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Effective Divisors in Mg,n from Abelian Differentials

Scott Mullane

Abstract. We compute many new classes of effective divisors in
Mg,n coming from the strata of Abelian differentials. Our method

utilizes maps between moduli spaces and the degeneration of Abelian
differentials.

1. Introduction

The moduli space of Abelian differentials H(κ) consists of pairs (C,ω) where ω

is a holomorphic or meromorphic differential on a smooth genus g curve C and
the multiplicity of the zeros and poles of ω is fixed of type κ , an integer partition
of 2g − 2. The previous seminal work has exposed the fundamental algebraic
attributes of these spaces [KZ; Mc; EM; EMM]. From the perspective of algebraic
geometry, geometrically defined codimension one subvarieties, or divisors, have
been used to study many aspects of moduli spaces of curves including the Kodaira
dimension and the cone of effective divisors [HMu; EH1; F1]. In this paper, we
compute the class of many effective divisors in Mg,n defined by the strata of
Abelian differentials.

The divisor Dn
κ in Mg,n for κ = (k1, . . . , km) and n ≥ 0 with

∑
ki = 2g − 2 is

defined as

Dn
κ =

{
[C,p1, . . . , pn] ∈ Mg,n

∣∣∣∃[C,p1, . . . , pm] ∈Mg,m with
∑

kipi ∼ KC

}
,

where m = n + g − 2 or n + g − 1 for holomorphic and meromorphic signature
κ , respectively. When all ki are even, this divisor has two irreducible components
based on spin structure, which we denote by the indices odd and even. We use this
notation to denote both the divisor and the class1 of the divisor in Pic(Mg,n)⊗Q.

The results of this paper are the computation of the class of the divisor Dn
κ and

the even and odd spin structure components of this divisor in the cases given in
Table 1.

For example, the divisor D
2,even
−2,2,2g−1 in Mg,2 is the even spin structure compo-

nent of the coupled partition divisor given by g ≥ 2, n = 2, and κ = (−2,2,2g−1).
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1Our class expressions are given modulo the labeling of the unmarked points. See Section 2.8 for an
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Table 1 Classes of effective divisors in Mg,n from Abelian differentials

g and n Signature κ Reference

Divisors for n = 1
g ≥ 3, n = 1 κ = (g − k, k + 1,1g−3) for k = 1, . . . , g − 1 Theorem 3
g ≥ 2, n = 1 κ = (−h,g + h,1g−2) for h ≥ 2 Theorem 3

Coupled partition divisors
g ≥ 2, n = 2 κ = (1,1,2g−2) Theorem 4.1
g ≥ 2, n ≥ 2 κ = (d1, . . . , dn,2g−1), some di < 0 and∑

di = 0, and even and odd spin structure
components

Theorem 4.1

Pinch partition divisors
g ≥ 3, n ≥ 1 κ = (d1, . . . , dn,1g−3,2) for all di ≥ 0 and∑

di = g − 1
Theorem 5.1

g ≥ 2, n ≥ 2 κ = (d1, . . . , dn,1g−2,2) for one di ≤ −2 and∑
di = g − 2

Theorem 5.1

The class of this divisor is given in Theorem 4.1 as

2g−3
(

(2g + 1)λ + 2(2g + 1)(ψ1 + ψ2) − 2g−3δ0

−
g−1∑
i=0

(2i − 1)(2g−i − 1)δi:{1,2} −
g−1∑
i=1

(2i + 1)(2g−i + 1)δi:{2}
)

.

In [M] the author used the method of test curves to obtain a closed formula
for all divisors D0

κ in Mg for all holomorphic signatures κ . The setting of Mg,n

allows us the opportunity to provide an exposition of a different method of cal-
culating divisor classes. In this paper, we employ maps between moduli spaces
to compute the classes of interest. Bainbridge, Chen, Gendron, Grushevsky, and
Möller [BCGGM] have recently provided a full compactification of the space of
Abelian differentials. With this understanding of the degeneration of differentials,
we are able to explicitly describe the components of the pullback of a divisor
coming from the strata of differentials under the maps described in Section 2.7
obtained by gluing in marked tails of different genus at marked points and glu-
ing marked points together. Hence, knowing the class of the components of the
pullback of an unknown divisor class or identifying an unknown divisor as a com-
ponent of the pullback of a known class, we obtain many of the coefficients or the
full class of the unknown divisor. In Section 2.9, we survey the many known
results of divisor classes previously computed by classical methods that can be
efficiently reproduced from this perspective.

The difficulties in the computation arise from obtaining sufficient relations to
find all coefficients and from computing the multiplicity of each component of
the pullback of a divisor in such a relation. Obtaining the multiplicity requires
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enumerating certain holomorphic and meromorphic sections of a line bundle on
a general curve. We use a variant of the well-known de Jonquières formula in the
holomorphic case. In the meromorphic case the Picard variety method realizes the
unknown number as the degree of a map between Cg and the Picard variety. The
difficulty of calculating the multiplicity of different specific solutions that violate
the global residue condition can be overcome by investigating the ramification
locus of this map.

In Section 3, we provide an illustrative introduction to the techniques that
will be developed in later sections by generalizing the Weierstrass divisor W =
D1

g,1g−2 , the closure in Mg,1 of the locus of Weierstrass points originally calcu-
lated by Cukierman [Cu]. The families of divisors computed in Sections 4 and 5
were chosen to best expose the utility of our methods and are relevant in our search
for extremal effective divisor classes. The coupled partition divisors present the
simplest case to provide an exposition of our method as it pertains to strata of
Abelian differentials with multiple components. When all the marked points have
even multiplicities, these divisors have two components based on the spin struc-
ture. The pinch partition divisors provide a useful exposition of our method in the
case that the unmarked points have different multiplicities, and the first example
of a pinch partition divisor D

g−1
12g−4,2

was shown to be extremal in the effective
cone by Farkas and Verra [FV1].

2. Preliminaries

2.1. Strata of Abelian Differentials

A partition of 2g − 2 of the form κ = (k1, . . . , kn) with all ki ∈ Z \ {0} is known
as a signature. We say that κ is holomorphic, denoted κ > 0, if all entries ki > 0,
and κ is meromorphic, denoted κ ≯ 0, if some ki < 0. We define the stratum of
Abelian differentials with signature κ as

H(κ) := {(C,ω) | g(C) = g, (ω) = k1p1 + · · · + knpn for distinct pi},
where ω is a meromorphic differential on C. Hence H(κ) is the space of Abelian
differentials with prescribed multiplicities of zeros and poles given by κ . By rel-
ative period coordinates H(κ) has dimension 2g + n − 1 if κ > 0 and 2g + n − 2
if κ ≯ 0 [K].

A related object of interest in our study of the birational geometry of Mg,n is
the stratum of canonical divisors with signature κ , which we define as

P(κ) := {[C,p1, . . . , pn] ∈Mg,n | k1p1 + · · · + knpn ∼ KC}.
Forgetting this ordering of the zeros or poles of the same multiplicity, we obtain
the projectivization of H(κ). If all ki are distinct, then this finite cover becomes an
isomorphism of P(κ) with the projectivization of H(κ) under the C∗ action that
scales the differential ω. Hence we have that the dimension of P(κ) is 2g +n− 2
if κ > 0 and 2g + n − 3 if κ ≯ 0.

A line bundle η on a smooth curve C such that η⊗2 ∼ KC is known as a theta
characteristic. The spin structure of η is the parity of h0(C,η), which Mumford
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[Mu] showed to be deformation invariant. Consider an Abelian differential (C,ω)

where ω has signature κ = (k1, . . . , kn). If all ki are even, then an Abelian differ-
ential of this type specifies a theta characteristic on the underlying curve

η ∼
n∑

i=1

ki

2
pi.

As the parity of h0(C,η) is deformation invariant, the loci H(κ) and P(κ) are
reducible and break up into disjoint components with even and odd parity of
h0(C,η).

A signature κ is of hyperelliptic type if all odd entries in the signature occur
in pairs {j, j} or {−j,−j}. A hyperelliptic differential of type κ for such κ is a
differential on a hyperelliptic curve resulting from pulling back a degree g − 1
rational function under the unique hyperelliptic cover of P1, with the minimum
number of zeros occurring at ramification points of the hyperelliptic involution
known as Weierstrass points. Hence the subvariety of hyperelliptic differentials in
H(κ) has dimension 2g + (n − m)/2, where m is the number of zeros that occur
at Weierstrass points in each hyperelliptic differential, and this is the subvariety
of maximum dimension that can be built in H(κ) from the locus of hyperellip-
tic curves. Kontsevich and Zorich [KZ] showed that there can be at most three
connected components in total of H(κ) for κ > 0 and hence P(κ), correspond-
ing to the case that the hyperelliptic differentials become a connected component
of H(κ) distinct from the remaining differentials that provide two further con-
nected components based on odd or even spin structure. Boissy [B] showed that
this holds in the meromorphic case (κ ≯ 0) for g ≥ 2 and completely classified
the connected components of H(κ) when g = 1.

2.2. Degeneration of Abelian Differentials

The investigation of how Abelian differentials degenerate as the underlying curve
becomes singular has recently attracted much attention. In calculating the Kodaira
dimension of a number of the strata of Abelian differentials, Gendron [G] used an-
alytic methods to investigate the degeneration of Abelian differentials. Chen [C]
used algebraic methods to consider the limiting position of Weierstrass points on
general curves of compact type. Farkas and Pandharipande [FP] extended these
ideas to all nodal curves defining the moduli space of twisted canonical divisors
of type κ and showed that this space was, in general, reducible and contained
extra boundary components. Janda, Pandharipande, Pixton, and Zvonkine in the
Appendix to this paper provided a conjectural description of the cohomology
classes of the strata. In [M], the author obtained a closed formula for the class
of the strata closure that form a codimension one subvariety in Mg .

A twisted canonical divisor of type κ = (k1, . . . , kn) is a collection of (possibly
meromorphic) canonical divisors Dj on each irreducible component Cj of C such
that:

(a) The support of Dj is contained in the set of marked points and the nodes lying
in Cj ; moreover, if pi ∈ Cj , then ordpi

(Dj ) = ki .
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(b) If q is a node of C and q ∈ Ci ∩ Cj , then ordq(Di) + ordq(Dj ) = −2.
(c) If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) = ordq(Dj ) = −1,

then for any q ′ ∈ Ci ∩ Cj , we have ordq ′(Di) = ordq ′(Dj ) = −1. We write
Ci ∼ Cj .

(d) If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) > ordq(Dj ), then for
any q ′ ∈ Ci ∩ Cj , we have ordq ′(Di) > ordq ′(Dj ). We write Ci � Cj .

(e) There does not exist a directed loop C1 � C2 � · · · � Ck � C1 unless all �
are ∼.

The natural question is what other conditions are required to distinguish the
main component coming from twisted canonical divisors on smooth curves from
the boundary components. Bainbridge, Chen, Gendron, Grushevsky, and Möller
[BCGGM] have recently provided the global residue condition required to distin-
guish the main component from the boundary components giving a full compact-
ification for the strata of Abelian differentials. Let � be the dual graph of C. They
show that a twisted canonical divisor of type κ is the limit of twisted canonical
divisors on smooth curves if there exists a collection of meromorphic differentials
ωi on Ci with Div(ωi) = Di that satisfy the following conditions:

(a) If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) = ordq(Dj ) = −1,
then resq(ωi) + resq(ωj ) = 0.

(b) There exists a level graph � = (�, level), where level : vertices(�) −→ R

satisfies

level(Ci) = level(Ci) if Ci ∼ Cj , and

level(Ci) > level(Ci) if Ci � Cj ,

such that, for any level L ∈ R and any connected component Y of �>L that
does not contain any prescribed pole, we have∑

level(q)=L,
q∈Ci∈Y

resq(ωi) = 0.

Part (b) is known as the global residue condition. Consider the following example.

Example 2.1. Consider the nodal genus g = 4 curve C with three irreducible
components g(X) = g(Y ) = 0 and g(Z) = 3 and X ∩ Z = {q1, q2}, Y ∩ Z = {q3}
and all other intersections zero. Figure 1 depicts a twisted canonical divisor of
type κ = (6,−1,5,−4) on C with

DX = 6p1 − p2 − 4q1 − 3q2,

DY = 5p3 − 4p4 − 3q3,

DZ = 2q1 + q2 + q3,

where Dj ∼ Kj . To find the conditions on such a twisted canonical divisor being
smoothable, we must consider the possible level graphs of the components and
see what conditions these will place on the residues. Consider the meromorphic
differential on Y ∼= P1 with signature (5,−4,−3). By the cross ratio we can set
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Figure 1 A twisted canonical divisor of type κ = (6,−1,5,−4) on
a nodal curve

Figure 2 The level graph giving the global residue condition

the poles to 0 and ∞ and the zero to 1. The resulting differential is given locally
at 0 by

c
(1 − z)5

z4
dz

for some constant c ∈ C∗. Hence the residues at 0 and ∞ are nonzero. The flat
geometric way of presenting this is that on a genus g = 0 surface with one conical
singularity, the length of any saddle connection is obtained by integrating the
differential along the saddle connection. Hence this length is equal to the sum of
the residues the path encloses. Hence no flat surface of this signature can have
zero residues at both poles, and we will have resq3(ωY ) �= 0. This shows that in
the level graph the components X and Y must sit at the same level and the only
possible level graph is shown in Figure 2. The global residue condition on this
level graph becomes

resq1(ωX) + resq2(ωX) + resq3(ωY ) = 0.

By the residue theorem we know that the sum of the residues on any ωj is zero
and hence our condition is equivalently

resq3(ωY ) = resp2(ωX).

