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Simultaneous Flips on Triangulated Surfaces

Valentina Disarlo & Hugo Parlier

Abstract. We investigate a type of distance between triangula-
tions on finite-type surfaces where one moves between triangulations
by performing simultaneous flips. We consider triangulations up to
homeomorphism, and our main results are upper bounds on the dis-
tance between triangulations that only depend on the topology of the
surface.

1. Introduction

The general theme of defining and measuring distances between triangulations
on surfaces plays a role in the study of geometric topology, the geometric group
theory perspective of mapping class groups, and in combinatorial geometry.

A usual measure of distance is the flip distance measured by the number of
flip moves necessary to go from one triangulation to another. With this measure
we associate flip graphs, where vertices are triangulations, and there is an edge
between vertices if the corresponding triangulations differ by a flip. These graphs
appear in a number of contexts, most famously perhaps when the underlying sur-
face is a polygon, and in this case the flip graph is the 1-skeleton of a polytope
(the associahedron) [9; 10]; these graphs are finite, and their diameters are now
completely known [7; 8]. In general, provided that the surface has enough topol-
ogy, flip graphs are not finite and are combinatorial models for homeomorphism
groups acting on surfaces. A natural finite graph associated with a surface is its
modular flip graph, where we consider triangulations up to a homeomorphism.
This graph (when defined properly and up to a few exceptions) is exactly the
quotient of the flip graph by its graph automorphisms [6; 4].

In this paper, we consider a natural variant by measuring the distance between
triangulations by considering the minimal number of simultaneous flip moves
necessary between them. So in this case, flips that are made on disjoint quadrilat-
erals can be performed simultaneously. The simultaneous flip distance has been
studied in the case of plane triangulations [1] (note there is slight difference in
the definition of a triangulation) but also finds its roots in related problems in
Teichmüller theory. A related problem in surface theory is to measure the dis-
tance between surfaces, and when these surfaces are hyperbolic and have the same
topology, these distances and the related metric spaces give rise to the geometric
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study of Teichmüller and moduli spaces. In these spaces, several of the impor-
tant metrics (namely the Teichmüller and Thurston metrics) are �∞ metrics. The
simultaneous flip metric can be thought of as a combinatorial analogue to these
metrics.

Our main goal is to study the diameters of modular flip graphs of finite-type
orientable surfaces endowed with this distance. In particular, we are interested
in how these diameters grow as functions of the number of marked points (or
punctures) and the genus of the underlying surface. There are two possible types
of marked points depending on whether they are labeled or not. This is equivalent
to asking whether we consider the quotient by surface homeomorphisms, which
fix marked points either individually or globally. Our methods allow us to show
the following:

Theorem 1.1. There exists an explicit constant U > 0 such that the following
holds. Let �g,n be a surface of genus g with n labeled marked points. Then any
two triangulations of �g,n up to homeomorphism are related by at most

U(log(g + n))2

simultaneous flip moves.

In other terms, this quantity is an upper bound on the diameter diam(MF s(�g,n))

of the modular flip graph. We prove this result in different contexts and with
different explicit constants in front of the leading term; although the constants are
explicit, we insist on the fact that it is really the order of growth that we have
focused on.

We point out that we do not know whether the growth rate is optimal; the best
lower bounds we know are of order log(κ), where κ is the arc complexity of
the surface. It does not seem a priori obvious how to fill the gap nor even what
to conjecture as the right rate of growth (see Section 6). However, in the case of
unlabeled marked points, we show that the growth is at most log(n) in terms of the
number of marked points. As in the case of triangulations of planar configurations
of points, we cannot hope for better (see Section 6).

Organization

In the next section, we introduce the objects we will work with and prove two
lemmas. In Section 3, we prove the main theorem for punctured spheres, and in
Section 4, we prove it for genus g surfaces with a single puncture. These results
allow us to deduce the general upper bound in Section 5. In the final section, we
discuss lower bounds and further questions.

2. Preliminaries

In our setup, � is a topological orientable connected finite-type surface with a
finite set of marked points on it. Its boundary can consist of marked points and
possibly boundary curves, with the additional condition that each boundary curve
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Figure 1 A flip

Figure 2 The central arc is not flippable

has at least one marked point on it. Marked points can be labeled or unlabeled.
Sometimes we will call punctures the marked points that do not lie on a boundary
curve. We will be interested in the combinatorics of arcs and triangulations of �.
The arcs we consider are isotopy classes of simple arcs based at the marked points
of �. A multiarc is a union of distinct isotopy classes of arcs disjoint except,
possibly, at their endpoints. A triangulation of � is a maximal multiarc on � (note
that this definition is not standard everywhere). The triangulations we consider
here are allowed to contain loops and multiple edges; in particular, triangles may
share more than a single vertex or a boundary arc.

