
Michigan Math. J. 67 (2018), 743–756

Extactic Divisors for Webs and Lines on Projective
Surfaces

Maycol Falla Luza & Jorge Vitório Pereira

Abstract. Given a web (multifoliation) and a linear system on a pro-
jective surface, we construct divisors cutting out the locus where some
element of the linear system has abnormal contact with the leaf of the
web. We apply these ideas to reobtain a classical result by Salmon
on the number of lines on a projective surface. In a different vein,
we investigate the numbers of lines and disjoint lines contained in a
projective surface and tangent to a contact distribution.

1. Introduction

1.1. Extactic Divisors

A smooth point x of a (germ of) plane curve C ⊂ P
2 is an extactic point of or-

der n if there exists a plane curve of degree n that intersects C with multiplicity
h0(P2,OP2(n)) at x. For example, inflection points are extactic points of order
one, and the extactic points of order two are sextactic points. In the literature, the
extactic points of order n are also called n-flexes.

In [15], we can find a construction of divisors on P
2 attached to a foliation

F that intersect the leaves of F precisely at the extactic points. These are called
the extactic divisors of F . The nth extactic divisor of F is defined whenever the
general leaf of F is not contained in an algebraic curve of degree at most n. Of
course, if a curve C is contained in an algebraic curve of degree d , then every point
of C is an extactic point of order n ≥ d . In particular, the nth extactic divisor of
a foliation F contains all F -invariant algebraic curves of degree at most n. The
extactic divisors proved to be useful in the study of the Liouvillian integrability
of polynomial differential equations; see, for instance, [2] and [3].

In Section 3, we revisit the construction of extactic divisors and reformulate it
using the language of invariant jet differentials. Moreover, we show how to extend
this construction to webs on surfaces. It is worth noting that the inflection divisor
for webs on P

2 was treated before by the first author in his Phd thesis.

Theorem A. Let W be a d-web of degree r on P
2. If the number of algebraic

curves of degree at most n invariant by W is finite, then the nth extactic divisor of
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W has degree
n

8
· [(n + 1)(n + 2)(4d + (n + 3)(r − d))

+ (n + 3)(n2 + 3n − 2)(d − 1)(d + 2r)].
As in [16], we carry the construction of the extactic divisor on arbitrary surfaces
and for arbitrary linear systems. As an application, we give in Section 4 a proof
of a classical result of Salmon, which provides a bound for the number of lines on
projective surfaces contained in P

3.

1.2. Involutive Lines on Projective Surfaces

Questions in experimental physics lead one of us to the study of involutive lines
(lines tangent to a contact structure) contained in surfaces in P

3; see [12]. In Sec-
tion 5, we study the numbers of involutive lines in a surface S ⊂ P

3.
If we set �i(d) as the number of involutive lines a degree d smooth surface in

P
3 can have, then our bound takes the following form.

Theorem B. If S ⊂ P
3 is a smooth surface of degree d ≥ 3 in P

3, then the number
of involutive lines in S is at most 3d2 − 4d , that is, �i(d) ≤ 3d2 − 4d . Moreover,

�i = lim sup
d→∞

�i(d)

d2
∈ [1,3].

The study of collections of pairwise disjoint lines (skew lines) on projective sur-
faces is much more recent. Set s�(d) as the number of skew-lines a smooth sur-
face of degree d can have. Miyaoka [14] proved that s�(d) ≤ 2d(d − 2) when
d ≥ 4. There are quartics containing 16 skew lines (Kummer surfaces), and
thus s�(4) = 16. Rams [17] exhibited examples of smooth surfaces that imply
s�(d) ≥ d(d − 2) + 2 for d ≥ 6; and Boissière and Sarti [1] improved Rams’
lower bound to s�(d) ≥ d(d − 2) + 4 when d is odd and greater than or equal
to 7.

In the higher-dimensional case, Debarre [5] and Starr [18] (independently)
proved that smooth hypersurfaces in P

2m+1 contain a finite number of linearly
embedded P

m, m-planes for short. Starr (loc. cit.) observes that there is a naive
upper bound that grows like d(m+1)2

and suggests that there should exist a poly-
nomial bound with leading term ((3m + 1)!/2 − 1)dm+1.

The problem of bounding the number of pairwise disjoint m-planes does not
seem to be studied so far. Concerning pairwise disjoint involutive m-planes, we
prove the following bound.

