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On the Pin(2)-Equivariant Monopole Floer
Homology of Plumbed 3-Manifolds

Irving Dai

Abstract. We compute the Pin(2)-equivariant monopole Floer ho-
mology for the class of plumbed 3-manifolds considered by Ozsváth
and Szabó [18]. We show that for these manifolds, the Pin(2)-
equivariant monopole Floer homology can be calculated in terms of
the Heegaard Floer/monopole Floer lattice complex defined by Néme-
thi [15]. Moreover, we prove that in such cases the ranks of the
usual monopole Floer homology groups suffice to determine both the
Manolescu correction terms and the Pin(2)-homology as an Abelian
group. As an application, we show that β(−Y, s) = μ̄(Y, s) for all
plumbed 3-manifolds with at most one “bad” vertex, proving (an
analogue of) a conjecture posed by Manolescu [12]. Our proof also
generalizes results by Stipsicz [21] and Ue [26] relating μ̄ with the
Ozsváth–Szabó d-invariant. Some observations aimed at extending
our computations to manifolds with more than one bad vertex are in-
cluded at the end of the paper.

1. Introduction

The goal of this paper is to compute the Pin(2)-equivariant monopole Floer ho-
mology of a certain family of plumbed 3-manifolds using the lattice cohomology
construction of Némethi [15]. First introduced by Manolescu [10] and further
developed by Lin [7], Pin(2)-equivariant monopole Floer homology is a modi-
fication of the usual Seiberg–Witten Floer homology for 3-manifolds that takes
advantage of an extra Z/2Z-symmetry in the Chern–Simons–Dirac functional.
Our approach in this paper is to use the lattice cohomology framework for com-
puting Heegaard Floer homology developed in, for example, [18; 13; 15], together
with a Gysin sequence relating the usual and Pin(2)-equivariant monopole Floer
homologies. We show that in the case of plumbed 3-manifolds with at most one
“bad” vertex [18] or, more generally, almost-rational plumbings [15], the Pin(2)-
homology is in fact determined by the lattice complex. This class of 3-manifolds
does not include all plumbed 3-manifolds, but is large enough to contain (for ex-
ample) all Seifert fibered rational homology spheres.

Our approach to computing the Pin(2)-homology by constraining it through
the Gysin sequence is taken from [8], in which it is used to compute the Pin(2)-
homology of various Seifert spaces. After completing the current work, the author
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also learned that many of the same results for Seifert rational homology spheres
have been obtained by Stoffregen [22]. The approach there involves explicitly un-
derstanding Manolescu’s Seiberg–Witten Floer spectrum (see, e.g., [11]), whereas
our approach is more combinatorial in nature. Theorems 1.1 and 1.2 should be
compared with (for example) Theorem 1.1 and Corollary 1.2 in Stoffregen’s work.

It should be noted that we work with the formulation of Pin(2)-equivariant
monopole Floer homology developed by Lin, rather than the original definition
via Seiberg–Witten Floer spectra given by Manolescu. Currently, these two theo-
ries are only conjecturally isomorphic (see [6] for the nonequivariant case). Thus,
our results are technically only valid in Lin’s setting, whereas (for example) Stof-
fregen’s computations hold for Manolescu’s original formulation. However, we
expect that the algebraic arguments given in this paper can be carried out for both
theories.

The organization of this paper is as follows. In the next two subsections, we
review the details of Pin(2)-equivariant monopole Floer homology and lattice co-
homology that we will need for our computations. In Section 2, we prove the
following theorems on the Pin(2)-homology of plumbed 3-manifolds, outlined
here for motivation:

Theorem 1.1. Let Y be a rational homology 3-sphere given by surgery on a
connected negative-definite graph with at most one bad vertex (in the sense of
[18]). Let s be a self-conjugate spinc structure on Y . Then the orientation-reversed
Pin(2)-equivariant monopole Floer homology |HS(−Y, s) may be computed from
the lattice complex of Neméthi [15].

Theorem 1.2. Let Y be a rational homology 3-sphere given by surgery on a
connected negative-definite graph with at most one bad vertex (in the sense of
[18]). Let s be a self-conjugate spinc structure on Y . Then the ranks of the usual
monopole Floer homology determine both the Manolescu correction terms of
|HS(−Y, s) and also |HS(−Y, s) as an Abelian group.

The family of 3-manifolds described may be enlarged to the class of all 3-
manifolds obtained by plumbings on almost-rational graphs (see [15]) with no
additional difficulty, but we work in the original setting of [18] for convenience
of exposition. For the precise statements of these theorems, see Theorems 2.3
and 2.4. In Section 3, we relate the Neumann–Siebenmann invariant μ̄(Y, s) (de-
fined in [16; 20]) with the lattice cohomology of (Y, s). Combined with Theo-
rem 2.4, this allows us to prove the following:

Theorem 1.3. Let Y be a rational homology 3-sphere given by surgery on a
connected negative-definite graph with at most one bad vertex (in the sense of
[18]). Let s be a spin structure on Y (which we may view as a self-conjugate spinc

structure). Then β(−Y, s) = μ̄(Y, s).

For Seifert integer homology spheres, this result is again due to Stoffregen [22]
using a computation of μ̄ for such manifolds by Ruberman and Saveliev [19];
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in our case, it is a straightforward corollary of the lattice cohomology frame-
work. In particular, Theorem 1.3 proves (in greater generality) Conjecture 4.1 of
[12], albeit for the formulation of Pin(2)-equivariant homology given by Lin. As
a byproduct of the proof, we also obtain a Heegaard Floer/monopole Floer ho-
mology characterization of μ̄ for all plumbed 3-manifolds with at most one bad
vertex. This generalizes work of Stipsicz [21] and Ue [26] relating μ̄(Y, s) and
the Ozsváth-Szabó d-invariant for rational surface singularities and spherical 3-
manifolds, respectively.

Finally, we end with some observations and examples aimed at extending our
computations to manifolds with more than one bad vertex. Throughout the paper,
we always work over the field of two elements F = F2.

1.1. Pin(2)-Equivariant Monopole Floer Homology

We begin by reviewing the essential tenets of Pin(2)-equivariant monopole Floer
homology as given in [7]. Recall that, for a closed 3-manifold Y equipped with a
spinc structure s, the monopole Floer homology groups are defined by studying
the chain complex generated by critical points of the (perturbed) Chern–Simons–
Dirac functional on a certain “configuration space” associated with Y and s. (See,
e.g., [3] for details.) This is a gauge-theoretic invariant, which assigns to (Y, s)

three groups fitting into the long exact sequence

· · · → �HM(Y, s) → }HM(Y, s) → ĤM(Y, s) → ·· · .

Each of these groups are modules over the ring F[U ], which may be thought of as
the S1-equivariant cohomology of a point. The monopole Floer homology groups
have an absolute Z/2Z-grading and also a more refined relative Z/dZ-grading,
where d depends on the choice of s. If s has torsion Chern class, then the latter is
a relative Z-grading. The action of U has degree −2.

If Y is a rational homology sphere, then the relative Z-grading correspond-
ing to any spinc structure becomes an absolute Q-grading, and we define
the Frøyshov invariant of (Y, s) as follows [2]. Let U+

d be the F[U ]-module
F[U−1,U ]/UF[U ], shifted so that the element 1 has grading d . The monopole
Floer homology }HM(Y, s) decomposes into the direct sum of a finite part and
a single infinite tower U+

d , the latter of which is canonically determined as the
image of �HM(Y, s) in the long exact sequence above. The Frøyshov invariant
δ(Y, s) = d/2 ∈ Q is defined to be half of the grading shift of this infinite U -
tower.