We have seen that resq3(ωY ) �= 0 and as p2 is a simple pole, resp2(ωX) �= 0.
Hence, as there exist ωi that satisfy Div(ωi) = Di , by scaling we can always
satisfy this global residue condition, and we have shown that all twisted canonical
divisors of this type are smoothable.
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Figure 3 A twisted canonical divisor of type κ = (6,−1,5,−4) on
a smooth curve

By investigating topologically a family of twisted canonical divisors on smooth
curves degenerating to a nodal curve we can see why this condition on the residues
is necessary. Let χ be a family of meromorphic differentials (Ct ,ωt ) with ωt of
type κ = (6,−1,5,−4) on smooth curves Ct for t �= 0, degenerating to the nodal
curve C0 = C at t = 0. Figure 3 depicts topologically an element of this family
for t �= 0. Let vi for i = 1,2,3 be the vanishing cycles on Xt ∪ Yt ∪ Zt that
shrink to the nodes qi at t = 0 such that Xt ∩ Zt = {v1, v2} and Yt ∩ Zt = v3 with
Xt → X,Yt → Y , and Zt → Z as t → 0. As there are no poles on the component
Zt , we observe by an application of Stokes formula to the cycle v4 that∫

v1+v2+v3

ωt =
∫

v4

ωt = 0

for t �= 0. Our residue condition is simply the limit of this condition as t → 0.
This shows that this residue condition is necessary. Complex-analytic plumbing
techniques and flat geometry are used in [BCGGM] to show that in all cases the
condition is sufficient.

2.3. Degeneration of Theta Characteristics and Spin Structures

Distinguishing how different components of the strata of canonical divisors ex-
tend to the boundary of Mg,n will depend on understanding how theta character-
istics and spin structures degenerate. Cornalba [Co] investigated how theta char-
acteristics degenerate to nodal curves of pseudocompact type, which are curves
with dual graph equal to a tree after removing any self-edges. We begin by consid-
ering a curve C with a nonseparating node that is the only node in the curve. Let
C̃ be the normalization of C, and let x and y be such that C = C̃/{x ∼ y}. There
are two types of theta characteristic on such a curve. Consider η̃ on C̃ such that
η̃⊗2 ∼ K

C̃
+x +y. As K

C̃
+x has a base point x for any x, a section of H 0(C̃, η̃)

vanishes at x if and only if it vanishes at y. Hence such sections are codimension
one in H 0(C̃, η̃). For any η̃, there are two ways to glue sections f ∈ H 0(C̃, η̃) to
agree at the node and hence descend to C. Sections can be glued as f (x) = f (y)
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or f (x) = −f (y). Hence h0(C,η) will differ by +1 for these two cases, repre-
senting even and odd spin structures. This obtains 22g−2 even and 22g−2 odd spin
structures on the curve C.

By blowing up at the node and inserting a rational bridge between x and y we
obtain the other type of theta characteristic on the curve

(η̃,O(1)),

where η̃⊗2 ∼ K
C̃

, and the global sections are glued together at the nodes. How-
ever, as h0(P1,O(1)) = 2, the values at x and y completely determine the section
on the rational bridge, and we obtain that the parity of these theta characteristics
is thus h0(C̃, η̃) mod 2. There are 2g−2(2g−1 + 1) even and 2g−2(2g−1 − 1) odd
theta characteristics of this type. Each has multiplicity 2, which gives the expected
2g−1(2g + 1) even and 2g−1(2g − 1) odd theta characteristics on C.

Consider now a curve C of pseudocompact type with irreducible components
C1, . . . ,Ck . Blowing up and inserting an exceptional component at every separat-
ing node, we obtain the theta characteristic on C to be

(η1, . . . , ηk, {O(1)}k−1
i=1 ),

where ηi is a theta characteristic on Ci , and O(1) is a line bundle of degree one
on the exceptional rational components. This gives the total degree

∑k
i=1(gi −

1) + (k − 1) = g − 1 as expected, and we observe the parity to be

k∑
i=1

h0(Ci, ηi) mod 2,

where if any component Ci has self nodes, then the ηi is of the types discussed
earlier.

2.4. De Jonquières’ Formula

We will require some tools for enumerating the occurrence of meromorphic dif-
ferentials of specified signatures in general curves in the moduli space. The first
such tool is de Jonquières’ formula, which enumerates the number of sections
with a specified type of vanishing in a general gr

d . The number of sections with
ordered zeros of multiplicity ki for i = 1, . . . , ρ with

∑
ki = d and ρ = d − r in

a general gr
d on a general genus g curve is

dJ[g; k1, . . . , kρ]

= g!
(g − ρ − 1)!

ρ∏
i=1

ki

(ρ−1∑
j=0

(
(−1)j

g − ρ + j

∑
|I |=j

(∏
i /∈I

ki

))
+ (−1)ρ

g

)
,

where I is a subset of {1, . . . , ρ}, and |I | denotes the number of elements in I .
We define

‖I‖ :=
∑
i∈I

ki .
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This formula can be found throughout the literature in many forms. This presenta-
tion is equivalent to that provided in [ACGH] on page 359 when all ki are distinct.
We present this version for its relative computational ease. It is a variation of that
developed in [Cool], p. 288. We will use the convention that dJ[1; ∅] = 1.

Letting k1 = r + 1 and ki = 1 for i = 2, . . . , d − r recovers the well-known
Plücker formula enumerating the number of simple ramification points in a gen-
eral gr

d as

(r + 1)d + (r + 1)r(g − 1),

after allowing for the factor (d − r − 1)! labeling the simple zeros.

2.5. The Picard Variety Method

De Jonquières’ formula enumerates the holomorphic sections of a general line
bundle of a specified type. In some cases, however, we want to enumerate the
meromorphic sections of a specified type. The Picard variety method enumerates
the solutions to a particular equation in the Picard group. Here we provide a sum-
mary of this method as presented in [M].

For a specified line bundle L of degree d = ∑g

i=1 ki on a general genus g curve
C, we want to enumerate (p1, . . . , pg) ∈ Cg so that

g∑
i=1

kipi ∼ L.

We will follow the treatment in genus g = 2 of [CT], Section 2. Consider the map

f : Cg −→ Picd(C)

(p1, . . . , pg) �−→ ∑g

i=1 kipi .

The fiber of this map above L ∈ Picd(C) gives us precisely the solutions of inter-
est. We observe that the domain and range of f are both of dimension g. Hence
our answer will come from the degree of the map f and an analysis of this fiber.
Take a general point e ∈ C and consider the isomorphism

h : Picd(C) −→ J (C)

L �−→ L ⊗OC(−de).

Now let F = h ◦ f . Then we have degF = degf . We observe

F(p1, . . . , pg) = OC

( g∑
i=1

ki(pi − e)

)
.

Let � be the fundamental class of the theta divisor in J (C). By [ACGH], Sec-
tion 1.5, we have

deg�g = g!,
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and the dual of the locus of OC(k(x − e)) for varying x ∈ C has class k2� in
J (C). Hence

degF = degF∗F ∗([OC])

= deg

( g∏
i=1

k2
i �

)

= g!
( g∏

i=1

k2
i

)
.

In practice, we may want to discount this number by any specific solutions that
we may omit for some reason. For example, we will omit any solutions where
pi = pj for i �= j . In this case, we need to know not only the existence of any
specific solutions that we are discounting by, but also the multiplicity of these
solutions. We calculate the multiplicity by investigating the branch locus of F .
First, we look locally analytically at F around each point. If f0 dω, . . . , fg−1 dω

is a basis for H 0(C,KC), then locally analytically the map becomes

(p1, . . . , pg) �−→
( g∑

i=1

ki

∫ pi

e

f0 dω, . . . ,

g∑
i=1

ki

∫ pi

e

fg−1 dω

)

modulo H1(C,KC). The map on tangent spaces at any fixed point (p1, . . . , pg) ∈
Cg is the Jacobian of F at the point, which is

DF(p1, . . . , pg) = diag(k1, . . . , kg)

⎛
⎜⎜⎝

f0(p1) . . . f0(pg)

f1(p1) . . . f1(pg)

. . . . . . . . .

fg−1(p1) . . . fg−1(pg)

⎞
⎟⎟⎠ .

Ramification in the map F occurs when the map on tangent spaces is not injective
which takes place at the points where rk(DF) < g. The ramification index at a
point (p1, . . . , pg) ∈ Cg is equal to the vanishing order of the determinant of
DF(p1, . . . , pg) at the point.

We observe that there are two components to the branch locus of F :

� = {(p1, . . . , pg) ∈ Cg | pi = pj for some i �= j},
K = {(p1, . . . , pg) ∈ Cg | h0(C,KC − p1 − · · · − pg) > 0},

where K is irreducible, and � has g(g − 1)/2 irreducible components defined by

�i,j = {(p1, . . . , pg) ∈ Cg | pi = pj }
for i, j = 1, . . . , g and i < j . Hence finding the multiplicity of any point in the
branch locus is simply a matter of investigating how these loci meet at the partic-
ular point.
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2.6. Divisor Theory on Mg,n

Let λ denote the first Chern class of the Hodge bundle on Mg,n, and let ψi denote
the first Chern class of the cotangent bundle on Mg,n associated with the ith
marked point where 1 ≤ i ≤ n. These classes are extensions of classes defined
on Mg,n that generate Pic(Mg,n) ⊗Q; however, Pic(Mg,n) ⊗Q contains more
classes.

The boundary � = Mg,n − Mg,n of Mg,n parameterizing marked stable
curves of genus g with at least one node is codimension one. Let �0 be the
locus of curves in Mg,n with a nonseparating node. Let �i:S for 0 ≤ i ≤ g,
S ⊆ {1, . . . , n} be the locus of curves with a separating node that separates the
curve into a genus i component containing the marked points from S and a
genus g − i component containing the marked points from SC , the complement
of S. We require |S| ≥ 2 for i = 0 and |S| ≤ n − 2 for i = g. We observe that
�i:S = �g−i:SC . These boundary divisors are irreducible and can intersect each

other and self-intersect. Denote the class of �i:S in Pic(Mg,n)⊗Q by δi:S , and in
the case that n = 1, we denote δi:{1} by δi . See [AC; HMo] for more information.

For g ≥ 3, these divisor classes freely generate Pic(Mg,n) ⊗Q. For g = 2, the
classes λ, δ0, and δ1 generate Pic(M2) ⊗Q with the relation

λ = 1

10
δ0 + 1

5
δ1.

Similarly, Pic(M2,n) ⊗Q is freely generated by λ,ψi , and δi:S with this relation
pulled back under the map ϕ : M2,n −→M2 that forgets the n marked points.

2.7. Maps Between Moduli Spaces

There are a number of maps between moduli spaces that prove very useful in
divisor class calculations. In this section, we present these maps and how the gen-
erators of the Picard group pullback under these maps. These results are produced
in [AC], p. 161.

Let (X,q, q1 . . . , qj+1) be a general genus h curve marked at j + 2 general
points for h ≥ 0 and j ≥ −1 with j ≥ 1 if h = 0. Define the map

π
n,j
g,h : Mg,n → Mg+h,n+j

[C,p1, . . . , pn] �→
[
C

⋃
p1=q

X,q1,p2, . . . , pn, q2, q3, . . . , qj+1

]
.

Letting π = π
n,j
g,h for ease of notation, we have, for j ≥ 0,

π∗λ = λ, π∗δ0 = δ0, π∗δh:{1,n+1,...,n+j} = −ψ1,

and

π∗ψi =
{

0 for i = 1 and n + 1 ≤ i ≤ n + j,

ψi otherwise.
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Now let T = {1, n + 1, . . . , n + j}. For i > h,

π∗δi:S =

⎧⎪⎨
⎪⎩

δi:S for S ∩ T = ∅,

δi−h:(S\T )∪{1} for T ⊂ S,

0 otherwise.

For i = h and h < g,

π∗δi:S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δi:S for S ∩ T = ∅,

δ0:(S\T )∪{1} for T ⊂ S and T �= S,

−ψ1 for T = S,

0 otherwise.

For i < h,

π∗δi:S =
{

δi:S for S ∩ T = ∅ and i < g,

0 otherwise.

When j = −1, let [X,q] be a general genus h curve marked at a general point.
The map becomes

π
n,−1
g,h : Mg,n → Mg+h,n−1

[C,p1, . . . , pn] �→
[
C

⋃
p1=q

X,p2, . . . , pn

]
.

Again, let π = π
n,−1
g,h for ease of notation. Then

π∗λ = λ, π∗δ0 = δ0, π∗ψi = ψi+1,

π∗δh:∅ = −ψ1 + δh:∅, π∗δi:S = δi:S + δi−h:S∪{1} for i : S �= h : ∅,

where δi:S = 0 for i > g.
We can also create more complicated maps gluing in multiple tails of different

genus with different numbers of marked points to suit our needs. We will describe
these maps as needed.

The map ϑ identifies the first and second marked points

ϑ : Mg,n → Mg+1,n−2

[C,p1, . . . , pn] �→ [C/{p1 ∼ p2},p3, . . . , pn].
We have

ϑ∗λ = λ, ϑ∗δ0 = δ0 +
∑

p1∈S,p2 /∈S

δi:S,

ϑ∗δi:S = δi:S + δi−1:S∪{p1,p2}, ϑ∗ψi = ψi+2.

