
Michigan Math. J. 67 (2018), 371–404

Diophantine Approximation Constants for Varieties over
Function Fields

Nathan Grieve

Abstract. By analogy with the program of McKinnon and Roth [10],
we define and study approximation constants for points of a projec-
tive variety X defined over K, the function field of an irreducible and
nonsingular in codimension 1 projective variety defined over an al-
gebraically closed field of characteristic zero. In this setting, we use
Wang’s theorem, which is an effective version of Schmidt’s subspace
theorem, to give a sufficient condition for such approximation con-
stants to be computed on a proper K-subvariety of X. We also indicate
how our approximation constants are related to volume functions and
Seshadri constants.

1. Introduction

The aim of this paper is to study the complexity of approximating rational points
of a projective variety defined over a function field of characteristic zero. Our
motivation is work of McKinnon and Roth [10], and our main results, which we
state in Section 1.2, show how the subspace theorem can be used to prove Roth-
type theorems by analogy with those formulated in the number field setting; see
[10, p. 515].

Indeed, we obtain lower bounds for approximation constants of rational points.
More precisely, we show how extensions of the subspace theorem can be used to
obtain lower bounds that are independent of fields of definition and can be ex-
pressed in terms of local measures of positivity; we also give sufficient conditions
for approximation constants to be computed on a proper subvariety. As it turns
out, these kinds of theorems are related to rational curves lying in projective vari-
eties; see Section 1.1 and Corollary 1.3.

As we explain in Section 1.1, an important aspect to the Roth-type theorems
obtained in [10] in the number field setting is a theorem of Faltings and Wüstholz
[4, Theorem 9.1]. Understanding the role this theorem plays in the work [10] was
one of the original sources of motivation for the present paper. On the other hand,
one key feature to our approach here is that we use Schmidt’s subspace theorem
for function fields to derive a function field analogue of [4, Theorem 9.1]. We then
use this result, Corollary 5.4, to prove Roth-type theorems in a manner similar to
that in [10].
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1.1. Motivation. The starting point for this paper is [4, Theorem 9.1], an inter-
esting theorem of Faltings and Wüstholz, and its relation to work of McKinnon
and Roth [10]. To motivate and place what we do here in its proper context, let us
describe the results of [10] in some detail. To this end, let K be a number field,
K an algebraic closure of K, X an irreducible projective variety defined over K,
and x ∈ X(K). The main focus of [10] is the definition and study of an extended
real number αx(L) depending on a choice of ample line bundle L on X defined
over K. The intuitive idea is that the invariant αx(L) provides a measure of how
expensive it is to approximate x by infinite sequences of distinct K-rational points
of X. A key insight of [10] is that this arithmetic invariant is related not only to
local measures of positivity for L about x, namely the Seshadri constant εx(L)

and the relative asymptotic volume constant βx(L) of L with respect to x, but
also to the question of existence of rational curves in X passing through x and
defined over K.

More specifically, in [10], [4, Theorem 9.1] was used to prove [10, Theo-
rem 6.2], which states that if g denotes the dimension of X, then either

αx(L) ≥ βx(L) ≥ g

g + 1
εx(L)

or

αx(L) = αx(L|W)

for some proper K-subvariety W of X. A consequence of this result is [10, The-
orem 6.3], which states that αx(L) ≥ 1

2εx(L) with equality if and only if both
αx(L) and εx(L) are computed on a K-rational curve C such that C is unibranch
at x, κ(x) �= K, κ(x) ⊆ Kv , and εx,C(L|C) = εx,X(L). (Here κ(x) denotes the
residue field of x, and Kv is the completion of K with respect to v, a place of K.)

In light of these results, D. McKinnon has conjectured:

Conjecture (Compare also with [11, Conjecture 4.2]). Let X be a smooth pro-
jective variety defined over a number field K, K an algebraic closure of K,
x ∈ X(K), and L an ample line bundle on X defined over K. If αx(L) < ∞,
then there exists a K-rational curve C ⊆ X containing x and also containing a
sequence of best approximation to x.

Our purpose here is to give content to these concepts in the setting of projective
varieties defined over function fields.

1.2. Statement of Results and Outline of Their Proof. Our main results rely on
work of Julie Wang [15] and provide an analogue of [10, Theorem 6.2] for the
case of projective varieties defined over function fields.

To describe our results in some detail, let k be an algebraically closed field of
characteristic zero, and let Y ⊆ Pr

k
be an irreducible projective variety nonsingular

in codimension 1. Let K denote the function field of Y , K an algebraic closure of
K, let X ⊆ Pn

K be a geometrically irreducible subvariety, and let L = OP
n
K
(1)|X .
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Given a prime (Weil) divisor p ⊆ Y and a point x ∈ X(K), we define an ex-
tended nonnegative real number αx(L) = αx,X(L;p) = αx(L;p) ∈ [0,∞], de-
pending on L, which, roughly speaking, gives a measure of the cost of approxi-
mating x by an infinite sequence of distinct K-rational points {yi} ⊆ X(K) with
unbounded height and converging to x.

Our goal is twofold: on the one hand, we would like to relate αx(L;p) to local
measures of positivity of L about x, and, on the other hand, we would like to give
sufficient conditions for αx(L;p) to be computed on a proper K-subvariety of X.
This is achieved by analogy with the program of [10].

More precisely, we relate αx(L;p) to two invariants of x with respect to L.
To this end, let F be the field of definition of x, and let XF be the base change
of X with respect to the field extension K → F. Next, let π : X̃ = Blx(X) → XF
denote the blow-up of XF at the closed point corresponding to x ∈ X(K), and
let E denote the exceptional divisor of π . If γ ∈ R≥0, then let Lγ denote the R-
line bundle π∗LF − γE; here LF denotes the pullback of L to XF, and, in what
follows, we let Lγ,K denote the pullback of Lγ to X̃K the base change of X̃ with

respect to K → K.
The first invariant, the relative asymptotic volume constant of L with respect

to x, is defined by McKinnon and Roth [10] as

βx(L) =
∫ γeff

0

Vol(Lγ )

Vol(L)
dγ,

where Vol(Lγ ) and Vol(L) denote the volumes of the line bundles Lγ and L on
X̃ and X, respectively, and the real number γeff is defined by

γeff = γeff,x(L)

= sup{γ ∈R≥0 : Lγ,K is numerically equivalent to an effective divisor}.
The second invariant is the Seshadri constant of x with respect to L:

εx(L) = sup{γ ∈R≥0 : Lγ,K is nef}.
Having described briefly our main concepts, we now state our main result,

which we prove in Section 8.

Theorem 1.1. Let K be the function field of an irreducible projective variety
Y ⊆ Pr

k
defined over an algebraically closed field k of characteristic zero. Assume

that Y is nonsingular in codimension 1 and fix a prime divisor p ⊆ Y . Fix an
algebraic closure K of K and suppose that X ⊆ Pn

K is a geometrically irreducible
subvariety, that x ∈ X(K), and that L = OP

n
K
(1)|X . In this setting, either

αx(L;p) ≥ βx(L) ≥ dimX

dimX + 1
εx(L)

or

αx,X(L;p) = αx,W (L|W ;p)
for some proper subvariety W � X.



374 Nathan Grieve

In particular, note that Theorem 1.1 implies that αx(L;p) is computed on a proper
K-subvariety of X, provided that αx(L;p) < βx(L).

By analogy with [10], Theorem 1.1 has the following consequence.

Corollary 1.2. In the setting of Theorem 1.1, we have that αx(L;p) ≥ 1
2εx(L).

If equality holds, then αx,X(L;p) = αx,C(L|C;p) for some curve C ⊆ X defined
over K.

In the case that K has transcendence degree 1, Corollary 1.2 takes a more refined
form.

Corollary 1.3. Assume that K is the function field of a smooth projective curve
over an algebraically closed field of characteristic zero. Let X be a geometri-
cally irreducible projective variety defined over K, and let L be a very ample line
bundle on X defined over K. If x is a K-rational point of X, then the inequal-
ity αx(L) ≥ 1

2εx(L) holds. If equality holds, then αx,X(L) = αx,B(L|B) for some
rational curve B ⊆ X defined over K.

Theorem 1.1 and Corollary 1.2 are proven in Section 8, whereas we prove Corol-
lary 1.3 in Section 9.4. Our techniques used to prove Theorem 1.1 and Corol-
lary 1.2 are similar to those used to establish [10, Theorem 6.3]. Indeed, we first
define approximation constants for projective varieties defined over a field K of
characteristic zero together with a set MK of absolute values that satisfy the prod-
uct rule. The definition we give here extends that given in [10] for the case that
K is a number field. We then restrict our attention to the case that K is a function
field. In this setting, the effective version of Schmidt’s subspace theorem given in
[15], which is applicable to function fields of higher-dimensional varieties, plays
the role of the theorem of Faltings and Wüstholz [4, Theorem 9.1]. More precisely,
in Section 5, we first give an extension of the subspace theorem obtained in [15].
We then use this extension to obtain a function field analogue of the Faltings–
Wüstholz theorem. Finally, we apply this result in a manner similar to that in [10]
to obtain Theorem 1.1 and Corollary 1.2.

A key aspect to deducing Corollary 1.3 from Corollary 1.2 is to first establish
Theorem 9.4, which determines the nature of approximation constants for rational
points of Abelian varieties over function fields of curves. This theorem and its
proof are similar to the corresponding statement in the number field setting; see,
for instance, [13, Second theorem on p. 98].

As some additional comments, again to place our results in their proper con-
text, let us emphasize that in order for the results of this article to have content,
we encounter the question of existence of K-rational points for varieties defined
over function fields. To this end, we recall the main result of [5], which asserts
that if K is the function field of a complex curve, then every rationally connected
variety defined over K has a K-rational point.
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2. Preliminaries: Absolute Values, Product Formulas, and Heights

In this section, to fix notation and conventions that we will require in subsequent
sections, we recall some concepts and results about absolute values, product for-
mulas, and heights. Some standard references on which our presentation is mostly
based are [8; 7], and [2]. Throughout this section, K denotes a field of characteris-
tic zero. In Sections 2.4–2.7, we will place further restrictions on K. Indeed, there
K will also be a function field.

2.1. Absolute Values. By an absolute value on K we mean a real-valued function

| · |v : K → R

having the following properties:

(a) |x|v ≥ 0 for all x ∈ K, and |x|v = 0 if and only if x = 0;
(b) |xy|v = |x|v|y|v for all x, y ∈ K;
(c) |x + y|v ≤ |x|v + |y|v for all x, y ∈ K.

We say that an absolute value | · |v is non-Archimedean if it has the property that:

|x + y|v ≤ max(|x|v, |y|v) for all x, y ∈ K.

