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Dyadic Representation and Boundedness of
Nonhomogeneous Calderón–Zygmund Operators with

Mild Kernel Regularity

Ana Grau de la Herrán & Tuomas Hytönen

Abstract. We prove a new dyadic representation theorem with ap-
plications to the T (1) and A2 theorems. In particular, we obtain the
nonhomogeneous T (1) theorem under weaker kernel regularity than
in the earlier approaches.

1. Introduction

Various results in the theory of singular integrals are known “for all Calderón–
Zygmund operators”. Examples that we have in mind include the T (1) theorem
of David and Journé [3]:

‖T ‖L2→L2 ≤ C ⇔ ‖T (1Q)‖L2 ≤ c|Q|1/2, ‖T ∗(1Q)‖L2 ≤ c|Q|1/2 ∀Q;
its extension to nonhomogeneous (nondoubling) measures by Nazarov, Treil, and
Volberg [20]; and the A2 theorem of the second author [7]:

‖T ‖L2(w)→L2(w) ≤ cT [w]A2, [w]A2 := sup
Q

 
Q

w dx

 
Q

1

w
dx.

However, when it comes to fine details of the definition of Calderón–Zygmund
operators, it turns out that these theorems (seem to) require slightly different
assumptions on the operator. We are particularly concerned about the minimal
smoothness assumptions that we need to impose on the kernel of the operator.

The most common definition of Calderón–Zygmund operators involves
Hölder-continuous (in a suitable scale-invariant fashion, detailed below) kernels
with a power-type modulus of continuity ω(t) = tδ for δ ∈ (0,1], and it is in this
form that both the T (1) and A2 theorems first appeared. However, in many cases
we can deal with more general continuity moduli with a modified Dini condition
of the type ˆ 1

0
ω(t)

(
1 + log

1

t

)α
dt

t
< ∞. (1.1)

The usual Dini condition corresponds to α = 0, and it is known to be enough for
many classical results in the theory of singular integrals. It is only very recently
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that this was shown by Lacey [14] to be sufficient for the A2 theorem, whereas the
prior approaches needed α = 1 (this is explicit in [12] and implicit in [16; 17]).
The sharpest sufficient condition for the classical T (1) theorem, to our knowl-
edge, appears to be α = 1

2 , which is implicit in Figiel [6] and explicit in Deng,
Yan, and Yang [4]. However, the more recent extensions of the T (1) theorem
to nonhomogeneous measures are only available under the Hölder-continuity as-
sumption. (See [20] for the full nonhomogeneous T (b) theorem or [23], where
a particular case of the T (1) theorem is recovered by methods that are closely
related both to the A2 theorem and the present paper.)

Given that the critical cancellation properties of Calderón–Zygmund operators
are somewhat hidden in their usual definition, all the results mentioned depend
crucially on (implicit or explicit) representation theorems of Calderón–Zygmund
operators as infinite superpositions of simpler (which often means dyadic) model
operators

Tf =
∞∑
i=1

�i(T ,f ).

In this way, the smoothness needed to bound an operator is linked with the
smoothness required to obtain a convergent representation.

There are basically two kinds of representation theorems, linear and nonlinear.
In the linear case, each �i is linear in both T and f , or, as stated otherwise,
�i(T ,f ) = �i(T )f , where �i is a linear transformation between suitable spaces
of linear operators. Such a representation lies behind the usual proofs of the T (1)

theorem and the original proof of the A2 theorem [7]. In contrast to this, the more
recent approaches to the A2 theorem [14; 17; 18] (and some recent ramifications
of the T (1) theorem [15]) are based on decompositions, where �i(T ,f ) depends
nonlinearly on both T and f . Typically, such nonlinear representations arise from
some kind of stopping time arguments.

Although nonlinear representations appear to yield stronger results, at least in
questions around the A2 theorem, there is still independent interest toward linear
representations, which are better suited, for example, for iterative applications as
in [2] or multiparameter extensions as in [19; 21]. It is also of some theoretical
interest whether the nonlinear methods are fundamentally stronger or whether the
same results could also be recovered via linear representations.

In this paper, we prove a new (linear) dyadic representation formula with ap-
plications to both T (1) and A2 theorems. In the T (1) direction, this leads to a
nonhomogeneous T (1) theorem under the same mild kernel regularity assump-
tions that were so far only known in a homogeneous setting. As for A2, although
we are not able to recover the largest class of kernels amenable to nonlinear meth-
ods, we come rather close to it and much closer than any of the previously known
linear arguments.

We now turn to a more detailed description of our results. Let T be a Calderón–
Zygmund operator of order n on Rd with respect to a Borel measure μ of order n.
That is, T acts on a dense subspace of functions in L2(Rd) (for the present pur-
poses, this class should at least contain the indicators of cubes in Rd ) and has the
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kernel representation

Tf (x) =
ˆ
Rd

K(x, y)f (y) dμ(y), x /∈ suppf,

where μ satisfies the growth condition

μ(B(x, r)) ≤ C · rn

for every x ∈Rd and every r > 0. Note that μ need not be a doubling measure.
Moreover, the kernel should satisfy the nth-order standard estimates, which we

assume in the following form:

|K(x,y)| ≤ C

|x − y|n (1.2)

and

|K(x,y) − K(x′, y)| + |K(y,x) − K(y,x′)| ≤ C

|x − y|n ω

( |x − x′|
|x − y|

)
(1.3)

whenever |x − x′| ≤ 1/2|x − y|. Here ω is a modulus of continuity: an increasing
and subadditive (ω(a + b) ≤ ω(a) + ω(b)) function with ω(0) = 0.

We also assume the “T (1)” conditions in the local form{
‖T 1Q‖L2(μ) ≤ Cμ(Q)1/2,

‖T ∗1Q‖L2(μ) ≤ Cμ(Q)1/2,
(1.4)

for all cubes Q ⊂ Rd , where we also regard Q = Rd as a cube in the case
μ(Rd) < ∞.

Our new representation theorem then takes the following form.

Theorem 1.1. Under the stated assumptions on T and μ and suitable test func-
tions f,g ∈ L2(μ) (as detailed in Section 2.1), the operator T admits a represen-
tation

〈Tf,g〉 = E
∑
k∈Z
k �=0

ω(2−|k|)(〈Rkf,g〉 + 〈Qkf,g〉) +E〈�T 1f,g〉 +E〈f,�T ∗1g〉,

where

(1) E is the expectation over a random choice of dyadic systems on Rd ,
(2) each �b , b ∈ {T 1, T ∗1}, is a dyadic paraproduct with

‖�b‖L2(μ)→L2(μ) ≤ C,

(3) each Rk and Qk is a dyadic operator with

‖Rk‖L2(μ)→L2(μ) ≤ C, ‖Qk‖L2(μ)→L2(μ) ≤ C
√|k|.

If μ is doubling, then each Rk and Qk is a sum of O(|k|) dyadic shifts of com-
plexity O(|k|).
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Both dyadic paraproducts and dyadic shifts mentioned in the theorem have the
“usual definition”, which we recall further. As indicated, the dyadic operators Rk

and Qk of the new representation theorem are not precisely dyadic shifts in the
sense of the usual definition, although they are closely related to them. But, in a
sense, these operators have a fundamental nature, and their stated norm bounds
are more efficient than what would follow from their decomposition into usual
shifts and an application of known estimates.

The operators Rk and Qk are related to, and inspired by, certain operators
denoted by Tm and Um and introduced by Figiel [5; 6]. These are, in fact, the first
“dyadic shifts” in the literature, although somewhat different from the modern
usage of the term.

Our main application of Theorem 1.1 is the T (1) theorem, which shows that
the same mild kernel regularity as in the case of the Lebesgue measure [4] is
also admissible for the general nonhomogeneous (i.e., not necessarily doubling)
measures μ considered here.