The map ϕj forgets the j th marked point:

ϕj : Mg,n → Mg,n−1

[C,p1, . . . , pn] �→ [C,p1, . . . , pj−1,pj+1, . . . , pn].
We have

ϕ∗
j λ = λ, ϕ∗

j δ0 = δ0, ϕ∗
j δh:S = δh:S +δh:S∪{j}, ϕ∗

j ψi = ψi −δ0:{i,j}.
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In the case that n = 1, let ϕ : Mg,1 −→ Mg be the map forgetting the marked
point. In this case, for g even, we have the one exception that ϕ∗δg/2 = δg/2:{1}.

2.8. Divisor Notation

The divisor notation used in this paper differs based whether the signature κ is
meromorphic or holomorphic.

Definition 2.2. For |κ| = g − 2 + n if κ > 0 and |κ| = g − 1 + n if κ ≯ 0, write
κ in the form

κ = (k1, . . . , kn, d
α1
1 , . . . , dαr

r ),

where di �= dj for i �= j . Then Dn
κ for n ≥ 1 is the divisor in Mg,n defined by

Dn
κ := 1

α1! · · ·αr !ϕ∗P(κ),

where ϕ forgets the last r = g − 2 or r = g − 1 marked points for κ > 0 or κ ≯ 0,
respectively.

2.9. Previous Computations

Divisors in Mg,n from the strata of Abelian differentials have been presented
previously in various places, though often under different guises. Logan [L] in-
vestigated the Kodaira dimension of Mg,n through the use of pointed Brill–
Noether divisors. For d = (d1, . . . , dn), di ≥ 0 with

∑
di = g, these divisors are

the closure of [C,p1, . . . , pn] ∈ Mg,n such that |∑dipi | is g1
g . From our per-

spective, these are the divisors Dn
d,1g−2 coming from holomorphic strata where

all unmarked points are simple zeros. Müller [Mü] and Grushevsky and Za-
kharov [GZ] computed the classes of the closure of the pullback of the theta
divisor, that is, for d = (d1, . . . , dn) with

∑
di = g − 1 and some di < 0, the

closure of [C,p1, . . . , pn] ∈ Mg,n such that h0(
∑

dipi) ≥ 1. From our perspec-
tive, these are the divisors Dn

d,1g−1 coming from meromorphic strata where all

unmarked points are simple zeros. From this perspective, the irreducibility of
these divisors in the holomorphic case for g ≥ 3 and the meromorphic case for
g ≥ 2 follows from the irreducibility results on the strata of Abelian differen-
tials of Kontsevich and Zorich [KZ] and Boissy [B], respectively. Farkas and
Verra [FV2] computed the class of the closure of the antiramification locus in
Mg,g−1 for g ≥ 3 defined as the closure of [C,p1, . . . , pg−1] ∈ Mg,g−1 such
that h0(KC − p1 − · · · − pg−1 − 2q) ≥ 1 for some q ∈ C. From our perspec-

tive, this divisor is D
g−1
12g−4,2

. The class of strata with more than one irreducible
connected component has also been considered in one isolated case. Teixidor and
Bigas [T] computed the closure of the locus of curves in Mg with a vanishing
theta null or curves that admit a semicanonical pencil. Pulling this locus back un-
der the map ϕ : Mg,1 −→ Mg , we obtain the locus of points on a curve with a
vanishing theta null or the even component of the divisor D1

2g−1 , which we de-

note D
1,even
2g−1 . Farkas and Verra [FV2] computed the odd spin structure component
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D
1,odd
2g−1 as the closure of the loci of points in the support of an odd theta character-

istic. All of these previously known results can be efficiently reproduced through
the techniques used in this paper to compute new divisor classes.

3. Effective Divisors in Mg,1

This section provides a simple exposition of the techniques that will be devel-
oped in more complicated situations in the next sections. We calculate the classes
of divisors in Mg,1 that are the closure of loci of points on smooth curves that
form poles or zeros of holomorphic or meromorphic differentials of certain sig-
natures. Unlike in [M], where the author used test curves to compute the divisor
class, in this paper, we primarily use the method of pulling back divisor classes
under maps between different moduli spaces of curves. Through our understand-
ing of the degeneration of meromorphic differentials, we are able to explicitly
describe the components of the pullback of a divisor coming from the strata of
meromorphic differentials. The multiplicity of the components can be computed
by an application of the Picard variety method or de Jonquières’ formula. Hence,
knowing the class of the components of the pullback of an unknown divisor class
or identifying an unknown divisor as a component of the pullback of a known
class, we obtain the class or many of the coefficients of the class of the unknown
divisor.

We record the results of this section as the following theorem.

Theorem 3.1 (Divisors in Mg,1). The divisor D1
g−k,k+1,1g−3 for g ≥ 3 and k =

1, . . . , g − 1 is given by2

D1
g−k,k+1,1g−3 = cψψ + cλλ + c0δ0 +

g−1∑
i=1

ciδi ,

where

cψ = (k + 1)(g − k)((k + 1)g2 − (k2 + k + 1)g − 2)

2
,

cλ = (k + 1)(4 − 2g + 10k − 2gk + 11k2 + 3k3)

2
,

c0 = (k + 1)2 − (k + 1)4

6
,

ci =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− (k+1)(i(g−i+1)(g−i)(k+1)+(g−i−k)((k+1)(g−i)2−(k2+k+1)(g−i)−2))
2

for 1 ≤ i ≤ g − k,

− (g−i)(k+1)(−3g+g2+4i−gi+3k−4gk+g2k+5ik−gik+3k2−2gk2+2ik2+k3)
2

for g − k + 1 ≤ i ≤ g − 1.

2This formula is reproduced in the case that k = g − 1 in the Appendix by the more labor intensive
methods of Porteous’ formula and test curves. This divisor is irreducible in all cases except g = 3
and k = 1, which is discussed in Remark 3.4.
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The divisor D1
−h,g+h,1g−2 for h ≥ 2 is given by3

D1
−h,g+h,1g−2 = cψψ + cλλ + c0δ0 +

g−1∑
i=1

ciδi ,

where

cψ = g(g + h + 1)(h − 1)(h2 + gh + g + 1)

2
,

cλ = (1 + g + h)(2 − 3g2 + 3g3 − 2h − 4gh + 9g2h − h2 + 9gh2 + 3h3)

2
,

c0 = (g + h)2 − (g + h)4

6
,

ci = (i − g)

2
(g3(2h + i) + g2(5h2 + 2ih + 2h + i − 1)

+ g(4h3 + h2(i + 4) + 2h(i − 1) + i)

− 2h − i + 1 + h(h + 2)(i + h2)) for 1 ≤ i ≤ g − 1.

3.1. The Weierstrass Divisor

Setting k = 0 in the first formula, we recover (g − 2)W for W = D1
g,1g−2 the

known class of the Weierstrass divisor computed by Cukierman [Cu],

W = g(g + 1)

2
ψ − λ −

g−1∑
i=1

(g − i)(g − i + 1)

2
δi .

3.2. The Residual Divisor

The first generalization of the Weierstrass divisor in Mg,1 is the closure of the
locus of points that are residual to Weierstrass points, that is,

R = {[C,q] ∈Mg,1 | h0(KC − gp − q) > 0 for some p ∈ C}.
We call this the residual divisor, and in our notation, we have R = D1

1,g,1g−3 . In
this section, we calculate the class of R through the use of maps between moduli
spaces of curves and previously known classes. For g ≥ 4, consider the map

π : Mg−1,1 → Mg,1

[C,y] �→
[
C

⋃
x=y

E,q

]
,

which for [C,y] ∈ Mg−1,1 identifies the point y with the point x of a general
marked elliptic curve [E,x, q] as described in Section 2.7. Consider how R pulls
back under this map. Restricting to the smooth locus of Mg−1,1, there are two

3When g = 2 and h is even, this divisor has two connected components based on spin structure. If

4 | h, then D
1,odd
−h,h+2 = 5W , and D

1,even
−h,h+2 = 5W otherwise.
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cases possible. The limit of Weierstrass points, say p, residual to q lies on C or
not on C in the nodal curve [C ⋃

x=y E,q]. There are only two configurations
of zeros across the two components that give a codimension one condition on
[C,y] ∈ Mg−1,1. In the case that p lies on E, in Section 2.2, we show that a
twisted differential of the form required is differentials ωE on E and ωC on C

such that

(ωE) = −(g + 1)x + q + gp ∼ OE,

(ωC) = (g − 1)y +
g−3∑
j=1

qi,

for some points p ∈ E and qi ∈ C. By the group law on E there are g2 such points
p in E. The point y in C is required to be a Weierstrass point. Further, in this case
the global residue condition becomes

resx(ωE) = 0,

which is always satisfied, showing that these solutions are always smoothable and
hence appear in the divisor R.

In the case that p lies on C, in Section 2.2, we show that a twisted differential
of the form required is differentials ωE on E and ωC on C such that

(ωE) = −2x + q + qg−3 ∼ OE,

(ωC) = 0y + gp +
g−4∑
j=1

qi,

for some points qg−3 ∈ E and p,qi ∈ C for i = 1, . . . , g − 4. There is a unique
point qg−3 in E satisfying this relation. To satisfy the second relation, p must be
an exceptional Weierstrass point, that is, h0(KC − gp) > 0. Then any point y on
C satisfies the second relation. Further, in this case the global residue condition
becomes

resx(ωE) = 0,

which is always satisfied, showing that these solutions are always smoothable and
hence appear in the divisor R. Any other configuration of points places a higher
codimension condition on [C,y] ∈ Mg−1. Such loci are contained in the closure
of the two we have described.

The boundary of Mg,1 is codimension one. A simple check shows that a gen-
eral point in any irreducible boundary component δi is not included in π∗R, and
indeed we have found all components.

Let ϕ : Mg−1,1 → Mg−1 be the map that forgets the marked point. Then our
analysis yields the relation

π∗R = g2W + ϕ∗D,

where W is closure of the locus of Weierstrass points calculated by Cukierman
[Cu], and D is the closure of the locus of curves containing an exceptional Weier-
strass point calculated by Diaz [D], which agrees with the formula in [M]. In
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Mg−1, this divisor is

D = g(g + 1)(3g2 − 3g + 2)

2
λ − g2(g − 1)(g + 1)

6
δ0

−
[(g−1)/2]∑

i=1

gi(g − i − 1)(g + 1)2

2
δi .

Knowing the classes of W and D by the pullback relations given in Section 2.7,
we obtain all coefficients of R except the coefficient of ψ . A simple test curve
created by allowing the marked point to vary in a fixed general curve provides the
coefficient of ψ . This well-known test curve4 has intersection 2g − 2 times the
coefficient of ψ . We also know that any general curve has (g + 1)g(g − 1)(g − 2)

residual points. Hence we have, for g ≥ 4,

R = g(g + 1)(g − 2)

2
ψ + g(3g3 − 3g + 2)

2
λ + g2 − g4

6
δ0

+
g−1∑
i=1

g(i − g)(g2i + gi − g + i − 1)

2
δi .

In the Appendix, we laboriously reproduce this result by the different methods of
Porteous’ formula and test curves and show that this formula extends to the case
g = 3.

3.3. Divisors from Meromorphic Strata

The divisor D1
−h,g+h,1g−2 in Mg,1 for h ≥ 2 is defined to be

D1
−h,g+h,1g−2

= {[C,p] ∈ Mg,1 | h0(KC + hp − (g + h)q) > 0 for some q ∈ C with p �= q}.
To compute the class of this divisor, we consider the map

π : Mg,1 → Mg+h,1

[C,y] �→ [C ⋃
x=y X,q],

which for [C,y] ∈ Mg,1 identifies the point y with the point x of a general
marked genus h ≥ 2 curve [X,x,q] as introduced in Section 2.7. Consider how
R pulls back under this map. Restricting to the smooth locus of Mg,1, there are
again two cases possible. The limit of Weierstrass points, say p, residual to q lies
on C or not on C in the nodal curve [C ⋃

x=y X,q]. There are only two configu-
rations of zeros across the two components that give a codimension one condition
on [C,y] ∈ Mg,1. In the case that p lies on X, Section 2.2 shows that a twisted

4This test curve is presented in detail in the Appendix.



856 Scott Mullane

differential of the form required will be differentials ωE on E and ωC on C such
that

(ωX) = −(g + 2)x + q + (g + h)p +
h−1∑
j=1

qj and

(ωC) = gy +
g+h−3∑
j=h

qj

for some points p,qj ∈ X for j = 1, . . . , h − 1 and qi ∈ C for j = h, . . . ,

g + h − 3. The point y in C is required to be a Weierstrass point. Further, in
this case the global residue condition becomes

resx(ωE) = 0,

which is always satisfied, showing that these solutions are always smoothable and
hence appear in the divisor R. To enumerate the solutions on X, we are looking
for points p,qj �= x on a general genus h curve X that satisfy

(g + h)p +
h−1∑
j=1

qj ∼ KX + (g + 2)x − q,

where x is the node, and q is the marked point, and we have placed them in
general position. Using the Picard variety method, we consider the map

f : Ch −→ Picg+2h−1(C)

(p, q1 . . . , ph−1) �−→ (g + h)p +
h−1∑
j=1

qj ,

which by Section 2.5 has degree (g +h)2h. To enumerate the solutions of the type
we are interested in, we simply need to discount for the unique solution p = x of
multiplicity h − 1, where the multiplicity is (h − 2)x + ∑h−1

j=1 qj ∼ KX − q , so
the determinant of the Brill–Noether matrix vanishes with multiplicity h − 2 at
this point, and hence the point has multiplicity h − 1.