The arc complexity κ(�) is the number of arcs in (any) triangulation of �.
The Euler characteristic tells us that κ(�) = 6g + 3b + 3s + p − 6, where g is
the genus of �, s is the number of punctures, b is the number of boundary curves,
and p is the number of marked points on the boundary curves.

The modular flip graph MF(�) is a graph whose vertices are triangulations
of � with vertices in the set of marked points of � up to homeomorphism. The
homeomorphisms we consider here preserve the set of marked points; in particu-
lar, they fix the set of the labeled marked points pointwise, and they are allowed to
permute the unlabeled marked points. Two vertices of MF(�) are joined by an
edge if the two underlying triangulations differ by exactly one arc; equivalently,
two triangulations are joined by an edge if they differ by a flip, that is, the opera-
tion of replacing one diagonal with the other one in a quadrilateral (see Figure 1).

An arc that can be flipped is called flippable, and all arcs are flippable except
those contained in a punctured monogon (see Figure 2).

The modular flip graph MF(�) can also be described as the quotient of the
flip graph of � modulo the action of the mapping class group (see [5; 6]).

In this paper, we are interested in the modular simultaneous flip graph
MF s(�). This is also a graph whose vertices are the triangulations of � up to
homeomorphisms. Here two vertices are joined by an edge if the two underlying
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triangulations differ by a finite number of flips supported on disjoint quadrilater-
als on �, that is, a finite number of flips that can be performed simultaneously
on �.

The following result by Bose, Czyzowicz, Gao, Morin, and Wood is Theo-
rem 4.4 in [1]. It is both a prototype for what will be explored and a tool that we
shall exploit.

Theorem 2.1. There exists a constant K > 0 such that the following is true. Let
Pn be a polygon with n vertices, and let T and T ′ be two triangulations of Pn.
Then it is possible to relate T to T ′ in at most K log(n) simultaneous flips.

The constant K is computable, and in [1] it is shown that K can be taken to be
less than 44. We further will not be particularly concerned in optimizing constants
since the main point is the order of growth. However, the constants will be com-
putable and we will indicate exact upper bounds that follow from our methods.

An obvious consequence of the theorem stated is the following. Given a trian-
gulation T of Pn, let Tv be the unique triangulation of Pn with maximal degree
in v. Then the simultaneous flip distance between T and Tv is at most K log(n).
A result of this type is true in any context, as stated in the following lemma.

Lemma 2.2. Let v be a puncture on a surface �, and let T be a triangulation
of �. Then there exists a sequence of at most H log(κ(�)) simultaneous flips
applied to T such that on the resulting triangulation, v is of maximal degree. The
constant H can be taken equal to 100.

Proof. When � is a polygon, this is a consequence of the previous theorem (with
a better constant). We can thus suppose that � has some topology.

We begin by cutting � along a multiarc made of 2g + n − 1 arcs of T such
that the resulting surface is a connected polygon with 4g + 2n − 2 sides.

We now choose a copy of v and apply Theorem 2.1 to increase the degree until
it is maximal within the polygon. This step requires at most K log(4g + 2n − 2)

flips.
We now return to the full surface. Note that every triangle now has v as a

vertex. With one simultaneous flip move, we can ensure that every triangle has v

as two of its vertices. To do this, consider a triangle with only one copy of v as a
vertex: exactly one of its three arcs does not have v0 as an endpoint. This arc is
flippable, since otherwise it surrounds a monogon as in Figure 2, and thus there
is a triangle without v as any of its vertices. So the triangles with the property
of having an arc without v as an endpoint come in pairs and form quadrilaterals
together. These arcs can all be flipped simultaneously.

Now it is not difficult to see that with a final simultaneous flip we can ensure
that all triangles have only v as vertices or are what we call petals based in v.
A petal is a triangle like in Figure 2, and its base is the exterior vertex. We thus
have reached a desired triangulation as the degree is maximal in v.
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We can now quantify the procedure: the number of simultaneous flip moves is
bounded above by

K log(4g + 2n − 2) + 2.