Corollary 1.2. Under the stated assumptions on T and μ, if the modulus of
continuity satisfies the Dini condition (1.1) with α = 1

2 , then T acts boundedly on
L2(μ).

Proof assuming Theorem 1.1. Using the decomposition and norm estimates pro-
vided by Theorem 1.1, it follows that

|〈Tf,g〉| ≤
∑
k∈Z
k �=0

ω(2−|k|)C
(‖f ‖2‖g‖2 + √|k|‖f ‖2‖g‖2

) + C‖f ‖2‖g‖2

≤ C‖f ‖2‖g‖2

(
1 +

∞∑
k=1

ω(2−k)
√

k

)

≤ C‖f ‖2‖g‖2

(
1 +

ˆ 1

0
ω(t)

√
log

1

t

dt

t

)
≤ C‖f ‖2‖g‖2

by an easy comparison of sums and integrals. �

Toward the A2 theorem, we obtain the following:

Corollary 1.3. Let n = d , and let μ be the Lebesgue measure on Rd . Under the
stated assumptions on T , if the modulus of continuity satisfies the Dini condition
(1.1) with α = 2, then T satisfies the A2 inequality

‖Tf ‖L2(w) ≤ C[w]A2‖f ‖L2(w).

Although this does not quite recover the form of the A2 theorem obtained by
Lacey [14] with α = 0 (see also the simplification by Lerner [18]) or even the
earlier results [12; 16; 17] using nonlinear representations with α = 1, this extends
the class of Calderón–Zygmund operators that we can handle by any of the linear
representation theorems currently known.
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Proof assuming Theorem 1.1. Since dyadic shifts of complexity O(|k|) are
bounded on L2(w) with norm O(|k| · [w]A2) (see [11, Theorem 2.10] or [22,
Theorem 4.1]), it follows that

‖Rk‖L2(w)→L2(w) + ‖Qk‖L2(w)→L2(w) ≤ Ck2[w]A2 .

Recalling that dyadic paraproducts are also bounded on L2(w) with norm
O([w]A2) (see [1]), substituting all this into the representation formula of The-
orem 1.1, we obtain

‖T ‖L2(w)→L2(w) ≤ C

(
1 +

∞∑
k=1

ω(2−k)k2
)

[w]A2

≤ C

(
1 +

ˆ 1

0
ω(t)

(
log

1

t

)2
dt

t

)
[w]A2

≤ C[w]A2 . �

We actually suspect that a direct weighted analysis of the new operators Rk and
Qk (instead of their reduction to known results about dyadic shifts) could lead to
the better weighted bounds

‖Rk‖L2(w)→L2(w) + ‖Qk‖L2(w)→L2(w)

?≤ C|k|[w]A2

and thus to a linear proof of the A2 theorem under the Dini condition (1.1) with
α = 1. However, since this would still be weaker than Lacey’s result [14] with
α = 0, we have not pushed hard on this point.

For future investigations, we point out that our nonhomogeneous results (for
power bounded measures on Rd ) should extend to the case of upper doubling
measures on geometrically doubling metric spaces (as in [13]) with essentially
notational complications only. Somewhat less obvious may be the extension to
representations appropriate for T (b) (rather than just T (1)) theorems. Multilinear
and multiparameter extensions should also be possible.

1.1. Plan of the Paper

We recall some preliminaries and notation in Section 2. Once the notation is avail-
able, we provide a more detailed statement of the main Theorem 1.1 in Section 3,
including a precise formula for the various operators appearing in the decompo-
sition. The proof of the theorem is then divided into the subsequent sections. We
split the main part of the proof into identities and estimates, namely, writing T

as a sum of the dyadic pieces (Section 4) and showing that these pieces satisfy
the relevant norm bounds (Section 5). The proof of Theorem 1.1 is completed
in Section 6, where we establish the asserted shift structure of the new operators
in the homogeneous situation. The last Section 7 provides additional information
about the weak (1,1) behavior of the new operators, again in the homogeneous
situation only.
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2. Preliminaries

Starting from a fixed reference system of dyadic cubes D0, we will consider new
dyadic systems obtained by translating the reference system as follows. Let σ =
(σj )j∈Z ∈ ({0,1}d)Z and

I +̇ σ := I +
∑

j :2−j <	(I)

2−j σj .

Then

Dσ := {I +̇σ : I ∈ D0},
and it is straightforward to check that Dσ inherits the important nestedness prop-
erty of D0: if I, J ∈ Dσ , then I ∩ J ∈ {I, J,∅}. When the particular σ is unim-
portant, the notation D is sometimes used for a generic dyadic system.

The reference system could be, but need not be, the standard system

D0 = {2−k([0,1)d + m) : k ∈ Z,m ∈ Zd};
we could equally well start from any other fixed reference system.

Within any fixed system of dyadic cubes D , we use the following notation:

• I (r) is the r th ancestor I , that is, I (r) ⊇ I and 	(I (r)) = 2r	(I ).
• ch(I ) is the set of children of I , that is, J ∈ ch(I ) if and only if J (1) = I .
• Dk refers to the set of cubes Q ∈ D such that 	(Q) = 2−k .

Moreover, we write:

〈f 〉I = 1

μ(I)

ˆ
I

f (x) dμ(x), 〈f,g〉 =
ˆ
Rd

f (x)g(x) dμ(x),

EIf = 1I 〈f 〉I , Ekf =
∑
I∈Dk

EIf,

DIf =
∑

I ′∈ch(I )

EI ′f − EIf, Dkf =
∑
I∈Dk

DIf.

Definition 2.1. For every I ∈ D , we define the Haar functions as a collection

of functions {ϕi
I }2d−1

i=1 such that

(1) suppϕi
I ⊆ I ,

(2) ϕi
I is constant on each I ′ ∈ ch(I ),

(3)
´

ϕi
I dμ = 0,

(4) ‖ϕi
I‖∞ · ‖ϕi

I‖1 ≤ C (a constant independent of I and i),
(5) ‖ϕi

I‖2 ∈ {0,1}, and

(6) DIf = ∑2d−1
i=1 〈f,ϕi

I 〉ϕi
I .

The proof of the existence of such functions can be found in [8, Section 4]. If
μ is doubling, then the construction is well known, and in this case, (4) can be
improved to ‖ϕi

I‖∞ ≤ Cμ(I)−1/2.
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Figure 1 Illustration of k-goodness with k = 5. The small cubes in
the picture (which have 25 times smaller side length than the big cube)
are 5-good whenever they belong to the grey region (like Q) and 5-bad
whenever they belong to the rest of the big cube (like P ).

Definition 2.2. For k ∈ N and k ≥ 2, we say that a cube I ∈ Dσ is k-good if
dist(I, ∂I (k)) ≥ 1

4	(I (k)). (See Figure 1 for an illustration.)

The probability of a particular cube I +̇σ being k-good is equal for all cubes
I ∈ D0 and for all k, so we denote

πgood := Pσ (I +̇σ k-good) = 2−d .

Despite the easy numerical value of this expression, we use the notation πgood

to stress the origin of this factor from goodness considerations in the relevant
expressions.

Remark 2.3. Let Q be a cube, and r, k ∈ N, r, k ≥ 2. The position and k-goodness
of Q+̇σ are independent random variables. In addition, the r-goodness of Q+̇σ

is independent of the k-goodness of (Q+̇σ)(r).
Indeed, the position of Q+̇σ by definition depends only on σj for 2−j < 	(Q).

On the other hand, the k-goodness of Q+̇σ depends on its relative position with
respect of (Q+̇σ)(k). Since the same translation components σj for 2−j < 	(Q)

appear in both Q+̇σ and (Q+̇σ)(k), this relative position depends only on σj for
	(Q) ≤ 2−j < 	(Q(k)), which makes the position and k-goodness independent
random variables. The other claim is proved similarly.
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Definition 2.4. Let f ∈ L1
loc(R

d), r ≥ 2, and H ∈ D . Then we define

D
(r)
H f :=

∑
I :I (r)=H

DIf, P
(r)
H f :=

r−1∑
j=0

D
(j)
H f (2.1)

and

D
(r, good)

H f :=
∑

I :I (r)=H
I r-good

DIf, P
(r, good)

H f :=
r−1∑
j=2

D
(j, good)

H f. (2.2)

Due to orthogonality, it is a standard computation to verify that, for any k ≥ 1,(∑
K

‖D(k)
K f ‖2

2

)1/2

≤ ‖f ‖2.