In the case that s is self-conjugate, it turns out that the Chern–Simons–Dirac
functional has an extra Z/2Z-symmetry, which allows us to consider the subcom-
plex consisting of Z/2Z-invariant chains of critical points and flows between such
chains. The main analytical difficulty in doing this is that, for perturbations of the
Chern–Simons–Dirac functional that preserve the Z/2Z-symmetry, critical points
necessarily occur in entire submanifolds, rather than isolated points. Nevertheless,
once the appropriate theory is defined (see [7]), taking the homology of this in-
variant subcomplex yields a similar triple of gauge-theoretic invariants fitting into
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the analogous long exact sequence

· · · → �HS(Y, s) → |HS(Y, s) → ĤS(Y, s) → ·· · .

Each of these groups is a module over the ring

R = F[V ][Q]/(Q3),

which may be thought of as the Pin(2)-equivariant cohomology of a point. For
each self-conjugate spinc structure s, the Pin(2)-equivariant monopole Floer ho-
mology groups are graded by the same object as their nonequivariant counterparts
and in particular have a relative Z-grading. The actions of V and Q have degrees
−4 and −1, respectively.

The relation between the usual and Pin(2)-equivariant monopole Floer ho-
mologies (for a self-conjugate spinc structure s on Y ) is expressed by the Gysin
sequence (see Section 4.3 of [7])

· · · ·Q−→ |HS(Y, s)
ι∗−→ }HM(Y, s)

π∗−→ |HS(Y, s)
·Q−→ |HS(Y, s)

ι∗−→ · · · , (1)

which should be thought of as analogous to the usual Gysin sequence in algebraic
topology for S0-bundles. (There are of course similar sequences for the other two
flavors of monopole Floer homology.) This is a map of graded R-modules, where
V acts on the usual monopole Floer homology as U2 and Q acts as zero. The
maps ι∗ and π∗ in the sequence preserve the grading, whereas multiplication by
Q has grading −1.

If Y is a rational homology sphere, then (as in the nonequivariant case) the
relative Z-grading on the Pin(2)-monopole Floer homology becomes an absolute
Q-grading, and we may define the three Manolescu correction terms as follows
[12]. Let V+

d be the F[V ]-module F[V −1,V ]/VF[V ], shifted so that the element
1 has grading d . The Pin(2)-equivariant monopole Floer homology |HS(Y, s) de-
composes into the direct sum of a finite part and the sum of three infinite tow-
ers V+

c ⊕ V+
b ⊕ V+

a , where the action of Q sends the c-tower onto the b-tower
and the b-tower onto the a-tower. (Again, the three towers are canonically de-
termined, even though the finite part of the decomposition is not.) We define
α(Y, s) ≥ β(Y, s) ≥ γ (Y, s) to be the rational numbers such that

a = 2α(Y, s), b = 2β(Y, s) + 1 and c = 2γ (Y, s) + 2.

See [11] and [12] for Manolescu’s disproof of the triangulation conjecture using
these invariants.

1.2. Lattice Cohomology

We now review the construction of lattice cohomology as given in [15]. This for-
mulation is slightly removed from the original setup of, for example, [18; 13], but
has the advantage of being somewhat conceptually and combinatorially clearer.
For any positive integer s, let Zs be the s-dimensional integer lattice, and denote
by Qq the set of q-dimensional side-length-one lattice cubes in Zs . (Thus Q0 is
the set of lattice points, Q1 is the set of lattice edges, and so on.) Let {wq} (often
denoted simply by w) be a collection of functions wq : Qq → Z from the set of all
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such cubes into Z. We refer to such a set {wq} as a collection of weight functions.
Define Sn ⊆ Zs to be the sublevel set of cubes (of any dimension) whose weights
are at most n, that is,

Sn(Z
s ,w) =

⋃
q

{�q ∈Qq : wq(�q) ≤ n}.

For each nonnegative integer i, we then define

Si (Zs ,w) =
⊕

n

H i(Sn,F),

where Hi(Sn,F) is the usual i-dimensional Z/2Z-cohomology of the sublevel
set Sn, and the sum is taken over all n. We give this object a grading by declar-
ing an element of Hi(Sn,F) to have grading 2n, and we define a U -action on
Si (Zs ,w) by setting multiplication by U on Hi(Sn,F) to be equal to the map on
cohomology

i∗ : Hi(Sn,F) → Hi(Sn−1,F)

induced by the inclusion of Sn−1 into Sn. We then define the lattice cohomology
of (Zs ,w) by putting all these objects together and letting i vary:

H∗(Zs ,w) = S∗(Zs ,w).

Now let Y be a rational homology sphere with a fixed spinc structure s. Let �

be a plumbing diagram for Y , so that Y is the boundary of the 4-manifold W(�)

constructed by attaching 2-handles to B4 according to the decorated graph �. We
have a preferred basis of H2(W(�),Z) formed by capping off the cores of the at-
tached 2-handles inside B4, which gives an isomorphism between H2(W(�),Z)

and the integer lattice L� spanned by these basis elements. Similarly, taking the
cocores of the 2-handles provides a preferred basis of H2(W(�),Y,Z) and iden-
tifies the relative homology with another integer lattice L′

� . The homology exact
sequence

0 → H2(W(�),Z) → H2(W(�),Y,Z) → H1(Y,Z) → 0

identifies L� as a sublattice of L′
� , and the intersection pairing on the former

extends to a Q-valued intersection pairing on the latter. We define the set of char-
acteristic vectors on � to be the set

κ = {k ∈ L′
� : (k, x) = (x, x)mod 2 for all x ∈ L�}.

There is a natural action of L� on κ given by k �→ k + 2L� , and we denote the
orbit of a characteristic vector k under this action by [k]. Noting that each element
of κ corresponds to a spinc structure on W(�), it is easily seen that [k] consists of
the set of spinc structures on W(�) limiting to a particular spinc structure on Y .
We may thus identify the set of orbits {[k]} with the set of spinc structures on Y ;
under this identification, the self-conjugate spinc structures on Y correspond to
those orbits that lie in the sublattice L� .

Now suppose that we have fixed a characteristic vector k whose spinc structure
limits to s on Y . We put a weight function w on L� as follows:

(1) For each lattice point x ∈ L� , we set w0(x) = −((x, x) + (x, k))/2; and
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(2) For each q-dimensional cube �q , we let wq(�q) be the maximum of w0(x)

for x ranging over the vertices of �q .

We denote the lattice cohomology of � with respect to this weight function by
H∗(�, k) = H∗(L�,w). The key result is that if the graph � is sufficiently “nice”,
then the resulting object is the same (up to a grading shift) as the Heegaard
Floer/monopole Floer homology of (−Y, s). (Here, we use the isomorphism of
Kutluhan, Lee, Taubes [5], Colin, Ghiggini, Honda [1], and Taubes [24] and
make little distinction between the Heegaard Floer and monopole Floer homol-
ogy throughout.) More precisely, we say that a vertex v of � is “bad” in the sense
of [18] if m(v) > −d(v), where m(v) is the decoration of � at v, and d(v) is the
valency of v. Thenwe have the following:

Theorem 1.4 ([18], Theorem 5.2.2 of [15]). Let Y be a rational homology 3-
sphere obtained by surgery on a connected negative-definite graph � with at most
one bad vertex. Let s be a spinc structure on Y , and let k be any characteristic
vector on � whose corresponding spinc structure on W(�) limits to s. Let σ be
the rational grading shift

σ = σ(�, k) = −1

4
(|�| + k2),

where |�| is the number of vertices in �. Then the following are true:

(1) Hq(�, k) = 0 for all q > 0,
(2) }HMeven(−Y, s) ∼= H∗(�, k)[σ ] = H0(�, k)[σ ] as graded F[U ]-modules, and
(3) }HModd(−Y, s) = 0.