If an absolute value is not non-Archimedean, then we say that it is Archimedean.
Every absolute value | · |v defines a metric on K; the distance of two elements
x, y ∈ K with respect to this metric is defined to be |x − y|v . If | · |v is an absolute
value on K, then we let Kv denote the completion of K with respect to | · |v .

2.2. The Product Formula. Let MK denote a collection of absolute values on K.
We assume that our set MK has the property that if x ∈ K×, then |x|v = 1 for
almost all | · |v ∈ MK. We do not require MK to consist of inequivalent absolute
values. We say that MK satisfies the product formula if for each x ∈ K×, we have∏

|·|v∈MK

|x|v = 1. (2.1)

Remark. Note that the definition given is similar to [1, Axiom 1, p. 473] ex-
cept that we do not require MK to consist of inequivalent absolute values. The
definition we give here is motivated by the discussion given in [7, p. 24].

2.3. Heights. Let MK be a set of absolute values on K that satisfies the product
rule and Pn

K = Proj K[x0, . . . , xn]. If y = [y0 : · · · : yn] ∈ Pn(K), then let

HO
P
n
K

(1)(y) =
∏

|·|v∈MK

max
i

|yi |v. (2.2)

The fact that MK satisfies the product rule ensures that the righthand side of equa-
tion (2.2) is well defined. The number HO

P
n
K

(1)(y) is called the multiplicative

height of y with respect to OP
n
K
(1) and MK, and the function

HO
P
n
K

(1) : Pn(K) → R (2.3)
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is called the multiplicative height function of Pn
K with respect to the tautological

line bundle and the set MK. If X ⊆ Pn
K is a projective variety, then the multiplica-

tive height of x ∈ X(K) with respect to L = OP
n
K
(1)|X is defined by pulling back

the function (2.3) and is denoted by HL(x).

2.4. Example. Let k be an algebraically closed field of characteristic zero, Y an ir-
reducible projective variety over k and nonsingular in codimension 1. By a prime
(Weil) divisor of Y we mean a closed integral subscheme p ⊆ Y of codimension 1.

Let η denote the generic point of Y , and K = OY,η the field of fractions of Y . If
ηp denotes the generic point of a prime divisor p ⊆ Y , then its local ring OY,ηp ⊆
OY,η is a discrete valuation ring, and we denote by

ordp : K× → Z (2.4)

the valuation determined by OY,ηp .
Fix an ample line bundle L on Y . If p ⊆ Y is a prime divisor, then we let

degL(p) denote the degree of p with respect to L; see, for instance, [2, Section
A.9.38]. Next, fix 0 < c < 1, and for each prime divisor p ⊆ Y , let

|x|p,K =
{

cordp(x)degL(p) for x �= 0,

0 for x = 0.
(2.5)

The absolute values | · |p,K, defined for each prime divisor p ⊆ Y and depending
on our fixed ample line bundle L, are non-Archimedean, proper, and the set

M(Y,L) = {| · |p,K : p ⊆ Y is a prime divisor} (2.6)

is a proper set of absolute values that satisfies the product rule.
Since the set M(Y,L) satisfies the product rule, we can define the multiplicative

and logarithmic height functions of Pn
K with respect to the tautological line bundle

OP
n
K
(1). Specifically, if y = [y0 : · · · : yn] ∈ Pn(K), then the multiplicative height

of y is given by

HO
P
n
K

(1)(y) =
∏

|·|p,K∈M(Y,L)

max
i

|yi |p,K, (2.7)

the logarithmic height of y is given by

hO
P
n
K

(1)(y) = −
∑

|·|p,K∈M(Y,L)

min
i

(ordp(yi)degL(p)), (2.8)

and the logarithmic and multiplicative height functions are related by

− logc HO
P
n
K

(1)(y) = hO
P
n
K

(1)(y). (2.9)

2.5. Example. We continue with the situation of Section 2.4. We let K be the
algebraic closure of the function field K, and we fix F/K, F ⊆ K, a finite extension
of K. Let φ : Y ′ → Y be the normalization of Y in F. As in Section 2.4, every
ample line bundle L′ on Y ′ determines a proper set of absolute values M(Y ′,L′),
which satisfies the product rule. In this setting, we denote elements of M(Y ′,L′) by
| · |p′,F for a prime divisor p′ of Y ′.
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In particular, we can take L′ = φ∗L for an ample line bundle L on Y . In this
case, if p′ is a prime divisor of Y ′ lying over p a prime divisor of Y , then we set

|x|p′/p = |NFp′/Kp
(x)|1/[Fp′ :Kp]

p,K = |x|1/[Fp′ :Kp]
p′,F ; (2.10)

here NFp′/Kp
denotes the field norm from Fp′ to Kp.

As explained in [2, Section 1.3.6], the absolute value

| · |p′/p : F → R (2.11)

extends the absolute value
| · |p,K : K →R. (2.12)

We can also normalize the absolute values of F relative to K. In particular,
given a prime divisor p′ of Y ′, we let | · |p′,K denote the absolute value

|x|p′,K = |x|1/[F:K]
p′,F for x ∈ F; (2.13)

compare with [2, Example 1.4.13].

2.6. Height Functions and Field Extensions. Since the sets M(Y,L) and M(Y ′,L′),
defined in Sections 2.4 and 2.5, satisfy the product formula, we can consider the
height functions that they determine. To compare these height functions, we first
note that, as explained in [2, Example 1.4.13], given a prime divisor p ⊆ Y , the
set of places of F lying over the place of K determined by p is in bijection with
the set of prime divisors of Y ′ lying over p. Given a prime divisor p of Y and a
prime divisor p′ of Y ′, we sometimes use the notation p′|p to indicate that p′ lies
above p.

Next, note that by [2, Corollary 1.3.2], given a prime divisor p of Y , we have∑
p′|p

[Fp′ : Kp] = [F : K]. (2.14)

Also, since the absolute value | · |p′/p = | · |1/[Fp′ :Kp]
p′,F extends the absolute value

| · |p,K, it follows, using (2.14) and (2.10), that if HP
n
K(1)(·) denotes the height

function on Pn(K) determined by M(Y,L) and if HO
P
n
F
(1)(·) denotes the height

function on Pn(F) determined by M(Y ′,L′), then

HO
P
n
K

(1)(y) = HO
P
n
F
(1)(y)1/[F:K] (2.15)

for all y = [y0 : · · · : yn] ∈ Pn(K).
At the level of logarithmic heights, relation (2.15) implies that

[F : K]hO
P
n
K

(1)(y) = hO
P
n
F
(1)(y) (2.16)

for all y ∈ Pn(K).

2.7. Height Functions, Field Extensions, and Projective Varieties. Consider-
ations similar to Section 2.6 apply to an arbitrary projective variety X over K.
In particular, given a very ample line bundle L on X and defined over K, let
HL(·) and hL(·) denote, respectively, the multiplicative and logarithmic heights
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obtained by pulling back HO
P
n
K(1)

(·) and hO
P
n
K

(1)(·) with respect to some embed-
ding X ↪→ Pn

K afforded by L.
Similarly, if XF = X ×Spec K Spec F denotes the base change of X with re-

spect to the extension F/K and LF the pullback of L to XF, then we denote by
HLF(·) and hLF(·), respectively, the height functions determined by pulling back
HO

P
n
F
(1)(·) and hO

P
n
F
(1)(·), respectively, with respect to any embedding X ↪→ Pn

F

afforded by LF.
From this point of view, we have the relations

HL(y) = HLF(y)1/[F:K] (2.17)

and
[F : K]hL(y) = hLF(y) (2.18)

for all y ∈ X(K); compare with (2.15) and (2.16).

3. Distance Functions and Approximation Constants

Let K be a field of characteristic zero, and let | · | be a non-Archimedean absolute
value on K. In this section, we define, by analogy with [10], projective distance
functions and approximation constants with respect to | · | for pairs (X,L) with a
projective variety X over K and a very ample line bundle L on X. In Section 4, we
record some properties of these distance functions needed in subsequent sections.

Projective distance functions. We define (normalized) distance functions for
projective varieties over K with respect to non-Archimedean places of K. The
reason we include a discussion about normalizing our distance functions is that
we can state Lemma 3.1, which we need later in Section 4. In that section, we also
record various properties of these distance functions; these properties are needed
in Section 9, where we establish Corollary 1.3.

3.1. Given a nontrivial absolute value | · |v,K on K, we also denote by | · |v,K

an extension of | · |v,K to K an algebraic closure of K. We fix a collection of
non-Archimedean places of K, which we denote by MK. Let F/K, F ⊆ K, be a
finite-dimensional extension, and let w be a place of F lying over v. We let Fw

and Kv denote, respectively, the completions of F and K with respect to w and v.
Finally, we write MF for the set of places of F lying above elements of MK.

3.2. For each v ∈ MK and each w ∈ MF lying over v, we define the absolute
values by

‖x‖w = |NFw/Kv
(x)|v,K (3.1)

and
|x|w,K = |NFw/Kv

(x)|1/[F:K]
v,K ; (3.2)

here NFw/Kv
denotes the field norm from Fw to Kv . The absolute value | · |w,K is

a representative of w, and the absolute value

‖ · ‖1/[Fw :Kv]
w (3.3)
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is a representative of w extending | · |v,K. In particular,

|x|v,K = ‖x‖v = ‖x‖1/[Fw :Kv]
w (3.4)

for x ∈ K [2, Section 1.3.6].

3.3. We can use the absolute values defined by (3.1) to define projective distance
functions corresponding to places w ∈ MF. When we do this, we say that this dis-
tance function is normalized relative to F, and we denote it by dw(·, ·) or dv(·, ·)F
for a place v lying below w if we wish to emphasize the fact that it is normalized
relative to F. More specifically, given w ∈ MF, we fix an extension of ‖ · ‖w to K
and define

dw(·, ·) : Pn(K) × Pn(K) → [0,1]
by

dv(x, y)F = dw(x, y) = max0≤i<j≤n(‖xiyj − xjyi‖w)

max0≤i≤n(‖xi‖w)max0≤j≤n(‖yj‖w)
(3.5)

for x = [x0 : · · · : xn] and y = [y0 : · · · : yn] ∈ Pn(K) and v ∈ MK lying below w.
We remark the following:

Lemma 3.1. If v ∈ MK and w ∈ MF lies over v, then

dv(·, ·)[Fw :Kv]
K = dv(·, ·)F = dw(·, ·).

Proof. Immediate from the definitions. �

3.4. If X is a projective variety defined over K and L is a very ample line bundle
on X, then every embedding

X ↪→ Pn
K, (3.6)

obtained by choosing a basis of a very ample linear system with dimV = n + 1,
determines, by pulling back the distance function defined in (3.5), a projective
distance function on X

dv(·, ·) = d|·|v (·, ·) : X(K) × X(K) → [0,1]. (3.7)

Such functions behave in the same way as Lemma 3.1 with respect to normalizing
with respect to field extensions.

