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Counting the Ideals of Given Codimension of the Algebra
of Laurent Polynomials in Two Variables

Christian Kassel & Christophe Reutenauer

Abstract. We establish an explicit formula for the number Cn(q) of
ideals of codimension (colength) n of the algebra Fq [x, y, x−1, y−1]
of Laurent polynomials in two variables over a finite field Fq of cardi-
nality q. This number is a palindromic polynomial of degree 2n in q.
Moreover, Cn(q) = (q − 1)2Pn(q), where Pn(q) is another palin-
dromic polynomial; the latter is a q-analogue of the sum of divisors
of n, which happens to be the number of subgroups of Z2 of index n.

1. Introduction

Let Fq be a finite field of cardinality q , and let Fq [x, y, x−1, y−1] be the algebra
of Laurent polynomials in two variables with coefficients in Fq .

Our main aim is to give a formula for the number Cn(q) of ideals of codi-
mension n of Fq [x, y, x−1, y−1]. By codimension of an ideal I we mean the
dimension of the quotient vector space Fq [x, y, x−1, y−1]/I over Fq .

Our main result is the following.

Theorem 1.1. For each integer n ≥ 1, we have

Cn(q) =
∑
λ�n

(q − 1)2v(λ)qn−�(λ)
∏

i=1,...,t
di≥1

q2di − 1

q2 − 1
,

where the sum runs over all partitions λ of n. The expression Cn(q) is a monic
polynomial of degree 2n in the variable q with integer coefficients. Moreover, the
polynomial Cn(q) is divisible by (q − 1)2.

The notation �(λ), ν(λ), di appearing in the formula will be explained in Sec-
tion 3.1. The proof of the theorem will be given in Section 5.3; it relies on a
parameterization by Conca and Valla [8] of the affine cells in the Ellingsrud–
Strømme decomposition of the Hilbert scheme of n points on the affine plane.

Note that since Cn(q) is divisible by (q − 1)2, for each n ≥ 1, we may define
a unique polynomial Pn(q) by

Cn(q) = (q − 1)2Pn(q), (1.1)

which clearly implies Cn(1) = 0 for all n ≥ 1. Table 1 (resp. Table 2) displays the
polynomials Cn(q) (resp. the polynomials Pn(q)) for n ≤ 12.
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Table 1 The polynomials Cn(q)

n Cn(q)

1 q2 − 2q + 1
2 q4 − q3 − q + 1
3 q6 − q5 − q4 + 2q3 − q2 − q + 1
4 q8 − q7 − q + 1
5 q10 − q9 − q7 + q6 + q4 − q3 − q + 1
6 q12 − q11 + q7 − 2q6 + q5 − q + 1
7 q14 − q13 − q10 + q9 + q5 − q4 − q + 1
8 q16 − q15 − q + 1
9 q18 − q17 − q13 + q12 + q11 − q10 − q8 + q7 + q6 − q5 − q + 1
10 q20 − q19 − q11 + 2q10 − q9 − q + 1
11 q22 − q21 − q16 + q15 + q7 − q6 − q + 1
12 q24 − q23 + q15 − q14 − q10 + q9 − q + 1

Table 2 The polynomials Pn(q)

n Pn(q) Pn(1)

1 1 1
2 q2 + q + 1 3
3 q4 + q3 + q + 1 4
4 q6 + q5 + q4 + q3 + q2 + q + 1 7
5 q8 + q7 + q6 + q2 + q + 1 6
6 q10 + q9 + q8 + q7 + q6 + 2q5 + q4 + q3 + q2 + q + 1 12
7 q12 + q11 + q10 + q9 + q3 + q2 + q + 1 8

q14 + q13 + q12 + q11 + q10 + q9 + q8

8 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1 15
q16 + q15 + q14 + q13 + q12 + q9

9 + q8 + q7 + q4 + q3 + q2 + q + 1 13

q18 + q17 + q16 + q15 + q14 + q13 + q12 + q11 + q10

10 + q8 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1 18

q20 + q19 + q18 + q17 + q16 + q15

11 + q5 + q4 + q3 + q2 + q + 1 12

q22 + q21 + q20 + q19 + q18 + q17 + q16 + q15

+ q14 + 2q13 + 2q12 + 2q11 + 2q10 + 2q9 + q8

12 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1 28



Counting Ideals 717

Theorem 1.1 has two interesting consequences. The first one concerns the poly-
nomials Pn(q). Let us state it.

Corollary 1.2. For each n ≥ 1, the polynomial Pn(q) is a monic polynomial of
degree 2n − 2 with integer coefficients, and we have

Pn(1) = σ(n) =
∑

d|n;d≥1

d.

As is well known, the sum σ(n) of positive divisors of n is equal to the number of
subgroups of index n of the free Abelian group Z2 of rank two. Thus Theorem 1.1
and Corollary 1.2 imply that the number of ideals of codimension n of the Laurent
polynomial algebra Fq [x, y, x−1, y−1], that is, of the algebra of the group Z2, is,
up to the factor (q − 1)2, a q-analogue1 of the number of subgroups of index n

of Z2.
A similar phenomenon had been observed by Bacher and the second-named

author in [4]: up to a power of q − 1, the number of right ideals of codimension n

of the algebra Fq [F2] of the rank two free group F2 is a q-analogue of the number
of subgroups of index n of F2. In fact, it was this observation that prompted us to
compute the number of ideals of codimension n of the algebra Fq [Z2] of the free
Abelian group Z2, that is, of Fq [x, y, x−1, y−1].

In a similar context, the following holds.

(a) By [11] (see also Section 3.1) the number of ideals of codimension n of
the polynomial algebra Fq [x, y], which is the algebra of the free Abelian
monoid N2, is a q-analogue of the number p(n) of partitions of n; as is well
known, the latter is equal to the number of ideals of the monoid N2 whose
complement is of cardinality n.

(b) In a noncommutative setting, by [24; 3] the number of right ideals of codi-
mension n of the free algebra Fq〈x, y〉 is a q-analogue of the number of right
ideals of the free monoid 〈x, y〉∗ whose complement is of cardinality n.

(c) Similarly, by [23, Section 6.3] the number of right ideals of codimension n

of the algebra Fq [Fr ] of the free group Fr on r generators is, up to a power
of q − 1, a q-analogue of the number of subgroups of index n of Fr .

Remark 1.3. The commutative algebra Lr = Fq [x1, x
−1
1 , . . . , xr , x

−1
r ] of Lau-

rent polynomials in r variables (r ≥ 3) provides a distinct contrast with the cases
discussed. We can show that the number of right ideals of codimension 2 of Lr ,
which is the algebra of the free Abelian group Zr , is equal to (q − 1)rRr(q),
where

Rr(q) = 1

2
((q + 1)r + (q − 1)r ) + qr − 1

q − 1
− 1.

The latter is a q-analogue of Rr(1) = 2r−1 + r −1. Now the number of subgroups
of index 2 of Zr is equal to 2r − 1, which is different from Rr(1) when r ≥ 3.

1By a q-analogue of an integer r we mean a polynomial P(q) in the variable q such that P(1) = r .
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The second consequence of Theorem 1.1 expresses the generating function of the
polynomials Cn(q) as a nice infinite product.

Corollary 1.4. (a) We have

1 +
∑
n≥1

Cn(q)

qn
tn =

∏
i≥1

(1 − t i )2

1 − (q + q−1)t i + t2i
.

(b) The polynomials Cn(q) and Pn(q) are palindromic.

The previous infinite product shows up in [12, p. 10] (see, e.g., equations (9.2)
and (10.1)) and probably in other papers on basic hypergeometric series; in an
algebraic geometry context it appears in [20, Thm. 4.1.3], where it is equal to the
generating function of the E-polynomials of the punctual Hilbert schemes of the
complex two-dimensional torus (see details in Section 6.3).

Using Corollary 1.4, we gave explicit expressions for the coefficients of the
polynomials Cn(q) and Pn(q) in the companion paper [22] (see Thms. 1.1 and 1.2
loc. cit.). We obtained a rather striking positivity result, namely the coefficients
of Pn(q) are all nonnegative integers. For completeness, we recall our formulas
for the coefficients of the polynomials Cn(q) and Pn(q) in the Appendix.