2.1. A Finitary Setup

The core of the proof of Theorem 1.1 is based on somewhat elaborate manipu-
lations of the random martingale difference expansions of f and g in the duality
pairing 〈Tf,g〉. To minimize the need of tiresome justifications of the rearrange-
ments of sums and expectations, we choose the following setup, similar to [10] or
[23], to carry out these manipulations.

Let f,g ∈ L2(μ) be both supported on some big cube K1 and constant on
the dyadic subcubes of K1 of side length 2−N	(K1). Clearly, such functions are
dense in L2(μ) when both K1 and N are allowed to vary. Let K0 be the cube with
	(K0) = 2	(K1), positioned so that K1 is the “upper right” quadrant of K0.

Let us then take as the reference dyadic system some D0 that contains K0.
(This determines the choice of dyadic cubes smaller than K0 uniquely, but we can
make an arbitrary choice of the dyadic ancestors of K0 in the system D0.) Then
we consider a modified version of the shifted systems with

K+̇σ := K +
∑

j :2−N	(K1)≤2−j <min(	(K),	(K1))

2−j σj ;

that is, we only randomize on length scales larger than the minimal length scale
2−N	(K1), where the functions f and g are constant. Thus Dσ and D0 have
the same small dyadic cubes, and since f and g are constant on these cubes, the
corresponding martingale differences vanish.

Similarly, we only randomize on length scales smaller than the support of the
functions. In particular, no matter the value of σ , we find that K0+̇σ ⊃ K1 con-
tains the supports of f and g. Thus, irrespective of the value of σ , we have

f = EK0+̇σ f +
∑

K∈Dσ :K⊆K0+̇σ

	(K)>2−n	(K1)

DKf,

with a similar expansion for g. Now, there is only a fixed finite number of terms in
this sum, independently of σ . In fact, there are only finitely many relevant values
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of σ , since only N coordinates σj with 2−N	(K1) ≤ 2−j < 	(K1) have an impact
on the definition of K+̇σ . Thus, all our sums and expectations range over fixed
finite ranges only, so that the rearrangement of the summation order is never an
issue. Since the terms EK0+̇σ f and EK0+̇σ g are trivial to handle by the T (1)

conditions (1.4), we may also assume that these terms (equivalently, the integrals´
f dμ and

´
g dμ) vanish, so that both f and g are expanded in terms of the

martingale differences alone.
With this reduction stated, however, we will not indicate it explicitly, but sim-

ply write
∑

K∈D , or just
∑

K , for the relevant sum.
A cautious reader might notice that our fiddling with the definition of “K+̇σ ”

will have some impact on the properties of the notion of goodness discussed.
However, the changes are essentially immaterial, since goodness is really only
relevant to us when both smaller and bigger cubes appear in our martingale differ-
ence expansion, and for such cubes, our randomization is essentially unchanged.
We will leave the detailed verification of this “no harm done” assertion to the
interested reader; see also the discussion of “good” and “really good” cubes in
[23].

3. The Dyadic Representation Theorem: Detailed Statement

With the notation defined, we can provide additional details to Theorem 1.1 as
follows:

Theorem 3.1. In the representation Theorem 1.1, the various operators have the
following form:

Qk =
∑
K∈D

A
(k)
K , Rk =

∑
K∈D

B
(k)
K ,

where the operators A
(k)
K and B

(k)
K satisfy the orthogonality relations:

A
(k)
K = P

(k+1)
K A

(k)
K D

(k+r)
K ,

A
(−k)
K = D

(k+r)
K A

(−k)
K P

(k+1)
K ,

B
(k)
K = (P

(k+r+1)
K − P

(k)
K )B

(k)
K D

(k+r)
K ,

B
(−k)
K = D

(k+r)
K B

(−k)
K (P

(k+r)
K − P

(k)
K ), k ≥ 1,

and their kernels a
(k)
K (x, y) and b

(k)
K (x, y) satisfy the bounds

|a(k)
K (x, y)| ≤ C

1K(x)1K(y)

	(K)n
+ C

∑
H :H(|k|)=K

1H (x)1H (y)

μ(H)
, |k| ≥ 1,

|b(k)
K (x, y)| ≤ C

1K(x)1K(y)

	(K)n
, |k| ≥ 2.

Moreover, the paraproducts have the form

�bf =
∑
K

D
(r,good)

K b(〈f 〉K − E−∞f ),
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where

E−∞f :=
{

μ(Rd)−1
´
Rd f dμ if μ(Rd) < ∞,

0 otherwise.

If μ is doubling, then the following additional statements hold:

• The pointwise bound for b
(k)
K (x, y) is also valid for |k| = 1.

• For each Uk ∈ {Rk,Qk,R
∗
k ,Q∗

k}, we have ‖Uk‖L1(μ)→L1,∞(μ) ≤ C|k|.
The proof of Theorems 1.1 and 3.1 naturally splits into two parts: the algebraic
identities that give the desired decomposition and the estimates for the terms of
this expansion. We deal with each of these tasks in turn in the following two
sections.

4. Dyadic Representation: Identities

The following proposition is introduces goodness into the basic martingale differ-
ence expansion.

Proposition 4.1. Let T be a Calderón–Zygmund operator, f,g ∈ L2(μ) as in
the finitary setup of Section 2.1, and r ∈ N with r ≥ 2. Then T has the following
expansion:

〈Tf,g〉 = 1

πgood
Eσ

∑
I,J∈Dσ

1r-good(smaller{I, J }) · 〈T DIf,DJ g〉

= 1

πgood
Eσ

( ∑
i,j∈Z

〈T (χijDif ),ψijDjg〉
)

,

where

smaller{I, J } :=
{

I if 	(I ) ≤ 	(J ),

J if 	(I ) > 	(J ),
φj =

∑
I∈Dj

I r-good

1I ,

and

χij :=
{

φi if i ≥ j,

1 if i < j,
ψij :=

{
1 if i ≥ j,

φj if i < j.

Proof. This result is similar to Proposition 3.5 of [9], which we are going to repli-
cate here with our definition of goodness.

Recall that
f =

∑
I∈D0

DI +̇σ f

for any σ ∈ ({0,1}d)Z; and we can also take the expectation Eσ of both sides of
this identity.

We use this random DI +̇σ expansion of f , multiply and divide by

πgood = Eσ 1r-good(I +̇σ),
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and use the independence from Remark 2.3 to get:

〈Tf,g〉 = Eσ

∑
I

〈T DI +̇σ f, g〉

= 1

πgood

∑
I

Eσ 1r-good(I +̇σ)Eσ 〈T DI +̇σ f, g〉

= 1

πgood
Eσ

∑
I

1r-good(I +̇σ)〈T DI +̇σ f, g〉

= 1

πgood
Eσ

∑
I,J

1r-good(I +̇σ)〈T DI +̇σ f,DJ +̇σ g〉.

On the other hand, using independence again in half of this double sum, we
have

1

πgood

∑
	(I )>	(J )

Eσ 1r-good(I +̇σ)〈T DI +̇σ f,DJ +̇σ g〉

= 1

πgood

∑
	(I )>	(J )

Eσ 1r-good(I +̇σ)Eσ 〈T DI +̇σ f,DJ +̇σ g〉

= Eσ

∑
	(I )>	(J )

〈T DI +̇σ f,DJ +̇σ g〉,

and hence

〈Tf,g〉 = 1

πgood
Eσ

∑
	(I )≤	(J )

1r-good(I +̇σ)〈T DI +̇σ f,DJ +̇σ g〉

+Eσ

∑
	(I )>	(J )

〈T DI +̇σ f,DJ +̇σ g〉.