Here, H0(�, k)[σ ] is the lattice cohomology of (�, k) shifted by grading σ , so that
an element that had grading zero before now has grading σ .

(Theorem 1.4 as stated in [18] and [15] deals with Heegaard Floer homology; see
[4] for results concerning the monopole Floer homology directly.)

Again, this is not largest possible class of manifolds for which the isomor-
phism is true; for a more general class of manifolds, see [15]. We will often keep
the isomorphism of Theorem 1.4 implicit and abuse notation by referring to ele-
ments of the lattice cohomology as lying in the monopole Floer homology, and
vice-versa. In these cases, we will sometimes also suppress the grading shift by
σ and describe elements of the monopole Floer homology as having their lat-
tice cohomology grading. Note that when computing the lattice cohomology, any
representative of [k] may be chosen; it is easily seen that choosing a different
representative has the effect of shifting the grading, which is cancelled out by the
change in σ(�, k).

2. Pin(2)-Equivariant Monopole Homology of Plumbed 3-Manifolds

We now turn to the computation of Pin(2)-equivariant monopole homology for the
class of plumbed 3-manifolds considered in [18]. The key step will be to observe
that the composition of maps ι∗ ◦ π∗ in the Gysin sequence (1) can be identified
with an obvious Z/2Z-symmetry in the lattice cohomology H0(�, k). It turns
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out that understanding this involution provides a sufficient algebraic constraint
in the Gysin sequence to completely determine the Pin(2)-homology. We thus
begin by defining this extra symmetry and establishing some of its properties.
Throughout, we assume that we are in the situation of Theorem 1.4, so that Y is
given by plumbing on a connected, negative-definite graph � with at most one
bad vertex. In addition, let s be a self-conjugate spinc structure on Y , and let k be
a characteristic vector on � whose corresponding spinc structure on W(�) limits
to s.

2.1. The J Structure of Lattice Cohomology

Let J be the map on L� given by reflection through the point −k/2; that is,

Jx = −x − k.

Note that since s is self-conjugate, this indeed takes L� to itself, and it is straight-
forward to check that the weight function w is invariant under the action of J .
Hence J preserves each sublevel set Sn and induces a map on each cohomology
group Hi(Sn,F). This defines a U -equivariant involution on the entire lattice co-
homology, which we also denote by J . Observing that 1 + J squares to zero, we
can then take the homology of H0(�, k) with respect to 1 + J . For reasons that
will become clear in Section 3, we refer to this homology as the derived lattice
cohomology and denote it by H′(�, k).

The derived lattice cohomology is easily described explicitly in terms of a
particular basis of H0(�, k) as follows. Observe that the connected components
of each sublevel set Sn provide a preferred basis for H0(�, k), the members of
which may be further subdivided into two types. First, there are the connected
components of Sn which are taken to themselves under the action of J ; we label
these basis elements by Fi and denote their span by F . Second, there are the
connected components that occur in pairs Ei and JEi ; we denote the span of
{Ei} and {JEi} by E. We thus obtain the decomposition

H0(�, k) = E ⊕ F = span{Ei} ⊕ span{(1 + J )Ei} ⊕ F.

Note that this splitting does not respect the U -action although it is easily seen that
U maps the span of {(1 + J )Ei} into itself, the image of F under U in general
lies in the subspace span{(1+J )Ei}⊕F . Observing that ker(1+J ) = span{(1+
J )Ei}⊕F and im(1+J ) = span{(1+J )Ei}, we evidently have the isomorphism
of graded F[U ]-modules

H′(�, k) ∼= (span{(1 + J )Ei} ⊕ F)/ span{(1 + J )Ei},
where we have written the right-hand side as a quotient to emphasize the U -
module structure. As an Abelian group, of course, H′(�, k) may be identified
with F .

We now prove a preliminary result on the structure of the derived lattice coho-
mology.
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Lemma 2.1. Let (Y, s) and (�, k) be as before. Then the derived lattice cohomol-
ogy H′(�, k) is isomorphic as an F[U ]-module to U+

r for some r .

Proof. We begin by showing that in each grading, F is at most one-dimensional.
Let X be a J -invariant connected component of a sublevel set Sn. By Theorem 1.4
all the higher cohomology groups of X vanish. Hence the Lefschetz fixed-point
theorem tells us that the action of J on X has at least one fixed point. (Note that
in our setup, we are working over Z/2Z-coefficients, but Theorem 1.4 actually
holds for Z-coefficients.) On the other hand, J is geometrically given by reflec-
tion through −k/2, so the only possible fixed point is −k/2. Thus X is uniquely
specified as connected component of Sn by the condition that it contains −k/2,
showing that F is at most one-dimensional in each grading 2n.

We now observe that if F is zero in a particular grading, then it must be zero
in all lower gradings. Indeed, if there are no J -invariant connected components
in grading 2n, then there cannot be any J -invariant connected components in
gradings 2m ≤ 2n, since the sublevel sets Sm are subsets of the sublevel set Sn.
Moreover, it is clear from the geometric picture that if F is nonzero in gradings 2n

and 2n − 2, then the action of U must map the nonzero element of F in grading
2n to the nonzero element of F in grading 2n−2, plus possibly some elements of
span{(1 + J )Ei}. This establishes the U -module structure and proves the claim.

�

Note that the fact that F is zero- or one-dimensional implies the following struc-
ture result for the monopole Floer homology.

Corollary 2.2. Let (Y, s) and (�, k) be as before. Then there exists a unique
grading ρ = ρ(Y, s) such that in gradings ρ + 2n for n ≥ 0, the monopole Floer
homology of (−Y, s) has odd rank, and in gradings ρ + 2n for n < 0, the mono-
pole Floer homology of (−Y, s) has even rank.

Proof. The corollary immediately follows from the fact that E is even-dimen-
sional in each grading. The rational number ρ is of course given by r + σ , where
r is as in Lemma 2.1, and σ is as in Theorem 1.4. �

In Section 3, we in fact show that this “parity invariant” ρ = ρ(Y, s) is equal to
twice the Neumann–Siebenmann invariant μ̄(Y, s). At the moment, however, we
restrict our attention to its relation with the Pin(2)-equivariant monopole Floer
homology of (−Y, s).

We are now in a position to state our main theorem(s). To describe the Pin(2)-
homology as an R-module, it will be convenient for us to break it up into four
F[V ]-submodules. To this end, we establish the following notation. Let A and B

be two Z-graded F[V ]-modules with graded parts Aq and Bq , and let n ∈ Z/4Z.
We write A =[n] B if the submodules

A[n] =
⊕

q=nmod 4

Aq and B[n] =
⊕

q=nmod 4

Bq
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consisting of the sums of the groups in gradings congruent to n modulo 4 are
isomorphic as graded F[V ]-modules. We refer to the F[V ]-submodules as the [n]-
submodules of A and B . Note that if A is in fact an R-module, then in addition
we have an action of Q that maps A[n] into A[n−1] for each n.

We now make a precise reformulation of Theorem 1.1. The explicit statement
is rather cumbersome, but the rationale behind the casework will become clear
after we embark upon the proof, which is given in the next subsection.