Theorem C. If X ⊂ P
2m+1 is a smooth hypersurface of degree d ≥ 3 in P

2m+1,
then the maximal number of pairwise disjoint involutive m-planes in X is at most
(d − 1)m+1 + 1. Moreover, when X is a surface in P

3, that is, m = 1, the bound
is sharp.

When m > 2, we do not know if the bound is sharp.
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2. Jet Differentials

2.1. Jet Spaces

Let (X,V ) be a directed complex manifold, that is, X is a manifold, and V ⊂ T X

is a subbundle of the tangent bundle of X. The space of k-jets of germs of curves
tangent to V , denoted by JkV , is by definition the set of equivalence classes jk(f )

of germs of curves f : (C,0) → X that are everywhere tangent to V (i.e., f ′(t) ∈
V for every t ∈ (C,0)) modulo the equivalence relation f ∼ g if and only if all
the derivatives of f and g at 0 coincide up to order k. The space JkV is a vector
bundle over X of rank k rankV .

Notice that J1V is naturally isomorphic to (the total space of) V .

2.2. Jet Differentials

Let us recall the definition of jet differentials of order k and degree m intro-
duced in [8]; for more detail, the reader can also see [7]. These are sections of
vector bundles EGG

k,m(V ∗) over X with fibers equal to the space of polynomials

Q(f ′, f ′′, . . . , f (k)) over the fibers of J kV of weighted degree m with respect to
the C

∗-action

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

For i ranging from 0 to [m/k], set Si as the set of polynomials having degree
with respect to f (k) at most i. Since the degree of Q with respect to f (k) is at
most [m/k], we have the following filtration for EGG

k,m(V ∗):

EGG
k−1,m(V ∗) = S0 ⊂ S1 ⊂ · · · ⊂ S[m/k] = EGG

k,m(V ∗).

For 1 ≤ i ≤ [m/k], the quotient Si/Si−1 is isomorphic to EGG
k−1,m−ki(V

∗) ⊗
Symi V ∗. Since EGG

1,m(V ∗) is nothing but Symm V ∗, we can proceed inductively

to obtain a filtration of EGG
k,m(V ∗) satisfying

Grad• EGG
k,m(V ∗) =

⊕
i1+2i2+···+kik=m

Symi1 V ∗ ⊗ · · · ⊗ Symik V ∗.

2.3. Action of Jet Differentials on Vector Fields

Let L be a line bundle over X, and let σ ∈ H 0(X,EGG
k,m(V ∗) ⊗ L) be a jet dif-

ferential of order k and degree m with coefficients in L. Given a holomorphic
vector field v ∈ H 0(X,V ) ⊂ H 0(X,T X) everywhere tangent to V , we can define
the action of σ on v as follows. For any point x ∈ X, there exists a unique germ
fx : (C,0) → (X,x) such that v(fx(t)) = f ′

x(t). We set σ(v) as the section of L
that at x ∈ X is obtained by applying σ to jk(fx(t)).

For any complex number λ ∈ C, we have that σ(λv) = λmσ(v). However,
if a ∈ H 0(X,OX) is a nonconstant function (of course, we assume that X is
not compact here), then there is no obvious similar relation between σ(av) and
amσ(v) when k ≥ 2.



746 Maycol Falla Luza & Jorge Vitório Pereira

2.4. Multiplication and Differentiation of Jet Differentials

Given two jet differentials σi ∈ H 0(X,EGG
ki ,mi

(V ∗)), we can multiply them to ob-

tain an element of H 0(X,EGG
k,m(V ∗)) with k = max{k1, k2} and m = m1 +m2 that

sends the kth jet jk(f ) to σ1(jk1(f )) · σ2(jk2(f )). Thus we have an OX-linear
(commutative) multiplication morphism

EGG
k1,m1

(V ∗) ⊗OX
EGG

k2,m2
(V ∗) −→ EGG

k,m(V ∗).
There is also a linear differentiation morphism of C-sheaves (cf. [8])

D : EGG
k,m(V ∗) −→ EGG

k+1,m+1(V
∗),

σ �−→
(

jk+1(f ) �→ d

dt
σ (jk(f ))

)
.

In terms of the action of jet differentials on vector fields, we have that

(Dσ)(v) = v(σ (v)).

Notice that D is not OX-linear but satisfies the Leibniz rule

D(σ1 · σ2) = σ1 · Dσ2 + σ2 · Dσ1.