As pointed to us by Frank Garvan, the polynomials Cn(q) are related to the
crank of partitions. Recall that the crank is a function from partitions into the
integers, which explains the Ramanujan congruences modulo 11 and whose exis-
tence was conjectured by Dyson and later proved by Garvan; see [14, Section 7].
Denote as in [1] the number of partitions of n with crank m by NV (m,n). We
have the following relation between the integers NV (m,n), the number p(n) of
all partitions of n, and the polynomials Cn(q).

Corollary 1.5. For each n, we have

∑
m∈Z

NV (m,n)qm = p(n) +
n∑

i=1

p(n − i)
Ci(q)

qi
.

The paper is organized as follows. Section 2 is devoted to some preliminaries:
we first recall the one-to-one correspondence between the ideals of the local-
ization S−1A of an algebra A and certain ideals of A; we also count tuples of
polynomials subject to certain constraints over a finite field.

In Section 3 we recall Conca and Valla’s parameterization of the affine cells
in a decomposition of the Hilbert scheme of n points in the plane; these cells are
indexed by the partitions of n. We show how to deduce a parameterization of the
cells in the induced decomposition of the Hilbert scheme of n points in a Zariski
open subset of the plane.

In Section 4 we apply the techniques of the preceding section to compute the
number of ideals of codimension n of Fq [x, y, y−1]. In passing we give a criterion
(Proposition 4.1), which will also be used in the proof of Theorem 1.1.
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In Section 5 we define an invertible Gröbner cell, which is a Zariski open subset
of the corresponding affine cell, and compute its cardinality over a finite field. We
derive a proof of Theorem 1.1.

The proofs of Corollaries 1.2, 1.4, and 1.5 are given in Section 6.
In Appendix we briefly recall the results on the coefficients of Cn(q) and Pn(q)

we obtained in [22].

2. Preliminaries

We fix a ground field k. By algebra we mean an associative unital k-algebra. In
this paper all algebras are assumed to be commutative.

2.1. Ideals in Localizations

Let A be a (commutative) algebra, S a multiplicative submonoid of A not con-
taining 0, and S−1A the corresponding localization of A. We assume that the
canonical algebra map i : A → S−1A is injective (this is the case, e.g., when A is
a domain).

Recall the well-known correspondence between the ideals of S−1A and those
of A (see [7, Chapter 2, Section 2, no 4–5], [10, Prop. 2.2]).

(a) For any ideal J of S−1A, the set i−1(J ) = J ∩ A is an ideal of A, and we
have J = i−1(J )S−1A. The map J �→ i−1(J ) is an injection from the set of
ideals of S−1A to the set of ideals of A.

(b) An ideal I of A is of the form i−1(J ) for some ideal J of S−1A if and only
if for all s ∈ S, the endomorphism of A/I induced by the multiplication by s is
injective.

Given an integer n ≥ 1, an n-codimensional ideal of A is an ideal such that
dimk A/I = n. For such an ideal, the previous condition (b) is then equivalent to:
for all s ∈ S, the endomorphism of A/I induced by the multiplication by s is a
linear isomorphism.

We leave the proof of the following lemma to the reader.

Lemma 2.1. If J is a finite-codimensional ideal of S−1A, then the canonical
algebra map i : A → S−1A induces an algebra isomorphism

A/i−1(J ) ∼= (S−1A)/J.

It follows that there is a bijection between the set of n-codimensional ideals
of S−1A and the set of n-codimensional ideals I of A such that, for all s ∈ S,
the endomorphism of A/I induced by the multiplication by s is a linear isomor-
phism. The latter assertion is equivalent to s being invertible modulo I , that is,
the image of s in A/I being invertible.

The following criterion will be used in Sections 4 and 5.

Lemma 2.2. Let A be a commutative algebra. For any s ∈ A, let p : A → A/(s)

be the natural projection onto the quotient algebra of A by the ideal generated
by s. If I is an ideal of A, then s is invertible modulo I if and only if p(I) = A/(s).
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Proof. If s is invertible modulo I , then there exists t ∈ A such that st − 1 ∈ I .
Hence p(1) belongs to p(I), which implies p(I) = A/(s). Conversely, if p(I) =
A/(s), then p(1) = p(u) for some u ∈ I . Hence 1 − u ∈ (s), which means that
there is t ∈ A such that 1 − u = st . Thus st ≡ 1 (mod I ). �

2.2. Counting Polynomials over a Finite Field

In this subsection we assume that k = Fq is a finite field of cardinality q . We will
need the following in Section 5.

Proposition 2.3. Let d , h be integers ≥ 1, and let Q1, . . . ,Qh ∈ Fq [y] be co-
prime polynomials. The number of (h + 1)-tuples (P,P1, . . . ,Ph) satisfying the
three conditions

(i) P is a degree d monic polynomial with P(0) �= 0,
(ii) P1, . . . ,Ph are polynomials of degree < d , and

(iii) P and P1Q1 + · · · + PhQh are coprime

is equal to

(q − 1)2q(h−1)d q2d − 1

q2 − 1
.

Before giving the proof, we state and prove two auxiliary lemmas.

Lemma 2.4. Let R be a finite commutative ring, and let a1, . . . , ah ∈ R be such
that a1R + · · · + ahR = R. For any b ∈ R, the number of h-tuples (x1, . . . , xh) ∈
Rh such that a1x1 + · · · + ahxh = b is equal to (cardR)h−1.

Proof. The map (x1, . . . , xh) �→ a1x1 + · · · + ahxh is a homomorphism Rh → R

of additive groups. Since it is surjective, the number of h-tuples satisfying the
assumed condition is equal to the cardinality of its kernel, which is equal to
cardRh/ cardR = (cardR)h−1. �

Lemma 2.5. Let d ≥ 1 be an integer. The number of couples (P,Q) ∈ Fq [y]2

such that P is a degree d monic polynomial with P(0) �= 0, Q is of degree < d ,
and P and Q are coprime is equal to

cd = (q − 1)2 q2d − 1

q2 − 1
.

Proof. This amounts to counting the number of couples (P, z), where P ∈ Fq [y]
is a degree d monic polynomial not divisible by y, and z is an invertible element
of the quotient ring Fq [y]/(P ).

Expanding P into a product of irreducible polynomials and using the Chinese
remainder lemma, we have

1 +
∑
d≥1

cd td =
∏

P irreducible
P �=y

(
1 +

∑
k≥1

card(Fq [y]/(P ))×tk deg(P )

)
,
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where the product is taken over all irreducible polynomials of Fq [y] different
from y, and where deg(P ) denotes the degree of P . First, observe that, for any
irreducible polynomial P ∈ Fq [y], the group (Fq [y]/(P ))× of invertible elements
of Fq [y]/(P ) is of cardinality qk deg(P ) − q(k−1)deg(P ): indeed, there are qk deg(P )

polynomials of degree < k deg(P ), and q(k−1)deg(P ) of them are divisible by P

and hence not invertible in Fq [y]/(P ). Consequently,

1 +
∑
d≥1

cd td =
∏

P irreducible
P �=y

(
1 + (1 − q−deg(P ))

∑
k≥1

(qt)k deg(P )

)

=
∏

P irreducible
P �=y

(
1 + (1 − q−deg(P ))

(qt)deg(P )

1 − (qt)deg(P )

)

=
∏

P irreducible
P �=y

1 − tdeg(P )

1 − (qt)deg(P )
.

On one hand, the infinite product
∏

P irreducible
P �=y

(1 − tdeg(P ))−1 is equal to the zeta

function ZA1\{0}(t) of the affine line minus a point. On the other hand,

ZA1\{0}(t) = ZA1(t)

Z{0}(t)
= 1 − t

1 − qt
.

Therefore

1 +
∑
d≥1

cd td = 1 − qt

1 − q2t

/ 1 − t

1 − qt
= (1 − qt)2

(1 − t)(1 − q2t)
.

