexeev [A]: we do not
claim that —d; > —1 +¢.



1.1. SINGULARITIES OF PAIRS 7

pull back of any Weil divisor, so all the above definitions can be given in this
situation numerically, without the Q-Cartier assumption (see e.g., [S1] and 11.2).

EXAMPLE 1.1.2. Let X be a smooth surface and D = D; + D, a pair of
smooth curves intersecting transversally at one point. The identity map is a log
resolution, so (X, D) is dlt. However, the blowup of the point of intersection gives
an exceptional divisor E with discrepancy a(E, D) = —1. Hence (X, D) is not plt.
If D is an irreducible curve with a node on a nonsingular surface X, then the pair
(X, D) is not dlt. This shows that the dlt condition is not local.

EXAMPLE 1.1.3. Let @ C C* be a quadratic cone given by zy = 2zt and D its
hyperplane section {x = 0}. Then D = D; + Ds, where D, and D, are planes
in C*. There is a small resolution f: @ — (@ with exceptional locus P!. The
intersection of the proper transforms of the planes D; and D, is a line on @ So f
is a log resolution. However, (@, D) is not dlt because f is small.

In [Ut] the notion of weakly Kawamata log terminal singularity was introduced.
Later it was proved that this is equivalent to the dlt property [Sz]. The very close
(but wider) class of weakly log terminal pairs was considered in [KMM] and [Sh2].

Log varieties with dlt singularities form a convenient class of varieties in which

the log Minimal Model Program (log MMP) works [KMM]. In particular, these
singularities are rational [KMM, 1-3-1], [KM, 5.22] and the Cone Theorem and
Contraction Theorem hold for these varieties [KMM, 4.2.1, 3-2-1]. Log canonical
singularities are not necessarily rational. However, it was shown in [Sh4] that
reasonable log MMP also works in this category.

More precisely, the property of a Q-factorial log variety to have kit (resp.
dlt) singularities is preserved under contractions of extremal rays and flips, i.e.,
they form classes of log varieties closed under the log MMP. We refer to [KMM]
for technical details of this theory; see also [Sh4] and (for two dimensional case)
Appendix 11.2, [A], [KK]. Note also that all distinctions between different notions
of log terminal singularities arise only if D has components with coefficient 1.

The following property can be obtained directly from the definitions.

PROPOSITION 1.1.4 ([Sh2], [Ut, 2.17]). Let X be a normal variety and D =
> diD; a subboundary on X such that Kx + D is a Q-Cartier divisor.

(i) If D' < D and Kx + D is lc (resp. e-lt, dit, pit or kit) and Kx + D’ is
Q-Cartier, then Kx + D’ also is lc (resp. e-lt, dit, plt or kit);
(ii) If Kx + D is dlt, then there exists € > 0 such that all Q-Cartier divisors
Kx + D' also are dit for all D' = 3" d.D; with d; < min{d; + ¢,1};
(iii) If Kx + D is plt (resp. kit).and Kx + D + D’ is lc, then Kx + D + tD’ is
plt (resp. klt) for all t < 1.

REMARK 1.1.5. The formula (1.1) can be written as

(1.2) Kgs+ D' = f*(Kx + D),
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where D' := D + > a;E;. In particular, D = f,D’. Then the lc property of
Kx + D is equivalent to that D’ is a subboundary. In this case, K + D’ is called
the crepant pull back of Kx + D.

This trivial remark has the following useful generalization

PROPOSITION 1.1.6 ([Ko2]). Let f: Y — X be a birational contraction and D
a subboundary on X such that Kx + D is Q-Cartier. As in (1.2) take the crepant
pull back

(1.3) Ky + Dy = f*(Kx + D), with D = f.Dy.