Finally, note that when κ(�) ≥ 2, we have

K log(4g + 2n − 2) + 2 ≤ 100 log(κ(�)),

and this completes the proof. �
We recall that the intersection number i(a, b) between two arcs a and b is defined
to be the minimum number of intersection points between two arcs in the homo-
topy classes of a and b (the homotopies are relative to endpoints). The intersection
number of two multiarcs A and B is defined as

i(A,B) =
∑
b∈B

∑
a∈A

i(a, b).

Lemma 2.3. Let a be an arc, and let T be a triangulation of � such that
i(a, b) ≤ 1 for all b ∈ T . Then T can be moved in at most L log(i(a, T ) + 1)

simultaneous flips to a triangulation containing a. The constant L can be taken
equal to 100.

Proof. Assume that i(a, T ) ≥ 1. Consider the set of all triangles of T through
which a passes. They can be assembled into a polygon P , and because a only
intersects every arc of T at most once, it intersects each of the triangles of P once.
Thus a is a diagonal of this polygon. The polygon has complexity κ = i(a, T ) by
construction and so has i(a, T ) + 3 vertices. Consider any triangulation Ta of
P containing a: we now apply Theorem 2.1 to pass from T to Ta in at most
K log(i(a, T ) + 3) < 100 log(i(a, T ) + 1) moves. �

3. Punctured Spheres

In this section, we focus our attention on finding upper bounds on the simultane-
ous distance between triangulations of punctured spheres and disks with a single
marked point on the boundary.

We begin by proving the following theorem for �′
n, a punctured disk with n

marked points inside and a single marked point on the boundary.

Theorem 3.1. There exists A > 0 such that diam(MF s(�′
n)) < A(log(n + 1))2.

The constant A can be taken equal to 1,000.

Proof. Consider T ,T ′ ∈MF s(�′
n) and denote by v0 the boundary vertex of �′

n.
We begin by flipping both T and T ′ until the degree of v0 is maximal. By

Lemma 2.2 this step requires at most H log(κ(�′
n)) = H log(3n − 2) moves for

each triangulations.
The result is a triangulation in which every puncture has an arc joining it to v0,

which in turn is surrounded by an arc. As previously, we call the unique triangle
containing a given puncture a petal (see Figure 3), and the complement of the
union of the petals is an (n + 1)-gon with n + 1 copies of v0 as its vertices.
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Figure 3 The shaded area is triangulated (so arcs have both end-
points on v0)

Figure 4 The shaded areas are triangulated in the same fashion
around each petal

For each of our two triangulations, we will now perform the same procedure.
We begin by looking at the polygon; one of the edges corresponds to the boundary
arc of �′

n, say a. We give the vertices of the polygon a cyclic order with p0 being
on the left of a, and pn on the right.

By Theorem 2.1 any two triangulations of the polygon are at the distance
roughly log(n) apart, and we will use that to obtain a special type of triangulation.
More precisely, we move until the degree of pn is maximal. By Theorem 2.1 this
step takes at most K log(n + 1) flips.

We now return to the petals. Figure 4 represents the result of the previous step
around a petal. The goal is to split the vertices into two groups, both surrounded
by an arc: one group with all vertices v1 to v�n/2� and the other group with the
remaining vertices. This can be done in two steps.

The first step takes two moves: flip (simultaneously) all arcs surrounding the
petals containing vertices v1 to v�n/2� and then flip all arcs between v0 and vk for
k = 1, . . . , �n

2 �. Note that there is one possible restriction: if one of these vertices
is the rightmost (where right and left are as in Figure 4), then it should not be
moved at all. After this process, it will be the leftmost vertex among all vertices
v0 to v�n/2� but to the right of all other vertices.
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(a) Breaking the petal. . . (b). . . and building it elsewhere

Figure 5 The first step

The result around an individual petal is illustrated in Figure 5(a).
We then flip symmetrically as in Figure 5(b).
The result is again a triangulation with petals, but this time the petals with

vertices v1 to v�n/2� are grouped together with respect to the left-right order.
The second step is to move in the polygon on complement of the petals to

create a triangulation that contains two special arcs b, c: one that surrounds the
petals containing v1 to v�n/2� and the other that surrounds the remaining petals.
Note that a, b, c are the arcs of a triangle. How the rest of the triangulation looks
like is irrelevant. By Theorem 2.1 this step takes at most K log(n + 1) flips.