2.5. Invariant Jet Differentials

Demailly [6] defined a subbundle Ek,m(V ∗) of the bundle of jet differentials
EGG

k,m(V ∗) whose sections consist of jet differentials of order k and degree m,
which are invariant by reparameterizations tangent to the identity. More explic-
itly, a jet differential σ is an invariant jet differential if and only if at every point
x ∈ X it satisfies

σ(jk(f )) = σ(jk(f ◦ ϕ))

for any germ f : (C,0) → (X,x) and any germ of diffeomorphism ϕ : (C,0) →
(C,0) with ϕ′(0) = 1. The sections of Ek,m(V ∗) are called invariant jet differen-
tials of order k and degree m.

2.6. Action on Foliations

Since invariant jet differentials are jet differentials by definition, they act on vector
fields as explained in Section 2.3. Given an invariant jet differential with coeffi-
cients in a line bundle L, say σ ∈ H 0(X,Ek,m(V ∗) ⊗ L), its invariance under
reparameterizations implies that, for any v ∈ H 0(X,V ) ⊂ H 0(X,T X) and any
holomorphic function f ∈ H 0(X,OX) (constant or not), we have the identity

σ(f v) = f mσ(v) ∈ H 0(X,L).

In fact, if g : (C,0) → (X,x) is such that g′(t) = v(g(t)), then the integral curve
of f v through x is a reparameterization g ◦ ϕ with ϕ′(t) = f (g(t)). Therefore,
σ acts not only on vector fields but also on vector fields with coefficients in line
bundles. If v now belongs to H 0(X,V ⊗M), where M is an arbitrary line bundle,
then

σ(v) ∈ H 0(X,L⊗M⊗m).
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2.7. Action on Webs (When Rank V Is Equal to 2)

Suppose now that V has rank two. If σ ∈ H 0(X,Ek,m(V ∗)⊗L) is an invariant jet
differential, then given a symmetric vector field v ∈ H 0(X,Symd V ⊗ M) with
coefficients in a line bundle M, we can define the action of σ on v as follows.
Over a generic point, the symmetric vector field v can be locally written as the
product of d vector fields v1, . . . , vd : v = v1 · · ·vd . The set � where this decom-
position is not possible is a closed analytic subset called the discriminant of v;
it is described locally by the vanishing of the classical discriminant of homoge-
neous binary forms. The local decomposition is of course not unique since we
may replace vi by aivi , where ai are holomorphic functions satisfying

∏
ai = 1.

Nevertheless, we can choose one such decomposition and set

σ(v) =
∏

σ(vi).

Since σ(aivi) = am
i σ (vi), it follows that a different decomposition of v leads to

the same result. However, this expression does not make sense a priori at the
analytic subset � where the decomposition of v in a product of vector fields
fails to exist. Nevertheless, it is clear that the result can be extended meromor-
phically through �. Therefore, if σ is an element of H 0(X,Ek,m(V ∗) ⊗ L) and
v ∈ H 0(X,Symd V ⊗M), then σ(v) is a meromorphic section of L⊗d ⊗M⊗m.

3. Extactic Divisors

3.1. Extactic Divisors for Foliations

Let X be a projective manifold, and a let N be a line bundle on X. Consider a
linear system |W | ⊂ PH 0(X,N ) of dimension k ≥ 1 on X defined by sections of
N , that is, W ⊂ H 0(X,N ) is a vector space of dimension k + 1. For any germ
f : (C,0) → X, define

σW(f ) = det

⎛
⎜⎜⎜⎝

f0(t) f1(t) · · · fk(t)

f ′
0(t) f ′

1(t) · · · f ′
k(t)

...

f
(k)
0 (t) f

(k)
1 (t) · · · f

(k)
k (t)

⎞
⎟⎟⎟⎠ ,

where fi(t) = si(f (t)) for functions s0, . . . , sk expressing a basis of W in a triv-
ialization of N at a neighborhood of f (0). Changing the open set on X, we see
that these local expressions patch together to give an invariant jet differential of
order k and degree m = k(k + 1)/2 with coefficients in N⊗k+1, that is, σW can
be interpreted as an element of H 0(X,Ek,m(T ∗X) ⊗N⊗k+1).