3.5. Approximation Constants. Let (X,L) be a pair consisting of a projective
variety X and L, a very ample line bundle on X. We assume that (X,L) is defined
over K. Fix an embedding X ↪→ Pn

K determined by a very ample linear system
V ⊆ H0(X,L), and fix a set MK of absolute values on K satisfying the product
rule and, as in Section 2.3, let HL(·) denote the multiplicative height of X with
respect to L = OP

n
K
(1)|X and our set MK. Given a non-Archimedean absolute

value | · |v ∈ MK, let d|·|v (·, ·) denote the corresponding distance function defined
in (3.7). Here we define approximation constants, and our definition extends that
given in [10, Definitions 2.8 and 2.9].
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Definition. Fix x ∈ X(K). For every infinite sequence {yi} ⊆ X(K) of distinct
points with unbounded height and d|·|v (x, yi) → 0 (which we sometimes denote
by {yi} → x), define

αx({yi},L) = inf{γ ∈ R : d|·|v (x, yi)
γ HL(yi) is bounded from above} (3.8)

and define
αx,X(L; | · |v) = αx(L; | · |v) = αx(L)

by:

αx(L) = inf{αx({yi},L) : {yi} ⊆ X(K) is an infinite sequence of

distinct points with unbounded height and d|·|v (x, yi) → 0}. (3.9)

The intuitive idea is that αx(L) provides a measure of the cost of approximat-
ing x ∈ X(K) by infinite sequences of distinct K-rational points with unbounded
height and converging to x.

Remarks. (a) As a matter of convention, if {yi} ⊆ X(K) is an infinite sequence
of distinct points with unbounded height and not converging to x, then we
define αx({yi},L) = ∞. Similarly, if there exists no infinite sequence of dis-
tinct points {yi} ⊆ X(K) with unbounded height and converging to x, then
we define αx(L) = ∞.

(b) In definitions (3.8) and (3.9), the reason that we restrict our attention to in-
finite sequences of distinct points with unbounded height is that, in general,
for instance, when K is a function field, there may exist infinite sequences of
distinct points with bounded height. On the other hand, if {yi} ⊆ X(K) is an
infinite sequence of distinct points with unbounded height, then {yi} admits a
subsequence {y′

i} with HL(y′
i ) → ∞.

(c) Let {yi} ⊆ X(K) be an infinite sequence of distinct points with unbounded
height and {yi} → x. It then follows from the definitions that if {y′

i} ⊆ X(K)

is a subsequence of distinct points with unbounded height, then {y′
i} → x and

αx({y′
i},L) ≤ αx({yi},L) for all x ∈ X(K).

(d) If K is a number field and {yi} ⊆ X(K) an infinite sequence of distinct points,
then the sequence {HL(yi)} is unbounded, and thus definitions (3.8) and (3.9)
extend those given in [10, Definitions 2.8 and 2.9].

3.6. Example. In the case that K is a number field and x ∈ Pn(K), in [10,
Lemma 2.13], it is shown that αx(OP

n
K
(1)) = 1. The same is true for the case

that K is the function field of a smooth projective complex curve C. To see why,
as in the proof of [10, Lemma 2.13], we have αx(OP

n
K
(1)) ≥ 1. To see that this

lower bound can be achieved, as in [10, Lemma 2.13], it suffices to treat the case
n = 1 and x = [1 : 0]. To see that αx(OP

1
K
(1)) = 1, let p be the point of C cor-

responding to the absolute value that we used to define αx(OP
n
K
(1)). Let g be

the genus of C, and let d > 2g be an integer. Let s ∈ K denote the global sec-
tion of OC(dp) with div(s) = dp. Then ordp(s) = d and ordq(s) = 0 for p �= q .
Since d > 2g, h0(C,OC(dp)) ≥ g + 2, and thus |dp| is base point free, so we
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can find t ∈ K that is a global section of OC(dp) and does not vanish at p. Let
yi = [1, si t−i] for i ≥ 0. Then d|·|p (x, yi) → 0 and HO

P
1
K
(yi) → ∞ as i → ∞,

and also d|·|p (x, yi)HO
P

1
K

(1)(yi) = 1 for all i.

3.7. Example. Let K be the function field of a smooth projective curve over an
algebraically closed field with characteristic 0. In Section 9, we compute αx(L)

for x ∈ A(K), where A is an Abelian variety defined over K, and L is a very ample
line bundle on A. Specifically, we establish an approximation theorem similar to
[13, p. 98], proven there in the number field setting, and it follows that αx(L) =
∞; see Theorem 9.4 and Corollary 9.5.

3.8. Example. Let C be a nonsingular curve defined over K, the function field of
a smooth projective curve over an algebraically closed field with characteristic 0,
and suppose that the genus of C is at least one. If L is a very ample line bundle
on C and x ∈ C(K), then αx(L) = ∞ as we prove in Theorem 9.6. To get a sense
for some of the ideas involved, we consider the Abel–Jacobi map C → A, where
A = Jac(C) is the Jacobian of C. Let � be the theta divisor of A and identify C

with its image in A. Then, in this notation, we have that αx(�
⊗3|C) ≥ αx(�

⊗3)

(compare with [10, Proposition 2.14 (c)]). Now note that since αx(�
⊗3) = ∞ (see

Section 3.7 or Theorem 9.4 and Corollary 9.5), it follows that αx(�
⊗3|C) = ∞

too. Finally, it follows, from our definition of approximation constants in con-
junction with properties of height functions, that αx(L) = ∞ for all very ample
line bundles L on C. The same is true for singular curves with geometric genus
at least 1; see Theorem 9.6.

4. Properties of Projective Distance Functions

In this section we record some properties of the distance functions defined in (3.5)
and (3.7). In the number field setting, similar properties were established in [10,
Section 2]. The only major difference between what we do here and what is done
there is that we work with bounded sets instead of compact sets. We omit the
proof of these properties since they are evident adaptations of the corresponding
statements given in [10, Section 2]. The main reason that we record these proper-
ties is that they are needed to establish Lemma 6.1 and Theorem 9.4. Throughout
this section, we fix a field K of characteristic zero, an algebraic closure K of K,
and a place v of K, which we extend to K and also denote by v. In what follows,
we also fix an absolute value | · | = | · |v on K representing v.

4.1. Let X be a projective variety over K. Besides the Zariski topology on X(K),
we have a topology induced by that of K with respect to v. We call this topology
the v-topology on X, and it is the topology induced locally by open balls with
respect to closed embeddings of affine open subsets of X into affine spaces and
the max norm with respect to | · |. This topology is independent of the embed-
dings and the equivalence class of | · |. As K need not be compact with respect
to the v-topology, the v-topology on X(K) need not be compact in general. On
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the other hand, to understand X(K) in terms of | · |, it is useful instead to work
with the concept of bounded sets of X in the sense of [2, Definition 2.6.2] or [13,
Section 6.1].

4.2. For completeness, we include some discussion about bounded sets, and we
first consider the affine case. To this end, let U be an affine K-variety with coor-
dinate ring K[U ]. We say that a subset E ⊆ U(K) is bounded in U if for every
f ∈ K[U ], the function |f | is bounded on E. If {f1, . . . , fN } are generators of
K[U ] as a K-algebra, and if

sup
P∈E

max
j=1,...,N

|fj (P )| < ∞

for a subset E ⊆ U(K), then E is bounded in U [2, Lemma 2.2.9]. Also, if {U�}
is a finite open covering of U and if E is bounded in U , then there are bounded
subsets E� of U� such that E = ⋃

� E� [2, Lemma 2.2.10].
Next, given an arbitrary variety X over K, a subset E ⊆ X(K) is called

bounded in X if there is a finite covering {Ui}i∈I of X by affine open subsets
and sets Ei with Ei ⊆ Ui(K) such that Ei is bounded in Ui and E = ⋃

i∈I Ei [2,
Definition 2.6.2]. If E is bounded in X, then for every finite covering {Ui}i∈I of
X by affine open subsets, there is a subdivision

E =
⋃
i∈I

Ei

with Ei ⊆ Ui(K) such that each Ei is bounded in Ui [2, Remark 2.6.3].
Finally, as explained in [2, Example 2.6.5] (see also [13, Section 6]), the set

Pn(K) is bounded in Pn
K, and one way to see this is to use the standard affine

covering
Xi := {x = [x0 : · · · : xn] ∈ Pn

K : xi �= 0}
for i ∈ {0, . . . , n}, of Pn

K together with the decomposition

Ei :=
{
x ∈ Pn

K : |xi | = max
j=0,...,n

|xj |
}

of E := Pn(K).
One consequence of the boundedness of Pn(K) is that the set of K-rational

points X(K) for X a projective variety over K is bounded; it also follows that
if X is a projective variety defined over K and x ∈ X(K) a K-rational point of
X, then there exists an affine open subset U ⊆ X with x ∈ U(K) and a subset
E ⊆ U(K) bounded in U and containing x. We refer to such a subset as a bounded
neighborhood of x in what follows.

4.3. The key point to establishing our desired properties of the distance functions,
which we defined in Sections 3.3 and 3.4, is Lemma 4.1. To state it, let X be a
variety over Spec K and U an affine open subset of XF = X ×Spec K Spec F for
some finite extension F/K with F ⊆ K. Suppose that we are given two collections
of elements u1, . . . , ur and u′

1, . . . , u
′
s of (U,OXF) that generate the same ideal.
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Lemma 4.1 (Compare with [10, Lemma 2.2]). In the setting just given, the func-
tions

max(|u1(·)|v, . . . , |ur(·)|v) (4.1)

and
max(|u′

1(·)|v, . . . , |u′
s(·)|v) (4.2)

are equivalent on every subset E ⊆ U(K) bounded in U .

Proof. In light of the discussion given in Section 4.2, the proof of Lemma 4.1 is
an evident adaptation of the proof of [10, Lemma 2.2]. �

4.4. Now let L and L′ be two very ample line bundles on a projective variety
X, defined over K, and let V ⊆ H0(X,L) and W ⊆ H0(X,L′) be two very am-
ple linear systems. For s = dimV − 1 and r = dimW − 1, fix two embeddings
j : X ↪→ Ps and j ′ : X ↪→ Pr obtained by choosing bases for V and W , respec-
tively. We wish to compare the distance functions determined by the embeddings
j and j ′. We denote these distance functions by dv(·, ·) and d ′

v(·, ·), respectively.
The main point is Proposition 4.3, which shows that the functions dv(·, ·) and
d ′
v(·, ·) are equivalent. Before stating Proposition 4.3, we record the following:

Lemma 4.2 (Compare with [10, Lemma 2.3]). Let F/K be a finite extension,
F ⊆ K. Then for every point x ∈ X(F) and every rational map f : Ps ��� Pr

defined at j (x) and such that f ◦ j = j ′ near x, there is a subset E ⊆ X(K) ×
X(K) bounded in X × X and containing (x, x) such that dv(·, ·) and d ′

v(·, ·) are
equivalent on E.