Comparison with the basic identity

〈Tf,g〉 = Eσ

∑
I,J

〈T DI +̇σ f,DJ +̇σ g〉

shows that

Eσ

∑
	(I )≤	(J )

〈T DI +̇σ f,DJ +̇σ g〉

= 1

πgood
Eσ

∑
	(I )≤	(J )

1r-good(I +̇σ)〈T DI +̇σ f,DJ +̇σ g〉.

Symmetrically, we also have

Eσ

∑
	(I )>	(J )

〈T DI +̇σ f,DJ +̇σ g〉

= 1

πgood
Eσ

∑
	(I )>	(J )

1r-good(J +̇σ)〈T DI +̇σ f,DJ +̇σ g〉,
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and this completes the proof of the first asserted identity. The second one is a
simple restatement, as seen by the computation∑

I,J

1r-good(smaller{I, J })〈T DIf,DJ f 〉

=
∑
i≥j

〈T (φiDif ),Djg〉 +
∑
i<j

〈T Dif,φjDjg〉

=
∑
i,j

〈T (χijDif ),ψijDjg〉.
�

We split the subsequent analysis of the series into four cases, depending on
whether i ≥ j or i < j , and whether |i − j | ≤ r or |i − j | > r . Since the cases
i > j and i < j are dual to each other, we only explicitly deal with i ≥ j , which
still splits into the two cases 0 ≤ i − j ≤ r and j < i − r .

Proposition 4.2. Let T be a Calderón–Zygmund operator, f,g ∈ L2(μ) as in
Section 2.1, and r ∈N such that r ≥ 2. Then∑

i,j
0≤i−j≤r

〈T (χijDif ),ψijDjg〉 =
∑

m∈Zd

∑
H

〈T D
(r, good)

H f,P
(r+1)

H +̇m
g〉.

Remark 4.3. A similar argument would show that∑
i,j

0<j−i≤r

〈T (χijDif ),ψijDjg〉 =
∑

m∈Zd

∑
H

〈T P
(r)

H +̇m
f,D

(r, good)

H g〉,

where the slight symmetry-break (P (r)

H +̇m
vs. P

(r+1)

H +̇m
) is caused by the fact that the

diagonal i = j is included in only one of the cases.

Proof of Proposition 4.2.∑
0≤i−j≤r

〈T (φiDif ),Djg〉

=
∑

0≤k≤r

∑
I r-good

∑
J :2r−k	(I )=	(J )

〈T DIf,DJ g〉

=
∑

m∈Zd

∑
0≤k≤r

∑
H

∑
I :I (r)=H
I r-good

∑
J :J (k)=H +̇m

〈T DIf,DJ g〉

=
∑

m∈Zd

∑
0≤k≤r

∑
H

〈T D
(r, good)

H f,D
(k)

H +̇m
g〉

=
∑

m∈Zd

∑
H

〈T D
(r, good)

H f,P
(r+1)

H +̇m
g〉.

�
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Proposition 4.4. Let T be a Calderón–Zygmund operator, f,g ∈ L2(μ) as in
Section 2.1, and r ∈N such that r ≥ 2. Then∑

i

∑
j<i−r

〈T (χijDif ),ψijDjg〉

=
∑

m∈Zd

m �=0

∑
H

〈T D
(r, good)

H f,1H +̇m〉(〈g〉H +̇m − 〈g〉H )

+
∑
H

〈f,D
(r, good)
H T ∗1〉(〈g〉H − E−∞g),

where

E−∞g :=
{

1
μ(Rd )

´
g(x)dμ(x) if μ(Rd) < ∞,

0 otherwise.

Proof. Before starting, we want to point out that
∑

j<i−r Djg = Ei−rg −E−∞g.
Once this remark has been done, we can proceed to the proof:∑

i

∑
j<i−r

〈T (χijDif ),ψijDjg〉 =
∑

i

∑
j<i−r

〈T φiDif,Djg〉

=
∑

i

〈
T φiDif,

∑
j<i−r

Djg

〉

=
∑

i

〈T φiDif,Ei−rg − E−∞g〉.

Recalling the definition of φi , we can rewrite the second part of this sum as∑
i

〈T φiDif,E−∞g〉 =
∑

i

〈T φiDif,1〉E−∞g

=
∑

i

〈φiDif,T ∗1〉E−∞g =
∑
H

〈D(r, good)

H f,T ∗1〉E−∞g

and ∑
i

〈T φiDif,Ei−rg〉 =
∑

I r-good
J :	(J )=2r 	(I )

〈T DIf,EJ g〉

=
∑
H,J

	(H)=	(J )

〈
T

∑
I :I (r)=H
I r-good

DIf,EJ g

〉

=
∑

m∈Zd

∑
H

〈T D
(r, good)

H f,EH +̇mg〉

=
∑

m∈Zd

∑
H

〈T D
(r, good)

H f,1H +̇m〉(〈g〉H +̇m − 〈g〉H )

+
∑
H

〈T D
(r, good)

H f,1〉〈g〉H .
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We can add the restriction m �= 0, since the summand vanishes for m = 0 in any
case. The self-adjointness of the operator D

(r, good)

H finishes the proof. �

The previous two propositions both introduce a double series over terms of the
form �(H,H +̇m). The following lemma provides a useful rearrangement of such
summations.

Lemma 4.5.

E
∑

m∈Zd\{0}

∑
H

�(H,H +̇m)

= 1

πgood
E

∞∑
k=2

∑
|m|∼2k−2

∑
H k-good

�(H,H +̇m),

where

|m| ∼ 2k−2 def⇔ 2k−3 < |m| ≤ 2k−2.

Proof. Since every m ∈ Zd \ {0} satisfies |m| ∼ 2k−2 for a unique k ≥ 2, and the
k-goodness of H is independent of the position of H (and hence of H +̇m), we
have

E
∑

m∈Zd\{0}

∑
H∈Dσ

�(H,H +̇m)

= 1

πgood

∞∑
k=2

∑
|m|∼2k−2

∑
H∈D0

E(1k-good(H +̇σ))E�(H +̇σ,H +̇σ +̇m)

= 1

πgood

∞∑
k=2

∑
|m|∼2k−2

∑
H∈D0

E(1k-good(H +̇σ)�(H +̇σ,H +̇σ +̇m))

= 1

πgood
E

∞∑
k=2

∑
|m|∼2k−2

∑
H∈Dσ k-good

�(H,H +̇m).

�

The usefulness of the previous rearrangement is in the following:

Lemma 4.6. If H is k-good and |m| ≤ 2k−2, then H +̇m ⊂ H(k).