Then
(i) Kx + D is lc (resp. klt) <= Ky + Dy is lIc (resp. klt);
(ii) Kx + D is plt (resp. dlt) <= Ky + Dy is plt (resp. dlt) and f does not
contract components of Dy with coefficient 1;
(iii) Kx + D is -1t <= Ky + Dy is ¢-lt and f does not contract components
of Dy with coefficient > 1 — ¢.

COROLLARY 1.1.7 ([Ut, 2.18]). Let f: (Y,Dy) — (X, D) be a birational con-
traction, where D = f.Dy. Assume that Kx + D is Q-Cartier. If Ky + Dy is lc
(resp. kit) and f-(numerically) nonpositive, then Kx + D is lc (resp. kit).

EXAMPLE 1.1.8. Let X be a normal toric variety and D the reduced toric
boundary on X. Then Kx + D is lc. This follows by 1.1.6, from the fact that
Kx + D ~ 0 and from the existence of toric resolutions.

1.2. Finite morphisms and singularities of pairs

Let f: Y — X be a finite surjective morphism of normal varieties and D =
>_d;D; a subboundary on X. We assume that the ramification divisor is contained
in SuppD (we allow D to have coefficients = 0). Define a Q-divisor B on Y by the
condition

(1.4) Ky + B= f*"(Kx + D).
Write B as B = ) b; ;B; ;, where f(B;;) = D;, and r; ; the ramification index
along B; ; (i.e., at the general point of B; ;). By the Hurwitz formula we have
(1.5) bi,j =1- ’l'i,j(l - d,)
Hence B is also subboundary. Note however that B may not be a boundary even
if D is.

ProrosITION 1.2.1 ([Sh2, §2], [Ut, 20.3], [Ko2]). Notation as above. Then
Kx + D is lc (resp. plt, kit) if and only if Ky + B is lc (resp. is plt, kit).

Propositions 1.1.6 and 1.2.1 show that the classes of klt, plt and lc singularities
of pairs are very natural and are closed under birational and finite morphisms. The
implication = also holds for dlt pairs if f is étale in codimension one [Sz].
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SKETCH OF PROOF. Let g: X' — X be a birational morphism. Consider the
base change

v L x

Ll

f

Yy ——

where Y’ is a dominant component of the normalization of Y x x X’. As in (1.3),
write

Kx + D' =g*(Kx + D) and Ky + B' = h*(Ky + B),
and similar to (1.4) we can write
Ky + B' = f""(Kx: + D"),
where by (1.5) the coefficients of B’ are
Let E := B, ; be an h-exceptional divisor and F' := f'(E). Then this formula can
be rewritten as
(16) a’(EaB)+1 :T;,j(a(F’D)_l_l)’ ' T;,j Sdegf’

This yields a(E, B) > a(F, D) and all the implications ==>. The implications <=
follow by (1.6) and from the (nontrivial) fact that each exceptional divisor E over
Y can be obtained in the way specified above (see [Ko2, 3.17]). O

Note that we have shown more:
1.7) 1 + discrep(X, D) < 1 + discrep(Y, B) < (deg f)(1 + discrep(X, D)).

The following particular case of Proposition 1.2.1 is very interesting for appli-
cations.

COROLLARY 1.2.2. If a morphism f: Y — X is étale in codimension one, then
Kx + D is lc (resp. plt, klt) if and only if Ky + f*D is lc (resp. plt, klt).

From Proposition 1.2.1 it is easy also to obtain the following

COROLLARY 1.2.3. Let Y be a variety with at worst klt (resp. lc) singularities

and Y — X a finite surjective morphism. Then X also has at worst kit (resp. Ic)
singularities.

In particular, all quotient singularities are klt. However, the converse is true
only in dimension two.