Proof. The proof of Lemma 4.2 uses Lemma 4.1 and is an evident adaptation of
the proof of [10, Lemma 2.3]. �

As mentioned, the distance functions determined by distinct embeddings are
equivalent:

Proposition 4.3 (Compare with [10, Proposition 2.4]). Let dv and d ′
v be two

distance functions coming from different embeddings of X. Then for all finite ex-
tensions F/K, F ⊆ K, dv is equivalent to d ′

v on X(F) × X(F).

Proof. The proof of Proposition 4.3 uses Lemma 4.2 and, considering the dis-
cussion of Section 4.2, is an evident adaptation of the proof of [10, Proposi-
tion 2.4]. �

4.5. Proposition 4.5, which is useful for working with distance functions locally,
is a consequence of the following useful auxiliary observation.

Lemma 4.4 (Compare with [10, Lemma 2.5]). Let x be a point of X(K) and
F ⊆ K a finite extension of K over which x is defined. Then there exists an affine
open subset U of XF = X ×Spec K Spec F containing x and elements u1, . . . , ur

of (U,OXF) that generate the maximal ideal of x and positive real constants
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c ≤ C such that

cdv(x, y) ≤ min(1,max(|u1(y)|v, . . . , |ur(y)|v)) ≤ Cdv(x, y)

for all y ∈ U(F).

Proof. This is an evident adaptation of the proof of [10, Lemma 2.5] and uses
Lemma 3.1. �

Lemma 4.4 is needed to prove the following useful result.

Proposition 4.5 (Compare with [10, Lemma 2.6]). Let x be a point of X(K)

and F ⊆ K a finite extension of K over which x is defined. Let U be an affine
open subset of XF = X ×Spec K Spec F containing x. Let u1, . . . , ur be elements
of (U,OXF) that generate the maximal ideal of x. Then for every sequence of
points {xi} ⊆ U(K) such that dv(x, xi) → 0 as i → ∞, the functions

dv(x, ·) (4.3)

and
max(|u1(·)|v, . . . , |ur(·)|v) (4.4)

are equivalent on {xi}.
In particular, there exist positive constants c ≤ C such that, for all i ≥ 0, we

have
cdv(x, xi) ≤ max(|u1(xi)|v, . . . , |ur(xi)|v) ≤ Cdv(x, xi).

Proof. This is an evident adaptation of [10, Lemma 2.6] and relies on Lemma 4.4.
�

5. Wang’s Effective Schmidt’s Subspace Theorem

In subsequent sections we study the approximation constants that we defined in
Section 3.4 for the case that K is a function field. Our approach relies on a slight
extension of a theorem of Julie Wang [15], and here we describe this extension.
First, we make some preliminary remarks.

5.1. Our setting is that of Section 2.4. In particular, k is an algebraically closed
field of characteristic zero, Y is an irreducible projective variety over k, nonsin-
gular in codimension 1, and we have fixed an ample line bundle L on Y . We also
let M(Y,L) denote the set of absolute values of the form

| · |p,K : K →R (5.1)

for the field K of fractions of Y and a prime divisor p of Y , defined in (2.5).

5.2. p-Adic Metrics. Important to our extension of the subspace theorem is the
concept of p-adic metrics. Such metrics are determined by prime divisors of Y . To
define such metrics, first, let Pn

K = Proj K[x0, . . . , xn]. Every prime divisor p of Y

determines a p-adic metric on the tautological line bundle OP
n
K
(1) given locally
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by

‖σ(y)‖p,K = |σ(y)|p,K

maxj,k |ajyk|p,K
= min

j,k

( |σ(y)|p,K

|ajyk|p,K

)
(5.2)

for nonzero

σ =
n∑

j=0

ajxj ∈ H0(Pn,OP
n
K
(1)) with aj ∈ K.

Fix an extension of | · |p,K to K and, by abuse of notation, denote this exten-
sion also by | · |p,K. Having fixed such an extension, we obtain a p-adic metric
on OP

n
F
(1) for all finite extensions F/K, F ⊆ K. We also denote this metric by

‖ · ‖p,K, and it is defined by (5.2) for all nonzero sections

σ =
n∑

j=0

ajxj ∈ H0(Pn
F,OP

n
F
(1)) with aj ∈ F.

If X ⊆ Pn
K is a subvariety and L = OP

n
K
(1)|X , then we let ‖ · ‖p,K denote the

p-adic metric ‖ · ‖p,K on L obtained by pulling back the metric (5.2). Similarly,
given a finite extension F/K, F ⊆ K, we let ‖ · ‖p,K denote the p-adic metric on
LF, the pull-back of L to XF = X ×Spec K Spec F, obtained by a fixed extension
of | · |p,K to an absolute value on K.

5.3. Weil Functions. We also need to make some remarks concerning Weil func-
tions. Let

σ =
n∑

j=0

ajxj ∈ H0(Pn
K,OP

n
K
(1)) with aj ∈ K

be a nonzero section, and let Supp(σ ) denote the hyperplane it determines. The
Weil function of σ with respect to a prime divisor p of Y has the domain Pn(K) \
Supp(σ )(K) and is defined by

λσ,|·|p,K(y) =
(

ordp(σ (y)) − min
j

(ordp(yj )) − min
j

(ordp(aj ))
)

degL(p). (5.3)

The Weil function λσ,|·|p,K and the p-adic metric ‖ · ‖p,K are related by

λσ,|·|p,K(y) = logc ‖σ(y)‖p,K (5.4)

for each y ∈ Pn(K) \ Supp(σ )(K).
When we fix an extension of | · |p,K to an absolute value | · |p,K : K → R, we

can use relation (5.4) to consider Weil functions of nonzero sections

σ =
n∑

j=0

ajxj ∈ H0(Pn
F,OP

n
F
(1)) with aj ∈ F

for F/K, F ⊆ K, a finite extension.
In particular, given a nonzero section σ ∈ H0(Pn

F,OP
n
F
(1)), we define its Weil

function with respect to p as the function λσ,|·|p,K defined by

λσ,|·|p,K(y) = logc ‖σ(y)‖p,K (5.5)

for all y ∈ Pn(F) \ Supp(σ )(F).
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5.4. The Subspace Theorem. Before we establish our extension of the subspace
theorem, we state the main result of [15]. Here we state this result in a slightly
more general form than in [15] and [12]. Indeed, there Y is assumed to be non-
singular, and the absolute values are considered with respect to a very ample line
bundle on Y . Here we assume that Y is nonsingular in codimension 1 and consider
absolute values with respect to an ample line bundle L on Y . This more general
setting is important to what we do here.

Theorem 5.1 (See [15, p. 811] or [12, Theorem 17]). Fix a finite set S of prime
divisors of Y and a collection of linear forms σ1, . . . , σq in K[x0, . . . , xn]. Let
Pn

K = Proj K[x0, . . . , xn]. There exists an effectively computable finite union of
proper linear subspaces Z �Pn

K such that the following holds: Given ε > 0, there
exist effectively computable constants aε and bε such that, for every x ∈ Pn(K) \
Z(K), either

(a) hO
P
n
K

(1)(x) ≤ aε or

(b)
∑

p∈S maxJ

∑
j∈J λσj ,|·|p,K(x) ≤ (n + 1 + ε)hO

P
n
K

(1)(x) + bε;

here the maximum is taken over all subsets J ⊆ {1, . . . , q} such that σj , j ∈ J ,
are linearly independent.

Proof. This is implied by the main result of [15] and the remark [15, bottom of
p. 812]. See also [12, Theorem 17] and [12, Remark 1]. �

Remark. As explained in [12, Remark 18], the constants aε and bε appearing
in Theorem 5.1 depend on ε, the degree, with respect to L, of a canonical class
of Y , the sum of the degrees of the p ∈ S with respect to L, and the heights of
the linear forms σ1, . . . , σq ∈ K[x0, . . . , xn] with respect to L, as defined by [12,
(1.5) and (1.6)]. For a description of the union of linear subspaces Z appearing in
Theorem 5.1, we refer to [15, Section 3].

5.5. By changing the order of quantifiers slightly in Theorem 5.1 and using our
conventions about Weil functions given in Section 5.3, especially the definition
given in (5.5), we can extend Wang’s subspace theorem so as to allow for linear
forms have coefficients in K. We state this result in Theorem 5.2, and I am grateful
to Julie Wang for her interest in an earlier version of this work, for telling me
that such an extension should follow from her [15, p. 811], and for suggesting
a method of proof. Having, in Section 5.2 and Section 5.3, properly defined the
concepts we need, the proof of Theorem 5.2 is standard and can be compared with
[2, Remark 7.2.3].

Theorem 5.2. Fix a finite set S of prime divisors of Y , fix a collection of linear
forms σ1, . . . , σq ∈ K[x0, . . . , xn], and let Pn

K
= Proj K[x0, . . . , xn]. Then given

ε > 0, there exist an effectively computable finite union of proper linear subspaces
W � Pn

K and effectively computable positive constants aε and bε such that, for
every x ∈ Pn(K) \ W(K), either

(a) hO
P
n
K

(1)(x) ≤ aε or
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(b)
∑

p∈S maxJ

∑
j∈J λσj ,|·|p,K(x) ≤ (n + 1 + ε)hO

P
n
K

(1)(x) + bε;

here the maximum is taken over all subsets J ⊆ {1, . . . , q} such that σj , j ∈ J ,
are linearly independent.

Remark. In Theorem 5.2, the Weil functions are given by (5.5) and depend on
our fixed choice of extension | · |p,K : K → R of the absolute value | · |p,K : K → R

to K.

Proof of Theorem 5.2. Let F/K, F ⊆ K, be a finite Galois extension containing
the coefficients of each σj , and let φ : Y ′ → Y be the normalization of Y in F. Let
S′ be the set of prime divisors of Y ′ lying over the elements of S. For each p ∈ S

and each p′ ∈ S′ lying over p, recall that the absolute value | · |p′/p : F → R given
by (2.11) extends the absolute value | · |p,K.

Furthermore, the extension F/K is Galois. Thus, by [2, Corollary 1.3.5], for
each p ∈ S and each p′ ∈ S′ lying over p, there exists gp′/p ∈ Gal(F/K) such that

|x|p,K = |gp′/p(x)|p′/p for x ∈ F. (5.6)

On the other hand, considering (2.10), we have

| · |p′/p = | · |1/[Fp′ :Kp]
p′,F , (5.7)

and it follows that

|x|p,K = |gp′/p(x)|1/[Fp′ :Kp]
p′,F for all x ∈ F. (5.8)

For each p ∈ S and each p′ ∈ S′ lying over p, let gp′/p ∈ Gal(F/K) be such that
(5.6) holds and set

σp′,j = gp′/p(σj ). (5.9)

Then σp′,j is the linear form in F[x0, . . . , xn] obtained by applying gp′/p to the
coefficients of σj .