Subtracting 1 from both sides, we obtain∑
d≥1

cd td = (q − 1)2 t

(1 − t)(1 − q2t)
,

from which it is easy to derive the desired formula for cd . �

Proof of Proposition 2.3. We have to count the number of the (h + 2)-tuples
(P,Q,P1, . . . ,Ph) such that P is a degree d monic polynomial with P(0) �= 0,
Q is a polynomial of degree < d and coprime to P , each polynomial Pi is of
degree < d , and

∑h
i=1 PiQi ≡ Q modulo P .

By Lemma 2.5 the number of couples (P,Q) satisfying these conditions is
equal to (q − 1)2(q2d − 1)/(q2 − 1). Since cardFq [y]/(P ) = qd , by Lemma 2.4
we have qd(h−1) choices for the h-tuples (P1, . . . ,Ph). The number we wish to
count is the product of the two previous ones. �

3. The Hilbert Scheme of Points in a Zariski Open Subset of the
Plane

Let k be a field. As is well known, the ideals of codimension n of an affine k-
algebra A are in bijection with the k-points of the Hilbert scheme parameterizing
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finite subschemes of colength n of the spectrum of A. For instance, the ideals of
codimension n of the polynomial algebra k[x, y] are in bijection with the k-points
of the Hilbert scheme Hilbn(A2

k) of n points on the affine plane. Similarly, the
ideals of codimension n of the Laurent polynomial algebra k[x, y, x−1, y−1] are
in bijection with the k-points of the Hilbert scheme Hilbn((A1

k \ {0})× (A1
k \ {0}))

of n points on the two-dimensional torus, which is a Zariski open subset of the
plane.

In this paragraph we prove that the Hilbert scheme of n points in a Zariski open
subset of the plane is an open subscheme of the Hilbert scheme of n points in the
plane and show how to determine it explicitly.

3.1. Parameterizing the Finite-Codimensional Ideals of k[x, y]
Computing the homology of the Hilbert scheme Hilbn(A2

k), Ellingsrud and
Strømme [11] showed that it has a cellular decomposition indexed by the par-
titions λ of n, each cell Cλ being an affine space of dimension n + �(λ), where
�(λ) is the length of λ. Earlier results by Białynicki-Birula [5; 6] on smooth vari-
eties with k×-actions imply the same decomposition; the cells Cλ are sometimes
called “Białynicki-Birula cells”.

It follows that, in the particular case where k = Fq is a finite field of cardinal-
ity q , the number An(q) of ideals of Fq [x, y] of codimension n is finite and given
by the polynomial

An(q) =
∑
λ�n

qn+�(λ), (3.1)

where the sum runs over all partitions λ of n (we indicate this by the notation λ � n

or by |λ| = n). The polynomial An(q) clearly has nonnegative integer coefficients,
its degree is 2n, and An(1) = p(n) is equal to the number of partitions of n (for
more on the polynomials An(q), see Remark 4.7).

For our purposes, we need an explicit description of the affine cells Cλ. Let us
recall a parameterization by Conca and Valla [8].

Given a positive integer n, there is a well-known bijection between the parti-
tions of n and the monomial ideals of codimension n of k[x, y]. The correspon-
dence is as follows: with a partition λ of n, we associate the sequence

0 = m0 < m1 ≤ · · · ≤ mt

of integers counting from right to left the boxes in each column of the Ferrers
diagram of λ; we have m1 +· · ·+mt = n. Then the associated monomial ideal I 0

λ

is given by
I 0
λ = (xt , xt−1ym1, . . . , xymt−1, ymt ). (3.2)

(Note that the generating set in the right-hand side of (3.2) is in general not min-
imal.) The set Bλ = {xiyj | 0 ≤ i < t,0 ≤ j < mi} induces a linear basis of the
n-dimensional quotient algebra k[x, y]/I 0

λ .
Consider the lexicographic ordering on the monomials xiyj given by

1 < y < y2 < · · · < x < xy < xy2 < · · · < x2 < x2y < x2y2 < · · · .
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Then the cell Cλ, called Gröbner cell in [8], is by definition the set of ideals I

of k[x, y] such that the dominating terms (for this ordering) of the elements of I

generate the monomial ideal I 0
λ . It was proved in [11] that Cλ is an affine space.

Here is how Conca and Valla explicitly parameterize Cλ. Given a partition λ

of n and the associated sequence 0 = m0 < m1 ≤ · · · ≤ mt , they first define the
sequence of integers d1, . . . , dt by

di = mi − mi−1 ≥ 0. (3.3)

We have d1 = m1 > 0.
Later we shall also need the integer

v(λ) = card{i = 1, . . . , t | di ≥ 1}; (3.4)

it is equal to the number of distinct values of the sequence m1 ≤ · · · ≤ mt . Note
that v(λ) ≥ 1; moreover, v(λ) = 1 if and only if the partition is “rectangular”, that
is, m1 = · · · = mt (> 0).

Let Tλ be the set of (t + 1) × t-matrices (pi,j ) with entries in the one-variable
polynomial algebra k[y] satisfying the following conditions: pi,j = 0 if i < j , the
degree of pi,j is less than dj if i ≥ j and dj ≥ 1, and pi,j = 0 for all i if dj = 0.
The set Tλ is an affine space of dimension n + �(λ).

Now consider the (t + 1) × t-matrix

Mλ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yd1 + p1 0 · · · 0 0 0 · · · 0
p2,1 − x yd2 + p2 · · · 0 0 0 · · · 0

p3,1 p3,2 − x · · · 0 0 0 · · · 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

pi−1,1 pi−1,2 · · · y
di−1 + pi−1 0 0 · · · 0

pi,1 pi,2 · · · pi,i−1 − x ydi + pi 0 · · · 0

pi+1,1 pi+1,2 · · · pi+1,i−1 pi+1,i − x y
di+1 + pi+1 · · · 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

pt,1 pt,2 · · · pt,i−1 pt,i pt,i+1 · · · ydt + pt

pt+1,1 pt+1,2 · · · pt+1,i−1 pt+1,i pt+1,i+1 · · · pt+1,t − x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.5)

where for simplicity we set pi = pi,i .
By [8, Thm. 3.3] the map sending the polynomial matrix (pi,j ) ∈ Tλ to the

ideal Iλ of k[x, y] generated by all t-minors (the maximal minors) of the ma-
trix Mλ is a bijection of Tλ onto Cλ. These minors are polynomial expressions
with integer coefficients in the coefficients of the pi,j and in the variables x, y.

3.2. Localizing

Let S be a multiplicative submonoid of k[x, y] not containing 0. We assume that
S has a finite generating set �. We further concentrate on two cases, � = {y} (in
Section 4) and � = {x, y} (in Section 5).

It follows from Section 2 that the set of n-codimensional ideals of the localiza-
tion S−1k[x, y] can be identified with the subset of Hilbn(A2

k) consisting of the
n-codimensional ideals I of k[x, y] such that, for all s ∈ S, the endomorphism μs

of k[x, y]/I induced by the multiplication by s is a linear isomorphism. The latter
is equivalent to detμs �= 0 for all s ∈ �.
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By the considerations of Section 3.1, the set of n-codimensional ideals of the
algebra S−1k[x, y] is the disjoint union∐

λ�n

C�
λ ,

where C�
λ is the Zariski open subset of the affine Gröbner cell Cλ consisting of

the points satisfying detμs �= 0 for all s ∈ �.
Consequently, the Hilbert scheme Hilbn(Spec(S−1k[x, y])) parameteriz-

ing subschemes of colength n in Spec(S−1k[x, y]) is an open subscheme
of Hilbn(A2

k) and hence an open subscheme of Hilbn(P2
k). Since by [13; 16]

the latter is smooth and projective, Hilbn(Spec(S−1k[x, y])) is a smooth quasi-
projective variety.