In the case that p lies on C, Section 2.2 shows that a twisted differential of the
form required is differentials ωX on X and ωC on C such that

(ωX) = (h − 2)x + q +
h−1∑
j=1

qj and

(ωC) = −hy + (g + h)p +
g+h−3∑
j=h

qj

for some points qj ∈ X for j = 1, . . . , h−1 and p,qi ∈ C for i = h, . . . , g+h−3.
There is a unique set of points qj for j = 1, . . . , h−1 in X satisfying this relation.
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The second relation describes the divisor D1
−h,g+h,1g−2 . Further, in this case the

global residue condition becomes

resy(ωC) = 0,

which is always satisfied, showing that these solutions are always smoothable
and hence appear in the divisor R. Any other configuration of points will place a
higher codimension condition on [C,y] ∈Mg . Such loci will be contained in the
closure of the two we have described.

The boundary of Mg,1 is codimension one. Again, a simple check shows that
a general point in any irreducible boundary component δi is not included in π∗R,
and indeed we have found all components.

Hence we have

π∗R = ((g + h)2h − (h − 1))W + D1
−h,g+h,1g−2 .

By the pullback formula provided in Section 2.7 we have

π∗R = g(g + h)((g + h)2h + (g + h)h − g − 1)

2
ψ

+ (g + h)(3(g + h)3 − 3(g + h) + 2)

2
λ + (g + h)2 − (g + h)4

6
δ0

+
g−1∑
i=1

(g + h)(i − g)((g + h)2(i + h) + (g + h)(i + h) − g + i − 1)

2
δi,

which gives the result.

Remark 3.2. As discussed in Section 2.1, this divisor is irreducible for g ≥ 3
and g = 2 for h odd. When g = 2 and h is even, this divisor has two connected
components based on spin structure, D

1,odd
−h,h+2 = 5W for 4 | h and D

1,even
−h,h+2 = 5W

otherwise.

3.4. The Remaining Residual Divisors

The classes D1
(g−k,k+1,1g−3)

for k = 1, . . . , g − 2 complete the calculation of divi-

sors on Mg,1 coming from strata of differentials with only zeros away from the
marked point, all but one of which are simple. For g ≥ 3 and k = 1, . . . , g − 2, let

D1
(g−k,k+1,1g−3)

= cψψ + cλλ + c0δ0 +
g−1∑
i=1

ciδi

in Pic(Mg,1) ⊗ Q. The coefficient cψ can be computed by a simple test curve.
Consider the test curve B in Mg,1 created by fixing a general genus g curve C

and allowing the marked point to vary in the curve. It is well known that B · ψ =
2g − 2, and hence

B · D1
(g−k,k+1,1g−3)

= (2g − 2)cψ .
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Further, we can compute the intersection of this test curve with the divisor directly
by de Jonquières’ formula introduced in Section 2.4, which shows that there are

(k + 1)(g − k)((k + 1)g2 − (k2 + k + 1)g − 2)(g − 1)

sections of the type required in the canonical series on the general genus g

curve C. Hence

cψ = (k + 1)(g − k)((k + 1)g2 − (k2 + k + 1)g − 2)

2
.

To compute all other coefficients, we again consider the map

π : Mg−i,1 → Mg,1

[C,y] �→
[
C

⋃
x=y

X,q

]
,

which for [C,y] ∈ Mg−i,1 identifies the point y with the point x of a general
marked genus i ≥ 2 curve [X,x,q] as introduced in Section 2.7. Consider the
pullback of the divisor D1

g−k,k+1,1g−3 . Restricting to the smooth locus of Mg−i,1,
we again observe that there will be two components based on the position of the
point of multiplicity (k+1) in the twisted canonical divisor and there are only two
configurations of zeros across the two components that give a codimension one
condition on [C,y] ∈ Mg−i,1. In the case that the point of multiplicity (k + 1),
say p, lies on X, Section 2.2 shows that a twisted differential of the form required
is differentials ωX on X and ωC on C such that

(ωX) = (−g + i − 2)x + (k + 1)p + (g − k)q +
i−1∑
j=1

qj and

(ωC) = (g − i)y +
g−3∑
j=i

qi

for some points p,qj ∈ X for j = 1, . . . , i − 1 and qj ∈ C for j = i, . . . , g − 3.
Hence y is required to be a Weierstrass point. The global residue condition of
such a twisted canonical divisor is

resx(ωX) = 0,

which is always satisfied. To enumerate such solutions on X, we are looking for
points p,qj distinct from x, q satisfying

(−g + i − 2)x + (k + 1)p + (g − k)q +
i−1∑
j=1

qj ∼ KX

for a general curve X of genus i and fixed general points x and q . Hence the p

are the ramification points of |KX + (g − i + 2)x − (g − k)q|, which is a gk
k+i and

hence has
(k + 1)(k + i) + (k + 1)k(i − 1) = (k + 1)2i
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ramification points (alternatively, this can be found by the Picard variety method).
There are no solutions with p = q as this would require q to be the ramification
points of |KX + (g − i + 2)x| and not a general point. There are no solutions
with p = x if i ≤ g − k as this would contradict the assumption that x and q are
general. If i > g − k, then we have the unique solution

(i − (g − k) − 1)x +
i−1∑
j=1

qj ∼ KX − (g − k)q,

which by the Picard variety method in Section 2.5 has multiplicity i − (g − k).
In the case that p lies on C, Section 2.2 shows that a twisted differential of the

form required is differentials ωX on X and ωC on C such that

(ωX) = (−g + i + k − 2)x + (g − k)q +
i∑

j=1

qj and

(ωC) = (g − i − k)y + (k + 1)p +
g−3∑

j=i+1

qi

for some points qj ∈ X for j = 1, . . . , i and p,qj ∈ C for j = i + 1, . . . , g − 3.
The global residue condition of such a twisted canonical divisor is

resx(ωX) = 0,

which is always satisfied. Further, there is a unique solution to the points qj ∈ X

as h0(KX − (−g + i − k − 2)x − (g − k)q) = 1 for general x and q .
Finally, we again see that a general point of any boundary divisor δi is not

included in π∗D1
g−k,k+1,1g−3 , and hence there are no extra boundary components.

For any i ≤ g − k, we have

π∗D1
g−k,k+1,1g−3 = (k + 1)2iWg−i + D1

g−i−k,k+1,1g−i−3 ,

and for i > g − k, we have

π∗D1
g−k,k+1,1g−3 = ((k + 1)2i − (k − g + i))Wg−i + D1

g−i−(k+1),k+1,1g−i−2 ,

where, for g − i − (k + 1) ≤ −2, we calculated the class of D1
g−i−(k+1),k+1,1g−i−2

in Section 3.3.
The first relation yields

ci = −Coefficient of ψ in π∗D1
g−k,k+1,1g−3

= − (k + 1)2i(g − i + 1)(g − i)

2

− (k + 1)(g − i − k)((k + 1)(g − i)2 − (k2 + k + 1)(g − i) − 2)

2
= −(k + 1)(i(g − i + 1)(g − i)(k + 1) + (g − i − k)

× ((k + 1)(g − i)2 − (k2 + k + 1)(g − i) − 2))/2
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for i ≤ g − k. The second relation yields

cλ = ((k + 1)2i − (k − g + i))(−1)

+ 1

2
(1 + (k + 1))(2 − 3(g − i)2 + 3(g − i)3 − 2(k + i + 1 − g)

− 4(g − i)(k + i + 1 − g) + 9(g − i)2(k + i + 1 − g)

− (k + i + 1 − g)2 + 9(g − i)(k + i + 1 − g)2

+ 3(k + i + 1 − g)3)

= (k + 1)(4 − 2g + 10k − 2gk + 11k2 + 3k3)

2
,

c0 = (k + 1)2 − (k + 1)4

6
,

ci = −Coefficient of ψ in π∗D1
g−k,k+1,1g−3

= − ((k + 1)2i − (k − g + i))(g − i + 1)(g − i)

2
− (g − i)(k + 2)(i + k − g)

× ((i + k + 1 − g)2 + (g − i)(i + k + 1 − g) + (g − i) + 1)/2

= −(g − i)(k + 1)(−3g + g2 + 4i − gi + 3k

− 4gk + g2k + 5ik − gik + 3k2 − 2gk2 + 2ik2 + k3)/2

for i > g − k. This completes the computation of the classes presented in Theo-
rem 3.1.

Remark 3.3. Setting k = g − 1, the coefficients match those computed for the
residual divisor R = D1

1g−2,g
in Section 3.2. Setting k = 0, we obtain (g − 2)W =

(g − 2)D1
g,1g−2 .

Remark 3.4. This divisor is defined for g ≥ 3. As discussed in Section 2.1, by
Kontsevich and Zorich [KZ] this divisor is irreducible in all cases except g =
3, k = 1. In this case, we have that D1

2,2 contains two irreducible components
distinguished by spin structure:

D1
2,2 = �3,1 + ϕ∗H,

where �3,1 is the closure of the locus of [C,p] ∈ M3,1, where p lies on a bitan-
gent to a quartic plane curve, H is the closure of the locus of hyperelliptic curves
in M3, and ϕ : M3,1 −→M3 simply forgets the marked point. We know that

�3,1 = 14ψ + 7λ − δ0 − 9δ1 − 5δ2,

ϕ∗H = 9λ − δ0 − 3δ1 − 3δ2,

where the class of �3,1 was calculated by Farkas [F2], and the class of H is well
known.
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3.5. Comparison with Brill–Noether Divisors

Eisenbud and Harris [EH2] showed that the class of the closure of a pointed Brill–
Noether divisor can be expressed as μBN + νW , where

BN = (g + 3)λ − g + 1

6
δ0 −

g−1∑
i=1

i(g − i)δi

is the pullback from Mg of the Brill–Noether divisor, W is the Weierstrass divi-
sor, and μ and ν are nonnegative rational numbers. We observe that such a divisor
satisfies

μ = − 6c0

g + 1

and

ν = 2cψ

g(g + 1)
= −6(g + 3)

g + 1
c0 − cλ.

Hence, as divisors coming from the interior always have cψ ≥ 0, we have the
simple coefficient check

2cψ + 6(g + 3)gc0 + g(g + 1)cλ = 0.

Any class that violates this cannot be the class of a pointed Brill–Noether divisor.
No class calculated in this section satisfies this relation (other than the Weierstrass
divisor) and hence does not correspond to the class of a pointed Brill–Noether
divisor.

4. Coupled Partition Divisors in Mg,n

In this section, we consider the divisors Dn
d,2g−1 in Mg,n for g ≥ 2 with d =

(d1, . . . , dn) for
∑

i di = 0. We refer to such a partition (d1, . . . , dn,2g−1) of 2g −
2 as a coupled partition. When di are all even, there are two components based on
even and odd spin structures. The coupled partition divisors present the simplest
case to provide an exposition of our method as it pertains to strata of Abelian
differentials with multiple components. We define d− to be the vector containing
only negative entries of d . For any S ⊆ {1, . . . , n}, we define dS = ∑

j∈S dj . We
record the results of this section in the following theorem.

Theorem 4.1 (Coupled partition divisors).

D2
1,1,2g−2 = 2g−3

(
2g+1λ + 2g−1(ψ1 + ψ2) − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi:{1,2} −
g−1∑
i=1

2g−1δi:{1}
)

.
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For d = (d1, . . . , dn) such that
∑n

j=1 dj = 0 with d− �= {−2},

Dn
d,2g−1 = 2g−2

(
2g+1λ + 2g−1

n∑
j=1

d2
j ψj − 2g−2δ0

−
∑

|dS |=0
1/∈S

g∑
i=0

2g−i+1(2i − 1)δi:S − 2g−1
∑

|dS |≥1
1/∈S

g−1∑
i=0

d2
Sδi:S

)
.

If all dj are even, then

D
n,odd
d,2g−1 = 2g−2

(
(2g − 1)λ + 2g − 1

4

n∑
j=1

d2
j ψj − 2g−3δ0

−
∑

|dS |=0
1/∈S

g∑
i=0

(2i − 1)(2g−i + 1)δi:S − 2g − 1

4

∑
|dS |≥2

1/∈S

g−1∑
i=0

d2
Sδi:S

)

and

D
n,even
d,2g−1 = 2g−2

(
(2g + 1)λ + 2g + 1

4

n∑
j=1

d2
j ψj − 2g−3δ0

−
∑

|dS |=0
1/∈S

g∑
i=0

(2i − 1)(2g−i − 1)δi:S − 2g + 1

4

∑
|dS |≥2

1/∈S

g−1∑
i=0

d2
Sδi:S

)
.

For d = (−2,1,1),

D3
d,2g−1 = 2g−3

(
2g+1λ + 2g+2ψ1 + 2g−1(ψ2 + ψ3) − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi{1,2,3} −
g−1∑
i=0

2i+1(2g−i + 1)δi:{2,3}

−
g−1∑
i=0

2g−1(δi:{1,2} + δi:{1,3})
)

.

For d = (−2,2),

D2
d,2g−1 = 2g−3

(
2g+1λ + 2g+2ψ1 + 2(2g + 1)ψ2 − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi{1,2} − 2i+1(2g−i + 1)

g−1∑
i=1

δi:{2}
)

,
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with

D
2,odd
d,2g−1 = ϕ∗

2D
1,odd
2g−1

= 2g−3
(

(2g − 1)(λ + 2ψ1 + 0ψ2) − 2g−3δ0

−
g−1∑
i=0

(2i + 1)(2g−i − 1)δi:{1,2} −
g−1∑
i=1

(2i − 1)(2g−i + 1)δi:{2}
)

,

where ϕ2 : Mg,2 −→Mg,1 forgets the second marked point, and

D
2,even
d,2g−1 = 2g−3

(
(2g + 1)(λ + 2(ψ1 + ψ2)) − 2g−3δ0

−
g−1∑
i=0

(2i − 1)(2g−i − 1)δi:{1,2} −
g−1∑
i=1

(2i + 1)(2g−i + 1)δi:{2}
)

.