Let x ∈ Pn(K) be such that x /∈ Supp(σj ) for j = 1, . . . , q . Then, by (5.8),
definition (5.5), and relation (2.14) it follows that(∑

p∈S

max
J

∑
j∈J

λσj ,|·|p,K(x)

)
[F : K] =

∑
p′∈S′

max
J

∑
j∈J

λσp′,j ,|·|p′,F(x); (5.10)

here the maximum in the left-hand side of (5.10) is taken over all J ⊆ {1, . . . , q}
such that σj , j ∈ J , are linearly independent, whereas the maximum in the right-
hand side of equation (5.10) is taken over all J ⊆ {1, . . . , q} such that the σp′,j
for j ∈ J and fixed p′ are linearly independent.

The righthand side of (5.10) is at most∑
p′∈S′

max
J

∑
(q′,j)∈J ′

λσq′,j,|·|
p′,F

(x); (5.11)

here the maximum in (5.11) is taken over all subsets J ′ ⊆ {(q′, j) : q′ ∈ S′,1 ≤
j ≤ q} for which σq′,j are linearly independent.

By (5.11), (5.10), and (2.16) it follows, by applying Theorem 5.1 over F
with respect to the linear forms σp′,j , p′ ∈ S′, j = 1, . . . , q , that there exists
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an effectively computable union of linear subspaces Z ⊆ Pn
F such that, for all

ε > 0, there exist effectively computable constants aε and bε such that, for every
x ∈ Pn(K) \ Z(K), either

(a) hO
P
n
K

(1)(x) ≤ aε[F:K] or

(b)
∑

p∈S maxJ

∑
j∈J λσj ,|·|p,K(x) ≤ (n + 1 + ε)hO

P
n
K

(1)(x) + bε[F:K] ,

where the maximum in (b) is taken over all J ⊆ {1, . . . , q} for which σj are lin-
early independent. In particular, this holds for our given fixed ε > 0. To produce
such W defined over K, write Z = ⋃

i �i for linear subspaces �i ⊆ Pn
F and for

each i, replace �i by the linear span of all solutions x ∈ �i(K)
⋂

Pn(K) to the
system:

(a′) hO
P
n
K

(1)(x) > aε[F:K] , and

(b′)
∑

p∈S maxJ

∑
j∈J λσj ,|·|p,K(x) > (n + 1 + ε)hO

P
n
K(1)

(x) + bε[F:K] .

The union of such linear spaces W is defined over K, and the conclusion of The-
orem 5.2 holds for all x ∈ Pn(K) \ W(K). �

5.6. We now consider consequences of Theorem 5.2. To begin with, we have the
following result which we state in multiplicative form.

Corollary 5.3. Let F/K, F ⊆ K, be a finite extension, fix a finite set S of
prime divisors of Y , and fix a collection of linearly independent linear forms
σ1, . . . , σq ∈ F[x0, . . . , xn]. Then given ε > 0, there exist a proper subvariety
Z � Pn

K and positive constants Aε and Bε such that if y ∈ Pn(K) satisfies the
conditions

(a) HO
P
n
K

(1)(y) > Aε ,

(b)
∏

p∈S

∏q

j=1 ‖σj (y)‖p,K < BεHO
P
n
K

(1)(y)−n−1−ε , and

(c) y /∈ Supp(σi) for i = 1, . . . , q ,

then y ∈ Z(K).

Proof. Use the relation hO
P
n
K

(1)(y) = − logc HO
P
n
K

(1)(y) to write the conclusion

of Theorem 5.2 in multiplicative form. �

Next, we give an extension of Corollary 5.3. Indeed, using Corollary 5.3, we
obtain a function field analogue of the Faltings–Wüstholz theorem, [4, Theo-
rem 9.1]. This result, which we state as Corollary 5.4, should also be compared
with the discussion given in [3, bottom of p. 1301]. We also note that in formulat-
ing this result, for simplicity, we restrict our attention to the case of a single prime
divisor. Finally, we remark that Corollary 5.4 plays a key role in our approach to
proving Roth-type theorems, as we will see in Proposition 6.2.

To state Corollary 5.4, fix a nondegenerate projective variety X ⊆ Pn
K, let L =

OP
n
K
(1)|X , fix a finite extension F of K, F ⊆ K, and let LF denote the pullback of

L to XF = X ×Spec K Spec F via the base change K → F. Let HL(·) : X(K) → R

denote the height function determined by L, fix a prime divisor p of Y , and let
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‖ · ‖p,K be the p-adic metric on L obtained by pulling back the metric given in
(5.2). Finally, fix an extension of the absolute value | · |p,K to K. Then, in this way,
we obtain an extension of the metric ‖ · ‖p,K to a p-adic metric on LF.

We can now state the following:

Corollary 5.4. In the setting just described, in particular, when X ⊆ Pn
K is a

nondegenerate projective variety, L = OP
n
K
(1)|X , and s0, . . . , sn ∈ H0(X,L) are

the pull-back of the coordinate functions x0, . . . , xn, let σ1, . . . , σq ∈ H0(XF,LF)

be a collection of F-linearly independent combinations of the s0, . . . , sn. Fix real
numbers c1, . . . , cq ≥ 0 such that c1 +· · ·+cq > n+1. If ε = c1 +· · ·+cq −n−1,
then there exists a proper subvariety Z � X and positive constants Aε and Bε

such that the following is true: if y ∈ X(K) satisfies the conditions

(a) HL(y) > Aε ,
(b) ‖σi(y)‖p,K < BεHL(y)−ci for i = 1, . . . , q , and
(c) y /∈ Supp(σi) for i = 1, . . . , q ,

then y ∈ Z(K).

Proof. Applying Corollary 5.3 with S = {p} and using the definitions of HL(·)
and ‖ · ‖p,K, we conclude that there exist a proper subvariety Z � X and positive
constants Aε and Bε such that if y ∈ X(K) satisfies the conditions

(a) HL(y) > Aε ,
(b)

∏q

j=1 ‖σj (y)‖p,K < BεHL(y)−n−1−ε , and
(c) y /∈ Supp(σi) for i = 1, . . . , q ,

then y ∈ Z(K).
Now suppose that y ∈ X(K) satisfies the following conditions:

(a′) HL(y) > Aε ,
(b′) ‖σi(y)‖p,K < B

1/q
ε HL(y)−ci for i = 1, . . . , q , and

(c′) y /∈ Supp(σi) for i = 1, . . . , q .

We then conclude that y must be contained in Z, since if (b′) holds, then

q∏
i=1

‖σi(y)‖p,K < BεHL(y)−
∑q

i=1 ci = BεHL(y)−n−1−ε.
�

6. Computing Approximation Constants for Varieties over
Function Fields

Let k be an algebraically closed field of characteristic zero, let Y be an irreducible
projective variety over k that is nonsingular in codimension 1, and let L be an
ample line bundle on Y . Let K be the field of fractions of Y , and let X ⊆ Pn

K be a
geometrically irreducible projective variety.

In this section we give sufficient conditions for approximation constants αx(L)

for x ∈ X(K) and L = OP
n
K
(1)|X , to be computed on a proper K-subvariety of X.
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Our conditions are related to the existence of vanishing sequences that are Dio-
phantine constraints. We define these concepts in Section 6.2. In Section 7, Theo-
rem 7.1, we show how the relative asymptotic volume constants of McKinnon and
Roth [10] can be used to give sufficient conditions for the existence of vanishing
sequences that are Diophantine constraints.

Throughout this section, we fix a prime divisor p ⊆ Y . We also fix an extension
of | · |p,K, the absolute value of p with respect to L, defined in (2.5), to a fixed
algebraic closure K of K.

6.1. Since X ⊆ Pn
K, we obtain a projective distance function

dp(·, ·) = d|·|p(·, ·) : X(K) × X(K) → [0,1] (6.1)

by pulling back the function (3.5). The function (6.1) is the projective distance
function of X with respect to L = OP

n
K
(1)|X , the prime divisor p ⊆ Y , and the

sections s0, . . . , sn ∈ H0(X,L) obtained by pulling back the coordinate functions
x0, . . . , xn ∈ H0(Pn

K,OP
n
K
(1)). If x ∈ X(K) and F is its field of definition, then let

XF = X ×Spec K Spec F, and let LF denote the pull-back of L to XF via the base
change Spec F → Spec K.

The following lemma is used in the proof of Proposition 6.2. Its main purpose
is to show how, under suitable hypothesis, the metric ‖ ·‖p,K behaves with respect
to the distance function dp(·, ·).
Lemma 6.1. In the above setting, fix x ∈ X(K), let F denote the field of definition
of x, and suppose that a nonzero global section σ = ∑n

j=0 aj sj , with aj ∈ F, of
LF vanishes to order at least m at x. In particular, locally σ ∈mm

x OXF,x the mth
power of the maximal ideal of the local ring of x. Let {yi} ⊆ X(K) be an infinite
sequence of distinct points such that dp(x, yi) → 0 as i → ∞. Then for all δ > 0
and all i � 0, depending on δ,

‖σ(yi)‖p,K ≤ dp(x, yi)
m−δ.

Proof. If z ∈ X(K) has homogeneous coordinates z = [z0 : · · · : zn], then locally
we know that

‖σ(z)‖p,K = min
j,k

(∣∣∣∣ σ

aj sk
(z)

∣∣∣∣
p,K

)
,

and locally by assumption at least one

σ

aj sk
∈mm

x OXF,x .

This fact, together with Proposition 4.5, implies that, for all i � 0,

‖σ(yi)‖p,K ≤ Cdp(x, yi)
m

for some constant C independent of i. We also have that

dp(x, yi) → 0
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as i → 0. Thus, for i � 0, dp(x, yi) is very small, and so for all δ > 0, dp(x, yi)
−δ

will exceed C for all i � 0. In particular,

‖σ(yi)‖p,K ≤ Cdp(x, yi)
m ≤ dp(x, yi)

m−δ

for all i � 0. �

6.2. Vanishing Sequences, Diophantine Constraints, and Computing Approx-
imation Constants. We now introduce the concept of vanishing sequences that
are Diophantine constraints; see Section 6.2.2 and Section 6.2.3, respectively. The
main motivation for these notions is that they, in conjunction with the subspace
theorem, especially Corollary 5.4, allow for sufficient conditions for approxima-
tion constants to be computed on a proper subvariety; see Proposition 6.2 and
Theorem 6.3. We should also emphasize that the results proven here are in some
sense unsatisfactory because in order for them to be of use, we are faced with the
issue of constructing vanishing sequences that are Diophantine constraints. As we
will see in Section 7, one approach to resolving this issue is related to local pos-
itivity and especially the asymptotic volume constant in the sense of McKinnon
and Roth [10].