The endomorphism μx (resp. μy ) of k[x, y]/I induced by the multiplication
by x (resp. by y) can be expressed as a matrix in the basis Bλ. Observe that the
entries of such a matrix are polynomial expressions with integer coefficients in
the coefficients of the pi,j . Therefore, if any s ∈ � is a linear combination with
integer coefficients of monomials in the variables x, y, then the Hilbert scheme
Hilbn(Spec(S−1k[x, y])) is defined over Z as a variety.

In particular, the schemes Hilbn(A1
k × (A1

k \ {0})) and Hilbn((A1
k \ {0})2) are

smooth quasi-projective varieties defined over Z.

Example 3.1. Let λ be the unique self-conjugate partition of 3. In this case,
t = 2, m1 = 1, m2 = 2, and hence d1 = d2 = 1. The corresponding matrix Mλ, as
in (3.5), is

Mλ =
⎛⎝y + a 0

b − x y + d

c e − x

⎞⎠ ,

where a, b, c, d , e are scalars. The associated Gröbner cell Cλ is a five-
dimensional affine space parameterized by these five scalars. The ideal Iλ is gen-
erated by the maximal minors of the matrix, namely by (b−x)(e−x)− c(y +d),
(e−x)(y +a), and (y +a)(y +d). It follows that modulo Iλ we have the relations

x2 ≡ (b + e)x + cy + (cd − be),

xy ≡ −ax + ey + ae,

y2 ≡ −(a + d)y − ad.

In the basis Bλ = {x, y,1} the multiplication endomorphisms μx and μy can
be expressed as the matrices

μx =
⎛⎝ b + e −a 1

c e 0
cd − be ae 0

⎞⎠ and μy =
⎛⎝−a 0 0

e −(a + d) 1
ae −ad 0

⎞⎠ .

We have detμx = e(ac − cd + be) and detμy = −ad2.
It follows from these computations that if, for instance, � = {x, y}, then C�

λ

is the complement in the affine space A5
k of the union of the three hyperplanes

a = 0, d = 0, and e = 0 and of the quadric hypersurface ac − cd + be = 0.
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4. The Punctual Hilbert Scheme of the Complement of a Line in an
Affine Plane

In this section we apply the considerations of the previous section to the case
� = {y}. Here S is the multiplicative submonoid of k[x, y] generated by y and
S−1k[x, y] = k[x, y, y−1] = k[x][y, y−1].

By Section 3.2, the Hilbert scheme Hilbn(A1
k × (A1

k \ {0})), that is, the set of
n-codimensional ideals of k[x, y, y−1], is the disjoint union over the partitions λ

of n of the sets C
y
λ , where C

y
λ consists of the ideals I ∈ Cλ such that y is invert-

ible in k[x, y]/I . We call C
y
λ the semi-invertible Gröbner cell associated with the

partition λ.

4.1. A Criterion for the Invertibility of y

Let py : k[x, y] → k[x] be the algebra map sending x to itself and y to 0. Then
by Lemma 2.2, the set C

y
λ consists of the ideals I ∈ Cλ such that py(I ) = k[x].

Recall from Section 3.1 that Iλ is generated by the maximal minors of the
matrix Mλ of (3.5), namely by the polynomials f0(x, y), . . . , ft (x, y), where we
define fi(x, y) to be the determinant of the t × t-matrix obtained from Mλ by
deleting its (i + 1)th row. Then the ideal py(Iλ) can be identified with the ideal
of k[x] generated by the polynomials f0(x,0), . . . , ft (x,0) ∈ k[x] obtained by
setting y = 0. We need to determine under what conditions this ideal is equal to
the whole algebra k[x].

Recall the entries of the matrix Mλ and particularly the polynomials pi,j and
pi = pi,i ∈ k[y]. Let ai,j = pi,j (0) be the constant term of pi,j . As before, we set
ai = ai,i = pi(0). Note that aj = 1 and ai,j = 0 for all i �= j whenever dj = 0.

Then f0(x,0), . . . , ft (x,0) are the maximal minors of the matrix

M
y
λ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0 0 0 · · · 0
a2,1 − x a2 0 · · · 0 0 0 · · · 0

a3,1 a3,2 − x a3 · · · 0 0 0 · · · 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

ai−1,1 ai−1,2 ai−1,3 · · · ai−1 0 0 · · · 0
ai,1 ai,2 ai,3 · · · ai,i−1 − x ai 0 · · · 0

ai+1,1 ai+1,2 ai+1,3 · · · ai+1,i−1 ai+1,i − x ai+1 · · · 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

at,1 at,2 at,3 · · · at,i−1 at,i at,i+1 · · · at

at+1,1 at+1,2 at+1,3 · · · at+1,i−1 at+1,i at+1,i+1 · · · at+1,t − x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To be precise, fi(x,0) is the determinant of the square matrix obtained from M
y
λ

by deleting its (i + 1)th row.
The criterion we need is the following.

Proposition 4.1. We have py(Iλ) = k[x] if and only if ai �= 0 for all i = 1, . . . , t

such that di ≥ 1 (equivalently, for all i = 1, . . . , t).

Proof. Since ai = 1 when di = 0, it is equivalent to prove that py(Iλ) = k[x] if
and only if a1a2 · · ·at �= 0.
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Set Ix = py(Iλ) ⊂ k[x]. The condition a1a2 · · ·at �= 0 is sufficient. Indeed, the
last polynomial ft (x,0) is the determinant of a lower triangular matrix whose
diagonal entries are the scalars ai ; hence, ft (x,0) = a1a2 · · ·at . Thus, if ft (x,0)

is nonzero, then Ix = k[x].
To check the necessity of the condition, we will prove that, for each i =

1, . . . , t , the vanishing of the scalar ai implies that the ideal Ix is contained in
a proper ideal generated by a minor of M

y
λ .

If a1 = 0, then f1(x,0) = · · · = ft (x,0) = 0 since these are determinants of
matrices whose first row is zero. It follows that Ix is the principal ideal generated
by the characteristic polynomial f0(x,0), which is of degree t ≥ 1. Hence, Ix is a
proper ideal of k[x].

Let now i ≥ 2. If for k ≥ i, we delete the (k + 1)th row of M
y
λ , then we obtain

a lower block-triangular matrix of the form(
M1 0
∗ M

(k)
2

)
,

where M1 is the square submatrix of M
y
λ corresponding to the rows 1, . . . , i and

to the columns 1, . . . , i; this is a lower triangular matrix whose diagonal entries
are a1, . . . , ai . Consequently, if ai = 0, then fk(x,0) = 0 for all k ≥ i.

Under the same condition ai = 0, if we delete the (k + 1)th row of M
y
λ for

k < i, then we obtain a lower block-triangular matrix of the form(
M

(k)
1 0
∗ M2

)
,

where M2 is the square submatrix of M
y
λ corresponding to the rows i+1, . . . , t +1

and to the columns i, . . . , t :

M2 =

⎛⎜⎜⎜⎜⎜⎝
ai+1,i − x ai+1 · · · 0 0

ai+2,i ai+2,i+1 − x · · · 0 0
...

...
. . .

...
...

at,i · · · · · · at,t−1 − x at

at+1,i at+1,i+1 · · · at+1,t−1 at+1,t − x

⎞⎟⎟⎟⎟⎟⎠ .

Consequently, the polynomials fk(x,0) for k < i are all divisible by the deter-
minant of M2. Thus, Ix is contained in the ideal generated by det(M2), which
is a characteristic polynomial of degree t − i + 1. Since t − i + 1 ≥ 1 for all
i = 1, . . . , t , we have Ix �= k[x]. �

As an immediate consequence of Section 3.2 and of Proposition 4.1, we obtain
the following:

Corollary 4.2. The set of n-codimensional ideals of k[x, y, y−1] is the disjoint
union ∐

λ�n

C
y
λ ,
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where C
y
λ is the complement in the affine Gröbner cell Cλ of the union of the

hyperplanes ai = 0 where i runs over all integers i = 1, . . . , t such that di ≥ 1.

4.2. On the Number of Finite-Codimensional Ideals of Fq [x, y, y−1]
Recall that the positive integer v(λ) defined by (3.4) is the number of distinct
columns of the partition λ.