The following propositions provide the proof of this theorem.

Proposition 4.2. The class of the divisor D2
1,1,2g−2 in Mg,2 is

D2
1,1,2g−2 = 2g−3

(
2g+1λ + 2g−1(ψ1 + ψ2) − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi:{1,2} −
g−1∑
i=1

2g−1δi:{1}
)

.

Proof. Consider the map π : Mg,1 −→ Mg,2 that for [C,y] ∈ Mg,1 identifies
the point y with the point x of a general rational tail marked at three points
[X,x,q1, q2] as introduced in Section 2.7. Under this map, we have

π∗D2
1,1,2g−2 = D1

2g−1 = D
1,odd
2g−1 + D

1,even
2g−1 .

The two divisors on the RHS are known. Farkas [F2] calculated the divisor class
of the closure of the locus of points in the support of odd theta characteristics in
Mg,1. In our notation,

D
1,odd
2g−1 = 2g−3

(
(2g − 1)(λ + 2ψ) − 2g−3δ0 −

g−1∑
i=1

(2i + 1)(2g−i − 1)δi

)
. (1)

This is the class of the odd spin structure component of D1
2g−1 which has two

components by Konsevich and Zorich [KZ]. The class of the even spin structure
component is

D
1,even
2g−1 = 2g−3

(
(2g + 1)λ + 0ψ − 2g−3δ0 −

g−1∑
i=1

(2i − 1)(2g−i − 1)δi

)
. (2)

An even theta characteristic of this type on a curve C gives a degree g − 1 cover
from C to P1. The ramification points of this cover place the curve C in the divisor
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Deven
4,2g−3 in Mg . Hence if ϕ : Mg,1 −→ Mg forgets the marked point, then we

have D
1,even
2g−1 = ϕ∗Deven

4,2g−3 , where the divisor Deven
4,2g−3 was originally calculated by

Teixidor and Bigas [T] as the closure of the divisor of curves with a vanishing
theta-null.

Hence we obtain the coefficients of λ, δ0, δ0:{1,2}, δi:{1,2} for i > 0. For the co-
efficients of ψi , consider the test curve B defined by taking a general curve C and
marking a general point as the second point. Allow the first point to vary in the
curve. We have

B · D2
1,1,2g−2 = (2g − 1)cψ1 + cψ2 + c0:{1,2}

= dJ[g;1,2g−2] = 2g−2(2g−1(g − 2) + 1).

Hence by symmetry

cψi
= 1

2g
(2g−2(2g−1(g − 2) + 1) + 2g−2(2g − 1)) = 22g−4.

Finally, we need to calculate the coefficients of δi:{1}. Consider the map π :
Mg,2 −→ Mg+h,2 that for [C,y1, y2] ∈ Mg,2 identifies the point y2 with the
point x of a marked general genus h curve (X,x, q) as introduced in Section 2.7.
Under this map, we have

π∗D2
1,1,2g−2 = 4hD2

1,1,2g−h−2 .

The known ψi coefficients then complete our calculation. �

Remark 4.3. This formula is known in g = 2 and g = 3 by equations (4) and (3)
(presented in Section 5), respectively.

We now specialize to the two cases where the signature has exactly one pole with
multiplicity two.

Proposition 4.4. For d = (−2,1,1),

D3
d,2g−1 = 2g−3(2g+1λ + 2g+2ψ1 + 2g−1(ψ2 + ψ3) − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi{1,2,3} −
g−1∑
i=0

2i+1(2g−i + 1)δi:{2,3}

−
g−1∑
i=0

2g−1(δi:{1,2} + δi:{1,3}).

Proof. Consider the map π : Mg,3 −→ Mg+1,2 that for [C,y1, y2, y3] ∈ Mg,3
identifies the point y1 with the point x of a general marked elliptic tail [X,x] as
introduced in Section 2.7. We have

π∗D2
1,1,2g−1 = D3

−2,1,1,2g−1 + 3ϕ∗
1D2

1,1,2g−2 ,

where ϕ1 : Mg,3 −→Mg,2 simply forgets the first marked point. The multiplicity
3 of the second component represents placing one of the unmarked double zeros
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at a distinct two-torsion point on the elliptic curve. By Proposition 4.2 we have
that π∗D2

1,1,2g−1 equals

2g−2
(

2g+2λ + 2g(ψ2 + ψ3) + 2g+1ψ1 − 2g−1δ0

−
g−1∑
i=0

2i+2(2g−i − 1)δi:{1,2,3} −
g−1∑
i=0

2i+1(2g+1−i − 1)δi:{2,3}

−
g−1∑
i=1

2g(δi:{1,3} + δi:{1,2})
)

and 3ϕ∗
1D2

1,1,2g−2 equals

3 · 2g−3
(

2g+1λ + 2g−1(ψ2 + ψ3) − 2g−2δ0 − 2g−1(δ0:{1,2} + δ0:{1,3})

−
g−1∑
i=0

2i+1(2g−i − 1)(δi:{2,3} + δi:{1,2,3}) −
g−1∑
i=1

2g−1(δi:{1,3} + δi:{1,2})
)

.

The proposition follows. �

Proposition 4.5. For d = (−2,2),

D2
d,2g−1 = 2g−3

(
2g+1λ + 2g+2ψ1 + 2(2g + 1)ψ2 − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi{1,2} − 2i+1(2g−i + 1)

g−1∑
i=1

δi:{2}
)

with

D
2,odd
d,2g−1 = 2g−3

(
(2g − 1)(λ + 2ψ1 + 0ψ2) − 2g−3δ0

−
g−1∑
i=0

(2i + 1)(2g−i − 1)δi:{1,2} −
g−1∑
i=1

(2i − 1)(2g−i + 1)δi:{2}
)

and

D
2,even
d,2g−1 = 2g−3

(
(2g + 1)(λ + 2(ψ1 + ψ2)) − 2g−3δ0

−
g−1∑
i=0

(2i − 1)(2g−i − 1)δi:{1,2} −
g−1∑
i=1

(2i + 1)(2g−i + 1)δi:{2}
)

.

Proof. For d = (−2,2), consider the map π : Mg,2 −→ Mg,3 that for [C,y1,

y2] ∈Mg,2 identifies the point y2 with the point x of a general rational tail marked
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at three points [X,x,q1, q2] as introduced in Section 2.7. We have

π∗D3
−2,1,1,2g−1 = D2

−2,2,2g−1 ,

where the divisor on the LHS is known by Proposition 4.4.
To distinguish the components, consider the map π : Mg,2 −→ Mg+1,1 that

for [C,y1, y2] ∈Mg,2 identifies the point y1 with the point x of a general marked
elliptic tail [X,x] as introduced in Section 2.7. We have

π∗D1
2g = D2

−2,2,2g−1 + 3ϕ∗
1D1

2g−1 ,

where ϕ1 : Mg,2 −→Mg,1 simply forgets the first marked point. The multiplicity
3 of the second component represents placing one of the unmarked double zeros
at a two-torsion point to the node on the elliptic curve. On the components, this
becomes

π∗D1,odd
2g = D

2,even
−2,2,2g−1 + 3ϕ∗

1D
1,odd
2g−1

and

π∗D1,even
2g = D

2,odd
−2,2,2g−1 + 3ϕ∗

1D
1,even
2g−1 ,

where the divisors D
1,odd
2g and D

1,even
2g are known by equations (1) and (2), respec-

tively. �

Remark 4.6. Observe what may at first appear to be the curious consequence that
D

2,odd
−2,2,2g−1 = ϕ∗

2D
1,odd
2g−1 . Recall our definition

D
2,odd
−2,2,2g−1

:= {(C,p1,p2) ∈Mg,2 | −p1 + p2 + s1 + · · · + sg−1 ∼ ηC for ηC odd and pi, sj distinct}.

If h0(ηC) = 1 with s′
1 + · · · + s′

g−1 ∼ ηC , then h0(ηC + x) ≥ 1 for any x as s′
1 +

· · ·+s′
g−1 +x is a section. However, this section does not satisfy our requirements,

and hence we require h0(ηC + x) = 2. The Riemann–Roch theorem then gives

h0(ηC − x) = 1 − g + (g − 2) + h0(ηC + x) = 1,

which explains this result.

Remark 4.7. As a check, consider the map π : Mg−i,2 −→ Mg,2 that for
[C,y1, y2] ∈ Mg−i,2 identifies the point y1 with the point x of a general marked
genus i curve [X,x,q] as introduced in Section 2.7. We obtain

π∗D2,odd
−2,2,2g−1 = 2i−1(2i + 1)D

2,odd
−2,2,2g−i−1 + 2i−1(2i − 1)D

2,even
−2,2,2g−i−1

and

π∗D2,even
−2,2,2g−1 = 2i−1(2i − 1)D

2,odd
−2,2,2g−i−1 + 2i−1(2i + 1)D

2,even
−2,2,2g−i−1 .

Remark 4.8. When g = 2, the pinch partition and coupled partition divisors co-
incide, and these results agree with the results in Section 5.
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At this point, we provide a simple example of controlling the residues in a mero-
morphic differential on a rational curve that will prove important in our following
divisor class calculations.

Example 4.9. Consider a meromorphic differential on a rational curve with poles
of multiplicities j and k at 0 and ∞, respectively, for 2 ≤ j ≤ k and zeros at 1 and
t of multiplicity j + k − m − 2 and m, respectively, for j − 1 ≤ m ≤ j + k − 3.
The differential is given locally at 0 by

c
(z − 1)j+k−m−2(z − t)m

zj
dz

for some constant c �= 0. The residue at 0 is given by

c(−1)k−1tm−j+1
j−1∑
i=0

(
j + k − m − 2

i

)(
m

j − i − 1

)
t i .

Hence by investigating the polynomial

j−1∑
i=0

(
j + k − m − 2

i

)(
m

j − i − 1

)
t i

we obtain the number of meromorphic differentials on a rational curve of signa-
ture κ = (−j,−k,m, j + k − m − 2) with zero residue at the poles.

For example, consider the meromorphic differentials on a rational curve of
signature μ = (−4,−h,h,2). From our discussion we see that the polynomial
becomes (

h

1

)
t + 2

(
h

2

)
t2 +

(
h

3

)
t3,

which has two nonzero solutions when h ≥ 3 and only one solution when
h = 2. When h = 1, there are no solutions; indeed, the residue at a simple pole is
necessarily nonzero.

Proposition 4.10. The class of the divisor D2
−h,h,2g−1 for h ≥ 3 in Mg,2 is

D2
−h,h,2g−1 = 2g−2

(
2g+1λ + 2g−1h2ψ1 + 2g−1h2ψ2 − 2g−2δ0

−
g−1∑
i=0

2i+1(2g−i − 1)δi:{1,2} −
g−1∑
i=1

2g−1h2δi:{2}
)

.

When h is even, this divisor has two components with classes

D
2,odd
−h,h,2g−1 = 2g−2

(
(2g − 1)

(
λ + h2

4
(ψ1 + ψ2) − 2δ0:{1,2}

)
− 2g−3δ0

−
g−1∑
i=1

(2i + 1)(2g−i − 1)δi,{1,2} − 2g − 1

4

g−1∑
i=1

h2δi:{2}
)



868 Scott Mullane

and

D
2,even
−h,h,2g−1 = 2g−2

(
(2g + 1)

(
λ + h2

4
(ψ1 + ψ2) − 0δ0:{1,2}

)
− 2g−3δ0

−
g−1∑
i=1

(2i − 1)(2g−i − 1)δi,{1,2} − 2g + 1

4

g−1∑
i=1

h2δi:{2}
)

.

Remark 4.11. Consider

D∞ = lim
h→∞

1

h2
D2

−h,h,2g−1 = 22g−3
(

ψ1 + ψ2 −
g−1∑
i=1

δi:{2}
)

with

Dodd∞ = 2g − 1

2g+1
D∞ and Deven∞ = 2g + 1

2g+1
D∞.

Then we obtain

D2
−h,h,2g−1 = D2

−2,2,2g−1 + ϕ∗
1D1

2g−1 + h2D∞,

where ϕ1 :Mg,2 −→Mg,1 forgets the first marked point. This relation also holds
in the odd and even spin structure components for even h.

Proof. Consider the map π : Mg,1 −→ Mg,2 that for [C,y] ∈ Mg,1 identifies
the point y with the point x of a general marked rational tail [X,x,q1, q2] as
introduced in Section 2.7. We have

π∗D2
−h,h,2g−1 = 2D1

2g−1 = 2D
1,odd
2g−1 + 2D

1,even
2g−1

for h ≥ 3, as Example 4.9 shows that to obtain a zero residue at the node as
required by the global residue condition, there are exactly two points to place the
unmarked zero of multiplicity 2 on the rational tail if h ≥ 3 and exactly one point
if h = 2. The divisor classes on the right-hand side are given by equations (1) and
(2), respectively. Hence we again obtain the coefficients of λ, δ0, δ0:{1,2}, δi:{1,2}
for i > 0. For the coefficients of ψi , consider the test curve Bi defined by taking
a general curve C and allowing the ith marked point to vary in the curve while
fixing the other marked point at a general point. We have

B1 · D2
−h,h,2g−1 = (2g − 1)cψ1 + cψ2 + c0:{1,2} = 22g−2gh2 − 2g−1(2g − 1)

= 2g−2(2ggh2 − 2g+1 + 2)

by the Picard variety method introduced in Section 2.5, where the correction term
is for the 2g−1(2g − 1) solutions where the points are equal. These solutions vio-
late the global residue condition. Each solution has multiplicity one. Similarly,

B2 · D2
−h,h,2g−1 = cψ1 + (2g − 1)cψ2 + c0:{1,2} = 2g−2(2ggh2 − 2g+1 + 2).