Proof. Let K := H(k), so that 	(K) = 2k	(H) and dist(H,Kc) ≥ 1
4	(K) =

2k−2	(H) by the definition of k-goodness. If x is any interior point of H , then this
means that dist(x,Kc) > 2k−2	(H). Every interior point y of H +̇m has the form
y = x + m	(H) for such an x, and hence dist(y,Kc) ≥ dist(x,Kc) − |m|	(H) >

2k−2	(H) − 2k−2	(H) = 0. Thus y ∈ K for every interior point y ∈ H +̇m, and
hence H +̇m ⊂ K . �
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A combination of Propositions 4.2 and 4.4 with Lemma 4.5 shows that

E

πgood

∑
i,j
j≤i

〈T (χijDif ),ψijDjg〉

= E

πgood

( ∑
i,j

0≤i−j≤r

+
∑
i,j

j<i−r

)
〈T (φiDif ),Djg〉

= E

πgood

∑
H

〈T D
(r,good)

H f,P
(r+1)
H g〉

+ E

π2
good

∞∑
k=2

∑
|m|∼2k−2

∑
H k-good

〈T D
(r,good)

H f,P
(r+1)

H +̇m
g〉

+ E

π2
good

∞∑
k=2

∑
|m|∼2k−2

∑
H k-good

〈T D
(r,good)

H f,1H +̇m〉(〈g〉H +̇m − 〈g〉H )

+ E

πgood

∑
H

D
(r,good)

H T ∗1(〈g〉H − E−∞g)

=: Eω(2−1)〈R1f,g〉 +E

∞∑
k=2

ω(2−k)〈Rkf,g〉

+E

∞∑
k=2

ω(2−k)〈Qkf,g〉 +E〈f,�T ∗1g〉,

where

R1f := 1

πgood

1

ω( 1
2 )

∑
H

P
(r+1)
H T D

(r,good)

H f,

Rkf := 1

πgood

∑
|m|∼2k−2

∑
H k-good

1

ω(2−k)
P

(r+1)

H +̇m
T D

(r,good)

H f, k ≥ 2,

Qkf := 1

π2
good

∑
|m|∼2k−2

∑
H k-good

〈T D
(r,good)

H f,1H +̇m〉
ω(2−k)

(
1H +̇m

μ(H +̇m)
− 1H

μ(H)

)
,

and

�T ∗1g :=
∑
H

D
(r,good)

H T ∗1(〈g〉H − E−∞g).

Note that we have incorporated the factor ω(2−k) into the definition of Rk and
Qk to achieve a favorable normalization of the series.
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For reasons of symmetry, we also have a similar decomposition of the other
half of the double sum, namely

E

πgood

∑
i,j
i<j

〈T (χijDif ),ψijDjg〉

= E

πgood

∑
i,j
i<j

〈Dif,T ∗(φjDjg)〉

= Eω(2−1)〈f, R̃1f 〉 +E

∞∑
k=2

ω(2−k)〈f, R̃kg〉 +E

∞∑
k=2

ω(2−k)〈f, Q̃kg〉

+E〈�T 1f,g〉,
where R̃k and Q̃k have the same form as Rk and Qk , respectively, with the only
difference that

• T is replaced by T ∗ throughout, and
• P (r+1) in Rk is replaced by P (r) in R̃k (cf. Remark 4.3).

Defining Q1 := 0 and

R−k := R̃∗
k , Q−k := Q̃∗

k,

we then obtain the desired identity

〈Tf,g〉 = E
∑
k∈Z
k �=0

ω(2−|k|)(〈Rkf,g〉 + 〈Qkf,g〉) +E(〈�T 1f,g〉 + 〈f,�T ∗1g〉).

It remains to establish the claimed properties of the operators.

5. Dyadic Representation: Estimates

Having established the dyadic representation on an algebraic level, we turn to
the relevant estimates for the various terms in the obtained expansion. Since the
operators Rk and Qk are essentially similar for positive and negative values of k,
we only explicitly deal with k ≥ 1.

5.1. The Paraproducts

Our dyadic decomposition of the operator T led to two dyadic paraproducts of
the form

�bf =
∑
H∈D

D
(r,good)

H b(〈f 〉H − E−∞f ), b ∈ {T 1, T ∗1},

=
∑
H∈D

( ∑
I :I (r)=H

dist(I,Hc)≥ 1
4 	(H)

DIb

)
〈f 〉H −

( ∑
H∈D

D
(r,good)

H b

)
E−∞f

=: �1
bf − �2

bf.
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These are a standard part of our decomposition, which have been studied in ex-
actly the same form in [20], where the following result is proved.

Proposition 5.1 ([20], Theorem 7.1). For any λ > 1, we have

‖�1
bf ‖2 ≤ C‖b‖BMO2

λ(μ)‖f ‖2,

where, for p ∈ [1,∞),

‖b‖BMO
p
λ (μ) := sup

Q

inf
a∈C

(
1

μ(λQ)

ˆ
Q

|f − a|p dμ

)1/p

,

and the supremum is over all cubes Q in Rd (including Q = λQ = Rd if
μ(Rd) < ∞).

For the part �2
b , the same estimate is easy.

Lemma 5.2.

‖�2
bf ‖2 ≤ C‖b‖BMO2

λ(μ)‖f ‖2.

Proof. Note that this term is only nonzero if μ(Rd) < ∞, and in this case, noting
that D

(r,good)

H a = 0 for any constant a,

‖�2
bf ‖2 =

∥∥∥∥∑
H

D
(r,good)

H (b − a)

∥∥∥∥
2
|E−∞f |

≤ ‖b − a‖2 · μ(Rd)−1/2‖f ‖2 ≤ ‖b‖BMO2
λ(μ)‖f ‖2

by a suitable choice of a. �

Thus, it remains to check the BMO conditions on b ∈ {T 1, T ∗1} under our as-
sumptions on the operator T . This is also reasonably standard and contained in
the following:

Proposition 5.3. Under the assumptions of Theorem 1.1 and the standard Dini
condition (1.1) with α = 0, we have T 1 ∈ BMO2

λ and T ∗1 ∈ BMO2
λ for any

λ > 1.

Proof. We are going to prove that T 1 ∈ BMO2
λ and the case of the adjoint is

similar. Fix a cube Q and some λ > 1. We denote by xQ the center of the cube Q.
Note that we have |x − xQ| < 1

2	(Q) ≤ 1
2 |y − x| for x ∈ Q and y ∈ (2Q)c

(using the 	∞ metric on Rd for convenience). So, for x ∈ Q and τ ≥ 2, we have

|T 1(τQ)c (x) − T 1(τQ)c (xQ)|
≤
ˆ

(τQ)c
|K(x,y) − K(xQ,y)|dμ(y)

≤ C

ˆ
(2Q)c

ω

( |x − xQ|
|y − xQ|

)
1

|y − xQ|n dμ(y)
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≤ C

∞∑
k=1

ˆ
2k+1Q\2kQ

ω

(
2−1	(Q)

2k−1	(Q)

)
1

(2k−1	(Q))n
dμ(y)

≤ C

∞∑
k=1

ω(2−k)
μ(2k+1Q)

(2k−1	(Q))n

≤ C

∞∑
k=1

ω(2−k) ≤ C

ˆ 1

0
ω(t)

dt

t
.

Additionally, if x ∈ Q and λ ∈ (1,2), then

|T 12Q\λQ(x)| ≤
ˆ

2Q\λQ

|K(x,y)|dμ(y) ≤ C

ˆ
2Q\λQ

1

|x − y|n dμ(y)

≤ C

ˆ
2Q\λQ

1

(λ − 1)n	(Q)n
dμ(y) ≤ C

1

(λ − 1)n
.

Set τ = max{2, λ} and aQ = T 1(τQ)c (xQ). Thenˆ
Q

|T 1(x) − aQ|2 dμ(x)

≤ C

ˆ
Rd

|T 1λQ(x)|2 dμ(x) + C

ˆ
Q

|T 1τQ\λQ(x)|2 dμ(x)

+ C

ˆ
Q

|T 1(τQ)c (x) − T 1(τQ)c (xQ)|2 dμ(x)

≤ Cμ(λQ) + C
1

(λ − 1)n
μ(Q) + C

( ∞∑
k=0

ω(2−k)

)2

μ(Q)

≤ Cμ(λQ),

where the middle term of the decomposition is equal to zero for λ ≥ 2. �

5.2. The Operator R1

We have
R1 =

∑
H

B
(1)
H ,

where the operator B
(1)
H is given by

πgoodω

(
1

2

)
B

(1)
H f := P

(r+1)
H T D

(r,good)

H f =
∑

I r-good
I (r)=H

∑
J :J⊆H⊆J (r)

DJ T DIf

=
∑

I r-good
I (r)=H

∑
J :J⊆H⊆J (r)

∑
i,j

〈T ϕi
I , ϕ

j
J 〉〈ϕi

I , f 〉ϕj
J . (5.1)

Lemma 5.4.
‖T ϕi

I‖2 ≤ C.
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Proof. Since ϕi
I takes a constant value 〈ϕi