Proposition 4.3. Let k = Fq . For each partition λ of n, the set C
y
λ is finite, and

its cardinality is given by

cardC
y
λ = (q − 1)v(λ)qn+�(λ)−v(λ).

Proof. By Corollary 4.2 the set C
y
λ is parameterized by n + �(λ) parameters sub-

ject to the sole condition that v(λ) of them are not zero. �

Corollary 4.4. For each integer n ≥ 1, the number Bn(q) of n-codimensional
ideals of Fq [x, y, y−1] is equal to (q − 1)qnB◦

n(q), where

B◦
n(q) =

∑
λ�n

(q − 1)v(λ)−1q�(λ)−v(λ).

Note that B◦
n(q) is a polynomial in q since v(λ) ≥ 1 and �(λ) ≥ v(λ) for all parti-

tions. It is of degree n − 1 and has integer coefficients. The coefficients of B◦
n(q)

may be negative, as we can see in Table 3.

Remark 4.5. Let vn be the valuation of the polynomial B◦
n(q), that is, the maxi-

mal integer r such that qr divides B◦
n(q). We conjecture that vn = 0, 1, or 2 and

Table 3 The polynomials B◦
n(q)

n B◦
n(q) B◦

n(1) B◦
n(−1)

1 1 1 1
2 q + 1 2 0
3 q2 + q 2 0
4 q3 + q2 + q 3 −1
5 q4 + q3 + q2 − 1 2 0
6 q5 + q4 + q3 + q2 4 0
7 q6 + q5 + q4 + q3 − q − 1 2 0
8 q7 + q6 + q5 + q4 + q3 − q 4 0
9 q8 + q7 + q6 + q5 + q4 − q2 − q 3 1
10 q9 + q8 + q7 + q6 + q5 + q4 − q2 − q 4 0
11 q10 + q9 + q8 + q7 + q6 + q5 − q3 − 2q2 − q 2 0
12 q11 + q10 + q9 + q8 + q7 + q6 + q5 − q3 − q2 + 1 6 0
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that the infinite word v1v2v3 . . . is equal to 0
∏∞

n=1 012n02n. This conjecture is
supported by computer calculations.

Let us now give a product formula for the generating function of the sequence of
polynomials Bn(q) and an arithmetical interpretation for two values of B◦

n(q).

Theorem 4.6. (a) Let Bn(q) be the number of ideals of Fq [x, y, y−1] of codi-
mension n. We have

1 +
∑
n≥1

Bn(q)

qn
tn =

∏
i≥1

1 − t i

1 − qti
.

(b) Let B◦
n(q) be the polynomial B◦

n(q) = (q − 1)−1q−nBn(q). It has integer
coefficients and satisfies

B◦
n(1) = σ0(n),

where σ0(n) is the number of divisors of n, and

B◦
n(−1) =

{
(−1)k−1 if n = k2 for some integer k,

0 otherwise.

Proof. (a) Since an analogous proof will be used in Remark 4.7 and Section 6.2,
we give here a detailed proof. Let X be a set, and let M be the free Abelian monoid
on X (X is called a basis of M). We say that a function ϕ : M → R from M to a
ring R is multiplicative if ϕ(uv) = ϕ(u)ϕ(v) for all couples (u, v) ∈ M2 of words
having no common basis element. Under this condition, it is easy to check the
following identity: ∑

w∈M

ϕ(w) =
∏
x∈X

(
1 +

∑
e≥1

ϕ(xe)

)
. (4.1)

Now, identifying each partition with its planar diagram, we consider a parti-
tion λ as a union of rectangular partitions iei , with ei parts of length i, for ei ≥ 1
and distinct i ≥ 1, which we denote by the formal product λ = ∏

i≥1 iei . Thus the
set of partitions is equal to the free Abelian monoid on X = N \ {0} (viewed as
a set). Before we apply (4.1), let us remark that |λ| = ∑

i iei and �(λ) = ∑
i ei .

Moreover, the multisets {ei | i ≥ 1} and {di | i ≥ 1} are equal (recall that the inte-
gers di are those associated with λ in (3.3)); therefore, v(λ) = ∑

i,di≥1 1 = card{i |
ei ≥ 1}.

Let s be a new variable. The function λ �→ cardC
y
λs|λ| computed in Proposi-

tion 4.3 is clearly multiplicative. Applying (4.1), we obtain

1 +
∑
n≥1

Bn(q)sn = 1 +
∑
|λ|≥1

cardC
y
λs|λ|

=
∏
i≥1

(
1 +

∑
e≥1

cardC
y
ie s

ie

)
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=
∏
i≥1

(
1 +

∑
e≥1

(q − 1)qie+e−1sie

)

=
∏
i≥1

(
1 + (q − 1)q−1

∑
e≥1

(qi+1si)e
)

=
∏
i≥1

(
1 + (q − 1)q−1 qi+1si

1 − qi+1si

)

=
∏
i≥1

(1 − qi+1si) + (q − 1)qisi

1 − qi+1si

=
∏
i≥1

1 − qisi

1 − qi+1si
.

Finally, replace s by q−1t .
(b) To compute B◦

n(1), we use the formula of Corollary 4.4. Since the value at
q = 1 of (q − 1)v(λ)−1 is 1 if v(λ) = 1 and 0 otherwise and since v(λ) = 1 if and
only if m1 = · · · = mt = d , in which case dt = n, we have

B◦
n(1) =

∑
dt=n

1 =
∑

d|n,d≥1

1 = σ0(n).

For B◦
n(−1), we use the infinite product expansion of Item (a): replacing Bn(q)

by (q − 1)qnB◦
n(q), we obtain

1 +
∑
n≥1

(q − 1)B◦
n(q)tn =

∏
i≥1

1 − t i

1 − qti
.

Setting q = −1 yields

1 − 2
∑
n≥1

B◦
n(−1)tn =

∏
i≥1

1 − t i

1 + t i
.

Now recall the following identity of Gauss (see [12, (7.324)] or [17, 19.9 (i)]):∏
i≥1

1 − t i

1 + t i
=

∑
k∈Z

(−1)ktk
2
. (4.2)

It follows that
1 − 2

∑
n≥1

B◦
n(−1)tn = 1 + 2

∑
k≥1

(−1)ktk
2
,

which allows us to conclude. �

Remark 4.7. The results of Theorem 4.6 should be compared to the following
ones concerning the number An(q) of ideals of Fq [x, y] of codimension n. Pro-
ceeding as in the proof of Theorem 4.6, we deduce from (3.1) that

1 +
∑
n≥1

An(q)sn =
∏
i≥1

1

1 − qi+1si
.
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Setting q = −1, we have

1 +
∑
n≥1

An(−1)sn =
∏
i≥1

1

1 − (−1)i+1si
=

∏
m≥1

1

(1 − s2m−1)(1 + s2m)
. (4.3)

Multiplying by
∏

m≥1(1 + s2m)−1 both sides of the Euler identity∏
m≥1

1

1 − s2m−1
=

∏
i≥1

(1 + si)

(see [17, (19.4.7)]), we deduce that the right-hand side of (4.3) is equal to the
infinite product ∏

m≥1

(1 + s2m−1).

Thus by [2, Table 14.1, p. 310] or [17, (19.4.4)], the value An(−1) is equal to
the number2 of partitions of n with unequal odd parts. Note that An(1) is equal
to the number3 of partitions of n. See Table 4 for a list of the polynomials An(q)

(1 ≤ n ≤ 12).