Theorem 2.3. Let s be a spinc structure on Y , and let k be any characteristic
vector on � whose corresponding spinc structure on W(�) limits to s. Let r be
as in Lemma 2.1 and σ as in Theorem 1.4. Then we have the following set of
F[V ]-module isomorphisms:

|HS(−Y, s)[−σ ] =[r+3] 0,

|HS(−Y, s)[−σ ] =[r+2] ker(1 + J ),

|HS(−Y, s)[−σ ] =[r+1] H′(�, k)[1], and

|HS(−Y, s)[−σ ] =[r] H0(�, k)/ im(1 + J ),

where V acts on all groups on the right-hand side by U2. The action of Q from
the [r + 2]- to the [r + 1]-submodule may be identified with the quotient map

ker(1 + J ) →H′(�, k) = ker(1 + J )/ im(1 + J ),

followed with multiplication by U in H′(�, k). The action of Q from the [r + 1]-
to the [r]-submodule may be identified with the inclusion map

H′(�, k) = ker(1 + J )/ im(1 + J ) →H0(�, k)/ im(1 + J ).

Multiplication by Q is zero in all other cases.

We now use Theorem 2.3 to provide a precise reformulation of Theorem 1.2.
Note that in the case where Y is expressed as surgery on a graph � for which
Theorem 1.4 applies, the Frøyshov invariant δ(−Y, s) may also be defined as half
of the grading below which the monopole Floer homology itself vanishes. This
follows from the fact that the action of U on the lattice cohomology is nonzero in
each grading in which it is possible to be nonzero.

Theorem 2.4. Let s be a spinc structure on Y , and let k be any characteristic
vector on � whose corresponding spinc structure on W(�) limits to s. Then the
Manolescu correction terms for (−Y, s) are given by:

a = 2α(−Y, s) = ρ,

b = 2β(−Y, s) + 1 = ρ + 1, and

c = 2γ (−Y, s) + 2 =
{

2δ(−Y, s) + 2 if 2δ(−Y, s) = ρ mod 4,

2δ(−Y, s) if 2δ(−Y, s) = ρ + 2 mod 4.

Moreover, the ranks of the Pin(2)-homology are as follows. In odd gradings (con-
gruent to ρ + 1 mod 2), the Pin(2)-homology is composed of the single V -tower
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V+
b . In even gradings (congruent to ρ mod 2), the rank of the Pin(2)-homology is

half of the rank of the usual monopole Floer homology, rounded up.

Proof. In sufficiently high gradings, the sublevel set Sn is contractible by Corol-
lary 3.2.5 of [15]. This implies that in each of these gradings the lattice cohomol-
ogy consists of a single nonzero element lying in F . Let us consider the action of
U on such an element, which we assume to be in grading 2n. From the geometric
picture we see that multiplication by Ui takes this element to the sum of all the
connected components in grading 2(n − i). Each V -tower may be identified by
selecting an element of sufficiently high grading and repeatedly multiplying by V .
From the fact that the [r + 3]-submodule is identically zero we see that the V+

a -
tower must lie in the [r]-submodule (this will also be evident from the proof of
Theorem 2.3 itself). The description of the U -action then identifies the V+

a -tower
with the [r]-submodule of H′(�, k) ⊆ H0(�, k)/ im(1 + J ), establishing the first
equality. The description of the Q-action in Theorem 2.3 shows that multiplica-
tion by Q is an isomorphism from the b-tower to the a-tower, proving the second
equality. Finally, the third equality follows from the remark preceding the theo-
rem. The statement about the ranks of the Pin(2)-homology follows immediately
from the fact that im(1 + J ) has half the dimension of E. �

Note that the invariants ρ and δ can be read off from the ranks of the monopole
Floer homology, recovering Theorem 1.2.

2.2. Pin(2)-Homology and the Gysin Sequence

As mentioned at the beginning of the section, our computation hinges on the sim-
ple observation that the action of J on H0(�, k) may be identified with the com-
position of maps ι∗ ◦ π∗ in the Gysin sequence (1). This follows easily from the
naturality of the isomorphism between monopole Floer homology and lattice co-
homology, but since there are several maps that mediate this isomorphism, we
sketch the details in the following lemma.

Lemma 2.5. Let (Y, s) and (�, k) be as before. The composition of maps ι∗ ◦ π∗
in the Gysin sequence for (−Y, s) coincides with the action of 1 +J on the lattice
cohomology H0(�, k) under the isomorphism of Theorem 1.4.

Proof. Denote by j the involution on the chain groups of the usual monopole
Floer homology of (−Y, s) coming from the Z/2Z-symmetry of the Chern–
Simons–Dirac functional. We claim that the induced action of j on the monopole
homology coincides with the action of J on H0(�, k) under the isomorphism of
Theorem 1.4. For this, we briefly recall the original formulation of H0(�, k) (see,
e.g., [18]). Given any element x in the monopole Floer homology of (−Y, s), let
φx be the map from the lattice [k] = k + 2L� to U+

0 defined by

φx(k
′) = }HM(W(�), k′)(x)
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for any k′ ∈ [k]. Here, }HM(W(�), k′) is the usual monopole Floer homology map

}HM(W(�), k′) : }HM(−Y, s) → }HM(S3),

associated with the spinc structure k′ on the cobordism W(�) between Y and
S3, and we have identified the monopole Floer homology of S3 with U+

0 (see,
e.g., [3]). According to Proposition 2.4 of [18], the map φx satisfies a certain
set of “adjunction equalities” relating φx(k

′) and φx(k
′ + 2v) for all k′ ∈ [k] and

v ∈ L� . We temporarily denote the F[U ]-module formed by the class of all such
maps from [k] to U+

0 satisfying these equalities by H0(�, k); this is the original
definition of lattice cohomology, and our present notion is simply a combinatorial
re-formulation of it (see Theorem 3.1.12 of [15]). The main result of [18] is then
that (for the 3-manifolds at hand) the correspondence x �→ φx is an F[U ]-module
isomorphism from from the monopole Floer homology of (−Y, s) onto the lattice
cohomology H0(�, k).

The cobordism map }HM(W(�), k′) is defined by studying the moduli space
of solutions to the four-dimensional Seiberg–Witten equations over the pair
(W(�), k′) with some specified limiting behavior at the ends of the cobordism
(see, e.g., [3]). As in the three-dimensional case, there is a j -symmetry of the
four-dimensional Seiberg–Witten equations, which (roughly speaking) restricts to
the three-dimensional j -symmetry at the ends of the cobordism. However, since k′
need not be self-conjugate, this symmetry merely identifies the two moduli spaces
of the four-dimensional equations corresponding to (W(�), k′) and (W(�),−k′).
Points in the former limit to x at one end, whereas points in the latter limit to jx.
It follows that we have the equality

φx(k
′) = φjx(−k′)

for all x ∈ }HM(−Y, s) and k′ ∈ [k]. Thus the correspondence x �→ φx takes the
involution j on the monopole Floer homology to the map on H0(�, k) given by
precomposing with the reflection k′ �→ −k′. One then checks that, under the ap-
propriate combinatorial reformulation, this latter involution coincides with the
map J defined at the beginning of the section.

We now claim that the map on }HM(−Y, s) given by 1 + j is equal to the
composition of maps ι∗ ◦ π∗ in the Gysin sequence (1). To see this, we observe
that the Gysin sequence is the homology exact sequence associated with the short
exact sequence of chain complexes

0 −→ Cinv∗
i−→ C∗

1+j−−→ (1 + j)C∗ −→ 0.