Now we move (simultaneously) inside each arc b and c, which surround re-
spectively �n

2 � and n − �n
2 � vertices. Denote by �b and �c the two subsurfaces

bounded by b and c. By induction on n the number of flips inside each of the two
subsurfaces is at most

A log2
(⌊

n

2

⌋
+ 1

)
.

The distance between T and T ′ is at most

d(T ,T ′) ≤ A log2
(⌊

n

2

⌋
+ 1

)
+ 2(2K log(n + 1) + H log(3n − 2)) + 4

≤ A log2(n + 1).

A direct computation proves that when A is large enough (for example A =
1,000), the last inequality holds for every n ≥ 1. �
From Theorem 3.1 the same type result can be deduced for a punctured sphere.

Theorem 3.2. Let �n be a sphere with n labeled punctures. Then there exists
B > 0 such that diam(MF s(�n)) < B(log(n))2. The constant B can be taken
equal to 1,100.

Proof. For n ≤ 3, the result is immediate since �n has at most six triangulations.
We will now assume that n ≥ 4.
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We can prove the theorem analogously to the previous theorem, but for sim-
plicity, we will use the previous result directly.

Let us denote by v0, . . . , vn−1 the punctures of �n. Given two triangulations
T , T ′, we begin by flipping them to increase the valency of v0 until it is maximal.
By Lemma 2.2 this step takes at most 2H log(κ(�n)) = 2H log(3n − 2) moves.
As a result, we obtain two triangulations, say T̃ , T̃ ′, which have all other vertices
joined to v0 by an unflippable arc. Consider the petal surrounding vn−1; the com-
plementary region to it is a triangulation of a disk with a single marked vertex
(namely v0) on its boundary and with n− 2 interior vertices. Theorem 3.1 tells us
that T̃ and T̃ ′ are at most A log2(n − 1) apart. We thus have

d(T ,T ′) ≤ d(T , T̃ ) + d(T ′, T̃ ′) + d(T̃ , T̃ ′)
≤ 2H log(3n − 2) + A log2(n − 1)

≤ 200 log(3n − 2) + 1,000 log2(n − 1)

≤ B log2(n).

A direct computation proves that when B is large enough (for example, any B ≥
1,100 works), the last inequality holds for every n ≥ 4. �

Remark 3.3. The case where the punctures of �′
n are unlabeled is easier. Con-

sider T ,S in MF s(�′
n) and denote v0 the boundary vertex of �′

n. We begin by
flipping to increase the valence of v0 until it is maximal. By Lemma 2.2 this step
requires at most H log(κ(�′

n)) = H log(3n − 2). Now, up to homeomorphism,
the two triangulations differ only in an (n + 1)-gon (the shaded area of Figure 3).
By Theorem 2.1 the triangulations T and S differ by at most

2H log(3n − 2) + K log(n + 1) < 400 log(n)

simultaneous flips. We have thus proved the following:

Theorem 3.4. Let �′
n be a disk with n unlabeled punctures. There exists B > 0

such that diam(MF s(�′
n)) < A log(n). The constant A can be taken equal to

400.

Remark 3.5. The previous proof applies word-by-word for unlabeled punctured
spheres �n. We thus have the following:

Theorem 3.6. Let �n be a sphere with n unlabeled punctures. There exists B > 0
such that diam(MF s(�n)) < B log(n). The constant B can be taken equal to
400.

4. Surfaces with Genus

In this section, we prove our upper bounds in terms of genus.
For technical reasons, we begin by proving a theorem for surfaces of genus g

with a single boundary component with a marked point on it.
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Figure 6 The shaded region is of genus g − �g
2 �

Theorem 4.1. Let �′
g be a surface of genus g with a single boundary component

with a marked point on it. Then

diam(MF s(�′
g)) < C(log(g + 1))2,

where C can be taken equal to 3,000.

We use the technique introduced in Disarlo–Parlier [5], and before proceeding to
the proof, we state two lemmas we will need. Proofs can be found in Disarlo–
Parlier [5] (Lemmas 4.4 and 4.5).

Lemma 4.2. Let T be a triangulation of �, a genus g ≥ 1 surface with a single
boundary curve and k marked points all on the boundary. Then there exists a ∈ T

such that � \ a is connected and of genus g − 1.

Lemma 4.3. Let T be a triangulation of �, a genus g ≥ 0 surface with two bound-
ary curves, both with marked points, and all marked points on the boundary. Then
there exists a ∈ T such that � \ a has only one boundary component.