Hence
2gcψi

= 2g−2(2ggh2 − 2g+1 + 2) + 2g−1(2g − 1),

giving
cψi

= 22g−3h2.
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Finally, we compute the coefficients of δi:{2} for i > 0. Consider the map π :
Mg−i,2 −→ Mg,2 that for [C,y1, y2] ∈ Mg−i,2 identifies the point y2 with the
point x of a general marked genus i curve [X,x,q] as introduced in Section 2.7.
We have

π∗D2
−h,h,2g−1 = 4iD2

−h,h,2g−i−1

and, similarly,

π∗D2
h,−h,2g−1 = 4iD2

h,−h,2g−i−1 .

This agrees with all of our calculated coefficients and gives the final unknown
coefficients

ci:{2} = −4i22(g−i)−3h2 = −22g−3h2.

Next, we need to identify the components when h is even. As discussed in Sec-
tion 2.1, the divisor has two irreducible components in this case correspond-
ing to odd and even spin structures. We use the same procedure to calculate
the class of the components. Consider the map π : Mg,1 −→ Mg,2 that for
[C,y] ∈Mg,1 identifies the point y with the point x of a general marked rational
curve [X,x,q1, q2] as introduced in Section 2.7. By our discussion of meromor-
phic differentials on a rational curve in Example 4.9 we see that there are two
points on the rational tail to place the double zero to make the residue at the node
zero and hence satisfy the global residue condition. Further, these will give limits
of theta characteristics by Section 2.3, and under this map,

π∗D2,odd
−h,h,2g−1 = 2D

1,odd
2g−1 and π∗D2,even

−h,h,2g−1 = 2D
1,even
2g−1 ,

where the divisor classes on the right-hand side are given by equations (1) and (2),
respectively. Hence we again obtain the coefficients of λ, δ0, δ0:{1,2}, δi:{1,2} for
i > 0. To obtain the coefficients of ψi , we need to distinguish which intersections
with our test curves B1 and B2 belong to which component. We observe that by
the Picard variety method, for any fixed theta characteristic ηC on a general curve
C, there are gh2/4 solutions pi that satisfy

h

2
p1 +

g∑
j=2

pj ∼ ηC + h

2
x

and gh2/4 solutions pi that satisfy

−h

2
p1 +

g∑
j=2

pj ∼ ηC − h

2
x

for any fixed general point x ∈ C. We observe that the solutions we discounted by
were all odd theta characteristics; hence

B1 · D2,odd
−h,h,2g−1 = (2g − 1)cψ1 + cψ2 + c0:{1,2}

= 2g−1(2g − 1)g

(
h

2

)2

− 2g−1(2g − 1)
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and, similarly,

B2 · D2,odd
−h,h,2g−1 = cψ1 + (2g − 1)cψ2 + c0:{1,2}

= 2g−1(2g − 1)g

(
h

2

)2

− 2g−1(2g − 1).

This gives
codd
ψ1

= codd
ψ2

= 2g−4(2g − 1)h2.

Similarly,

B1 · D2,even
−h,h,2g−1 = (2g − 1)cψ1 + cψ2 + c0:{1,2} = 2g−3(2g + 1)h2g

and

B2 · D2,even
−h,h,2g−1 = cψ1 + (2g − 1)cψ2 + c0:{1,2} = 2g−3(2g + 1)h2g,

giving
ceven
ψ1

= ceven
ψ2

= 2g−4(2g + 1)h2.

Finally, consider the map π : Mg,2 −→ Mg+j,2 that for [C,y1, y2] ∈Mg,2 iden-
tifies the point y2 with the point x of a general marked genus j curve [X,x,q] as
introduced in Section 2.7. We have

π∗D2,odd
−h,h,2g+j−1 = 2j−1(2j + 1)D

2,odd
−h,h,2g−1 + 2j−1(2j − 1)D

2,even
−h,h,2g−1

and

π∗D2,even
−h,h,2g+j−1 = 2j−1(2j − 1)D

2,odd
−h,h,2g−1 + 2j−1(2j + 1)D

2,even
−h,h,2g−1 .

Similarly,

π∗D2,odd
h,−h,2g+j−1 = 2j−1(2j + 1)D

2,odd
h,−h,2g−1 + 2j−1(2j − 1)D

2,even
h,−h,2g−1

and

π∗D2,even
h,−h,2g+j−1 = 2j−1(2j − 1)D

2,odd
h,−h,2g−1 + 2j−1(2j + 1)D

2,even
h,−h,2g−1 .

This agrees with our calculated coefficients and gives the final unknown coeffi-
cients

codd
i:{2} = −2g−4(2g − 1)h2 and ceven

i:{2} = −2g−4(2g + 1)h2. �

Next, we generalize to Mg,n.

Proposition 4.12. Consider d = (d1, . . . , dn) such that
∑n

j=1 dj = 0 with d− �=
{−2}. Then

Dn
d,2g−1 = 2g−2

(
2g+1λ + 2g−1

n∑
j=1

d2
j ψj − 2g−2δ0

−
∑

|dS |=0
1/∈S

g∑
i=0

2g−i+1(2i − 1)δi:S − 2g−1
∑

|dS |≥1
1/∈S

g−1∑
i=0

d2
Sδi:S

)
.
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If all dj are even, then

D
n,odd
d,2g−1 = 2g−2

(
(2g − 1)λ + 2g − 1

4

n∑
j=1

d2
j ψj − 2g−3δ0

−
∑

|dS |=0
1/∈S

g∑
i=0

(2i − 1)(2g−i + 1)δi:S − 2g − 1

4

∑
|dS |≥2

1/∈S

g−1∑
i=0

d2
Sδi:S

)

and

D
n,even
d,2g−1 = 2g−2

(
(2g + 1)λ + 2g + 1

4

n∑
j=1

d2
j ψj − 2g−3δ0

−
∑

|dS |=0
1/∈S

g∑
i=0

(2i − 1)(2g−i − 1)δi:S − 2g + 1

4

∑
|dS |≥2

1/∈S

g−1∑
i=0

d2
Sδi:S

)
.

Proof. Consider the map π : Mg,1 −→ Mg,n that for [C,y] ∈ Mg,1 identifies
the point y with the point x of a general marked rational curve [X,x,q1, . . . , qn]
as introduced in Section 2.7. We have

π∗Dn
d,2g−1 = 2D1

2g−1,

where there are two points on the rational tail that make the residue at the node
zero and hence satisfy the global residue condition. If all di are even, then this
relation also holds on the odd and even spin structure components. The classes
of the divisors on the right-hand side of this equation in these cases are given by
equations (1) and (2), respectively. This provides the coefficients for λ, δ0, and
δi:{1,...,n}.

Now, for any j ∈ {1, . . . , n}, consider the map π : Mg,2 −→ Mg,n that for
[C,y1, y2] ∈ Mg,2 identifies the point y2 with the point x of a general marked
rational curve [X,x,q1, . . . , qn−1] and labels the points qi from {1, . . . , n} \ {j}
as introduced in Section 2.7. For |dj | ≥ 3, we have

π∗Dn
d,2g−1 = D2

dj ,−dj ,2g−1;
for dj = 2, we have

π∗Dn
d,2g−1 = D2

2,−2,2g−1 + ϕ∗
2D1

2g−1;
and for dj = −2, we have

π∗Dn
d,2g−1 = D2

−2,2,2g−1 + ϕ∗
1D1

2g−1,

where ϕi :Mg,2 −→ Mg,1 forgets the ith point. For dj = 1, we have

π∗Dn
d,2g−1 = 2D2

1,1,2g−2 ,
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and for dj = −1, we have

π∗Dn
d,2g−1 = 2D2

1,1,2g−2 .

When all di are even, these relations also hold on the odd and even spin structure
components. By the divisor classes presented in Propositions 4.2, 4.5, and 4.10
and by equations (1) and (2) these relations agree with the previously calculated
coefficients and give us the coefficients for ψj and δi:{j}.

Now, for any S ⊆ {1, . . . , n} with 2 ≤ |S| ≤ n − 2, consider the map π :
Mg,n−|S|+1 −→ Mg,n that for [C,y1, . . . , yn−|S|+1] ∈ Mg,n−|S|+1 identifies the
point y1 with the point x of a general marked rational curve [X,x,q1, . . . , q|S|]
and labels the qj from S as introduced in Section 2.7. For |dS | ≥ 3, we have

π∗Dn
d,2g−1 = D

n−|S|+1
dS,d(SC),2g−1,

where, for any T ⊆ {1, . . . , n}, we define d(T ) to be the truncated vector contain-
ing only the entries of d indexed by T . In fact, as |SC | ≥ 2 for {dS, d(SC)}− �=
{−2}, this relation holds where we use the convention

Dn
0,d,2g−1 = ϕ∗

1Dn−1
d,2g−1 ,

where ϕi : Mg,n −→ Mg,n−1 forgets the ith point. When all di are even, this
relation also holds for the odd and even spin structure components.

The final situation to consider is where {dS, d(SC)}− = {−2}. For dS = −2,
we have d(SC) = {1,1}, and hence

π∗Dn
d,2g−1 = D3

−2,1,1,2g−1 + ϕ∗
1D2

1,1,2g−2 ,

whereas if dS �= −2, then necessarily d(SC) = {1,−2} and dS = 1, and hence

π∗Dn
d,2g−1 = D3

1,1,−2,2g−1 + ϕ∗
3D2

1,1,2g−2 .

When all dj are even, these relations hold on the odd and even spin structure
components. By these relations we obtain our remaining coefficients. �

Remark 4.13. As a quick check of the formulas for simple poles, consider the
divisor D4

−1,−1,1,1,2g−1 in Mg,4. Under the map π : Mg,3 −→ Mg,4 that for

[C,y1, y2, y3] ∈ Mg,3 identifies the point y1 with the point x of the general
marked rational curve [X,x,q1, q2] as introduced in Section 2.7, we have

π∗D4
−1,−1,1,1,2g−1 = D3

−2,1,1,2g−1 + ϕ∗
1D2

1,1,2g−2 ,

which agrees with our class calculation.

Remark 4.14. Restricting to the g = 2 case, Boissy [B] showed that P(−1,−1,

2,2) has two connected components based on hyperellipticity. In the case of the
divisors, this gives

D3
−1,−1,2,2 = D

3,non-hyp
−1,−1,2,2 + ϕ∗

3D2
1,1,

where ϕ3 : M2,3 −→M2,2 forgets the final marked point.
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5. Pinch Partition Divisors in Mg,n

Farkas and Verra [FV2] calculated the class of the divisor D
g−1
12g−4,2

, which they
called the closure of the antiramification locus:

D
g−1
12g−4,2

= −4(g − 7)λ + 4(g − 2)

g−1∑
i=1

ψi − 2δ0 +
g∑

i=0

i−1∑
s=0

ci:sδi:S (3)

for s = |S| with s = 0, . . . , i − 1, where

ci:s = −(2g − 3)s2 + (4gi + 2g − 10i + 1)s − 2gi2 + 7i2 − 2gi − i − 2.

Note that c0:s = cg:g−s−1 for s ≥ 2.
This can be generalized to holomorphic and meromorphic strata with the same

signature of “pinched” unmarked points. We summarize the results of this section
in the following theorem.

Theorem 5.1 (Pinch partition divisors). For d = (d1, . . . , dn) with di ≥ 0 and∑
di = g − 1, we have, for g ≥ 3,

Dn
d,1g−3,2 = −4(g−7)λ+

g−1∑
i=1

(2g(di +1)−3di −5)diψi −2δ0 +
g∑

i=0

i−1∑
dS=0

ci:Sδi:S,

where5

ci:S = (3 − 2g)d2
S + (4gi + 2g − 10i + 1)dS − 2gi2 + 7i2 − 2gi − i − 2

for dS := ∑
i∈S di .

For d = (d1, . . . , dn) with
∑

di = g − 2, dj ≤ −2, and di ≥ 0 for i �= j , we
have, for dj ≤ −3,

Dn
d,1g−2,2 = (26 − 4g)λ +

n∑
i=1

2di((g − 1)di + g − 2)ψi − 2δ0 +
g−1∑
i=0

ci:Sδi:S,

where, for j /∈ S and dS ≤ i − 1,

ci:S = (2 − 2g)d2
S + 2(2gi + g − 4i + 1)dS − 2(gi2 + gi − 3i2 + i + 1),

and, for dS ≥ i,

ci:S = (2 − 2g)d2
S + 2(2gi − g − 4i + 2)dS − 2(gi2 − 3i2 − gi + 4i).

For dj = −2,

Dn
d,1g−2,2 = (27 − 4g)λ + 4gψj

+
∑
i �=j

(4g(di + 1) − 5di − 9)di

2
ψi − 2δ0 +

g−1∑
i=0

ci:Sδi:S,

5Note that c0:S = cg:g−dS−1 for |S| ≥ 2.
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where, for j /∈ S and dS ≤ i − 1,

ci:S = 1

2
((5 − 4g)d2

S + (8gi + 4g − 18i + 3)dS − 4gi2 − 4gi + 13i2 − 3i − 4)

and, for dS ≥ i,

ci:S = 1

2
((5 − 4g)d2

S + (8gi − 4g − 18i + 9)dS − 4gi2 + 4gi + 13i2 − 17i).