(See Proposition 3.10 of [7].) Here, C∗ is the chain complex for the usual mono-
pole Floer homology of (−Y, s), and Cinv∗ is the subcomplex of j -invariant chains.
The map i is given by inclusion, and the subcomplex (1+ j)C∗ is easily shown to
be quasi-isomorphic to Cinv∗ via the inclusion of (1 + j)C∗ in Cinv∗ . Thus ι∗ ◦ π∗
is evidently induced by the map 1 + j on C∗. There is a slight subtlety that arises
from the fact that in the previous sequence, the perturbation of the Chern–Simons–
Dirac functional is taken to be j -equivariant, whereas in the standard definition
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of monopole Floer homology the perturbation is such that critical points are iso-
lated. By Corollary 3.7 of [7], however, the monopole Floer homology defined
using such “Morse-Bott” perturbations is canonically isomorphic to the usual
monopole Floer homology, and it is easily checked that this isomorphism is j -
equivariant. �

We now proceed with the proof of Theorem 2.3.

Proof. Let q be a fixed grading of the monopole Floer homology of (−Y, s). We
begin by determining the Pin(2)-homology in grading q when q = ρ modulo 2.
Consider the splitting of the lattice cohomology in grading q − σ given by

H0
q−σ (�, k) = span{Ei}ni=1 ⊕ span{(1 + J )Ei}ni=1 ⊕ F,

where F is at most one-dimensional. Under the isomorphism of Theorem 1.4, the
composition ι∗ ◦ π∗ maps the first summand isomorphically onto the second. Let
E′ = π∗(span{Ei}). Then E and E′ fit into the subcomplex

0 → E′ ι∗−→ E = span{(1 + J )Ei} ⊕ span{Ei} π∗−→ E′ → 0, (2)

where span{Ei} maps isomorphically onto E′ via π∗, and E′ maps isomorphically
onto the subspace span{(1 + J )Ei} via ι∗. Note that this subcomplex is simply n

copies of the exact sequence

0 → F→ F⊕ F→ F → 0. (3)

Roughly speaking, the intuition behind this decomposition is that the elements
of E consist of irreducible critical points, which occur in pairs due to the j -
symmetry of the Chern–Simons–Dirac functional. In the usual monopole Floer
homology, each of these pairs contributes an (F ⊕ F)-summand, whereas in the
Pin(2)-homology, each pair contributes a single F-summand. Note that although
the choice of {Ei} is not canonical, the subspace E′ is canonically defined since
π∗(E) = π∗(span{Ei}).

Now let us consider F , which we assume for the moment to be nonzero in
grading q . The fact that (ι∗ ◦ π∗)F = 0 does not immediately allow us to de-
termine how F fits into the Gysin sequence. Instead, there are two cases. First,
suppose that π∗F �= 0. Since (ι∗ ◦ π∗)F = 0, this implies that π∗F is in the im-
age of Q. Denote π∗F by F ′. Since the monopole Floer homology of (−Y, s) is
zero in grading q + 1, a simple diagram chase shows that F and F ′ lie in some
subcomplex

F ′ F F ′

F 0 F

F ∗ F

π∗

·Q

·Q

(4)
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On the other hand, if π∗F is zero, then ι∗ surjects onto F , and choosing any
preimage F ′ of F under ι∗, a similar diagram chase then shows that we have the
subcomplex:

F ∗ F

F 0 F

F ′ F F ′

·Q

·Q

ι∗

(5)

Here, we have used the fact that F does not lie in the image of 1 + J to conclude
that F ′ cannot be in the image of π∗, and thus that the action of Q on F ′ is
nonzero. Note that in this case the subspace F ′ is not canonically determined but
must be chosen as a preimage of F .

We now claim that the Pin(2)-homology in grading q is precisely equal to
E′ ⊕ F ′ in either of the two cases described before. Indeed, suppose we had
an element x of the Pin(2)-homology in grading q lying outside of E′ ⊕ F ′.
We claim that without loss of generality we may assume that ι∗x = 0. Indeed,
suppose that ι∗x �= 0. Since (ι∗ ◦ π∗)(ι∗x) = 0, we see that ι∗x must lie in
ker(1 + J ) = span{(1 + J )Ei} ⊕ F . By subtracting off elements of E′ from x

we may thus assume that ι∗x lies in F . If ι∗x is still nonzero, then π∗F must be
zero, and we are in the second case where F = ι∗F ′. Subtracting off the nonzero
element of F ′ from x, we obtain an element lying outside of E′ ⊕ F ′ such that
ι∗x = 0.

Since the image of π∗ certainly lies in E′ ⊕ F ′, we know that x is not in the
image of π∗. Thus Qx �= 0. Putting everything together, we thus have that x lies
in the subcomplex

F 0 F

x ∗ x

F 0 F

·Q

·Q

But this contradicts the fact that Q3 = 0. Hence the Gysin sequence in grad-
ing q is the direct sum of (2) and either (4) or (5). A similar diagram
chase, together with the fact that the monopole Floer homology of (−Y, s)

is supported only in even dimensions, shows that there can be no other el-
ements of the Pin(2)-homology in gradings q + 1 or q − 1. Lemma 2.1
thus implies that the entire Gysin sequence must be isomorphic to the direct
sum of copies of (3) (all in even gradings) and a tower of repeated copies
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of

F F F

F 0 F

F F F

π∗

ι∗

·Q

·Q

stacked on top of each other with a grading shift of four. The lowest line
of this tower has grading r (or rather, ρ in the monopole Floer homol-
ogy).

The peceding computation determines the Pin(2)-homology as an Abelian
group and also specifies the Q-action. To determine the V -action, we must be a bit
more circumspect as to the precise nature of the maps ι∗ and π∗. Consider the four
F[V ]-submodules in the statement of Theorem 2.3. In gradings q = ρ + 3 mod 4,
we see that the Pin(2)-homology is indeed identically zero. In gradings q =
ρ + 2 mod 4, the map ι∗ is an F[V ]-module isomorphism from the Pin(2)-
homology onto the subspace ker(1+J ) = span{(1+J )Ei}⊕F , which establishes
the second equality claimed in Theorem 2.3. In gradings q = ρ mod 4, the map
π∗ surjects onto the Pin(2)-homology with kernel im(1 + J ) = span{(1 + J )Ei},
proving the fourth equality.

It remains to establish the third equality and express the Q-action in terms
of the claimed isomorphisms. From the proof of Theorem 2.4 we know that
the a-tower may be identified with the appropriate submodule of H′(�, k) ⊆
H0(�, k)/ im(1 + J ) in gradings q − σ = r mod 4. The above decomposition
of the Gysin sequence then shows that multiplication by Q is an isomorphism
from the [r + 1]-submodule onto this tower; hence the [r + 1]-submodule is
a single V -tower, which we may also identify with H′(�, k). This proves the
third equality and gives the Q-action from the [r + 1]- to the [r]-submodule.
Finally, the Q-action from the [r + 2]- to the [r + 1]-submodule is injective on
F ′ ∼= F ⊆ ker(1+J ) and zero otherwise, which is the description of the Q-action
given in Theorem 2.3. �

2.3. Examples

We close this section with a few basic examples. These are not new computations,
but serve to illustrate the framework that we have established. As a visual aid, we
use graded root diagrams to describe the lattice cohomology (see, e.g., [14]).

Example 2.6 ((2,3,5)). The monopole Floer homology of −(2,3,5) is given
by a single U -tower, U+

−2. (See, e.g., Section 3.2 of [18].) Accordingly, ρ = 2δ =
−2, and applying Theorem 2.4, we have that a = −2, b = −1, and c = 0. Thus
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Figure 1 Root diagram for −(3,5,7)

the Pin(2)-homology is simply

|HS(−(2,3,5)) = V+
0 ⊕ V+

−1 ⊕ V+
−2.