Alternatively, we can interpret σW as follows. On any projective space P
k we

have a natural invariant jet differential

σ ∈ H 0(Pk,Ek,k(k+1)/2(�
1
Pk ) ⊗ K∗

Pk )

defined as follows. Let γ : (C,0) → P
k be a germ and consider an arbitrary lifting

γ̂ : (C,0) → C
k+1 − {0} under the natural projection π : Ck+1 − {0} → P

k . The
jet differential σ maps γ to π∗γ̂ ′(t) ∧ π∗γ̂ ′′(t) ∧ · · · ∧ π∗γ̂ (k)(t) ∈ γ ∗ ∧k

T P
k �
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γ ∗K∗
Pk . If we now consider the rational map ϕ : X ��� PW ∗ � P

k associated with
|W |, then σW is nothing but the pull-back of σ under ϕ.

Proposition 3.1. If f : (C,0) → X is a nonconstant germ such that σW(f (t))

vanishes identically, then the image of any representative of f is contained in an
element of the linear system W .

Proof. If σW(f (t)) = 0, then the local functions f0(t), . . . , fk(t) have zero Wron-
skian and therefore are linearly dependent. �

Given a foliation by curves F defined by a vector field v ∈ H 0(X,T X ⊗ T ∗F),
the zero divisor of σW(v) ∈ H 0(X,N⊗k+1 ⊗ (T ∗F)⊗m) (when different from X)
is called in [15] the extactic divisor of F with respect to the linear system W .

Proposition 3.2. With the previous notation, if σW(v) vanishes identically, then
every leaf of F is contained in an element of the linear system |W |, and there
exists a nonconstant rational function h ∈C(X) constant along the leaves of F .

Proof. See [15, Theorem 3]. �

3.2. Extactic Divisors for Webs on Surfaces

We suppose in this part that X is a surface; in particular, the bundle T X has rank
two.

Lemma 3.3. Let M be a line bundle on X. If v is a holomorphic section of
Symd T X ⊗M, then the discriminant of v is a section �(v) of K

−d(d−1)
X ⊗

M⊗2(d−1), that is,

�(v) ∈ H 0(X,det(T X)d(d−1) ⊗M⊗2(d−1)).

Proof. See [16, Section 1.3.4]. �

The following lemma is valid even if X is not a surface since rank V is equal
to 2. Recall that in this case a symmetric vector field can be locally written as the
product of vector fields v = v1 · · ·vd .

Lemma 3.4. Let X be a projective manifold, and let |W | ⊂ PH 0(X,N ) be a
linear system of dimension k ≥ 1. If σW is the associated jet differential and v ∈
H 0(X,Symd V ⊗ M) is a symmetric vector field with �(v) �= 0, then the polar
divisor of

∏
σW(vi) satisfies(∏

σW(vi)

)
∞

≤ k(k − 1)

2
(�(v))0.

Proof. Let H be an irreducible component of the discriminant of v. At a neigh-
borhood U � D

n of a sufficiently general point p ∈ H , we can choose local holo-
morphic coordinates x1, . . . , xn−1, y such that �(v) = yδ × u where δ ≥ 1 is an
integer and u is an unity of OX,p . Hence H = {y = 0}. Since V has rank two, we
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can decompose v at a neighborhood of p as w × v1 · · ·vd−r where w is a local
section of Symr V and v1, . . . , vd−r are local sections of V . We can further as-
sume that w is indecomposable, that is, cannot be expressed as a product of w1w2

with w1 and w2 sections of strictly positive symmetric powers of V . In this case
the order of the discriminant of w along H is at least r − 1, that is, r − 1 ≤ δ.
Since r ≥ 2, we also have that r/2 ≤ δ.

Notice that the fundamental group of U − H � D
n−1 ×D

∗ is Z. We can thus
choose generators e1, e2 of V and write

w =
r∏

i=1

(ai(x, y1/r )e1 + bi(x, y1/r )e2)

for suitable holomorphic functions ai , bi . Set wi = ai(x, y1/r )e1 + bi(x, y1/r )e2.
We claim that

ordH (σW (wi)) ≥ (1 + 2 + · · · + (k − 1))

(
1

r
− 1

)
= k(k − 1)

2

(
1

r
− 1

)
.

Indeed, for the two first rows of the matrix used to compute σ(wi), the order along
H is nonnegative. The chain rule shows that on the third row, a monomial y1/r−1

will appear. By the product rule the fourth row will be a linear combination of the
third row multiplied by y1/r−2 and another expression involving the monomial
y2(1/r−1). The multiple of the third row will be disregarded when taking determi-
nants. The claim follows by induction.