I 〉I ′ on each I ′ ∈ ch(I ), it follows from
the testing condition ‖T 1I‖2 ≤ Cμ(I)1/2 that

‖T ϕi
I‖2 =

∥∥∥∥T
∑

I ′∈ch(I )

〈ϕi
I 〉I ′1I ′

∥∥∥∥
2

≤
∑

I ′∈ch(I )

|〈ϕi
I 〉I ′ |‖T 1I ′ ‖2

≤ C
∑

I ′∈ch(I )

|〈ϕi
I 〉I ′ |μ(I ′)1/2

≤ C2d/2
( ∑

I ′∈ch(I )

|〈ϕi
I 〉I ′ |2μ(I ′)

)1/2

≤ C‖ϕi
I‖2 = C,

where we incorporated the dimensional factor 2d/2 into C. �

It follows that

|〈B(1)
H f,g〉| ≤ C

∑
I r-good
I (r)=H

∑
J :J⊆H⊆J (r)

∑
i,j

|〈ϕi
I , f 〉||〈ϕj

J , g〉|

≤ C

( ∑
I :I (r)=H

∑
i

|〈ϕi
I , f 〉|2

)1/2( ∑
J :J⊆H⊆J (r)

∑
j

|〈ϕi
I , f 〉|2

)1/2

= C‖D(r)
H f ‖2‖P (r+1)

H g‖2

using the Cauchy–Schwarz inequality and the fact that the total number of terms
is bounded by a dimensional constant. Hence

|〈R1f,g〉| ≤
∑
H

|〈B(1)
H f,g〉|

≤ C

(∑
H

‖D(r)
H f ‖2

2

)1/2(∑
H

‖P (r+1)
H g‖2

)1/2

≤ C‖f ‖2
√

r + 1‖g‖2 ≤ C‖f ‖2‖g‖2,

incorporating the fixed constant
√

1 + r into C.
By (5.1) the kernel b

(1)
H of B

(1)
H is given by

b
(1)
H (x, y) = 1

πgoodω( 1
2 )

∑
I r-good
I (r)=H

∑
J :J⊆H⊆J (r)

∑
i,j

〈T ϕi
I , ϕ

j
J 〉ϕi

I (y)ϕ
j
J (x).

In general, there are no good pointwise bounds for this expression; however, if μ

is a doubling measure, then

|ϕi
I (y)| ≤ C

μ(I)1/2
1I (y) ≤ C

μ(H)1/2
1I (y),
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with a similar bound for |ϕj
J (x)|. Thus

|b(1)
H (x, y)| ≤ C

∑
I r-good
I (r)=H

1I (y)

μ(H)1/2

∑
J :J⊆H⊆J (r)

1J (x)

μ(H)1/2

∑
i,j

1

≤ C

μ(H)
1H (x)1H (y).

5.3. The Operators Rk , k ≥ 2

For the analysis of Rk (and further of Qk), it is convenient to take the new sum-
mation variable K := H(k), which is a common ancestor of both H and H +̇m for
k-good H and |m| ∼ 2k−2. This leads to the decomposition

Rkf =
∑
K

1

πgood

∑
|m|∼2k−2

∑
H k-good
H(k)=K

1

ω(2−k)
P

(r+1)

H +̇m
T D

(r,good)

H f =:
∑
K

B
(k)
K f,

where

B
(k)
K = 1

πgood

∑
|m|∼2k−2

∑
H k-good
H(k)=K

∑
I r-good
I (r)=H

∑
J :J⊆H +̇m

⊆J (r)

1

ω(2−k)
DJ T DI

has the kernel

b
(k)
K (x, y) = 1

πgood

∑
|m|∼2k−2

∑
H k-good
H(k)=K

∑
I r-good
I (r)=H

∑
J :J⊆H +̇m

⊆J (r)

∑
i,j

〈T ϕi
I , ϕ

j
J 〉

ω(2−k)
ϕi

I (y)ϕ
j
J (x).

Lemma 5.5. In the last sum, we have∣∣∣∣ 〈T ϕi
I , ϕ

j
J 〉

ω(2−k)
ϕi

I (y)ϕ
j
J (x)

∣∣∣∣ ≤ C

	(K)n
1I (y)1J (x).

Proof. Since I is r-good and I (r) = H , it follows from the definition that
dist(I,Hc) ≥ 1

4	(H). Since J ⊂ H +̇m and |m| ∼ 2k−2, we further deduce that
dist(I, J ) � |m|	(H) � 2k	(H) = 	(K). Denoting by cI the center of I and using
the vanishing integral of ϕi

I and kernel regularity, we obtain

|〈T ϕi
I , ϕ

j
J 〉| =

∣∣∣∣
¨

K(x,y)ϕi
I (y)ϕ

j
J (x) dμ(y)dμ(x)

∣∣∣∣
=

∣∣∣∣
¨

(K(x, y) − K(x, cI ))ϕ
i
I (y)ϕ

j
J (x) dμ(y)dμ(x)

∣∣∣∣
≤
¨

Cω

( |y − cI |
|x − cI |

)
1

|x − cI |d |ϕi
I (y)| |ϕj

J (x)|dμ(y)dμ(x)

≤ C
ω(2−k)

	(K)n
‖ϕi

I‖1‖ϕj
J ‖1.
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The proof is completed by recalling that ϕi
I is supported on I and

‖ϕi
I‖1‖ϕi

I‖∞ ≤ C,

with similar observations for ϕ
j
J . �

Lemma 5.6. The kernel b
(k)
K of B

(k)
K satisfies

|b(k)
K (x, y)| ≤ C

	(K)n
1K(x)1K(y),

and hence

|〈B(k)
K f,g〉| ≤ C

	(K)n
‖1Kf ‖1‖1Kg‖1 ≤ C‖f ‖2‖g‖2.

Proof. From the previous lemma we conclude that

|b(k)
K (x, y)| ≤ C

	(K)n

∑
|m|∼2k−2

∑
H k-good
H(k)=K

∑
I r-good
I (r)=H

∑
J :J⊆H +̇m

⊆J (r)

1I (y)1J (x)

≤ C

	(K)n

∑
|m|∼2k−2

∑
H k-good
H(k)=K

1H (y)1H +̇m(x),

since the cubes I : I (r) = H are pairwise disjoint, and the cubes J : J ⊆ H +̇m ⊆
J (r) have overlap at most r + 1 times at any point, and we have incorporated this
fixed constant into C.

Consider a fixed pair (x, y). Then there is at most one H such that H(k) = K

and H � y. For this H , there is at most one integer m such that H +̇m � x. So
altogether there is at most one nonzero summand. Since both H and H +̇m are
subsets of K , the nonzero summand can only exist if (x, y) ∈ K ×K . This proves
the required kernel bound.

In the operator bound, the first estimate is immediate, and the second one fol-
lows by ‖1Kf ‖1 ≤ μ(K)1/2‖f ‖2 (applied to g as well) and μ(K) ≤ C	(K)n.

�

Lemma 5.7.

|〈Rkf,g〉| ≤ C‖f ‖2‖g‖2.

Proof. In the summation defining B
(k)
K , we observe that I (r) = H and H(k) = K ,

and hence I (r+k) = K , and J (j) = H +̇m for some j = 0, . . . , r and (H +̇m)(k) =
K , so that J (j+k) = K for some j = 0, . . . , r . It follows that

B
(k)
K =

r∑
j=0

D
(k+j)
K B

(k)
K D

(k+r)
K

= (P
(k+r+1)
K − P

(k)
K )B

(k)
K D

(k+r)
K ,
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and hence

|〈Rkf,g〉| ≤
∑
K

|〈(B(k)
K D

(k+r)
K f, (P

(k+r+1)
K − P

(k)
K )g〉|

≤ C

(∑
K

‖D(k+r)
K f ‖2

2

)1/2(∑
K

‖(P (k+r+1)
K − P

(k)
K )g‖2

2

)1/2

≤ C‖f ‖2

( r∑
j=0

∑
K

‖D(k+j)
K g‖2

2

)1/2

≤ C‖f ‖2
√

r + 1‖g‖2

≤ C‖f ‖2‖g‖2. �

5.4. The Operators Qk

Noting that Q1 := 0 trivially satisfies the required estimates, we concentrate on
Qk with k ≥ 2.