Let d = (d1, . . . , dn) be an n-tuple of integers satisfying
∑

dj = g with dj ≥ 0.
Logan [L] computed the class of the pointed Brill–Noether divisors, which from
our perspective are the divisors

Dn
d,1g−2 = −λ +

n∑
j=1

(
dj + 1

2

)
ψj − 0 · δ0 −

∑
i,S

(|dS − i| + 1
2

)
δi:S (4)

in Pic(Mg,n) ⊗Q, where dS := ∑
j∈S dj .

Let d = (d1, . . . , dn) be an n-tuple of integers satisfying
∑

dj = g − 1 with
some dj < 0. Müller [Mü] computed the class of the closure of the pullback of the
theta divisor under a map specified by d from Mg,n to the universal Picard variety
using Porteous’ formula and test curves. From our perspective these divisors are6

Dn
d,1g−1 = −λ +

n∑
j=1

(
dj + 1

2

)
ψj − 0 · δ0

−
∑
i,S

S⊂S+

(|dS − i| + 1
2

)
δi:S −

∑
i,S

S �⊂S+

(
dS − i + 1

2

)
δi:S (5)

in Pic(Mg,n)⊗Q, where S+ := {j | dj > 0} and dS := ∑
j∈S dj . Grushevsky and

Zakharov [GZ] reproduced this result using a different method of a systematic set
of test curves.

The following propositions provide the proof of Theorem 5.1. We begin with
the holomorphic case.

Proposition 5.2. Consider d = (d1, . . . , dn) with di ≥ 0 and
∑

di = g − 1. Then
we have, for g ≥ 3,

Dn
(d,1g−3,2)

= −4(g − 7)λ +
g−1∑
i=1

(2g(di + 1) − 3di − 5)diψi

− 2δ0 +
g∑

i=0

i−1∑
dS=0

ci:Sδi:S,

where

ci:S = (3 − 2g)d2
S + (4gi + 2g − 10i + 1)dS − 2gi2 + 7i2 − 2gi − i − 2

6Note that, in this formula, S �= {1, . . . , n}. In this case the coefficient is found by SC = ∅ ⊂ S+ . The
condition on S in the formula is separating the cases where all poles lie on the same component.
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for

dS :=
∑
i∈S

di

and dS = 0, . . . , i − 1. Note that c0:S = cg:g−dS−1 for |S| ≥ 2.

Proof. Consider the map π : Mg,n −→ Mg,g−1 that for [C,y1, . . . , yn] ∈
Mg,n identifies each yi with the point xi of a general marked rational curve
[Xi, xi, q1, . . . , qdi

] as introduced in Section 2.7. Clearly,

π∗Dg−1
(12g−4,2)

= Dn
(d,1g−3,2)

,

where the class of D
g−1
(12g−4,2)

is given in equation (3). For n = 1 and g ≥ 3, the

divisor D1
g−1,2,1g−3 agrees with that in Theorem 3.1. For g = 3, the divisors D1

2,2

and D2
1,1,2 agree with the sums of the classes of equations (1) and (2), respectively,

and with Theorem 4.1. �

To investigate the meromorphic case, we begin with Mg,2.

Proposition 5.3. For h ≥ 3 and g ≥ 2, we have

D2
(−h,g+h−2,1g−2,2)

= (26 − 4g)λ + 2h(gh − g − h + 2)ψ1

+ 2(g + h − 2)(g2 + (h − 2)g − h)ψ2

− 2δ0 +
g−1∑
i=1

ci:{1}δi:{1} +
g∑

i=1

ci:∅δi:∅,

where δg:∅ = δ0:{1,2} and

ci:{1} = −2((g − 3)i2 + (2gh − 4h − g + 4)i + gh2 − h2 − gh + 2h)

and

ci:∅ = −2((g − 3)i2 + (g + 1)i + 1).

For h = 2, we have

D2
(−2,g,1g−2,2)

= (27 − 4g)λ + 4gψ1 + g(4g2 − g − 9)

2
ψ2 − 2δ0

+
g−1∑
i=1

ci:{1}δi:{1} +
g∑

i=1

ci:∅δi:∅,

where

ci:{1} = 1

2
((13 − 4g)i2 + (17 − 12g)i − 8g)

and

ci:∅ = 1

2
((13 − 4g)i2 − (4g + 3)i − 4).
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Proof. Consider the map π :Mg,2 −→ Mg+h,2 that for [C,y1, y2] ∈ Mg,2 iden-
tifies the point y1 with the point x of a general marked genus h curve [X,x,q] as
introduced in Section 2.7. For h = 1, we have

π∗D2
1,g−1,1g−2,2 = ϕ∗

1D1
g−1,1g−3,2 + 4D2

1,g−1,1g−2 ,

but all three classes here are known by Theorem 3 and agree with this relation.
For h ≥ 3, we have

π∗D2
1,g+h−2,1g+h−3,2 = D2

−h,g+h−2,1g−2,2 + (4h − 2)D2
−h+1,g+h−2,1g−1 ,

where the multiplicity 4h − 2 comes from a simple application of the Plücker
formula. The first divisor class is known by Proposition 5.2, and the third class by
equation (4). This proves the first equation in the proposition.

For h = 2, we have the relation

π∗D2
1,g,1g−1,2 = D2

−2,g,1g−2,2 + 7ϕ∗
1D1

g,1g−2,

where ϕ1 : Mg,2 −→ Mg,1 forgets the first marked point. The multiplicity of the
second term is due to the Picard variety method and represents the number of
solutions to the equation

2p1 + p2 ∼ KC − x + 2y

for fixed general x and y on a general curve C with genus g(C) = 2 where
p1,p2, x, y are distinct. The Picard variety method gives 22 · 12 · 2 − 1, where
the discounted solution is when p1 = y and p2 = x′ is the conjugate point to
x under the hyperelliptic involution. This solution has multiplicity one as x and
y were fixed general points. The first divisor class is known by Proposition 5.2,
and the third class is the Weierstrass divisor given in Section 3.1. This proves the
second and final equations in the proposition. �

Remark 5.4. For g ≥ 3 or g = 2 and h odd, these divisors are irreducible. In the
case that g = 2, these divisors correspond to coupled partition divisors. In this
case the formula from the two perspectives agree, and further, for g = 2 and h

even, the class of the two irreducible components is given in Propositions 4.5 and
4.10.

Remark 5.5. We can perform a quick check on the majority of the calculated
coefficients of this proposition. Consider the map π : Mg,1 −→ Mg,2 that for
[C,y] ∈Mg,1 identifies the point y with the point x of a general marked rational
curve [X,x,q1, q2]. For h ≥ 3, we have

π∗D2
−h,g+h−2,1g−2,2 = D1

g−1,1g−3,2 + 2D1
g,1g−2,

and, for h = 2, this becomes

π∗D2
−2,g,1g−2,2 = D1

g−1,1g−3,2 + D1
g,1g−2 .

The change in the multiplicity of the Weierstrass divisor denoted D1
g,1g−2 here is

due to the fact that in this case there is only one position on the rational tail where
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the double zero makes the residue at the node vanish. All classes on the right-hand
side are known by Theorem 3 and agree with the classes of Proposition 5.3.

This result can be extended to the meromorphic case with exactly one pole.

Proposition 5.6. Consider d = (d1, . . . , dn) with
∑

di = g − 2, dj ≤ −2 and
di ≥ 0 for i �= j . Then, for dj ≤ −3,

Dn
d,1g−2,2 = (26 − 4g)λ +

n∑
i=1

2di((g − 1)di + g − 2)ψi − 2δ0 +
g−1∑

i=0,S

ci:Sδi:S,

where, for j /∈ S and dS ≤ i − 1,

ci:S = (2 − 2g)d2
S + 2(2gi + g − 4i + 1)dS − 2(gi2 + gi − 3i2 + i + 1),

and, for dS ≥ i,

ci:S = (2 − 2g)d2
S + 2(2gi − g − 4i + 2)dS − 2(gi2 − 3i2 − gi + 4i).

For dj = −2,

Dn
d,1g−2,2 = (27 − 4g)λ + 4gψj

+
∑
i �=j

(4g(di + 1) − 5di − 9)di

2
ψi − 2δ0 +

g−1∑
i=0

ci:Sδi:S,

where, for j /∈ S and dS ≤ i − 1,

ci:S = 1

2
((5 − 4g)d2

S + (8gi + 4g − 18i + 3)dS − 4gi2 − 4gi + 13i2 − 3i − 4),

and, for dS ≥ i,

ci:S = 1

2
((5 − 4g)d2

S + (8gi − 4g − 18i + 9)dS − 4gi2 + 4gi + 13i2 − 17i).

Proof. Let dj = −h. Consider the map π : Mg,n −→ Mg+h,n that for [C,y1,

. . . , yn] ∈ Mg,n identifies the point yj with the point x of a general marked genus
h curve [X,x,q] as introduced in Section 2.7. Then, for h ≥ 3, we have

π∗Dn
d ′,1g+h−3,2 = Dn

d,1g−2,2 + (4h − 2)Dn
d ′′,1g−1 ,

where d ′ and d ′′ are the vector d with the j th entry replaced by a 1 and −h + 1,
respectively.

For h = 2, we obtain

π∗Dn
d ′,1g−1,2 = Dn

d,1g−2,2 + 7ϕ∗
j Dn−1

d ′′,1g−1 ,

where d ′ and d ′′ are the vector d with the j th entry replaced by 1 and the j th
entry omitted, respectively. The multiplicity 7 is the result of an application of the
Picard variety method as discussed in the proof of Proposition 5.3. The classes
on the left-hand side are known by Proposition 5.3, whereas the other unknown
classes are given in equation (5). �
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Remark 5.7. The first example of a pinch partition divisor is D
g−1
12g−4,2

computed
by Farkas and Verra [FV1], who showed this divisor to be extremal by a covering
curve construction. The general idea can be generalized to meromorphic differen-
tials. For any d = (d1, . . . , dg) with

∑
di = g − 2 and di ∈ Z \ {0}, fix a general

genus g ≥ 2 curve C and the map

ϕd : Cg - -> Cg = Cg−1/Sg−1

(p1, . . . , pg) �→ [q1, . . . , qg],
where this map is defined as qi ∈ C such that

g∑
i=1

dipi +
g∑

i=1

qi ∼ KC.

Unfortunately, unlike in the holomorphic case, this finite map is not surjective.
The locus of indeterminacy of this map is the codimension two locus where
h0(KC −∑

dipi) ≥ 2 and, further, the image of the locus of indeterminacy under
the resolution of ϕd is the points qi that are collinear in the canonical embedding,
that is, h0(KC − q1 − · · · − qg) ≥ 1 giving a divisor in Cg . As a divisor is ex-
tracted by this resolution, we cannot conclude that the irreducible divisor equal to
the pullback of the extremal and rigid divisor � = {[q1, . . . , qg] ∈ Cg | q1 = q2}
in Cg is also extremal.

Appendix: The Residual Divisor by Alternate Methods

In this section, we reproduce the results of Section 3.2 by different and more labor
intensive methods of Porteous’ formula and test curves.

A.1. Appendix: Locating the Limits of Weierstrass and Residual Points on
General Nodal Curves

In this section, we use the results of Section 2.2 to locate the limits of Weierstrass
and residual points on general nodal curves that will inform our later analysis.

A.1.1. A Disconnecting Node with One Component of Genus i. Consider the
nodal curve obtained by attaching a general genus g − i curve Y at a non-
Weierstrass point y ∈ Y to a general genus i curve X at a non-Weierstrass point
x ∈ X. We would like to locate the limits of Weierstrass and residual points on
smooth curves degenerating to the nodal curve.

Twisted canonical divisors on this nodal curve of the type we are considering
have either a point p1 of multiplicity g on the X or Y component or sitting on
a rational bridge between x and y. Let pj for j = 2, . . . , g − 1 be the limits of
residual points. If p1 occurs on the X component, then we have

(ωX) = gp1 − (g − i + 1)x +
i∑

j=2

pj ∼ KX,
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which has g2i − i solutions by the Picard variety method discussed in Section 2.5,
where we have discounted by the unique solution with p1 = x, which has multi-
plicity i. In the Y component, we have

(ωY ) = (g − i − 1)y +
g−1∑

j=i+1

pj ∼ KY ,

which has a unique solution for a general point y. Hence we have (g2 − 1)i

solutions of this type. If p1 sits on Y , then by the same argument we have
(g2 − 1)(g − i) solutions.

Further, as x and y are general points on general curves, it is not possible to
have any pj on a rational bridge between x and y. Any pj for j = 2, . . . , g − 1
on such a rational bridge would contradict the curves X and Y or the points x and
y being general. If p1 lies on a rational bridge, then the only possibility is that the
bridge contains one zero of multiplicity g and poles at the nodes of multiplicity
−(i + 1) and −(g − i + 1). By the cross ratio we can set the poles to 0 and ∞
and the zero to 1. The resulting differential is given locally at 0 by

c
(1 − z)g

zi+1
dz

for some constant c ∈ C∗. The residues at the nodes then cannot be zero, and we
have found all

(g2 − 1)i + (g2 − 1)(g − i) = (g + 1)g(g − 1)

sets of Weierstrass and residual points as expected.
As a cross-check, consider two test curves in Mg,1 constructed from the

nodal curve we are considering. Attach a general genus g − i curve Y at a non-
Weierstrass point y ∈ Y to a general genus i curve X at a non-Weierstrass point
x ∈ X. Let BX be the test curve formed by allowing the marked point to vary in
the X component, and let BY be the test curve formed by allowing the marked
point to vary in the Y component. Consider the Weierstrass divisor calculated by
Cukierman [Cu]

W = g(g + 1)

2
ψ − λ −

g−1∑
i=1

(g − i)(g − i + 1)

2
δi .