Therefore the order of
∏

(σW (wi)) along H is at least

r
k(k − 1)

2

(
1

r
− 1

)
= k(k − 1)

2
(1 − r) ≥ −k(k − 1)

2
δ. (3.1)

The lemma follows. �

Remark 3.5. Let W2 be a 2-web on (C2,0) having reduced discriminant equal
to C = {y = 0}. If C is not invariant by W2, then in suitable coordinates, W2 is

defined by v2 = ∂
∂y

2 −y ∂
∂x

2
; see [13, Lemma 2.1]. If we consider the linear system

|W | of dimension k locally generated by 1, y, x, y2, xy, x2, . . . , xs−2y2, xs−1y,
xs when k +1 = 3s, then the polar divisor of σW(v2) has order exactly k(k −1)/2
over C. In fact, we have the local decomposition v2 = u ·v, where u = ∂

∂y
−√

y ∂
∂x

and v = ∂
∂y

+ √
y ∂

∂x
, so over a general solution of v, say f (t) = (2t3/3, t2),

we see that f ∗(v) = 1
t

∂
∂t

and that f ∗W is generated by 1, t2, t3, . . . , t3s−1, t3s .
A simple computation shows that σW(f ) has a pole at t = 0 of order exactly
k(k − 1)/2. Since f ramifies over C, we see that v contributes to the order of
σW(v2) along C with −k(k − 1)/4. Since the other factor of v2 also contributes
with −k(k − 1)/4, we deduce that σW(v2) has a pole of order exactly k(k − 1)/2
along C. For the cases k + 1 = 3s − 1 or 3s − 2, we consider the linear systems
1, y, x, y2, xy, x2, . . . , xs−2y2, xs−1y and 1, y, x, y2, xy, x2, . . . , xs−2y2,
respectively.
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Definition 3.6. The extactic divisor of a web W = [v] ∈ PH 0(X,Symd T X ⊗
M) with respect to a linear system |W | of dimension k is the divisor E(W, |W |)
defined by the vanishing of

�(v)k(k−1)/2 · σW(v).

In the case X = P2, for W = [v] ∈ PH 0(P2,Symd T P2(r −d)) a d-web of degree
r , we define the n-extactic divisor of W , denoted by En(W), as the extactic divisor
of the web with respect to the linear system |W | = PH 0(P2,OP2(n)).

Theorem 3.7 (Theorem A of Introduction). Let W be a d-web of degree r on P
2.

Then En(W), when different from P
2, is a curve of degree

n

8
· [(n+ 1)(n+ 2)(4d + (n+ 3)(r − d))+ (n+ 3)(n2 + 3n− 2)(d − 1)(d + 2r)].

Proof. The discriminant of the web is given by a section of H 0(P2,OP2((d −
1)(d + 2r))) according to Lemma 3.3. On the other hand, our linear system has
dimension k = n(n + 3)/2, and in particular the associated jet differential has
degree m = n(n+1)(n+2)(n+3)/8. Therefore, σW(v) is a meromorphic section
of OP2(n)⊗(k+1)d ⊗OP2(r − d)⊗m. Finally, the extactic divisor En(W) is cut out
by a section of OP2(n)⊗(k+1)d ⊗OP2(r − d)⊗m ⊗OP2((d − 1)(d + 2r))k(k−1)/2.

�

Proposition 3.8. Let C be an irreducible curve, and let kC be the dimension of
the restriction to C of a linear system |W | ⊂ PH 0(X,N ) of dimension k. If C is
invariant by a d-web W defined by v ∈ H 0(X,Symd T X ⊗L), then

(k − kC)C ≤ E(W, |W |).
Proof. Suppose first that C is not contained in �(v). Note that l := k − kC is the
number of linearly independent elements of |W | containing C. In a local coordi-
nate system, we can write C = {f = 0}, v = v1 · · ·vd , and s0, . . . , sk a basis of W .
If l > 0, we can choose this base such that si = f.ŝi for i = 0, . . . , l − 1. By hy-
pothesis, we can also assume that v1(f ) = L.f for some holomorphic function L.
Therefore,

σW(v1) = det

⎛
⎜⎜⎜⎝

f.ŝ0 f.ŝ1 · · · f.ŝl−1 · · · sk
f.L1,0 f.L1,1 · · · f.L1,l−1 · · · v1(sk)

...

f.Lk,0 f.Lk,1 · · · f.Lk,l−1 · · · v
(k)
1 (sk)

⎞
⎟⎟⎟⎠ ,

which has f k−kC as a factor. The case where C is contained in �(v) is analogous
using the decomposition as in the proof of Lemma 3.4. �

Proposition 3.9. Let v ∈ H 0(X,Symd T X ⊗L) be a symmetric vector field with
coefficients in L defining an indecomposable d-web W . If σW(v) vanishes iden-
tically, then every leaf of W is contained in an element of the linear system |W |.
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Proof. Let C be an invariant curve not contained in �(v). Then, in a neighbor-
hood of a generic point, we can decompose v = v1 · · ·vd . By assumption we have
σW(vi) = 0 for some i, but the transitivity of the monodromy of the web implies
that σW(vj ) = 0 for j = 1. . . . , d , and therefore C is an element of the linear
system. The case where C is contained in �(v) is analogous. �

Remark 3.10. Propositions 3.8 and 3.9 provide a useful tool to bound the number
of curves (in a given linear system) invariant by a given web. This was one of
the original motivations to introduce the extactic divisors for foliations; see [15].
Another motivation was to be able to explicitly determine the invariant curves of
a given foliation. Unfortunately, in the case of webs, our approach to define the
extactic divisors does not provide explicit formulas for them.

4. Lines on Projective Surfaces

4.1. Second Fundamental Form

Let X ⊂ P
N be a submanifold. The second fundamental form of X (see [9, Sec-

tion 1.b]) is a morphism of OX-modules

II : Sym2 T X −→ NX.

If v ∈ TxX, then II(v, v) is proportional to the projection on the normal bundle
of X at x of the osculating plane of any curve through x with tangent space at x

generated by v. Dualizing the morphism II and tensoring the result by NX, we
obtain ωII ∈ H 0(X,Sym2 �1

X ⊗ NX).
When X ⊂ P

3 is a nondegenerate surface (i.e., not contained in a plane),
the second fundamental form induces a 2-web WII on X defined by ωII. Since
Sym2 �1

X � K⊗2
X ⊗ Sym2 T X, we obtain

vII ∈ H 0(X,Sym2 T X ⊗ K⊗2
X ⊗ NX),

defining WII as well.
We collect in the next proposition a number of well-known properties of the

second fundamental form of surfaces in P
3, which will be useful in what follows.

Proposition 4.1. Let X be an irreducible surface contained in an open subset
of P3. The following assertions hold.

(1) The second fundamental form vanishes identically on X if and only if X is an
open subset of a P

2 linearly embedded in P
3.

(2) The discriminant �(vII) = �(ωII) vanishes identically if and only X is a cone
or X is the tangential surface of a curve C ⊂ P

3.
(3) If i : C → X ∩P2 is the inclusion of a planar curve satisfying i∗ωII = 0, then

C is a line, or C is contained in the discriminant of ωII

Proof. Item (1) is proved in [9, (1.51)]. For item (2), see (1.52) loc. cit. Let us
prove item (3). Assume that C ⊂ X ∩ P

2 is not a line and satisfies i∗ωII = 0.
Therefore, for a general point of C, its osculating plane is tangent to X. It follows
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that the intersection of X and the P
2 containing C is nonreduced and, conse-

quently, C is contained in the discriminant of ωII. �

4.2. Salmon’s Theorem

Theorem 4.2. Let X ⊂ P
3 be an irreducible surface of degree d . If X is not a

ruled surface, then there exists s ∈ H 0(X,OX(11d − 24)) whose zero divisor is
cutting out all lines contained in X. In particular, the number of lines contained
in a smooth projective surface of degree d ≥ 3 is at most d(11d − 24).

Proof. Let p ∈ P
3 be a general point, and let |W | be the linear system of the

restriction to X of hyperplanes containing p. Consider the invariant jet differential
associated with |W |, σW ∈ H 0(X,E2,3(T

∗X)⊗OX(3)). The action of σW on vII

gives us a meromorphic section of OX(3)⊗2 ⊗ (K⊗2
X ⊗ NX)⊗3, and then the

divisor E(WII, |W |) is given by a holomorphic section s of

OX(3)⊗2 ⊗ (K⊗2
X ⊗ NX)⊗3 ⊗ K⊗2

X ⊗ NX⊗2︸ ︷︷ ︸
�(vII )2(2−1)/2

� OX(13d − 26).

Basic properties of the second fundamental form implies that every line con-
tained in X is invariant by it. Proposition 3.8 implies that s vanishes on every
line.