Taking the new summation variable K := H(k) as for Rk , we are led to the
decomposition

Qkf =
∑
K

∑
|m|∼2k−2

∑
H k-good
H(k)=K

〈T D
(r,good)

H f,1H +̇m〉
π2

goodω(2−k)

(
1H +̇m

μ(H +̇m)
− 1H

μ(H)

)

=:
∑
K

A
(k)
K f.

Lemma 5.8.
A

(k)
K = P

(k+1)
K A

(k)
K D

(k+r)
K .

Proof. Expanding

D
(r,good)

H =
∑

I r-good
I (r)=H

DI

and noting that I (r) = H and H(k) = K imply I (r+k) = K , the identity A
(k)
K =

A
(k)
K D

(k+r)
K is immediate.

Concerning the postcomposition of A
(k)
K by P

(k+1)
K , we make the following

observations. First, A
(k)
K f is supported on K , which again depends on the fact

that the k-goodness of H , together with |m| ∼ 2k−2, implies that H +̇m is con-
tained in H(k) = K . Second, A

(k)
K f is constant on the kth-order descendants of

K , which is immediate from its expression as a superposition of the relevant in-
dicator functions. Third,

´
A

(k)
K f dμ = 0, which is also immediate from the fact

that this property clearly holds for each of the summands,ˆ (
1H +̇m

μ(H +̇m)
− 1H

μ(H)

)
dμ = 0.
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These three properties characterize the range of the projection P
(k+1)
K , and hence

A
(k)
K = P

(k+1)
K A

(k)
K . �

The kernel of A
(k)
K is given by

a
(k)
K (x, y)

=
∑

|m|∼2k−2

∑
H k-good
H(k)=K

∑
I r-good
I (r)=H

∑
i

〈T ϕi
I ,1H +̇m〉

π2
goodω(2−k)

ϕi
I (y)

(
1H +̇m(x)

μ(H +̇m)
− 1H (x)

μ(H)

)

=: a(k)
K,1(x, y) − a

(k)
K,2(x, y),

where the last two kernels are defined in a natural way by taking all the terms
of the form 1H +̇m(x)/μ(H +̇m) to the first one and all those of the form
1H (x)/μ(H) to the second.

Lemma 5.9. In the last sum, we have∣∣∣∣ 〈T ϕi
I ,1H +̇m〉

ω(2−k)
ϕi

I (y)

∣∣∣∣ ≤ C

	(K)n
μ(H +̇m)1I (y).

Proof. By essentially the same considerations as in the beginning of the proof
of Lemma 5.5, we check that dist(I,H +̇m) � 2k	(H) = 	(K). As in the same
proof, using the vanishing integral of ϕi

I to insert K(x, cI ), where cI is the center
of I , we have

|〈T ϕi
I ,1H +̇m〉| =

∣∣∣∣
¨

K(x,y)ϕi
I (y)1H +̇m(x)dμ(y)dμ(x)

∣∣∣∣
=

∣∣∣∣
¨

(K(x, y) − K(x, cI ))ϕ
i
I (y)1H +̇m(x)dμ(y)dμ(x)

∣∣∣∣
≤
¨

ω

( |y − cI |
|x − cI |

)
C

|x − cI |d |ϕi
I (y)|1H +̇m(x)dμ(y)dμ(x)

≤ Cω(2−k)
‖ϕi

I‖1μ(H +̇m)

	(K)n
.

The proof is completed by recalling that ϕi
I is supported on I and using the esti-

mate ‖ϕi
I‖1‖ϕi

I‖∞ ≤ C. �

Lemma 5.10.

|a(k)
K,1(x, y)| ≤ C

	(K)n
1K(x)1K(y).

Proof. From the previous lemma and the disjointness of I with I (r) = H we have

|a(k)
K,1(x, y)| ≤

∑
|m|∼2k−2

∑
H k-good
H(k)=K

C

	(K)n
1H (y)1H +̇m(x).
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For a pair (x, y), there is at most one H such that H(k) = K and H � y, and
fixing this H , there is at most one integer m such that H +̇m � x. Moreover,
(x, y) ∈ K × K is a necessary condition for the existence of such H and m. This
proves the asserted bound. �

Lemma 5.11.

|a(k)
K,2(x, y)| ≤ C

∑
H :H(k)=K

1H (x)1H (y)

μ(H)
.

Proof. By the same initial considerations as in the previous lemma, we have

|a(k)
K,2(x, y)| ≤

∑
|m|∼2k−2

∑
H k-good
H(k)=K

C

	(K)n
μ(H +̇m)1H (y)

1H (x)

μ(H)
.

For each fixed H , we observe that the cubes H +̇m, with |m| ∼ 2k−2 are pairwise
disjoint and contained in K , and thus∑

|m|∼2k−2

μ(H +̇m) ≤ μ(K) ≤ C	(K)n.

�

Lemma 5.12.

|〈A(k)
K f,g〉| ≤ C‖f ‖2‖g‖2.

Proof. Based on the kernel bounds for the two part of A
(k)
K , it follows that

|〈A(k)
K f,g〉| ≤ C

	(K)n
‖1Kf ‖1‖1Kg‖1 + C

∑
H :H(k)=K

‖1H f ‖1‖1H g‖1

μ(H)
.

The first term has the desired bound by the easy argument that we already gave
in Lemma 5.6. Concerning the second term, two applications of the Cauchy–
Schwarz inequality give

∑
H :H(k)=K

‖1H f ‖1‖1H g‖1

μ(H)
≤

∑
H :H(k)=K

‖1H f ‖2‖1H g‖2

≤
( ∑

H :H(k)=K

‖1H f ‖2
2

)1/2( ∑
H :H(k)=K

‖1H g‖2
2

)1/2

= ‖1Kf ‖2‖1Kg‖2,

and this completes the proof. �

Lemma 5.13.

|〈Qkf,g〉| ≤ C
√

k‖f ‖2‖g‖2.
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Proof.

|〈Qkf,g〉| ≤
∑
K

|〈AKD
(k+r)
K f,P

(k+1)
K g〉|

≤ C

(∑
K

‖D(k+r)
K f ‖2

2

)1/2(∑
K

‖P (k+1)
K g‖2

2

)1/2

≤ C‖f ‖2

( k∑
j=0

∑
K

‖D(j)
K g‖2

2

)1/2

≤ C‖f ‖2
√

k + 1‖g‖2 ≤ C
√

k‖f ‖2‖g‖2,

using k ≥ 2 in the last step. �

We have now completed the proof of Theorem 1.1, except for the last claim con-
cerning the representation of the new operators Qk and Rk as dyadic shifts. Note
that this is already enough for the deduction of Corollary 1.2.

6. The Shift Structure of the New Operators

A dyadic shift of type (u, v) can be defined as an operator of the form

Su,v =
∑
K∈D

C
(u,v)
K ,

where the operators C
(u,v)
K satisfy the orthogonality property

C
(u,v)
K = D

(u)
K C

(u,v)
K D

(v)
K ,

and their kernels c
(u,v)
K have the pointwise bound

|c(u,v)
K (x, y)| ≤ C

1K(x)1K(y)

μ(K)
.

Since

D
(u)
K f =

∑
I :I (u)=K

∑
i

ϕi
I 〈ϕi

I , f 〉

and ‖ϕi
I‖1 ≤ Cμ(I)1/2, this is easily seen to coincide with the definition in terms

of Haar functions that is used in several papers.