Table 4 The polynomials An(q)

n An(q) An(1) An(−1)

1 q2 1 1
2 q4 + q3 2 0
3 q6 + q5 + q4 3 1
4 q8 + q7 + 2q6 + q5 5 1
5 q10 + q9 + 2q8 + 2q7 + q6 7 1
6 q12 + q11 + 2q10 + 3q9 + 3q8 + q7 11 1
7 q14 + q13 + 2q12 + 3q11 + 4q10 + 3q9 + q8 15 1
8 q16 + q15 + 2q14 + 3q13 + 5q12 + 5q11 + 4q10 + q9 22 2

q18 + q17 + 2q16 + 3q15

9 + 5q14 + 6q13 + 7q12 + 4q11 + q10 30 2

q20 + q19 + 2q18 + 3q17 + 5q16

10 + 7q15 + 9q14 + 8q13 + 5q12 + q11 42 2

q22 + q21 + 2q20 + 3q19 + 5q18 +
11 + 7q17 + 10q16 + 11q15 + 10q14 + 5q13 + q12 56 2

q24 + q23 + 2q22 + 3q21 + 5q20 + 7q19

12 + 11q18 + 13q17 + 15q16 + 12q15 + 6q14 + q13 77 3

2See Sequence A000700 in [25].
3See Sequence A000041 in [25].
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5. Invertible Gröbner Cells

Let Hilbn((A1
k \ {0})2) be the Hilbert scheme parameterizing finite subschemes of

colength n of the two-dimensional torus, that is, of the complement of two distinct
intersecting lines in the affine plane. Its k-points are in bijection with the set of
ideals of k[x, y, x−1, y−1] of codimension n. By Section 3.2 this set of ideals is
the disjoint union over the partitions λ of n of the sets C

x,y
λ , where C

x,y
λ consists

of the ideals I ∈ Cλ such that both x and y are invertible in k[x, y]/I . We call
C

x,y
λ the invertible Gröbner cell associated with the partition λ.

When the ground field is finite, so is C
x,y
λ . The aim of this section is to compute

the cardinality of C
x,y
λ when k = Fq .

5.1. The Cardinality of an Invertible Gröbner Cell

Recall the nonnegative integers d1, . . . , dt defined by (3.3) and the positive inte-
ger v(λ) defined by (3.4). We now give a formula for cardC

x,y
λ .

Theorem 5.1. Let k = Fq , let n be an integer ≥ 1, and let λ be a partition of n.
Then

cardC
x,y
λ = (q − 1)2v(λ)qn−�(λ)

∏
i=1,...,t
di≥1

q2di − 1

q2 − 1
.

The theorem will be proved in Section 5.3. It has the following straightforward
consequences.

Corollary 5.2. Let k = Fq , and let λ be a partition of n.

(a) cardC
x,y
λ is a monic polynomial in q with integer coefficients; it is of de-

gree n + �(λ).
(b) The polynomial cardC

x,y
λ is divisible by (q − 1)2. The quotient

Pλ(q) = cardC
x,y
λ

(q − 1)2

is a monic polynomial in q with integer coefficients and of degree n+�(λ)−2.
(c) If the partition λ is rectangular, that is, if v(λ) = 1, in which case d2 = · · · =

dt = 0 and d = d1 is a divisor of n, then

Pλ(q) = qn−d q2d − 1

q2 − 1
= qn−d(1 + q2 + · · · + q2d−2).

In this case, Pλ(1) = d .
(d) If v(λ) ≥ 2, then Pλ(q) is divisible by (q − 1)2, and Pλ(1) = 0.

Remark 5.3. The polynomials Pλ(q) may have negative coefficients. For in-
stance, if λ is the partition of 4 corresponding to t = 2, d1 = 1, d2 = 2, then

Pλ(q) = q5 − 2q4 + 2q3 − 2q2 + q.

The rest of the section is devoted to the proof of Theorem 5.1.
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5.2. A Criterion for the Invertibility of x

In Section 4 we introduced the algebra map py : k[x, y] → k[x] sending x to itself
and y to 0. Similarly, let px : k[x, y] → k[x] be the algebra map sending x to 0
and y to itself. Then by Lemma 2.2, the set C

x,y
λ consists of the ideals I ∈ Cλ such

that px(I ) = k[y] and py(I ) = k[x]. We already have a criterion for py(I ) = k[x]
(see Proposition 4.1). We shall now give a necessary and sufficient condition for
px(I ) to be equal to k[y].

Resuming the notation of Section 4, we see that px(I ) can be identified with
the ideal of k[y] generated by the polynomials f0(0, y), . . . , ft (0, y) ∈ k[y] ob-
tained from the polynomials f0(x, y), . . . , ft (x, y) by setting x = 0. The polyno-
mials f0(0, y), . . . , ft (0, y) are the maximal minors of the matrix Mx

λ obtained
from the matrix Mλ of (3.5) by setting x = 0.

Let μi be the determinant of the submatrix Mi of Mx
λ corresponding to the

rows (i + 1), . . . , (t + 1) and to the columns i, . . . , t . We have μt = pt+1,t and

μi =

∣∣∣∣∣∣∣∣∣
pi+1,i ydi+1 + pi+1 · · · 0

...
...

. . .
...

pt,i pt,i+1 · · · ydt + pt

pt+1,i pt+1,i+1 · · · pt+1,t

∣∣∣∣∣∣∣∣∣
if 1 ≤ i < t . Expanding μi along its first column, we obtain

μi =
t−i+1∑
j=1

pi+j,iqi+j,i , (5.1)

where

qi+j,i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μi+1 if j = 1,

(−1)j−1(ydi+1 + pi+1)

· · · (ydi+j−1 + pi+j−1)μi+j if 1 < j < t − i + 1,

(−1)t−i (ydi+1 + pi+1)

· · · (ydt−1 + pt−1)(y
dt + pt ) if j = t − i + 1.

(5.2)

Observe also that

fi(0, y) =

⎧⎪⎨⎪⎩
μ1 if i = 0,

(yd1 + p1) · · · (ydi + pi)μi+1 if 1 ≤ i < t,

(yd1 + p1) · · · (ydt + pt) if i = t.

(5.3)

Lemma 5.4. If 1 ≤ i ≤ j ≤ t , then μi belongs to the ideal (μj , y
dj + pj ) gener-

ated by μj and (ydj + pj ).

Proof. The case i = j is obvious. Otherwise, consider the matrix Mi whose de-
terminant is μi ; the column of Mi containing the entry ydj +pj can be written as
the sum of a column containing only the entry ydj + pj , the other entries being
zero, and of a column whose top entry is zero and the bottom ones form the first
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column of the matrix Mj whose determinant is μj . Therefore by the multilin-
earity property of determinants, μi is the sum of a determinant that is a multiple
of ydj +pj and of another determinant that is a multiple of μj ; indeed, this second
determinant is block-triangular with one diagonal block equal to μj . �

Here is our criterion for the invertibility of x.

Proposition 5.5. We have px(Iλ) = k[y] if and only if ydi + pi and μi are co-
prime for all i = 1, . . . , t .

Proof. (a) Let us first check the sufficiency. The fact that ydt + pt and μt

are coprime implies that by (5.3) the gcd of ft (0, y) and of ft−1(0, y) is
(yd1 + p1) · · · (ydt−1 + pt−1). Now the gcd of the latter and of ft−2(0, y) is
(yd1 + p1) · · · (ydt−2 + pt−2) in view of the fact that ydt−1 + pt−1 and μt−1 are
coprime. Repeating this argument, we find that the gcd of f0(0, y), . . . , ft (0, y)

is 1, which implies that px(Iλ) = k[y].
(b) Conversely, suppose that ydj + pj and μj are not coprime for some j , that

is, (μj , y
dj + pj ) �= k[y]. By (5.3) and Lemma 5.4, f0(0, y), . . . , fj−1(0, y) be-

long to the ideal (μj , y
dj + pj ). On the other hand, again by (5.3), the remaining

polynomials fj (0, y), . . . , ft (0, y) are divisible by ydj + pj and hence belong
to (μj , y

dj + pj ). Therefore, px(Iλ) ⊆ (μj , y
dj + pj ) �= k[y]. �

For the proof of Theorem 5.1, we also need the following result.

Lemma 5.6. If ydj + pj and μj are coprime for all j > i, then the polynomials
qi+1,i , . . . , qt+1,i of (5.2) are coprime.

Proof. Note that the polynomials qr,s are defined for r > s in (5.2). Proceeding as
in Part (a) of the proof of Proposition 5.5 and using (5.2), we show by descending
induction on j that the gcd of qj+1,i , . . . , qt+1,i is

(ydi+1 + pi+1) · · · (ydj + pj ).