Since X is not uniruled by assumption, Proposition 4.1(2) implies that the
discriminant of ωII is not identically zero. If s vanishes identically, then Propo-
sition 3.9 implies that through a general point of X there exists a planar curve
invariant by WII. But planar curves invariant by WII and not contained in the dis-
criminant of ωII are lines. This contradicts our assumption on the nonuniruledness
of X, proving that s is not identically zero.

Consider now the linear projection π : P3 ��� P
2 with center at p. Its re-

striction to X, still denoted by π , has ramification divisor R cut out by r ∈
H 0(X,OX(d − 1)). We claim that (s)0 ≥ 2R. Fix a general point x of R. At a
neighborhood of it, write vII = w1 · w2. The orbits of w1, w2 will have contact of
order at least three with the element of |W | tangent to X at x. This is sufficient
to show that the rank at x of the matrix defining σW(w1) and σW(w2) is at most
two. The claim follows.

To conclude the proof of Salmon’s theorem, it suffices to divide s by r2 to
obtain a holomorphic section of OX(11d − 24) vanishing along all the lines con-
tained in X. �

The proof is not very different from Salmon’s proof. The divisor defined by s

coincides with the flecnodal divisor studied by Salmon. Indeed, according to [11,
p. 138], every plane containing one of the null directions of II at a point p /∈
�(II), except the tangent plane, intersects the surface at a a planar curve having an
inflection at p. The vanishing of σ(vII) at p implies that, for one of the asymptotic
curves through p, the order of contact at p with this planar curve is at least 3. It
follows that p is also an inflection for the asymptotic curve. For a modern version
of Salmon’s argument, see [10, Section 8].
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Darboux [4, p. 372] shows that through a general point there are exactly 27
conics (curves) that have abnormal contact with a surface X ⊂ P3. Thus there
exists a 27-web that is tangent to every conic contained in X. Control on the
normal bundle of this web (i.e., a formula linear in the degree of X) would give a
bound on the number of conics on a surface.

5. Involutive Lines

5.1. Bound on the Number of Involutive Lines

Consider the projective space P
3 endowed with a contact structure C induced

by a constant symplectic form σ on C
4. If σ = ∑3

i,j=0 λij dxi ∧ dxj is a sym-

plectic form on C
4, then the associated contact structure C = Cσ is defined by

ω ∈ H 0(P3,�1
P3(2)), which in homogeneous coordinates can be written as

ω = iRσ,

where R = ∑3
i=0 xi

∂
∂xi

is the radial (or Euler’s) vector field, and iR stands for the
interior product with R. A similar construction endows a contact structure over
the projective space P

2m+1.
A reduced and irreducible curve C ⊂ P

3 is called an involutive curve (with re-
spect to a contact distribution C) if i∗ω ∈ H 0(Csm,�1

Csm
(2)) vanishes identically.

Here Csm denotes the smooth locus of C, and i : Csm → P
3 is the inclusion.

As in Introduction, let �i(d) be the number of involutive lines a degree d

smooth surface in P3 can have.

Theorem 5.1 (Theorem B of Introduction). If X ⊂ P
3 is a smooth surface of

degree d ≥ 3 in P
3, then the number of involutive lines in X is at most 3d2 − 4d ,

that is, �i(d) ≤ 3d2 − 4d . Moreover,

�i = lim sup
d→∞

�i(d)

d2
∈ [1,3].

Proof. The restriction of the contact form to X gives a nonzero section ω of �1
X ⊗

OX(2). Every involutive line contained in X is invariant by the corresponding
foliation F .

The tangency locus between F and WII is cut out by a section of

K⊗2
X ⊗OX(2)⊗2 ⊗ NX = OX(3d − 4).

Since it must contain every involutive line inside X, the first part of the theorem
follows. For the last part, take a surface X in P

3 of degree d ≥ 3 defined by a
homogenous polynomial of the form p(x0, x1) + q(x2, x3). Then X has at least
d2 involutive lines with respect to the contact form iR(dx0 ∧ dx1 + dx2 ∧ dx3).
In fact, since p and q are binary forms, they can factored as a product of d lin-
ear forms, say p(x0, x1) = ∏d

i=1 pi(x0, x1) and q(x2, x3) = ∏d
i=1 qi(x2, x3). The

lines {pi(x0, x1) = qj (x2, x3) = 0} are all involutive and contained in X. �
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Remark 5.2. As before, let |W | be the linear system of the restriction to X of
hyperplanes containing a general point p ∈ P

3. Then the extatic divisor of F
with respect to |W | contains every involutive line and is given by a section of
OX(3) ⊗ OX(d − 2)⊗3 = OX(3d − 3), which gives us a worst bound for the
number of involutive lines.