6.1. The Operators Rk

We concentrate on k ≥ 1, since the case of negative k is similar and essentially
dual to this one. (Note that the adjoint of a dyadic shift of type (u, v) is a shift of
type (v,u).) Then

Rk =
∑
K∈D

B
(k)
K , B

(k)
K =

k+r∑
j=k

D
(j)
K B

(k)
K D

(k+r)
K ,
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and the kernel b
(k)
K of B

(k)
K satisfies

|b(k)
K (x, y)| ≤ C

1K(x)1K(y)

	(K)n
≤ C

1K(x)1K(y)

μ(K)
.

Since D
(j)
K is a difference of averaging operators (or by the pointwise bounds

for the Haar functions), it follows that the kernel of D
(j)
K B

(k)
K satisfies the same

bound. Thus, letting

C
(j,k+r)
K := D

(j)
K B

(k)
K , Sj,k+r :=

∑
K

C
(j,k+r)
K ,

it is immediate that Sj,k+r is a shift of type (j, k + r) and

Rk =
k+r∑
j=k

Sj,k+r

is a sum of r + 1 shifts of complexity at most k + r .

6.2. The Operators Qk

For k ≥ 1 again, recall that

Qk =
∑
K∈D

A
(k)
K , A

(k)
K =

k∑
j=0

D
(j)
K A

(k)
K D

(k+r)
K ,

where the kernel a
(k)
K of A

(k)
K satisfies

|a(k)
K (x, y)| ≤ C

1K(x)1K(y)

	(K)n
+ C

∑
H :H(k)=K

1H (x)1H (y)

μ(H)
.

Then we can split

A
(k)
K = A

(k.1)
K +

∑
H :H(k)=K

A
(k,2)
H ,

where the corresponding kernels a
(k,1)
K and a

(k,2)
H satisfy

|a(k,1)
K (x, y)| ≤ C

1K(x)1K(y)

μ(K)
, |a(k,2)

H (x, y)| ≤ C
1H (x)1H (y)

μ(H)
.

Thus

Qk =
k∑

j=0

∑
K

D
(j)
K

(
A

(k)
K,1 +

∑
H :H(k)=K

A
(k,2)
H

)
D

(k+r)
K , (6.1)

and it is immediate that each ∑
K

D
(j)
K A

(k)
K,1D

(k+r)
K

is a dyadic shift of order (j, k + r). We will prove the following:
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Lemma 6.1. ∑
K

D
(j)
K

∑
H :H(k)=K

A
(k,2)
H D

(k+r)
K

is a dyadic shift of order (0, k − j + r).

Once this is proved, it follows from (6.1) that Qk is a sum of 2(k + 1) shifts of
complexity at most k + r .

Proof of Lemma 6.1. As written, the series looks formally more like a shift of
order (j, k+r), but the kernel of

∑
H :H(k)=K A

(k,2)
H does not have a correct bound.

Thus we need to reorganize the summation:∑
K

D
(j)
K

∑
H :H(k)=K

A
(k,2)
H D

(k+r)
K

=
∑
K

( ∑
J :J (j)=K

DJ

)( ∑
L:L(j)=K

∑
H :H(k−j)=L

A
(k.2)
H

)( ∑
M:M(j)=K

D
(k−j+r)
M

)

=
∑
J

DJ

∑
H :H(k−j)=J

A
(k,2)
H D

(k−j+r)
J ,

using support considerations to see that only the terms with M = L = J are
nonzero and simplifying

∑
K

∑
J :J (k)=K = ∑

J .
Now, the right-hand side has the structure of a shift of order (0, k − j + r), and

we only need to verify the bound for the kernel. The kernel of DJ

∑
H A

(k,2)
H is

given by∣∣∣∣∑
i

ϕi
J (x)

ˆ
ϕi

J (z)
∑

H :H(k−j)=J

a
(k,2)
H (z, y) dμ(z)

∣∣∣∣
≤ C

∑
i

1J (x)

μ(J )1/2

∑
H :H(k−j)=J

ˆ
1J (z)

μ(J )1/2

1H (z)1H (y)

μ(H)
dμ(z)

≤ C
1J (x)

μ(J )

∑
H :H(k−j)=J

1H (y) = C
1J (x)1J (y)

μ(J )
,

which is the correct bound. Since D
(k−j+r)
J is a difference of averaging op-

erators (or from the bounds for Haar functions), we find that the kernel of
DJ

∑
H A

(k,2)
H D

(k−j+r)
J has the same bound. This completes the proof. �

Now we have completed the proof of all claims in Theorem 1.1 and therefore also
the proof of Corollary 1.3.

7. The Weak-Type Bounds

In this final section, we complete the proof of Theorem 3.1 by proving the asserted
weak-type estimates in the case that μ is a doubling measure.
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Proposition 7.1. Let μ be a doubling measure on Rd , and let Uk be an operator
of the form

Uk =
∑
K∈D

V
(k)
K , V

(k)
K = 1KV

(k)
K P

(k+r+1)
K .

Suppose further that

‖V (k)
K ‖L1(μ)→L1(μ) ≤ C, ‖Uk‖L2(μ)→L2(μ) ≤ C

√
k.

Then
‖Uk‖L1(μ)→L1,∞(μ) ≤ Ck.

Observe that each of the operators Qk , Rk , Q∗
k , R∗

k is of the form U|k| considered
in the proposition.

Proof. Let f ∈ L1(μ) and λ > 0. We make the usual Calderón–Zygmund de-
composition: Consider the maximal cubes J ∈ D such that 〈|f |〉J > λ; then by
the doubling property 〈|f |〉J ≤ Cλ. Thus the good part

g :=
∑
J

〈f 〉J 1J + f 1�c, � :=
⋃

J,

satisfies ‖g‖∞ ≤ Cλ, ‖g‖1 ≤ ‖f ‖1, and hence ‖g‖2
2 ≤ Cλ‖f ‖1. It follows that

μ({|Ukg| > λ}) ≤ λ−2‖Ukg‖2
2 ≤ Cλ−2(√k‖g‖2

)2 ≤ Ckλ−1‖f ‖1.

Also, the set � := ⋃
J satisfies μ(�) ≤ λ−1‖f ‖1. So it remains to estimate

μ({|Ukb| > λ} \ �), b :=
∑
J

bJ :=
∑
J

(f − 〈f 〉J )1J .

We have

μ({|Ukb| > λ} \ �) ≤ 1

λ

ˆ
�c

|Ukb|dμ ≤ 1

λ

∑
J

ˆ
J c

|UkbJ |dμ

and
1J cUkbJ = 1J c

∑
K

V
(k)
K bJ = 1J c

∑
K�J

V
(k)
K bJ ,

since K must intersect both J and J c to get a nonzero contribution. Moreover,
noting that

V
(k)
K bJ = V

(k)
K P

(k+r+1)
K bJ = V

(k)
K

( ∑
I :I (k+r+1)=K

1I 〈bJ 〉I − 1K 〈bJ 〉K
)

and recalling that
´
J

bJ dμ = 0, we find that 〈bJ 〉I = 0 for all dyadic cubes I with
	(I ) ≥ 	(J ). So the only nonzero contribution can arise if 	(I ) = 2−k−r−1	(K) <

	(J ). In combination with J � K , this implies that J �K ⊆ J (k+r). So altogetherˆ
J c

|UkbJ |dμ ≤
∑

K:J�K⊆J (k+r)

‖V (k)
K bJ ‖1

≤
∑

K:J�K⊆J (k+r)

C‖bJ ‖1 = (k + r)C‖bJ ‖1 ≤ Ck‖bJ ‖1,
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since k ≥ 1 and r is fixed. Summing over J , we conclude that

μ({|Ukb| > λ} \ �) ≤ 1

λ

∑
J

ˆ
J c

|UkbJ |dμ ≤ 1

λ

∑
J

Ck‖bJ ‖1 ≤ Ck

λ
‖f ‖1,

which completes the proof. �
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