Compare with [8].

Example 2.7 ((3,5,7)). The monopole Floer homology of −(3,5,7) is given
by

}HM(−(3,5,7)) = U+
−2 ⊕ F(−2) ⊕ F(0) ⊕ F(0)

with the subscripts on each F indicating the grading. (See, e.g., Section 3.2 of
[18].) With a slight change of basis, this is represented pictorially by the graded
root in Figure 1.

Here, each node represents an F-summand, and edges correspond to multi-
plication by U . Note that our basis is chosen in such a way that the J -action
corresponds to reflection about the vertical axis in the diagram. Clearly, ρ = 0
and 2δ = −2. Applying Theorem 2.4, we have that a = 0, b = 1, and c = −2.
The Pin(2)-homology is given by

|HS(−(3,5,7)) = (V+
−2 ⊕ V+

1 ⊕ V+
0 ) ⊕ F(0).

Example 2.8 ((2,7,15)). The monopole Floer homology of −(2,7,15) is
given by

}HM(−(2,7,15)) = U+
0 ⊕ (F(0) ⊕ F(2)) ⊕ F(2) ⊕ F(2) ⊕ F(6) ⊕ F(6)

with the action of U taking the F(2) inside of the parentheses onto the F(0). (See,
e.g., [25].) After a change of basis, the corresponding graded root is given in
Figure 2.

In this case, ρ = 4 and 2δ = 0. Applying Theorem 2.4, we have a = 4, b = 5,
and c = 2. The Pin(2)-homology is given by

|HS(−(2,7,15)) = (V+
2 ⊕ V+

5 ⊕ V+
4 ) ⊕ F(0) ⊕ F(2) ⊕ F(6).

Note that in this example, the a-tower does not extend “all the way down”—it
stops at grading a = 4, even though there is a summand F(0) lower than it in the
same mod 4 grading.
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Figure 2 Root diagram for −(2,7,15)

The results of Theorem 2.3 are easily converted into the language of graded roots
by choosing a basis for the lattice cohomology in which the root diagram is sym-
metric about reflection through the vertical axis. (We remark that Lemma 2.1 has
an easy reformulation by noticing that r is precisely the grading at which the infi-
nite “central stem” of such a root either forks or vanishes.) Because the prescrip-
tion of Theorem 2.3 is straightforward, the Pin(2)-homology is easily computed
once the lattice cohomology is known. See, for example, [18] or [13] for algo-
rithms computing the lattice cohomology and [25] for an extensive list of lattice
cohomology calculations. We refer the reader to Lin [8] and Stoffregen [22] for
more computations of the Pin(2)-homology of Seifert fibered spaces.

3. Applications and Further Developments

In this section, we prove that Manolescu’s conjecture β(−Y, s) = μ̄(Y, s) holds
for all plumbed 3-manifolds with at most one bad vertex. Since β(−Y, s) coin-
cides with half of the parity invariant ρ by Theorem 2.4, this reduces to show-
ing that half of ρ coincides with μ̄. The fact that these are equal provides an
interesting new interpretation of μ̄ in terms of the structure of the Heegaard
Floer/monopole Floer homology of (−Y, s).

3.1. Relations with the Neumann–Siebenmann Invariant

We begin by recalling the definition of the Neumann–Siebenmann invariant (see
[16; 20]). Let Y be a plumbed 3-manifold with plumbing diagram �, and let s be
a spin structure on Y . Among the characteristic vectors k on � corresponding to
spinc structures on W(�) limiting to s on Y , there is a unique vector w such that
all the coordinates of w in the natural basis of L� are either zero or one. (Note
that since s is self-conjugate, w necessarily lies in L� , rather than L′

� .) We then
define

μ̄(Y, s) = 1

8
(sign(�) − w2).
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Here, sign(�) is the signature of the intersection matrix of � and w2 is the self-
pairing of w. It is shown in [16] that μ̄ is an integer lift of the Rohklin invariant
defined for plumbed rational homology spheres and is independent of the choice
of plumbing. The set of basis vectors having nonzero coefficient in w is referred
to as the Wu set of the pair (Y, s). Our proof that ρ(Y, s) = 2μ̄(Y, s) rests on the
well-known fact that any Wu set consists of pairwise nonadjacent vertices in �.
For completeness, we give a proof of this lemma.

Lemma 3.1. Let � be any plumbing tree, and let w be a characteristic vector for
� such that all the coordinates of w in the natural basis of L� are either zero or
one. After appropriate permutation, we may assume that w = e1 + e2 + · · · + en

for some 0 ≤ n ≤ |�|. Then (ei, ej ) = 0 for all 1 ≤ i �= j ≤ n; that is, the vertices
ei for 1 ≤ i ≤ n are pairwise nonadjacent in �.

Proof. Let �′ be the induced subgraph of � spanned by the vertices corresponding
to e1, e2, . . . , en. Because w is characteristic, we have that

(e1 + e2 + · · · en, ei) = (ei, ei) mod 2

for all 1 ≤ i ≤ n. Since � is a plumbing tree, two distinct vertices have pairing
one precisely when connected by an edge in � and have pairing zero otherwise.
Hence the above equality shows that in our induced subgraph �′, every vertex
has an even number of adjacencies. But � (and thus �′) has no cycles, so the
only way for this to be possible is for every vertex to be isolated. This proves the
lemma. �
We now turn to the computation of ρ(Y, s):

Theorem 3.2. Let Y be a rational homology 3-sphere given by surgery on a
connected negative-definite graph with at most one bad vertex (in the sense of
[18]). Let s be a spin structure on Y (which we may view as a self-conjugate spinc

structure). Then ρ(Y, s) = 2μ̄(Y, s).

Proof. Let [k] be the equivalence class of characteristic vectors on � corre-
sponding to spinc structures on W(�) limiting to s on Y . Let w ∈ [k] be the
representative described in the definition of the Neumann–Siebenmann invari-
ant, so that μ̄(Y, s) = (−|�| − w2)/8. When computing the lattice cohomol-
ogy of �, we are free to choose any representative of [k], but the most conve-
nient choice is obviously w. Then the grading shift of Theorem 1.4 is given by
σ(�,w) = (−|�| −w2)/4. Since this is already twice the Neumann–Siebenmann
invariant, we must thus show that the parity invariant r of H0(�,w) is zero. Now,
the rank of H0(�,w) is odd in grading 2n precisely when the sublevel set Sn has
a connected component that is invariant under the action of J ; as shown in the
proof of Lemma 2.1, such a connected component is uniquely characterized by
containing the point of reflection −w/2. Hence it suffices to show that −w/2 ∈ Sn

precisely when n ≥ 0.
To illustrate the intuition behind the proof, suppose for a moment that w is in

fact zero (which is equivalent to the pairing of � being even). Then the weight
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w0 of −w/2 (as defined in Section 1) is zero, and this immediately implies the
claim. If w is not zero, however, then −w/2 does not lie in the lattice L� , and
to determine whether −w/2 lies in a sublevel set, we must instead compute the
weight of the smallest lattice cube of L� containing −w/2. After an appropriate
permutation of the natural basis of L� , we may assume that

w = e1 + e2 + · · · + en

for some 0 ≤ n ≤ |�|. Let Cn be the vertices of the n-dimensional lattice cube
containing the sides e1, e2, . . . , en; that is, define