We can now proceed to the proof of the theorem.

Proof of Theorem 4.1. We begin by checking the result for g = 1, namely when
the diameter is at most 2,000 log(2) > 5. Indeed, a one-holed torus has at most
five possible triangulations, so the result is true.

Now suppose that g ≥ 2.
Denote by v the boundary vertex of �′

g . Given triangulations S,T of �′
g , flip

both until the valence of v is maximal and denote by Sv,Tv the triangulations
obtained. By Lemma 2.2 each step takes at most H log(κ(�′

g)) flips. Now we
proceed as in the proof of Theorem 4.3 in Disarlo–Parlier [5]. We successively
apply the previous lemmas to find a collection of 2� g

2 � arcs along which we can
cut so that the resulting surface has genus g − � g

2 � and a single boundary com-
ponent with 1 + 4� g

2 � arcs. (Note that so far we have not applied a single flip to
either Sv or Tv .)

Our aim is now to introduce two special arcs that are essentially parallel to the
single boundary of the surface we have obtained by cutting along the arcs (see
Figure 6).
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We describe the process we will apply to both triangulations Sv,Tv . If we
consider the arc a that is a boundary arc of �′

g , then note that the arcs b, c we
want to introduce form a triangle with a, and both cut �′

g into surfaces. The arc

b cuts off a surface �(1) of genus � g
2 �, and c cuts off a surface �(2) of genus g −

� g
2 �. They also have the nice property of intersecting any arc of the triangulation

(either Sv or Tv) at most once. In addition, this means that they intersect the full
triangulation at most κ(�′

g) times.
We can now use Lemma 2.3 from the preliminaries, which tells us that the arcs

can be introduced in at most L log(κ(�′
g)+1) = L log(6g −1) moves. We denote

by S′, T ′ the new triangulations obtained, both containing the arcs b, c. Denote
by S′

kand T ′
k the restrictions of S′ and T ′ to �(k) for k = 1,2. Now flip S′

k and T ′
k

inside �(k) for k = 1,2. Once the triangulations coincide on both �(1) and �(2),
they will coincide on �′

g .
By induction on g the following holds:

d(S′
1, T

′
1) ≤ C log2

(⌊
g

2

⌋
+ 1

)
≤ C log2

(
g

2
+ 1

)
,

d(S′
2, T

′
2) ≤ C log2

(
g −

⌊
g

2

⌋
+ 1

)
≤ C log2

(
g + 1

2
+ 1

)
.

Putting this all together, we have

d(S,T ) ≤ d(S,S′) + d(T ,T ′) + max{d(S′
1, T

′
1), d(S′

2, T
′
2)}

≤ 2(L log(6g − 1) + H log(6g − 2)) + C log2
(

g + 1

2
+ 1

)

≤ C log2(g + 1).

A direct computation proves that the last inequality holds for every g ≥ 2 when C

is large enough (for instance, C = 3,000). �

We can use the previous theorem to show an analogous result for a genus g surface
with a single puncture.

Theorem 4.4. Let �g be a surface of genus g with a single marked point. Then

diam(MF s(�g)) < C(log(g + 1))2.

The constant C can be taken equal to 3,000.

Proof. We argue as in the previous theorem by considering for any triangulation
a collection of 2� g

2 � arcs that, when cut along, give a surface of genus g − � g
2 �

with a single boundary component with 4� g
2 � arcs. As in the previous proof, we

can introduce an arc that separates the surface into two subsurfaces of genus � g
2 �

and g −� g
2 �. Then we apply the previous theorem to both to obtain the result. �
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Figure 7 A spanning tree of the vertices and the arc a

5. Hybrid Surfaces

In this section, we prove our most general upper bound, which works for surfaces
with marked points and genus.

Theorem 5.1. Let �g,n be a surface of genus g with n labeled marked points.
Then

diam(MF s(�g,n)) < D(log(g + n))2.

The constant D can be taken equal to 4,500.

Proof. Consider a triangulation of � := �g,n and a spanning tree of its 1-
skeleton. Note that a spanning tree contains exactly n−1 arcs. Consider a marked
vertex v0 and the loop a based in v0 obtained by leaving from v0 and following
the spanning tree along an arc (leaving the spanning tree, say, to the left) and
going around the entire tree before returning to v0 (see Figure 7).

The arc a is separating and leaves the genus to one side and the punctures to
other (except for the point v0, which lies on the arc itself). We claim that it can be
introduced in the triangulation in at most (H + L) log(κ(�)) moves.