This is the closure in Mg,1 of Weierstrass points, and hence intersecting this
divisor with our test curves should verify the number of limits of Weierstrass
points that we have found on each component of our nodal curve. Indeed,

BX · W = (2i − 1)cψ − ci + cg−i = (g + 1)(g − 1)(g − i)

and

BY · W = (2(g − i) − 1)cψ + ci − cg−i = (g + 1)(g − 1)i,

which agree with our calculations.
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A.1.2. A Nondisconnecting Node. Consider a general genus g − 1 curve X and
identify two general non-Weierstrass points x and y to form a node. We would
like to locate the limits of Weierstrass and residual points on smooth curves de-
generating to the nodal curve. If all pj occur on X, then

(ωX) = −x − y + gp1 +
g−1∑
j=2

pj ∼ KX

with pj �= x, y. By the Picard variety method introduced in Section 2.5 we have
g2(g − 1) such solutions, but we must discount for any of these solutions where
pj = x or y. As KX + x has a base point at x, we see that if any pj = y, then
this would cause some other pi = x. If j �= 1 and i �= 1, then this causes the
curve X to have an exceptional Weierstrass point providing a contradiction with
our assumption that X is general. If i or j = 1, then we have that x or y is a
Weierstrass point, contradicting our assumptions.

The last possibility is that the limit of Weierstrass points specializes to the
node. In this case, we can blow up and consider this case as p1 sitting on a rational
bridge between x and y. In this case, on the X component of our two component
curve, we would have

(ωX) = (g − i − 1)x + (i − 1)y +
g−1∑
j=2

pj ∼ KX

for i = 1, . . . , g − 1. Hence in the canonical embedding of X, fixing such multi-
plicities at x and y specifies a plane and hence a unique solution. On the rational
bridge, we have a g

g−1
2g−2 that adheres to the vanishing of sections in |KX + x + y|

at x and y. The limit p1 in this situation is thus the ramification points of the g
g−1
g

created by imposing the vanishing multiplicities at the nodes in the rational curve.
The Plücker formula shows that there are g such points, and we obtain g(g − 1)

solutions of this type. Hence we have found all

g2(g − 1) + g(g − 1) = (g + 1)g(g − 1)

sets of Weierstrass and residual points as expected.

A.2. Porteous’ Formula

We calculate the λ and ψ coefficients of the residual divisor by realizing the locus
of interest in Mg,1 as the points at which a suitably chosen map between vec-
tor bundles drops dimension. The calculation of the class then becomes a well-
treaded computation in the Chow ring. This method is known as Porteous’ for-
mula, and we follow the treatment and notation of Faber [F]. Let Cn

g denote the

n-fold fiber product of Mg,1 over Mg . Consider π2 : C2
g → C1

g that forgets the

last point and π1 : C2
g → C1

g that forgets the first point.
Let ωi be the line bundle on Cn

g obtained by pulling back ω on Cg on the
projection of the ith coordinate and denote its class as Ki in Chow.



Effective Divisors in Mg,n from Abelian Differentials 881

Let E = E be the Hodge bundle, and let F be the bundle whose fibers are
H 0(K/(K − gp1 − p2)). The bundle F has rank g + 1. Then we have

c(F ) = (1 + K2 − g�2)(1 + K1)(1 + 2K1) · · · (1 + gK1).

We have the natural evaluation map

ϕ : E −→ F,

where E is the Hodge bundle. The locus where this map drops dimension is ex-
actly the points (C,p1,p2) where h0(C,KC(−gp1 − p2)) > 0. We calculate the
class of this locus via Porteous’ formula. We know that

c(−E) = c(E∨) = 1 − λ1 + λ2 + · · · + (−1)gλg.

Hence by Porteous’ formula we have that the class Y of (C,p1,p2) where gp1 +
p2 is special is the locus where the map has rank ≤ g − 1:

�g+1−(g−1),g−(g−1)(c(F )/c(E)) = �2,1(c(F ) · c(E∨)) = c(F ) · c(E∨)|2.
First, we observe that

c1(F ) = K2 − g�2 + g(g + 1)

2
K1,

c2(F ) =
g∑

i=1

iK1K2 − g

( g∑
i=1

i

)
�2K1 +

g−1∑
i=1

( g∑
j=i+1

ij

)
K2

1

= g(g + 1)

2
K1K2 − g2(g + 1)

2
�2K1 + (g − 1)g(g + 1)(3g + 2)

24
K2

1 ,

where
g−1∑
i=1

( g∑
j=i+1

ij

)
=

g−1∑
i=1

i

(
g(g + 1)

2
− i(i + 1)

2

)

= (g − 1)g(g + 1)(3g + 2)

24
.

Hence we have

[Y ] = λ2 − λ1

(
K2 − g�2 + g(g + 1)

2
K1

)
+ g(g + 1)

2
K1K2

− g2(g + 1)

2
�2K1 + (g − 1)g(g + 1)(3g + 2)

24
K2

1 .

By Faber [F], for πd : Cd
g → Cd−1

g forgetting the last point, we have

πd∗(MDi,d) = M,

πd∗(MKk
d ) = M · π∗(κk−1),

where M is a monomial of classes that are pulled back from Cd−1
g . To put a class

in a form like this, there are a few other useful relations:

Di,jDj,d = Di,jDi,d for i < j < d ,

D2
i,d = −KiDi,d for i < d ,
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KdDi,d = KiDi,d .

Now via Faber’s algorithm for pushing down, forgetting the second point, we have

W = 1

g − 2
π2∗[Y ] = 1

g − 2

(
(g − κ0)λ1 + g(g + 1)

2
(κ0 − g)K1

)

= g(g + 1)

2
ψ − λ,

as expected. Here we have used the fact that on W we have that π2∗ is of degree
g − 2 (there are g − 2 residual points for each Weierstrass point p). Forgetting the
first point, we have

R = π1∗[Y ]
=

(
g − g(g + 1)

2
κ0

)
λ1 + g(g + 1)

2
(κ0 − g)K2

+ (g − 1)g(g + 1)(3g + 2)

24
κ1

= g(g + 1)(g − 2)

2
ψ + g(3g3 − 3g + 2)

2
λ,

which agrees with our previous calculation of these coefficients in Section 3.2.

A.3. Test Curves

By creating a number of curves in Mg,1 we can calculate the intersections with
the generators of Pic(Mg,1)⊗Q and the residual divisor directly to obtain a num-
ber of relationships between the coefficients of the residual divisor. With enough
relationships, we can determine all coefficients. To this end, let the class of the
residual divisor in Pic(Mg,1) ⊗Q be denoted

R = cψψ + cλλ +
g−1∑
i=0

ciδi .

Test Curve A. Consider a general genus g curve C. Allow the marked point q

to vary in the curve. We observe that the intersection of this test curve with all
boundary divisors and λ is zero, and we have

A · R = −(2 − 2g)cψ .

To find this intersection directly, we observe that, as the curve is general, there
are (g + 1)g(g − 1) normal Weierstrass points, each with g − 2 residual points.
Hence

A · R = (g + 1)g(g − 1)(g − 2),

and hence

cψ = (g + 1)g(g − 2)

2
.

Hence we have verified this result from Porteous’ formula via test curves.
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Figure 4 Test curve Bi

Test Curves Bi . Let Y be a genus g− i curve, and let X be a genus i curve. Attach
X to Y at a general point in x ∈ X and allow the attaching point y ∈ Y to vary.
Mark a general point q ∈ X as shown in Figure 4. We require 0 < i < g − 1.

We observe that Bi ·R = (2−2(g− i))ci . To locate the limits of residual points
in this test curve, there are two possible cases based on the order of vanishing at y.
In the first case, we have that y is a Weierstrass point, and in the Y component,
we have

(ωY ) = (g − i)y +
g−i−2∑
j=1

qj ∼ KY ,

which has solutions where y is a Weierstrass point and the qj residual in the Y

component. There are (g − i + 1)(g − i)(g − i − 1) such solutions allowing for
the ordering of the qj . In the X component, we have

(ωX) = −(g − i + 2)x + q + gp +
g−3∑

j=g−i−1

qj ∼ KX,

which gives

gp +
g−3∑

j=g−i−1

qj ∼ KX + (g − i + 2)x − q.

By the Picard variety method discussed in Section 2.5 we have g2i − (i − 1)

solutions, where we have discounted for the unique solution where p = x has
multiplicity (i − 1). Hence solutions of this type contribute

(g − i + 1)(g − i)(g − i − 1)(g2i − (i − 1))

to the intersection with the residual divisor.
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If y is not a Weierstrass point, then for any solution, in the Y component, we
must have

(ωY ) = gp − iy +
g−i−2∑
j=1

qj ∼ KY .

By the Picard variety method discussed in Section 2.5 we have

g2i2(g − i)(g − i − 1) − (g − i + 1)(g − i + 1)(g − i)(g − i − 1)

solutions, where we have discounted for the multiplicity g− i +1 solutions where
p = y is a Weierstrass point. We observe that this is consistent with the case i = 1,
where there are no solutions. In the X component, this corresponds to the unique
solution

g−3∑
j=g−i−1

qj ∼ KX − q − (i − 2)x.

Hence solutions of this type contribute

(g2i2 − (g − i + 1)2)(g − i)(g − i − 1)

to the intersection with the residual divisor, and we are left with

Bi · R = g(g2i + gi − g + i − 1)(g − i)(g − i − 1),

and hence

ci = −g(g2i + gi − g + i − 1)(g − i)

2
for 1 ≤ i ≤ g − 2.

Test Curves Ci . Let Y be a genus g − i curve, and let X be a genus i curve.
Attach X to Y at a general point in x ∈ X and a general point y ∈ Y to vary. Let
the marked point q vary in X as shown in Figure 5. We observe that

Ci · R = (2i − 1)cψ − ci + cg−i .

But in Section A.1.1 we located the limits of residual points on a general nodal
curve of the type we are considering here giving

Ci · R = g(g2 − 1)(i − 1),

which agrees with our formula for ci in the last section and shows that it also
applies to i = g − 1.

Test Curve D. Take a smooth general genus g − 1 curve C. Create a node by
identifying one nonspecial fixed point y on the curve with another point x that
varies in the curve. Mark a general point q on the curve as shown in Figure 6.

We have

D · R = cψ + (2 − 2g)c0 + cg−1.
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Figure 5 Test curve Ci

Figure 6 Test curve D

To find the limits of residual points in this test curve, there are solutions of two
types. The solutions of the first type are points x,p, qj that satisfy

(ωC) = −x − y + gp + q +
g−3∑
j=1

qj ∼ KC,

which gives

gp + q +
g−3∑
j=1

qj ∼ KC + x + y,

where y and q are fixed, and x is varying. By the Picard variety method discussed
in Section 2.5 there are g2(g − 1)(g − 2) solutions. There are no solutions to
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discount for with x = p,q, y, qj or y = p,qj . If x = p, then we have

(g − 1)x + q +
g−3∑
j=1

qj ∼ KC + y.

As y is a base point of KC + y, we have either y = qj for some j making q a
residual point or y = x giving

(g − 2)y + q +
g−3∑
j=1

∼ KC.

Both cases contradict the assumption that q and y are general. Similarly, if x =
q, y, qj for some j or y = p,qj , then we have a contradiction of y and q being
general points or C a general curve with only normal Weierstrass points.

The second way that limits of residual points can occur in our test curve is
when the point approaches the node and p actually sits on a rational bridge be-
tween x and y. If this occurs, then we have

(ωC) = (i − 1)x + (g − i − 1)y + q +
g−3∑
j=1

qj ∼ KC,

which becomes

(i − 1)x +
g−3∑
j=1

qj ∼ KC − q − (g − i − 1)y

for i = 2, . . . , g−1. Such x are the ramification points of |KC −q − (g− i −1)y|,
which is a gi−2

g+i−4, and hence by the Plücker formula there are

(r + 1)d + (r + 1)r(g(C) − 1) = (i − 1)(gi − g − i)

such ramification points. Hence in total we have

g−1∑
i=2

(i − 1)(gi − g − i) = 1

6
g(2g3 − 11g2 + 19g − 10)

solutions. Each solution has multiplicity g due to g ramification points of a gen-
eral g

g−1
g on a rational bridge between x and y.

This gives the relation

cψ + (2 − 2g)c0 + cg−1 = g2(g − 1)(g − 2) + 1

6
g2(2g3 − 11g2 + 19g − 10),

and from the known values of cψ and cg−1 this gives

c0 = g2 − g4

6
.
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Figure 7 Test curve E

Test Curve E. Take a pencil of plane cubics. Attach one base point to a general
genus g − 1 curve C at a general point y ∈ C. Mark another general point q on C

as shown in Figure 7.
This is a standard test curve, and it is well known [HMo] that E ·λ = 1, E ·δ0 =

12, E · δg−1 = −1, giving

E · R = cλ + 12c0 − cg−1.

To find the intersection directly, we observe that, for any such solution, either the
limit p is in the C component, or it is not. If the limit point p lies on C, then we
have

(ωC) = gp + q + (g − k − 5)y +
k∑

j=1

qj ∼ KC

for some k = 1, . . . , g − 3. Any such solution would contradict our assumption
that q and y are general. If p does not lie on C, then we have

(ωC) = q + (2g − k − 5)y +
k∑

j=1

qj ∼ KC

for some k = 1, . . . , g − 3. Again, we have a contradiction for any k with the
assumption that q and y are general points. Hence E ·R = 0, and by our previous
test curve results we see

cλ = g(3g3 − 3g + 2)

2
,

which agrees with our Porteous’ formula result.
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