6.2.1. In what follows, we fix a geometrically irreducible projective variety X ⊆
Pn

K, and we let L = OP
n
K
(1)|X . We also fix x ∈ X(K). Let F ⊆ K be the field of

definition of x, and let XF = X ×Spec K Spec F denote the base change of X with
respect to the field extension F/K. Finally, let LF denote the pullback of L to XF
via the base change map K → F.

Fix an integer m ∈ Z>0 and let s0, . . . , sN ∈ H0(X,L⊗m) denote a basis of
the K-vector space H0(X,L⊗m). Let σ1, . . . , σq ∈ H0(XF,L⊗m

F ) denote a collec-
tion of F-linearly independent F-linear combinations of s0, . . . , sN . Fix rational
numbers γ1, . . . , γq ∈Q>0 such that mγj ∈ Z for all j .

Having fixed our setting, we are now able to make two definitions.

6.2.2. Definition. We say that data (m,γ•, σ•) as in Section 6.2.1 is a vanishing
sequence for L at x with respect to m and the rational numbers γ1, . . . , γq ∈ Q>0

and defined over F if locally the pullback of each σi is an element of mmγi
x OXF,x .

6.2.3. Definition. Fix a real number R > 0 and fix a vanishing sequence
(m,γ•, σ•) for L at x with respect to m and the rational numbers γ1, . . . , γq ∈
Q>0. We say that the vanishing sequence (m,γ•, σ•) is a Diophantine constraint
for L with respect to R and m at x and defined over F if there exist a proper
subvariety Z � X and positive constants A and B such that if y ∈ X(K) satisfies
the conditions

(a) HL⊗m(y) > A,
(b) ‖σi(y)‖p,K < BHL⊗m(y)−γiR for i = 1, . . . , q , and
(c) y /∈ Supp(σi) for i = 1, . . . , q ,

then y ∈ Z(K).
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6.2.4. Example. Suppose we are given a vanishing sequence (m,γ•, σ•) for L at
x with respect to m and rational numbers γ1, . . . , γq ∈ Q>0 and defined over F.
Fix a real number R > 0 and suppose that

γ1 + · · · + γq >
h0(X,L⊗m)

R
.

Then, as implied by Corollary 5.4, the data (m,γ•, σ•) is a Diophantine constraint
for L with respect to R and m at x and defined over F.

6.2.5. As mentioned before, vanishing sequences and Diophantine constraints are
related to approximation constants:

Proposition 6.2. Let x ∈ X(K) have field of definition F. Let R > 0 be a real
number, m ∈ Z>0 a positive integer, and suppose that there exists a vanishing
sequence (m,γ•, σ•) for L at x with respect to m and the rational numbers
γ1, . . . , γq ∈ Q>0 and defined over F, which is also a Diophantine constraint with
respect to R. Then there exists a proper Zariski closed subset W �X defined over
K, containing x as a K-point, and such that

αx,X({yi},L) ≥ 1

R

for all infinite sequences {yi} ⊆ X(K) \ W(K) of distinct points with unbounded
height.

Proof. Let cj = γjR for j = 1, . . . , q . The fact that the vanishing sequence
(m,γ•, σ•) is a Diophantine constraint with respect to R implies that there ex-
ist positive constants A and B and a proper Zariski closed subset W � X defined
over K such that the collection of y ∈ X(K) having the properties that

(a) HL⊗m(y) > A,
(b) ‖σi(y)‖p,K < BHL⊗m(y)−ci for i = 1, . . . , q , and
(c) y /∈ ⋃q

i=1 Supp(σi)

is contained in W . The collection of such y is also contained in W adjoined
with

⋃q

i=1 Supp(σi), which, since X is irreducible, is a proper Zariski closed
subset of X. Thus, by enlarging W if necessary we can assume that W contains⋃q

i=1 Supp(σi)(K) and x.
Suppose the proposition is false for this W . Then there exists an infinite se-

quence {yi} ⊆ X(K) \ W(K) of distinct points with unbounded height such that

αx,X({yi},L) = 1

m
αx,X({yi},L⊗m) <

1

R
. (6.2)

Trivially, (6.2) implies that

αx,X({yi},L⊗m) < m/R, (6.3)

and using (6.3) in conjunction with the definition of αx,X({yi},L⊗m), it follows
that

dp(x, yi)
m/R−δ′

HL⊗m(yi) → 0 (6.4)
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as i → ∞ for all 0 < δ′ � 1. Note also that the definition of αx,X({yi},L⊗m)

implies that
dp(x, yi) → 0 (6.5)

as i → ∞.
We now make the following deductions. To begin with, using Lemma 6.1, we

deduce that, for all δ > 0 and all j ,

‖σj (yi)‖1/(Rγj )

p,K ≤ dp(x, yi)
m/R−(δ/(Rγj )) (6.6)

for all i � 0 depending on δ. (Here we use the fact that σj ∈ mmγjOXF,x with
(6.5) yields the hypothesis of Lemma 6.1.)

Next, choose δ so that each δ′
j = δ

Rγj
is sufficiently small. Then, using (6.6)

and (6.4), we deduce:

HL⊗m(yi)‖σj (yi)‖1/(Rγj )

p,K

B1/(Rγj )
≤ HL⊗m(yi)dp(x, yi)

m/R−(δ/(Rγj ))

B1/(Rγj )
< 1 (6.7)

for all j and all i � 0.
Equation (6.7) implies

‖σj (yi)‖p,K < BHL⊗m(yi)
−Rγj

for all j and all i � 0. Since, by passing to a subsequence if necessary, HL(yi) →
∞ as i → ∞, it follows that HL⊗m(yi) → ∞ too, and so we have that yi ∈ W for
all i � 0. This is a contradiction. �

6.2.6. Proposition 6.2 implies the following:

Theorem 6.3. Let X ⊆ Pn
K be a geometrically irreducible subvariety, put L =

OP
n
K
(1)|X , and let x ∈ X(K). Fix a real number R > 0 and a positive integer

m ∈ Z>0. If αx,X(L) < 1
R

and if there exists a vanishing sequence (m,γ•, σ•) for
L at x with respect to m and defined over F ⊆ K, the field of definition of x, which
is also a Diophantine constraint with respect to R, then

αx,X(L) = αx,W (L|W)

for some proper subvariety W � X having dimension at least 1 and containing x

as a K-point.

Proof. By assumption, αx,X(L) < 1
R

, and there exists a vanishing sequence
(m,γ•, σ•) for L at x with respect to m, which is also a Diophantine constraint
with respect to R. By Proposition 6.2 there exists a proper subvariety W � X

defined over K and containing x as a K-point so that

αx,X({yi},L) ≥ 1

R

for all infinite sequences {yi} ⊆ X(K) \ W(K) of distinct points with unbounded
height. As a consequence, if αx,X({yi},L) < 1

R
for an infinite sequence {yi} ⊆

X(K) of distinct points with unbounded height, then almost all yi must lie in
W(K). In particular, W(K) must have an infinite number of K-rational points,
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and so W has dimension at least 1. Since x ∈ W(K), the definitions immediately
imply that αx,X(L) = αx,W (L|W). �

7. Asymptotic Volume Functions and Vanishing Sequences

Let k be an algebraically closed field of characteristic zero, Y ⊆ Pr

k
an irreducible

projective variety, nonsingular in codimension 1, K the field of fractions of Y ,
X ⊆ Pn

K a geometrically irreducible projective variety, and L = OP
n
K
(1)|X . In

this section, we relate the theory we developed in Section 6 to local measures of
positivity for L near x ∈ X(K). Our main result is Theorem 7.1, which we prove
in Section 7.2, and which shows how the number βx(L) introduced by McKinnon
and Roth can be used to construct a vanishing sequence for L about x, which
is also a Diophantine constraint. In Section 7.3 we include a short discussion
about εx(L), the Seshadri constant of L about x, and indicate how it is related to
the number βx(L). The reason for including this discussion is that the inequality
given in (7.3), established by McKinnon and Roth in [10, Corollary 4.4], is needed
in Section 8, where we prove the results stated in Section 1.1.

7.1. Expectations and Volume Functions. Let x ∈ X(K), let F be the field of
definition of x, π : X̃ = Blx(X) → XF be the blow-up of XF, the base change of
X with respect to the field extension K → F at the closed point of XF correspond-
ing to x, and let E denote the exceptional divisor of π . In what follows, we let
N1(X̃)R denote the real Neron–Severi space of R-Cartier divisors on X̃ modulo
numerical equivalence, and we let Vol(·) denote the volume function

Vol(·) : N1(X̃)R →R.

In particular, if g equals the dimension of X̃ and if � denotes the numerical class
of an integral Cartier divisor D on X̃, then

Vol(�) = lim sup
m→∞

h0(X̃,OX̃(mD))

mg/g! ;

see [9, Section 2.2.C, p. 148].
If γ ∈R≥0, then let Lγ denote the R-line bundle

Lγ = π∗LF − γE

on X̃, where LF denotes the pullback of L to XF. In what follows, we also let
Lγ,K denote the pullback of Lγ to the base change X̃K of X̃ with respect to

K → K. In addition, let γeff,x(L) be defined by

γeff = γeff,x(L)

= sup{γ ∈R≥0 : Lγ,K is numerically equivalent to an effective divisor}.
As explained in [10, Section 4], we have:

(a) γeff < ∞,
(b) Vol(Lγ ) > 0 for all γ ∈ [0, γeff),



Diophantine Approximation Constants for Varieties over Function Fields 395

(c) Vol(Lγ ) = 0 for all γ > γeff, and
(d) Vol(Lγeff) = 0.

In [10, Section 4] the constant βx(L) is defined as

βx(L) =
∫ ∞

0

Vol(Lγ )

Vol(L)
dγ =

∫ γeff

0

Vol(Lγ )

Vol(L)
dγ ;

see [10, p. 545, Definition 4.3, and Remark on p. 548].

7.2. Volume Functions and Existence of Vanishing Sequences. We wish to
show how the number βx(L) is related to vanishing sequences and Diophantine
constraints. Indeed, we use techniques, similar to those employed in the proof of
[10, Theorem 5.1], to prove the following:

Theorem 7.1. Let X ⊆ Pn
K be a geometrically irreducible subvariety, and let

L = OP
n
K
(1)|X . Fix a real number R > 0 and a K-rational point x ∈ X(K). Let F

denote the field of definition of x. If βx(L) > 1
R

, then there exist a positive integer
m ∈ Z>0 and a vanishing sequence (m,γ•, σ•) for L at x with respect to m and
defined over F ⊆ K, which is also a Diophantine constraint with respect to R.