Cn = {c1e1 + c2e2 + · · · cnen : each ci = 0 or 1}.
Then the smallest lattice cube containing −w/2 is n-dimensional and is given
by the translate −w + Cn. Since the weight of a lattice cube is defined to be the
maximum over the weights of its vertices, it suffices to show that w0(−w+v) = 0
for all v ∈ Cn. Now, since

w0(−w + v) = −((−w + v,−w + v) + (−w + v,w))/2 = ((w,v) − (v, v))/2,

this is equivalent to showing that (w,v) = (v, v) for all v ∈ Cn. (Note that since
w is characteristic, this equality is always true modulo two, but it is strict equal-
ity that we must establish.) By Lemma 3.1, however, we have that (ei, ej ) = 0
whenever 1 ≤ i �= j ≤ n. Expanding the pairings (w,v) and (v, v) immediately
establishes the equality and completes the proof. �
For plumbed 3-manifolds with at most one bad vertex, Theorem 3.2 provides
an easy characterization of μ̄(Y, s) in terms of the ranks of the Heegaard
Floer/monopole Floer homology of (−Y, s). If we also happen to know that ρ

coincides with (twice) the Frøyshov invariant of (−Y, s), then we additionally
obtain a relation between μ̄ and the Ozsváth–Szabó d-invariant. This occurs, for
example, if Y is known to be an L-space, although certainly the condition of be-
ing an L-space is not necessary. In particular, for rational surface singularities and
spherical 3-manifolds, we recover the results of Stipsicz [21] and Ue [26].

Finally, we observe that Theorem 2.4 and Theorem 3.2 together imply Theo-
rem 1.3. This proves Manolescu’s conjecture for all plumbed 3-manifolds with at
most one bad vertex.

3.2. Further Developments

In this subsection, we prove some tentative results aimed at generalizing our com-
putations to a larger class of manifolds. There are two main difficulties with at-
tempting to extend Theorems 2.3 and 2.4. First, the precise relation between lat-
tice cohomology and Heegaard Floer/monopole Floer homology in the case of
arbitrary negative-definite plumbings is currently unknown. In [17] it is shown
that there exists a spectral sequence from lattice homology to Heegaard Floer ho-
mology, but at the moment the two are only conjecturally isomorphic. (See the
discussion preceding Example 3.5 for the two-bad-vertex case.) Nevertheless, we
can still ask what extra information is needed to determine the Pin(2)-homology
from the Gysin sequence. For instance, in the situation of Section 2, we saw that
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knowledge of the map ι∗ ◦ π∗ was sufficient, and we showed that this additional
data could be found in the lattice complex.

Unfortunately, the proof of this sufficiency relied on the fact that the monopole
Floer homology was supported only in even gradings, a structure result that cer-
tainly does not hold in general. Our first result identifies some extra algebraic data
that (in theory) suffices to determine the Pin(2)-homology (at least as an Abelian
group) once the monopole Floer homology is known.

We begin by understanding the possible decompositions of the Gysin se-
quence. Denote by I0 the exact sequence

F
ι∗−→ F⊕ F

π∗−→ F,

by I1 the exact sequence

F F F

F F F

π∗

ι∗

·Q

,

and, finally, by I2 the exact sequence

F F F

F 0 F

F F F

π∗

ι∗

·Q

·Q

.

Here, every pair of F-summands on the left and the right represent the same ele-
ment in the Pin(2)-homology, and consecutive lines in each sequence differ by a
grading shift of one. We let the lowest line of each sequence have grading zero, so
that In[d] is the exact sequence In shifted so that the lowest line has grading d .

Because Q3 = 0 and we are working over F2, a straightforward diagram chase
shows that each element in the Gysin sequence lies in a subcomplex isomorphic
to one of the previous three. Hence the Gysin sequence decomposes (noncanoni-
cally) into a direct sum of I0, I1, and I2. Setting aside the structure of the Pin(2)-
homology as an R-module, we might then ask whether the isomorphism class of
the Gysin sequence (and thus the ranks of the Pin(2)-homology) can, in general,
be determined from the lattice cohomology.
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To approach this question, we first recall that the Gysin sequence may be ex-
pressed in the language of an exact couple:

A = }HM(Y, s)

|HS(Y, s) |HS(Y, s)

π∗

·Q

ι∗

.

Taking the derived couple of this results in another exact couple whose derived
homology group (in the case of Lemma 2.1) is precisely the derived lattice co-
homology under the isomorphism of Theorem 1.4. However, in our situation, the
lattice cohomology is not necessarily isomorphic to the monopole Floer homol-
ogy, so we denote the derived homology group simply by A′:

A′ = H(A, ι∗ ◦ π∗)

imQ imQ

π ′∗

·Q

ι′∗

.

Here, A′ is the homology of A with respect to the differential ι∗ ◦ π∗, the group
imQ is the image of multiplication by Q, and the maps ι′∗ and π ′∗ are the usual
induced maps in the derived couple. Deriving one more time results in a third
exact couple, but because Q3 = 0, this degenerates into the short exact sequence

0 → imQ2 → A′′ = H(A′, ι′∗ ◦ π ′∗) → imQ2 → 0.

We now claim that the two groups A′ and A′′ (along with the original mono-
pole Floer homology) suffice to determine the isomorphism class of the Gysin
sequence.

Theorem 3.3. Let the monopole Floer homology of }HM(Y, s) be fixed. If, in
addition, we know the ranks of the derived groups A′ and A′′, then the Pin(2)-
equivariant monopole Floer homology of (Y, s) is determined as an Abelian
group.

Proof. As before, the Gysin sequence for }HM(Y, s) decomposes into a direct sum
of copies of I0, I1, and I2. Let us see how these are related to the ranks of A′
and A′′. First, observe that elements of the monopole Floer homology lying in a
complex isomorphic to I0 do not survive to the subquotient A′, as either they are
not in the kernel of ι∗ ◦π∗, or they are in the image of ι∗ ◦π∗. In contrast, elements
of the monopole Floer homology lying in a I1- or I2-summand each contribute an
F-summand to A′. Unwinding the definitions of ι′∗ and π ′∗, a similar result holds
for A′′: the elements of A′ represented by elements coming from I1-summands do
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not live to the A′′ subquotient, whereas those coming from the I2-summands each
contribute an F-summand to A′′. More precisely, suppose the Gysin sequence is
isomorphic to (⊕

i

I0[ni]
)

⊕
(⊕

j

I1[nj ]
)

⊕
(⊕

k

I2[nk]
)

.

Then the derived groups A′ and A′′ are given by

A′ =
(⊕

j

(F(nj ) ⊕ F(nj +1))

)
⊕

(⊕
k

(F(nk) ⊕ F(nk+2))

)
(6)

and
A′′ =

⊕
k

(F(nk) ⊕ F(nk+2)). (7)

Now suppose that the ranks of A′′ are known. Because the monopole Floer ho-
mology of (Y, s) is zero in sufficiently low gradings, the same is true for A′′.
Hence our argument can easily be inverted to determine the numbers nk . Let d be
the grading below which A′′ vanishes. Then for each n, the number of copies of
I2[n] in our decomposition of the Gysin sequence is given by the alternating sum

dimA′′
n − dimA′′

n−2 + dimA′′
n−4 · · · ± dimA′′

d

if n = d mod 2 and

dimA′′
n − dimA′′

n−2 + dimA′′
n−4 · · · ± dimA′′

d+1

otherwise. Once the placement of the I2-summands in the decomposition of the
Gysin sequence is known, we can similarly determine the summands I1[nj ] from
the ranks of A′. Finally, once both sets of I2- and I1-summands are known,
the ranks of the original monopole Floer homology determine the placement and
number of the I0[ni]. �
Note that the composition ι′∗ ◦π ′∗ has grading shift −1. Hence when the monopole
Floer homology is only supported in even dimensions, this map is identically zero,
and the two groups A′ and A′′ are equal. In this case there are no I1-summands,
and the Gysin sequence is entirely determined by A′, exactly as in Theorem 2.3.