REMARK 1.2.4 ([R2, 3.1]). Let G C GL,(C) be a finite subgroup without
quasi-reflections. Then C™/G has only canonical singularities if and only if for
every element g € G of order r and for any primitive rth root of unity e, the
diagonal form of the action of g is

g:r; — e%x; with 0<a; <r, and Z%ZT-
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EXAMPLE 1.2.5 ([Ca]). Let (Y 3 0) be a Du Val singularity and f: (Y 3 0) —
(X > P) a quotient by an involution. Write Ky = f*(Kx + 1A), where A is the
ramification divisor. Then (X, $A) is (1/2)-1t. There is an explicit list of all such
involutions and quotients [Ca).

ExamMpPLE 1.2.6 ([K], [Mo, 7.2]). Let X 3 P be a germ of a three-dimensional
terminal singularity. By [RY], a general divisor F € |-Kx| has only Du Val
singularities. Then according to Inversion of Adjunction 2.2.6 (see Example 2.2.12)
Kx + F is plt. From this, for general S € |-2K x| the divisor Kx + %S is also
plt. Consider the double cover f: Y — X with ramification divisor S. Then Y has
only klt singularities and Ky ~ 0. Hence the singularities of Y are canonical of
index one.

The existence of a good divisor S € |[-2K x| in the global case or for extremal
contractions X — Z is a much more difficult problem. For example, it is sufficient
for the existence of three-dimensional flips [K].

1.3. Log canonical covers

The following construction is well known (see e.g., [Sh2, 2.4], [K3], [K, 8.5],
[Ko1l]). Let X be a normal variety and D = _ d;D; a boundary such that m(K x +
D) ~ 0. We take m to be the least positive integer satisfying this condition.
Such m is called the index of Kx + D. Assume that Kx + D is Ic and d; €
{1 -1/k | k € NU {oo}} for all ¢ (i.e. all the d; are standard, see 2.2.5). Then
the natural map Ox(—m(Kx + D)) — Ox defines an Ox-algebra structure on

S5 Ox (|-iKx —iD)). Put

m-—1
Y := Spec (Z Ox (|-iKx — iDJ))

1=0
and ¢: Y — X the projection. Then Y is irreducible, ¢ is a cyclic Galois Z,,-
cover. Put B := ¢*(|D]). Then the ramification divisor (i.e. codimension one

ramification locus) of ¢ is Supp(D — |D]). Further, the ramification index along
D, is r;, where d; = 1 — 1/r;. Therefore,

¢*(Kx +D) =Ky + B ~0.
By 1.2.1, Ky + B is lc. Moreover, Kx + D is plt (resp. klt) if and only if Ky + B
is plt (resp. klt).

EXERCISE 1.3.1. Let (X > P) be a Du Val singularity of type D,, (given by
the equation z2 + y?z + 2"~ ! = 0) and H be a general hyperplane section. Show
that the double cover ramified along H is a lc singularity of index one. Write down
the equation of this singularity.

Finally, we present some Bertini’s type results.

PROPOSITION 1.3.2. Let X be a normal variety and D a Q-divisor on X. Let
H be a base point free linear system and H € H a general member.
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(i) Then Kx + D is lc if and only if Kx + D + H is lc.
(ii) Assume additionally that |D] = 0. Then Kx + D is kit if and only if
Kx + D + H is plt.

PROOF. It is sufficient to show only the implications =>. Let f: Y — X
be a log resolution of (X, D), E,,..., E, exceptional divisors and Dy, Hy proper
transforms of D and H, respectively. By Bertini’s theorem, Dy + Hy is a simple
normal crossing divisor, so f is also a log resolution of (X, D + H). We can choose
H € H so that H does not contain f(E),..., f(E,). Thus we have a(E;, D+ H) =
a(E;, D) > —1. This implies the first part of our proposition. In the second part
we can use remark in 1.1.1. O

PROPOSITION 1.3.3 ([R2, 1.13], [KM, 5.17]). Let X be a normal variety and
D a Q-divisor on X. Let H be a base point free linear system and H € H a general
member. Assume that Kx + D is kit (resp. plt, lc, canonical, terminal). Then
Ky + D|y is kit (resp. plt, lc, canonical, terminal).