Proof. Let XF denote the base change of X with respect to the finite field exten-
sion F/K, and let π : X̃ → XF be the blow-up of X at the closed point of XF
corresponding to x ∈ X(F). Let E denote the exceptional divisor, let LF denote
the pull-back of L to XF, and let Lγ denote the R-line bundle Lγ = π∗LF − γE

on X̃ for γ ∈ R≥0.
Since X is assumed to be geometrically irreducible, we have:

βx(L) =
∫ γeff

0

Vol(Lγ )

Vol(L)
dγ =

∫ γeff

0
f (γ )dγ,

where

f (γ ) = Vol(Lγ )

Vol(L)
.

By assumption we have βx(L) > 1
R

. This assumption in conjunction with [10,
Lemma 5.5] implies the existence of a positive integer r and rational numbers

0 < γ1 < · · · < γr < γeff,x(L)

such that, if we set γr+1 = γeff,x(L), then we have:

r∑
j=1

cj (f (γj ) − f (γj+1)) > 1,

where cj = Rγj for j = 1, . . . , r .
We now have for all γ ≥ 0:

lim
m→∞

h0(X̃, (L⊗m)mγ )

h0(X,L⊗m)
= f (γ ),
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and it follows that by taking m � 0 we can ensure that each

h0(X̃, (L⊗m)mγj
)

h0(X,L⊗m)

is sufficiently close to f (γj ) so that

1 <
1

h0(X,L⊗m)

( r∑
j=1

cj (h
0(X̃, (L⊗m)mγj

) − h0(X̃, (L⊗m)mγj+1))

)
. (7.1)

In addition, by increasing m if necessary we may assume that γjm are integers
and also, by [9, Lemma 5.4.24, p. 310] for instance, that

π∗OX̃(−mγjE) = Imγj
x (7.2)

for all j = 1, . . . , r .
In what follows, we fix such a large integer m, and our goal is to construct

a vanishing sequence for L at x with respect to m, which is defined over F and
which is a Diophantine constraint with respect to R. To this end, let V denote the
F-vector space (XF,L⊗m

F ), and let N = dimV − 1 and V j = (X̃, (L⊗m)mγj
)

for j = 1, . . . , r .
Using (7.2), we deduce:

(a) V j = H0(XF,Imγj
x ⊗ L⊗m

F ) for j = 1, . . . , r ,
(b) V j+1 ⊆ V j for j = 1, . . . , r − 1, and
(c) each element σj of V j is locally an element of m

mγj
x OXF,x .

Let V 0 = V , �j = dimV j for j = 0, . . . , r , and let sr,1, . . . , sr,�r be an F-
basis for V r . We can extend this to a basis for V r−1, which we denote by
sr,1, . . . , sr,�r , sr−1,�r+1, . . . , sr−1,�r−1 . Recursively, we can construct an F-basis
for V j extending the F-basis for V j+1, j = 1, . . . , r − 1, and we denote such a
basis as sr,1, . . . , sr,�r , . . . , sj,�j+1+1, . . . , sj,�j

. In this way, we obtain �1 F-linearly
independent elements of the F-vector space V :

sr,1, . . . , sr,�r , . . . , sj,�j+1+1, . . . , sj,�j
, . . . , s1,�2+1, . . . , s1,�1 .

Since the very ample line bundle L⊗m is defined over K, if s0, . . . , sN denotes
a K-basis for the K-vector space H0(X,L⊗m), then each of the F-linearly inde-
pendent sections sj,k of L⊗m

F is an F-linear combination of s0, . . . , sN .
Let �r+1 = 0 for each 1 ≤ j ≤ r and each �j+1 + 1 ≤ k ≤ �j , let the sections

sj,k ∈ V j have weight cj,k = cj , and let ηj,k = γj . In this notation, equation (7.1)
implies that

r∑
j=1

�j∑
k=�j+1+1

cj,k > N + 1,

and it follows, in light of Corollary 5.4, that (m,η•, σ•) with η• = (ηj,�) and
σ• = (sj,�) for 1 ≤ j ≤ r and �j+1 + 1 ≤ � ≤ �j is a vanishing sequence for L

with respect to m at x and defined over F, which is also a Diophantine constraint
with respect to R. �
Theorem 7.1 has the following consequence.
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Corollary 7.2. Fix a real number R > 0. Continuing with the assumptions that
X is geometrically irreducible and x ∈ X(K), if βx(L) > 1

R
, then there exists a

proper subvariety W � X defined over K and containing x such that

αx,X({yi},L) ≥ 1

R

for all infinite sequences {yi} ⊆ X(K) \ W(K) of distinct points with unbounded
height.

Proof. Consequence of Theorem 7.1 and Proposition 6.2. �

7.3. Asymptotic Volume Functions and Their Relation to Seshadri Constants.
Here, to prepare for Section 8, we make a few remarks about Seshadri constants
and how they are related to the asymptotic relative volume constants of McKinnon
and Roth [10]. To this end, let

εx(L) = sup{γ ∈R≥0 : Lγ,K is nef}
denote the Seshadri constant of L at x ∈ X(K). We refer to [10, Section 3] and [9]
for more detail regarding Seshadri constants. A basic result is that if we identify
x with the closed point of XK that it determines, then

εx,X(L) = inf
x∈C⊆XK

{
LK · C

multx(C)

}
,

where the infimum is taken over all reduced irreducible curves C passing through
x; see, for instance, [10, Proposition 3.2] or [9, Proposition 5.1.5].

In [10, Corollary 4.4] it is shown that

βx(L) ≥ dimX

dimX + 1
εx(L); (7.3)

this inequality is important in the proof of our main results stated in Section 1.2.

8. Proof of Main Results

In this section we prove the main results of this paper, namely Theorem 1.1 and
Corollary 1.2, which we stated in Section 1.2. For convenience of the reader,
we restate these results as Theorem 8.1 and Corollary 8.2. To prepare for these
results, let K be the function field of an irreducible projective variety Y ⊆ Pr

k
defined over an algebraically closed field k of characteristic zero and nonsingular
in codimension 1, and fix a prime divisor p ⊆ Y . Fix an algebraic closure K of
K and suppose that X ⊆ Pn

K is a geometrically irreducible subvariety. The results
we prove here show how the subspace theorem can be used to relate αx(L), for
x ∈ X(K) and L = OP

n
K
(1)|X , to βx(L).

Theorem 8.1. Let K be the function field of an irreducible projective variety Y ⊆
Pr

k
, defined over an algebraically closed field k of characteristic zero. Assume

that Y is nonsingular in codimension 1 and fix a prime divisor p ⊆ Y . Fix an
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algebraic closure K of K and suppose that X ⊆ Pn
K is a geometrically irreducible

subvariety, that x ∈ X(K), and that L = OP
n
K
(1)|X . In this setting, either

αx(L;p) ≥ βx(L) ≥ dimX

dimX + 1
εx(L)

or

αx,X(L;p) = αx,W (L|W ;p)
for some proper subvariety W � X.

Proof of Theorem 8.1 and Theorem 1.1. It suffices to show that if αx(L;p) <

βx(L), then X has dimension at least two and αx,X(L) = αx,W (L|W) for some
proper subvariety W � X having dimension at least 1 and containing x. To this
end, if αx(L;p) < βx(L), then we can choose R > 0 so that

αx(L;p) < 1/R < βx(L).

Since βx(L) > 1
R

, Theorem 7.1 implies the existence of a vanishing sequence
(m,γ•, σ•) for L at x with respect to some positive integer m, which is also a
Diophantine constraint with respect to R. In addition, we have αx,X(L;p) < 1

R
.

The hypothesis of Theorem 6.3 is satisfied, and its conclusion implies that
αx,X(L) = αx,W (L|W) for some proper subvariety W � X having dimension at
least 1 and containing x. �

Theorem 8.1 has the following consequence.

Corollary 8.2. In the setting of Theorem 8.1, we have that αx(L;p) ≥ 1
2εx(L).

If αx(L;p) = 1
2εx(L), then αx,X(L;p) = αx,C(L|C;p) for some curve C ⊆ X

defined over K.

Proof. It follows from Theorem 8.1 using induction. In more detail, let g denote
the dimension of X. If g ≥ 1, then

g

g + 1
εx(L) ≥ 1

2
εx(L).

Thus, if αx(L;p) ≥ g
g+1εx(L), then αx(L;p) ≥ 1

2εx(L). If αx(L;p) <
g

g+1εx(L),
then Theorem 8.1 implies that αx(L;p) = αx,W (L|W ;p) for some proper subva-
riety W � X, and [10, Lemma 2.17] (proven for the case that K is a number field
but is equally valid for the case that K is a function field) implies that we may
take W to be irreducible over K. By induction, αx,W (L|W ;p) ≥ 1

2εx(L|W). On
the other hand, αx(L;p) = αx,W (L|W ;p) and εx(L) ≤ εx,W (L|W) by [10, Propo-
sition 3.4 (c)], and it follows that

αx(L;p) = αx,W (L|W ;p) ≥ 1

2
εx(L|W) ≥ 1

2
εx(L).

Finally, if αx(L;p) = 1
2ε(L|W), then we conclude that W is a curve defined

over K. �
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9. Approximation Constants for Abelian Varieties and Curves

Throughout this section, K is the function field of a smooth projective curve C

over an algebraically closed field k of characteristic zero. We also fix an algebraic
closure K of K. Our goal here is to use the properties of the distance functions,
which we recorded in Section 4, to prove an approximation theorem for rational
points of an Abelian variety A over K. Theorem 9.4 and its proof are very similar
to what is done in the number field setting; see, for example, [13, pp. 98–99]. We
then use Theorem 9.4 to study approximation constants for K-rational points of
an irreducible projective curve B over K. Specifically, in Section 9.4 we prove
Corollary 1.3 stated in Section 1.2.

9.1. We recall a special case of Roth’s theorem for P1 from which we deduce an
approximation result, Theorem 9.2, applicable to projective varieties over K. To
state Roth’s theorem for P1, fix p ∈ C(k) and let

dp(·, ·) : P1(K) × P1(K) → [0,1]
denote the projective distance function that it determines.

Theorem 9.1 (Roth’s theorem for P1). Let K be the function field of a smooth
projective curve over an algebraically closed field of characteristic zero. Let x ∈
P1(K) and δ > 2. Then there is no infinite sequence {xi} ⊆ P1(K) of distinct
points with unbounded height such that

dp(x, xi) → 0 and dp(x, xi)HO
P1 (1)(xi)

δ ≤ 1

as i → ∞.