In particular, for j = i + 1, the gcd of qi+2,i , . . . , qt+1,i is (ydi+1 + pi+1). The
conclusion follows from this fact together with the coprimality of (ydi+1 + pi+1)

and of qi+1,i = μi+1. �

5.3. Proof of Theorem 5.1

We have to count the possible matrices Mλ such that Mx
λ and M

y
λ are invertible;

equivalently, to count the matrices Mx
λ since x in Mλ appears with constant coeffi-

cients. By Propositions 4.1 and 5.5, it suffices to count the matrices Mx
λ over Fq [y]

such that pi(0) �= 0 and ydi + pi and μi are coprime for all i = 1, . . . , t . We con-
sider these conditions successively for i = t, t − 1, . . . ,1.

Assume first that all integers d1, . . . , dt are nonzero. For i = t , ydt + pt is a
monic polynomial of degree dt with nonzero constant term, μt = pt+1,t is of de-
gree < dt , and both polynomials are coprime. It follows from Lemma 2.5 (or from
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Proposition 2.3 with d = dt and h = 1) that we have (q − 1)2(q2dt − 1)/(q2 − 1)

possible choices for the last column of Mλ.
For i = t − 1, it follows from (5.1) that μt−1 = P1Q1 + P2Q2, where Q1 =

qt,t−1 and Q2 = −qt+1,t−1, which are coprime by Lemma 5.6, P1 = pt,t−1 and
P2 = pt+1,t−1, which are both polynomials of degree < dt−1. The polynomial
P = ydt−1 + pt−1 is monic of degree dt−1 with nonzero constant term, and
Q = μt−1 = P1Q1 + P2Q2 is coprime to P by the coprimality condition. It then
follows from Proposition 2.3 applied to the case d = dt−1 and h = 2 that there are

(q − 1)2qdt−1
q2dt−1 − 1

q2 − 1

possible choices for the (t − 1)th column of Mλ.
In general, the polynomial P = ydi + pi is monic of degree dt−1 with nonzero

constant term and is assumed to be coprime to Q = μi = ∑t−i+1
j=1 pi+j,iqi+j,i .

By Lemma 5.6 the polynomials qi+1,i , . . . , qt+1,i are coprime. Applying Propo-
sition 2.3 to the case d = di and h = t + 1 − i, we see that there are

(q − 1)2q(t−i)di
q2di − 1

q2 − 1

possible choices for the ith column of Mx
λ .

In the end we obtain a number of possible entries for Mx
λ equal to

t∏
i=1

(q − 1)2q(t−i)di
q2di − 1

q2 − 1
= qn−�(λ)

t∏
i=1

(q − 1)2 q2di − 1

q2 − 1

since �(λ) = ∑t
i=1 di and n = |λ| = ∑t

i=1(t − i + 1)di . We have thus proved the
theorem when d1, . . . , dt are all nonzero.

Let E be the subset of {1, . . . , t} consisting of those subscripts i for which
di = 0. (Note that 1 does not belong to E since d1 > 0.) Assume now that E is
nonempty and set t ′ = t − cardE. By assumption t ′ < t . For any positive inte-
ger i ≤ t ′, let d ′

i be equal to the ith nonzero di . The integers d ′
1 = d1, d ′

2, . . . , d
′
t ′

are positive.
Recall that if i ∈ E, then the ith column of the matrix Mx

λ is zero except for
the (i, i)-entry, which is 1. Permuting rows and columns, we may rearrange Mx

λ

into a matrix M ′
λ of the form

M ′
λ =

(
Mx

ν 0
N It−t ′

)
,

where It−t ′ is the identity matrix of size (t − t ′). The (t ′ + 1) × t ′-matrix Mx
ν

has the same form as Mx
λ with t replaced by t ′, the sequence d1, . . . , dt by the

shorter sequence d ′
1, . . . , d

′
t ′ , and the partition λ by the partition ν associated with

the sequence d ′
1, . . . , d

′
t ′ .

Let f ′
i be the determinant of the square matrix obtained from M ′

λ by deleting
its (i + 1)th row. It is clear that up to sign and to reordering the maximal minors
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f ′
0, . . . , f

′
t of M ′

λ are the same as those of Mλ. In view of the special form of M ′
λ,

observe that

f ′
i =

{
f

(ν)
i if 0 ≤ i ≤ t ′,

0 if t ′ < i ≤ t,

where f
(ν)
i is the determinant of the t ′ × t ′-matrix obtained from Mν by deleting

its (i + 1)th row.
The number of possible entries of Mλ, which is the same as the number of

possible entries of M ′
λ, is then the product of the number of possible entries

of N , which is a power of q , and of the number of possible entries of Mν . Since
d ′

1, . . . , d
′
t ′ are positive, by the first part of the proof, we know that the number of

possible entries of Mν is the product of a power of q by

t ′∏
i=1

(q − 1)2 q2d ′
i − 1

q2 − 1
.

In other words, the number of possible entries of Mλ is

qc
∏

i=1,...,t
di≥1

(q − 1)2 q2di − 1

q2 − 1

for some nonnegative integer c. Now since the invertible Gröbner cell C
x,y
λ is a

Zarisky open subset of the affine Gröbner cell Cλ, the degree of the previous poly-
nomial in q must be the same as the degree of the cardinal of Cλ, which is qn+�(λ)

by Section 3.1. This suffices to establish that c = n − �(λ) and to complete the
proof of the theorem.

5.4. Proof of Theorem 1.1

By our remark at the beginning of Section 5, the number Cn(q) of ideals of
Fq [x, y, x−1, y−1] of codimension n is given by

Cn(q) =
∑
λ�n

cardC
x,y
λ , (5.4)

where C
x,y
λ is the invertible Gröbner cell associated with the partition λ. The

equality in Theorem 1.1 follows then from the formula for cardC
x,y
λ given in

Theorem 5.1.
By Corollary 5.2 (a) cardC

x,y
λ is a monic polynomial of degree n + �(λ) with

integer coefficients. Therefore, Cn(q) has integer coefficients, and its degree is
max{n + �(λ) | λ � n}. Now �(λ) is maximal if and only if λ = 1n, in which case
�(λ) = n. Therefore Cn(q) is monic, and its degree is 2n.

Since ν(λ) ≥ 1, it follows from the formula in Theorem 5.1 that cardC
x,y
λ

is divisible by (q − 1)2 for each invertible Gröbner cell. Therefore, the polyno-
mial Cn(q) is divisible by (q − 1)2.
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6. Proofs of the Corollaries

We now start the proofs of Corollaries 1.2 and 1.4.

6.1. Proof of Corollary 1.2

Since Cn(q) and (q − 1)2 are both monic with integer coefficients, so is Pn(q).
The latter is the sum over all partitions of n of the polynomials Pλ(q) (introduced
in Corollary 5.2(b)). By Corollary 5.2(c)–(d), we have Pλ(1) = 0 if v(λ) ≥ 2 and
if v(λ) = 1, then λ is of the form td , where dt = n, in which case Pλ(1) = d . The
desired formula for Pn(1) follows.

6.2. Proof of Corollary 1.4

As in the proof of Theorem 4.6, we consider each partition λ as a union of rectan-
gular partitions iei , with ei parts of length i, for ei ≥ 1 and distinct i ≥ 1. Recall
that |λ| = ∑

i iei , �(λ) = ∑
i ei , and v(λ) = ∑

i 1. To indicate the dependance
of ei on λ, we write ei = ei(λ). We then obtain the following statement.

Proposition 6.1. Let s1, s2, . . . be new variables. We have the infinite product
expansion

1 +
∑
λ

cardC
x,y
λ s

e1(λ)
1 s

e2(λ)
2 · · · =

∏
i≥1

(1 − qisi)
2

(1 − qi+1si)(1 − qi−1si)
.