To do so, we can proceed as follows. Cutting along the arcs of the spanning
tree, we find a surface �β of genus g and a single polygonal boundary component
β with all marked points now on the boundary. A marked point of degree d in the
spanning tree appears on the boundary component β exactly d times, and β is a
polygon of 2n − 2 arcs (twice the number of arcs of the spanning tree).

Note that the arc a also lives on �β and is a loop parallel to β with its basepoint
a copy of v0. We now flip the restriction of the triangulation to increase the valence
of the basepoint of a until it is maximal. By Lemma 2.2 this step requires at
most H log(κ(�) − (n − 1)) < H log(κ(�)) simultaneous flips. The arc a now
intersects any arc in the triangulation at most once and thus by Lemma 2.3 can be
introduced in at most L log(κ(�)) moves.
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This can be done to any triangulation, so now considering two triangulations T

and S, we perform such a process on both. The new triangulations obtained, say
S′ and T ′, possibly differ in “the genus part” �′

g or the “puncture part” �′
n−1, but

by applying Theorems 3.1 and 4.1 we can conclude that they lie at the distance at
most

d(S,T ) ≤ d(S,S′) + d(T ,T ′) + d(S′, T ′)
≤ 2(H + L) log(κ(�)) + max{diam(MF s(�′

g)),diam(MF s(�′
n−1))}

≤ 2(H + L) log(6g + 3n − 6) + C log2(g + n)

≤ D log2(g + n).

A direct computation proves that the last inequality holds for every g,n such that
g + n ≥ 2, provided that D is large enough (for example, D = 4,500). �

Remark 5.2. We can apply the same proof as before to the case of a surface
with unlabeled marked points. We have to be careful because in the estimates
we are trying to capture the cases where both the genus and number of points are
increasing, possibly at different rates. Our previous upper bounds for spheres with
unlabeled marked points grow like log(n); in combination with the given proof,
this implies that for fixed genus, we can again obtain an upper bound on order
log(n) with an additive constant that depends on the genus. Again, all constants
can be made explicit, but for simplicity, we do not discuss this in detail.

6. Lower Bounds and Further Questions

For surfaces with genus and labeled marked points, our upper bounds grow
roughly like (log(κ))2 in the arc complexity κ of the surface. It is not clear
whether this order of growth is optimal.

An immediate lower bound can be deduced from known bounds on the diam-
eters of the usual flip graphs. In those cases, lower (and upper) bounds are known
to grow like g log(g) + n log(n) (see Theorem 1.4 and Corollary 4.19 of [5]). As
at most a linear number of flips in terms of the complexity can be performed si-
multaneously, this implies a lower bound of order log(κ). The counting argument
used to provide this bound is pretty simple, especially compared to our upper
bounds, and it does not seem particularly adapted to simultaneous flips. In terms
of unlabeled marked points, the lower bound on the order of growth is also log(κ).
It seems surprising that there is no difference in order of growth between labeled
and unlabelled marked points. All of these things seem to indicate that a better
lower bound may be achievable.

On the other hand, there are some indications that an upper bound of order
log(κ) may be possible. A seemingly related problem to estimating distances in
the flip graph is the problem of estimating the distances between 3-regular graphs
using Whitehead moves. These graphs are dual to a triangulation, and a flip on a
triangulation corresponds to a Whitehead move. Triangulations are really differ-
ent though; first of all, they really correspond to ribbon graphs and not to 3-regular
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graphs. Second, only certain Whitehead moves on a 3-regular graph can be emu-
lated by flips. In particular, it is not possible to deduce results about flip distances
from estimates on Whitehead moves or vice versa. Although the relationship is
not direct, there have been a number of recent results that seem to indicate similar
behaviors. The κ log(κ) behavior discussed previously for modular flip graphs is
also present for Whitehead moves on graphs (see, for instance, [2; 3]). Simulta-
neous flip moves are thus related to simultaneous Whitehead moves, and Rafi and
Tao have shown that the growth for graphs behaves like log(κ). This seems to
indicate that perhaps our upper bounds may be improvable. A further indication
that this order of growth may be correct are the results in [1], which were among
the tools needed for our upper bounds.

In short, we now know that the rough behavior in terms of either the genus or
number of labeled marked points is bounded below and above by a function of
type log(κ)α for α ∈ [1,2], and determining the exact behavior seems to be an
interesting problem.
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