Proof. This is implied, for example, by the main theorem of [14]. �

As in [13, Section 7.3], combined with the local description of the distance func-
tions given by Lemma 4.4, Roth’s theorem for P1 implies the following:

Theorem 9.2 (Compare with [13, First theorem on p. 98]). Suppose that K is the
function field of a smooth projective curve over an algebraically closed field of
characteristic zero. Let X ⊆ Pn

K be a projective variety, and let L = OP
n
K
(1)|X . If

x ∈ X(K) and δ > 2, then there is no infinite sequence {xi} ⊆ X(K) of distinct
points with unbounded height with

dp(x, xi) → 0 and dp(x, xi)HL(xi)
δ ≤ 1

as i → ∞.

Proof. As in [13, p. 98], using the local description of the distance functions
dp(x, ·) given by Lemma 4.4, Theorem 9.2 follows from Theorem 9.1 applied to
the coordinates of the xi . �

Theorem 9.2 can be used to give a lower bound for the approximation constant
αx(L).
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Corollary 9.3. In the setting of Theorem 9.2, αx(L) ≥ 1/2.

Proof. It is immediate from the definition of αx(L) in conjunction with the fact
that the approximation constant is the reciprocal of the approximation exponent.

�

9.2. Our approximation theorem for rational points of an Abelian variety A over
K is proved in a manner similar to what is done in the number field case (see,
for example, [13, Section 7.3]) and relies on the weak Mordell–Weil theorem.
Specifically, we use Theorem 9.2, combined with the properties of the distance
functions stated in Section 4, to prove the following result.

Theorem 9.4 (Compare with [13, Second theorem on p. 98]). Let K be the func-
tion field of a smooth projective curve C over an algebraically closed field k
of characteristic zero and fix p ∈ C(k). If L is a very ample line bundle on an
Abelian variety A over K, x ∈ A(K), and δ > 0, then there is no infinite sequence
of distinct points {xi} ⊆ A(K) with unbounded height and such that

dp(x, xi) → 0 and dp(x, xi)HL(xi)
δ ≤ 1

for all i � 0.

Proof. Choose an embedding A ↪→ Pn afforded by L, let δ > 0, choose an integer
m ≥ 1 with (m2 − 1)δ > 3, and let {xi} ⊆ A(K) be a sequence of distinct points
with unbounded height such that

dp(x, xi) → 0 and dp(x, xi)HL(xi)
δ ≤ 1 (9.1)

as i → ∞.
The weak Mordell–Weil theorem, [2, Theorem 10.5.14], implies that the group

A(K)/mA(K) is finite. By passing to a subsequence with unbounded height if
necessary it follows that there exist a ∈ A(K) and x′

i ∈ A(K) such that

xi = mx′
i + a (9.2)

for all i.
Let d ′

p(·, ·) denote the distance function obtained by using the embedding

A
τa−→ A ↪→ Pn; here τa : A → A denotes translation by a ∈ A(K) in the group

law. The distance functions d ′
p(·, ·) and dp(·, ·) are equivalent by Proposition 4.3.

Thus (9.2), together with the fact that dp(x, xi) → 0 as i → ∞, implies that
dp(x − a,mx′

i ) → 0 as i → ∞. In particular, {mx′
i} → x − a as i → ∞.

Now note that since A(K) is a divisible group, there exists b ∈ A(K) such that
mb = x − a. As a consequence, since {mx′

i} → x − a as i → ∞, we have that
dp(mb,mx′

i ) → 0 as i → ∞.
Next, consider the morphism [m]A : A → A, defined by multiplication by m in

the group law, near b. In particular, using the fact that [m]A is étale in conjunction
with Lemma 4.4 and Proposition 4.5, we deduce that

dp(b, x′
i ) → 0 (9.3)

as i → ∞ too.
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In more detail, let F be the field of definition of b. Lemma 4.4 implies that there
exist an affine open subset U of AF = A ×Spec K Spec F and elements u1, . . . , ur

of (U,OXF) that generate the maximal ideal of b and positive constants c ≤ C

such that

cdp(b, x′
i ) ≤ min(1,max(|u1(x

′
i )|p, . . . , |ur(x

′
i )|p)) ≤ Cdp(b, x′

i ) (9.4)

for all x′
i ∈ U(K). Now let mmb and mb denote the maximal ideals of mb and

b. Then, since the morphism [m]A is étale, we have mmb · Ob = mb; see, for
example, [6, Exercise III.10.3]. Thus, if u′

1, . . . , u
′
r are generators for the maximal

ideal mmb of mb, then their pullbacks [m]∗Au′
1, . . . , [m]∗Au′

r also generate mb .
We now consider implications of Lemma 4.1. Specifically, Lemma 4.1 implies

that the functions

max(|u1(·)|p, . . . , |ur(·)|p) (9.5)

and

max(|[m]∗Au′
1(·)|p, . . . , |[m]∗Au′

r (·)|p) (9.6)

are equivalent on every subset E ⊆ U(K) that is bounded in U . On the other hand,
since

max(|[m]∗Au′
1(x

′
i )|p, . . . , |[m]∗Au′

r (x
′
i )|p)

= max(|u′
1(mx′

i )|p, . . . , |u′
r (mx′

i )|p) → 0

as i → ∞, it follows, by the equivalence of the functions (9.5) and (9.6), that

max(|u1(x
′
i )|p, . . . , |ur(x

′
i )|p) → ∞ (9.7)

as i → ∞. Combining (9.4) and (9.7), we have that dp(b, x′
i ) → 0 as i → ∞.

Now, by the theory of Neron–Tate heights (see, e.g., [2, Section 9.2 and Sec-
tion 9.3]) the function logHL is quadratic up to a bounded function. In particular,
since xi = mx′

i + a, it follows that {x′
i} has unbounded height and also that

logHL(xi)

logHL(x′
i )

→ m2 (9.8)

and thus

HL(x′
i )

m2−1 ≤ HL(xi) (9.9)

for all i � 0.
Consider now the isogeny τa ◦ [m]A : A → A. Let u1, . . . , ur be regular func-

tions that generate the maximal ideal of b. By Proposition 4.5 there exists a posi-
tive constant c such that

cdp(b, x′
i ) ≤ max(|u1(x

′
i )|p, . . . , |ur(x

′
i )|p). (9.10)

On the other hand, since τa ◦[m]A is an étale morphism, we can choose u1, . . . , ur

so that there exists regular functions u′
1, . . . , u

′
r that generate the maximal ideal of

x and have the property

u′
j (mx′

i + a) = (τa ◦ [m]A)∗u′
j (x

′
i ) = uj (x

′
i ).
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Thus, by Proposition 4.5 there exists a positive constant C such that

max(|u1(x
′
i )|p, . . . , |ur(x

′
i )|p)

= max(|u′
1(mx′

i + a)|p, . . . , |u′
r (mx′

i + a)|p)

≤ Cdp(x, xi). (9.11)

Combining (9.10) and (9.11), we obtain

cdp(b, x′
i ) ≤ Cdp(x, xi), (9.12)

and by (9.3), (9.12), and (9.9) it follows from (9.1) that, by passing to a subse-
quence if necessary, HL(x′

i ) → ∞,

dp(b, x′
i ) → 0 and dp(b, x′

i ) < HL(x′
i )

−k

for some k > 2 and all i � 0, which contradicts Theorem 9.2. �
Theorem 9.4 has the following consequence that we will use in Section 9.3 and
Section 9.4.

Corollary 9.5. In the setting of Theorem 9.4, we have αx(L) = ∞.

Proof. By the definition of αx(L) given in Section 3.5, the conclusion of Corol-
lary 9.5 immediately follows from Theorem 9.4. �

9.3. We now explain how Theorem 9.4 and Corollary 9.5 allow calculation of the
approximation constant αx(L) = αx(L;p) for a very ample line bundle L on an
irreducible curve B over K and x ∈ B(K). This is the content of Theorem 9.6,
which is proved in a manner similar to [10, Theorem 2.16].

Theorem 9.6. Let K be the function field of a smooth projective curve over an al-
gebraically closed field of characteristic zero. If αx(L) < ∞ for a very ample line
bundle L on an irreducible curve B over K and x ∈ B(K), then B has geometric
genus equal to zero.

Proof. Let φ : B̃ → B be the normalization morphism. Since the pullback of L

to B̃ via φ is ample [6, Exercise III.5.7 (d)], and since αx(L) = Nαx(L
⊗N) for

N > 0, without loss of generality, we may assume that the pullback of L to B̃ is
very ample.

We next note that given an infinite sequence {xi} ⊆ B(K) of distinct points
with unbounded height, and {xi} → x, we may, by passing to a subsequence with
unbounded height, assume that none of the xi has finitely many points where φ is
not an isomorphism. We may also assume that the sequence {φ−1(xi)} converges
with respect to dp(·, ·), the distance function on B̃ determined by φ∗L, to one of
the points q ∈ φ−1(x). Indeed, if the branch corresponding to q has multiplicity
mq , then locally φ is described by functions in the mq th power of the maximal
ideal of q . Consequently, as can be deduced from Lemma 4.4, dp(x,φ(qi)) is
equivalent to dp(q, qi)

mq as i → ∞. Conversely, it is clear that given an infinite
sequence {qi} ⊆ B̃ of distinct points with unbounded height and {qi} → q for
some q ∈ φ−1(x), we then have that {φ(qi)} → x.
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Thus, to compute αx(L), it suffices to consider αx({xi},L) for those infinite
sequences of distinct points with unbounded height {xi} ⊆ B(K) that arise from
infinite sequences {qi} ⊆ B̃(K) with unbounded height converging to some q ∈
B̃(K) with q ∈ φ−1(x).

Now, given such a sequence {qi} → q , we have

Hφ∗L(qi) ∼ HL(φ(qi)) (9.13)

for all i.
Since dp(x,φ(qi)) is equivalent to dp(q, qi)

mq as i → ∞, this fact, combined
with (9.13), implies that

αx({φ(qi)},L) ∼ 1

mq

αq({qi}, φ∗L), (9.14)

and so, by considering the Abel–Jacobi map of B̃ (compare with the discussion
in Section 3.8) Corollary 9.5 implies that the righthand side of (9.14) is infinite if
B has geometric genus at least 1. �

9.4. Having established Theorem 9.6, we are now able to refine Corollary 1.2 and,
in particular, establish Corollary 1.3.

Theorem 9.7. Assume that K is the function field of a smooth projective curve
over an algebraically closed field of characteristic zero. Let X be a geometrically
irreducible projective variety defined over K, and let L be a very ample line bun-
dle on X defined over K. If x is a K-rational point of X, then αx(L) ≥ 1

2εx(L). If
equality holds, then αx,X(L) = αx,B(L|B) for some rational curve B ⊆ X defined
over K.

Proof of Theorem 9.7 and Corollary 1.3. By Corollary 8.2 the given inequalities
hold, and if equality holds, then the approximation constant is computed on an
irreducible curve B defined over K and passing through x. On the other hand,
since εx(L) < ∞, it follows that αx(L) must be finite too, and so B must be
rational by Theorem 9.6. �
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