5.2. Pairwise Disjoint Involutive m-Planes

Theorem 5.3 (Theorem C of Introduction). If X ⊂ P2m+1 is a smooth hyper-
surface of degree d ≥ 3 in P

2m+1, then the maximal number of pairwise disjoint
involutive m-planes in X is at most (d − 1)m+1 + 1. Moreover, when m = 1 and
d ≥ 6, the bound is sharp.

To prove the theorem, we need the following lemma.

Lemma 5.4. If X ⊂ P2m+1 is a smooth hypersurface of degree at least 3, then
pull-back of the contact form ω ∈ H 0(P2m+1,�1

P2m+1(2)) to X vanishes exactly

at a subscheme of dimension zero and length ((d − 1)2m+2 − 1)/(d − 2) isolated
singularities.

Proof. Let i : X → P
2m+1 be the inclusion and suppose i∗ω ∈ H 0(X,�1

X(2)) has
nonisolated singularities. If F ∈ C[x0, . . . , x2m+1] is a homogeneous polynomial
of degree d defining X, then dF|X can be interpreted as sections of �1

P2m+1(d)|X .
If Z is a positive-dimensional irreducible component of the singular set of i∗ω,
then the restriction of ω to Z must be proportional to the restriction of dF to Z.
Since ω has no singularities on P

2m+1, we can write dF|Z = s · ω|Z where s ∈
H 0(Z,OZ(d − 2)). If d > 2, then s vanishes on hypersurface of Z, and the same
holds for dF . It follows that X is singular along the zero locus of s, contrary to
our assumptions.

It remains to determine the length of the zero scheme of i∗ω, which can be
done by computation of the top Chern class of �1

X(2). If h = c1(OX(1)), then the
Chern polynomial of �1

X(2) is given by

c(�1
P2m+1 |Y (2))

c(OX(2 − d))
= (1 + h)2m+2

(1 + 2h)(1 − (d − 2)h)
,

and the top Chern class of �1
X(2) is d = h2m times the coefficient of h2m. There-

fore

c2m(�1
X(2)) = d

( 2m∑
i=0

2m−i∑
j=0

(
2m + 2

i

)
(−2)j (d − 2)2m−i−j

)
.

We can verify by induction that this last quantity is equal to ((d − 1)2m+2 −
1)/(d − 2), as wanted. �
Proof of Theorem C. Let j : P → X be a linear inclusion of an m-plane in X, and
let i : X → P

2m+1 be the inclusion of X in P
2m+1. Consider the exact sequence

0 → N∗P(2) → �1
X |P (2) → �1

P (2) → 0.
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Since j∗i∗ω = 0, it follows that (i∗ω)|P is the image of a certain σ ∈ H 0(P,

N∗P(2)). The intersection of the singular set of i∗ω with P coincides (set-
theoretically) with the singular set of σ . Moreover, as a simple local computation
shows, the length of zero scheme of σ is at least the length of the restriction of
the zero scheme of i∗ω to any neighborhood of P . If N is the number of pairwise
disjoint m-planes in X, then we can write

Ncm(N∗P(2)) ≤ c2m(�1
X(2)).

However, c(N∗P(2)) = c(�1
X |P (2)) · c(�1

P (2))−1, from which we deduce

c(N∗P(2)) = (1 + h)2m+2

(1 + 2h)(1 − (d − 2)h)
· 1 + 2h

(1 + h)m+1
= (1 + h)m+1

(1 − (d − 2)h)
,

where h = c1(OP (1)). The coefficient of hm is exactly ((d − 1)m+1 − 1)/(d − 2).
This computation, together with Lemma 5.4, implies

N ≤ (d − 1)m+1 + 1,

as claimed. This concludes the first part of Theorem C. The following example
from [17] will show that the bound is sharp when m = 1. Let us consider the
surface

Sd = {xd−1
0 x1 + xd−1

1 x2 + xd−1
2 x3 + xd−1

3 x0 = 0}
with d ≥ 6. Then Sd contains the d(d − 2) + 2 skew lines (αx : βy : x : y) for
(α,β) satisfying α = −βd−1, β(d−1)2+1 = (−1)d . Moreover, these lines are invo-
lutive with respect to the contact form iR(dx0 ∧ dx2 + dx1 ∧ dx3). �
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