Proof. Proceeding as in the proof of Theorem 4.6 and using Theorem 5.1, we
deduce that the left-hand side is equal to

1 +
∑
λ

∏
i≥1

(q − 1)2 q2ei (λ) − 1

q2 − 1
qiei (λ)−ei (λ)s

ei (λ)
i ,

which in turn is equal to∏
i≥1

(
1 + (q − 1)2

q2 − 1

∑
ei≥1

((qi+1si)
ei (λ) − (qi−1si)

ei (λ))

)

=
∏
i≥1

(
1 + (q − 1)2

q2 − 1

(
qi+1si

1 − qi+1si
− qi−1si

1 − qi−1si

))

=
∏
i≥1

(
1 + (q − 1)2

q2 − 1

(q2 − 1)qi−1si

(1 − qi+1si)(1 − qi−1si)

)

=
∏
i≥1

(
1 + (q − 1)2qi−1si

(1 − qi+1si)(1 − qi−1si)

)

=
∏
i≥1

(1 − qisi)
2

(1 − qi+1si)(1 − qi−1si)
.

�
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Proof of Corollary 1.4. (a) Replace si by (t/q)i in Proposition 6.1, use (5.4) and
Theorem 1.1, and observe that (1 − qti)(1 − q−1t i ) = 1 − (q + q−1)t i + t2i .

(b) The infinite product is clearly invariant under the transformation q ↔ q−1;
thus, Cn(q

−1) = q−2nCn(q). Together with degCn(q) = 2n, this implies that
Cn(q) is palindromic. The polynomial Pn(q) is palindromic as a quotient of two
palindromic polynomials.

�

6.3. An Alternative Proof of Corollary 1.4 (a)

After we made public a first version of this article, we learnt of an alternative geo-
metric approach to the polynomials Cn(q). Indeed, Göttsche and Soergel deter-
mined the mixed Hodge structure of the punctual Hilbert schemes of any smooth
complex algebraic surface (see [15, Thm. 2]). Applying their result to the Hilbert
scheme Hn

C
= Hilbn(C× ×C×) of n points of the complex two-dimensional torus,

Hausel, Letellier, and Rodriguez-Villegas observed in [20, Thm. 4.1.3] that the
compactly supported mixed Hodge polynomial Hc(H

n
C
;q,u) of Hn

C
fits into the

equality of formal power series

1 +
∑
n≥1

Hc(H
n
C
;q,u)

tn

qn
=

∏
i≥1

(1 + u2i+1t i )2

(1 − u2i+2qti)(1 − u2iq−1t i )
. (6.1)

Setting u = −1 in (6.1), we obtain an infinite product expansion for the generating
function of the E-polynomial E(Hn

C
;q) = Hc(H

n
C
;q,−1) of Hn

C
, namely

1 +
∑
n≥1

E(Hn
C
;q)

tn

qn
=

∏
i≥1

(1 − t i )2

1 − (q + q−1)t i + t2i
. (6.2)

Now, Hn
C

is strongly polynomial-count in the sense of Nick Katz (see [21, Ap-
pendix]), probably a well-known fact (which also follows from the computations
in the present paper). Therefore, by [21, Thm. 6.1.2] the E-polynomial counts the
number of elements of Hn over the finite field Fq , which is also the number Cn(q)

of ideals of codimension n of Fq [x, y, x−1, y−1]. Thus (6.2) implies the equality
of Corollary 1.4(a).

Remark 6.2. In the same vein as before, there is a geometric explanation of
the palindromicity of the polynomials Cn(q). De Cataldo, Hausel, and Miglio-
rini [9] observed that any diffeomorphism between C× × C× and the cotan-
gent bundle E × C of the elliptic curve E = C/Z[i] induces a linear isomor-
phism of graded vector spaces between the cohomology groups of the corre-
sponding Hilbert schemes: H ∗(Hn

C
,Q) ∼= H ∗(Hilbn(E × C),Q). This isomor-

phism does not preserve the mixed Hodge structures, as that on the right-hand
side is pure, whereas that on the left-hand side is not. Nevertheless, such an iso-
morphism identifies the weight filtration on H ∗(Hn

C
,Q) with the perverse Leray

filtration on H ∗(Hilbn(E × C),Q) associated with the natural projective map
from Hilbn(E ×C) to the nth symmetric product of C induced by the projection
of E × C on the second factor. The perverse Leray filtration is “palindromic” as
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a consequence of the relative hard Lefschetz theorem for that map (see [9, Thms.
4.1.1 and 4.3.2]).

Note that Hausel, Letellier, and Rodriguez-Villegas observed a similar palin-
dromicity for the E-polynomial of certain character varieties and termed it “cu-
rious Poincaré duality” in [19, Cor. 5.2.4] (see also [21, Cor. 3.5.3] and [18, Cor.
1.4]).

Remark 6.3. The natural action of the group C× ×C× on itself induces an action
on the Hilbert scheme Hn

C
. Consider the GIT quotient H̃ n

C
= Hn

C
//(C× × C×).

Using [21, Thm. 2.2.12] and [19, Section 5.3], we see that the E-polynomial
of H̃ n

C
is given by

E(H̃n
C
;q) = E(Hn

C
;q)/(q − 1)2 = Cn(q)/(q − 1)2 = Pn(q).

Recall from Introduction (see also Appendix) that the coefficients of Pn(q) are all
nonnegative. Therefore, H̃ n

C
provides an example of a polynomial-count variety

with odd cohomology and a counting polynomial with nonnegative coefficients.
This implies nontrivial cancellation for the mixed Hodge numbers of H̃ n

C
. No sim-

ilar positivity phenomenon was observed for the character varieties investigated
by Hausel, Letellier, and Rodriguez-Villegas.

6.4. Proof of Corollary 1.5

It is well known that the generating function of the partition function p(n) is∑
n≥0

p(n)tn =
∏
i≥1

1

1 − t i
.

By [1, Eq. (1.11) and Thm. 1] the generating function for the integers NV (m,n)

is ∑
m∈Z

∑
n≥0

NV (m,n)qmtn =
∏
i≥1

1 − t i

1 − (q + q−1)t i + t2i
.

Thus by Corollary 1.4 we have(∑
n≥0

p(n)tn
)(

1 +
∑
n≥1

Cn(q)

qn
tn

)
=

∏
i≥1

1

1 − t i

∏
i≥1

(1 − t i )2

1 − (q + q−1)t i + t2i

=
∏
i≥1

1 − t i

1 − (q + q−1)t i + t2i

=
∑
m∈Z

∑
n≥0

NV (m,n)qmtn.

The desired formula follows immediately.

Appendix. The Coefficients of the Polynomials Cn(q) and Pn(q)

We now state the results of the companion paper [22] on the coefficients of the
polynomials Cn(q) and Pn(q).
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Since Cn(q) and Pn(q) are palindromic of respective degrees 2n and 2n − 2,
we may expand Cn(q) and Pn(q) as follows:

Cn(q) = cn,0q
n +

n∑
i=1

cn,i(q
n+i + qn−i ),

where cn,0, cn,1, cn,2 . . . are integers, and

Pn(q) = an,0q
n−1 +

n−1∑
i=1

an,i(q
n+i−1 + qn−i+1),

where an,0, an,1, an,2 . . . are integers.
By Theorem 1.1 of [22] the coefficients cn,i of Cn(q) are given by the follow-

ing formulas: (a) For the central coefficients cn,0, we have

cn,0 =
{

2(−1)k if n = k(k + 1)/2 for some integer k ≥ 1,

0 otherwise.

(b) For the noncentral coefficients (i ≥ 1), we have

cn,i =

⎧⎪⎨⎪⎩
(−1)k if n = k(k + 2i + 1)/2 for some integer k ≥ 1,

(−1)k−1 if n = k(k + 2i − 1)/2 for some integer k ≥ 1,

0 otherwise.

Note that in Item (b) the first two conditions are mutually exclusive.
As for the coefficients of Pn(q), the coefficient an,i is by [22, Thm. 1.2] equal

to the number of divisors d of n such that

i + √
2n + i2

2
< d ≤ i +

√
2n + i2.

It follows that all coefficients an,i of Pn(q) are nonnegative integers.
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