We now specialize to the case of a plumbed 3-manifold with at most two bad
vertices. The following sharpening of Theorem 1.4 was essentially established in
[17], with elements appearing previously in [18; 15].

Theorem 3.4 (Corollary 1.3 of [17]). Let Y be a rational homology 3-sphere
obtained by surgery on a negative-definite graph � with at most two bad vertices.
Let s be a spinc structure on Y , and let k be any characteristic vector on � whose
corresponding spinc structure on W(�) limits to s. Let σ be the rational grading
shift

σ = σ(�, k) = −1

4
(|�| + k2),

where |�| is the number of vertices in �. Then the following are true:

(1) Hq(�, k) = 0 for all q > 1,
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Figure 3 Plumbing diagram � for Example 3.5

(2) }HMeven(−Y, s) ∼= H0(�, k)[σ ] as graded F[U ]-modules, and
(3) }HModd(−Y, s) ∼= H1(�, k)[σ − 1] as graded F[U ]-modules.

The second assertion in Theorem 3.4 was actually shown in [18] and [15] using
the same map between Heegaard Floer/monopole Floer homology and lattice co-
homology as outlined in the proof of Lemma 2.5. In particular, the identification
between ι∗ ◦ π∗ and 1 + J holds in all even gradings for the two-bad-vertex case.
Unfortunately, the proof of the third part of Theorem 3.4 is somewhat less direct
and relies on the collapsing of a spectral sequence from lattice homology to Hee-
gaard Floer homology constructed in [17]. Thus it is not clear (although certainly
a reasonable conjecture) that ι∗ ◦ π∗ also coincides with 1 + J in odd gradings.

We now give a computation of the Pin(2)-homology of a two-bad-vertex mani-
fold in which the relative simplicity of the Floer homology allows us to determine
the derived groups A′ and A′′ algebraically.

Example 3.5 (Example 4.4.1 of [15]). Let � be the plumbing diagram given in
Figure 3.

We can check that � is unimodular and thus that the plumbed manifold
Y = ∂W(�) is an integer homology sphere. In Example 4.4.1 of [15] a specific
characteristic vector k on � is given for which the corresponding grading shift
can be calculated to be σ(�, k) = 2. With respect to this k, the zeroth lattice co-
homology is shown to be

H0(�, k) = U+
−2 ⊕ F(−2) ⊕ F(0) ⊕ F(0).

It is also established that the first lattice cohomology consists of a single generator
in the sublevel set of weight zero. Taking into account the grading shift σ , the
monopole Floer homology of −Y is thus given by

}HM(−Y) = U+
0 ⊕ F(0) ⊕ F(1) ⊕ F(2) ⊕ F(2).

We now apply Lemma 2.5 to compute the derived group A′ in even gradings. We
can verify that the J -action on the lattice cohomology is as follows. In the lowest
(shifted) grading zero, the lattice cohomology consists of a symmetric pair of
connected components that are taken to each other under the action of J . (In the
previous decomposition, the generator of U+

0 in grading zero is represented by the
sum of these two components, whereas the summand F(0) is represented by either
one.) In (shifted) grading two, the lattice cohomology consists of three connected
components, two of which occur in a symmetric pair, and the third of which has
nontrivial cohomology and is taken to itself by J . (Again, the generator of U+

0 in
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grading two corresponds to the sum of all three of these, whereas F(2) ⊕ F(2) is
represented by the symmetric pair.) In all other even gradings, J is the identity.
Applying Lemma 2.5, this shows that the even part of A′ is given by F(2) ⊕F(4) ⊕
F(6) ⊕ · · · . Moreover, observe that the odd part of the Floer homology consists
of a single generator in grading one. Hence the action of ι∗ ◦ π∗ in odd gradings
is either zero or the identity, and since ι∗ ◦ π∗ squares to zero, it cannot be the
identity. This shows that

A′ = F(1) ⊕ (F(2) ⊕ F(4) ⊕ F(6) ⊕ · · · ).
With A′ in hand, we now wish to compute A′′. Comparing our expression for
A′ with the form of (6) and (7), however, we see that the action of ι′∗ ◦ π ′∗ is
already algebraically determined. Indeed, the only way for our computation of A′
to be consistent with the fact that A′′ consists of pairs of generators separated by a
grading difference of two is for ι′∗ ◦π ′∗ to be an isomorphism from F(2) to F(1) and
zero everywhere else. Applying Theorem 3.3, this shows that the Gysin sequence
is given by

I0[0] ⊕ I1[1] ⊕ I0[2] ⊕
(⊕

n≥0

I2[4 + 2n]
)

.

Moreover, it turns out that in this case the Gysin sequence determines the F[V ]-
module structure. A similar argument as in Theorem 2.3 shows that

|HS(−Y) = (V+
2 ⊕ V+

1 ⊕ V+
4 ) ⊕ F(0) ⊕ F(2).

In particular, we have α = 2 and β = γ = 0.

We close with a conjecture on the computation of A′ and A′′ in the general case.
Let Y be a plumbed 3-manifold with at most two bad vertices. As remarked previ-
ously, one obvious conjecture would be to identify ι∗ ◦π∗ with 1 +J in both even
and odd gradings. Slightly more subtle is the question of finding an analogue of
the map ι′∗ ◦ π ′∗ in lattice cohomology. For this, we proceed by finding a different
Gysin sequence into which the lattice cohomology fits.

Following Theorem 3.4, consider the graded F[U ]-module

Htot(�, k) = H0(�, k) ⊕H1(�, k)[−1].
Each sublevel set Sn in the lattice cohomology of Y fits into the usual Gysin
sequence of spaces relating the regular cohomology of Sn with its Borel Z/2Z-
equivariant cohomology. By summing the Gysin sequences of all these sublevel
sets together (with the caveat that increasing degree in singular cohomology cor-
responds to decreasing grading in the total lattice complex), we obtain an ex-
act sequence relating Htot(�, k) with the Borel equivariant cohomology of the
lattice complex. Viewing this as an exact couple as before, we similarly obtain
derived groups B ′ and B ′′, the first of which is the derived lattice cohomology
ker(1 + J )/ im(1 + J ). We then have the following:

Conjecture 3.6. Let Y be a plumbed 3-manifold with at most two bad vertices,
and let s be a self-conjugate spinc structure on Y . Then the derived groups A′ and
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A′′ in the Gysin sequence (1) for (−Y, s) are isomorphic (up to a grading shift)
to the derived groups B ′ and B ′′ in the Gysin sequence of spaces for the lattice
cohomology.

Note that the Pin(2)-homology is not isomorphic to the Borel equivariant coho-
mology of the lattice complex, even as an Abelian group. Our claim is instead that
the maps ι∗ ◦π∗ and ι′∗ ◦π ′∗ in the two Gysin sequences coincide. It can be shown
that, for manifolds with at most two bad vertices, B ′ and B ′′ indeed have the form
of (6) and (7) and that the higher derived groups vanish.

Conjecture 3.6 is certainly true in Example 3.5 and can also be verified in
a number of other examples, which are similar in nature. We expect that some
lattice-cohomology characterization of α, β , and γ as in Theorem 2.4 holds for
two-bad-vertex manifolds and indicate this as a further area of research and pos-
sible application to the Pin(2)-homology of connected sums (see, e.g., [23; 9]).
(Indeed, several partial results along the lines of Example 3.5 can already be ob-
tained, but a full treatment of these lies outside the scope of this paper.)
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