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Legendrian Lens Space Surgeries

Hansjörg Geiges & Sinem Onaran

Abstract. We show that every tight contact structure on any of the
lens spaces L(ns2 −s+1, s2) with n ≥ 2 and s ≥ 1 can be obtained by
a single Legendrian surgery along a suitable Legendrian realisation of
the negative torus knot T (s,−(sn − 1)) in the tight or an overtwisted
contact structure on the 3-sphere.

1. Introduction

A knot K in the 3-sphere S3 is said to admit a lens space surgery if, for some ra-
tional number r , the 3-manifold obtained by Dehn surgery along K with surgery
coefficient r is a lens space. Moser [17] showed that all torus knots admit lens
space surgeries. More precisely, −(ab ± 1)-surgery along the negative torus knot
T (a,−b) results in the lens space L(ab±1, a2); cf. [21]; for positive torus knots,
we take the mirror of the knot and the surgery coefficient of opposite sign, re-
sulting in a negatively oriented lens space. Contrary to a conjecture by Moser,
there are surgeries along other knots that produce lens spaces. The first example
belongs to Bailey and Rolfsen [1], who constructed the lens space L(23,7) by
integral surgery along an iterated cable knot.

The question which knots admit lens space surgeries is still open and the sub-
ject of much current research. The fundamental result in this area belongs to
Culler, Gordon, Luecke, and Shalen [2], who proved as a corollary of their cyclic
surgery theorem the following result: if K is not a torus knot, then at most two
surgery coefficients, which must be successive integers, can correspond to a lens
space surgery. For more recent work, relating this question to Floer theory, see,
for instance, [12; 14; 18; 20].

The converse question of which lens spaces can be obtained by a single surgery
on the 3-sphere is of course trivial in the topological setting: the lens space
L(p,q), as an oriented manifold, is the result of a (−p/q)-surgery along the
unknot.

In the present note, we consider this converse question for contact manifolds:
which tight contact structures on a given lens space can be obtained by a sin-
gle contact (−1)-surgery (also known as Legendrian surgery) along a Legendrian
knot in S3 with some contact structure? Here the topological restrictions become
relevant in the search for contact structures on lens spaces that cannot be con-
structed in this way.

Received November 2, 2016. Revision received November 22, 2016.
S.O. is partially supported by the grants HÜBAP FBB-2016-9429 and TÜBİTAK #115F519.
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Rasmussen [20, Corollary 4] proved that the only integral surgery on S3 that
produces the lens space L(4m + 3,4) is surgery along the negative torus knot
T (2,−(2m + 1)) with coefficient −(4m + 3). (The statement about the surgery
coefficient is not contained in [20], but this follows immediately from [17], be-
cause other surgery coefficients lead to a different lens space or a Seifert manifold
with three multiple fibers.) Beware that Rasmussen uses the opposite orientation
convention for lens spaces.

Based on Rasmussen’s result, Plamenevskaya [19, Proposition 5.4] claimed
that only one of the three, up to isotopy, (positive) tight contact structures on
L(7,4) can be obtained via Legendrian surgery on some contact structure on S3.
This assertion, as we shall see, is erroneous. The main result of this note is the
following:

Theorem 1.1. For any pair of integers n ≥ 2, s ≥ 1, every tight contact struc-
ture on the lens space L(ns2 − s + 1, s2) can be obtained by a single Legen-
drian surgery along a suitable Legendrian realisation of the negative torus knot
T (s,−(sn − 1)) in some contact structure on S3.

Remark 1.2. (1) On the lens space L(ns2 − s + 1, s2), there are, for s ≥ 2, pre-
cisely (s + 1)(n − 1) distinct tight contact structures up to isotopy; for s = 1 the
number is n − 1. (One reason why we restrict our attention to these lens spaces
is that the arithmetic for determining the number of tight structures is simple.)
As we will realize these structures by different contact surgery diagrams, it may
not seem to be clear how to distinguish nonisotopic but diffeomorphic structures.
However, those different contact surgery diagrams correspond to the same topo-
logical surgery diagram, and this fixes the resulting manifold, so that the notion
of isotopy becomes meaningful.

(2) There is a more fundamental reason for considering only the lens spaces
L(ns2 − s + 1, s2): a major share of the tight contact structures stem from ex-
ceptional realisations of the torus knot T (s,−(sn − 1)) (i.e., as Legendrian knots
L ⊂ (S3, ξot) in an overtwisted contact structure with ξot|S3\L tight), and system-
atically we can only produce them for those particular torus knots. We can expect
that the lens spaces L(ns2 + s +1, s2), coming from surgery along the torus knots
T (s,−(sn + 1)), may be treated in the same fashion.

(3) The maximal Thurston–Bennequin number of Legendrian realizations of
the negative torus knot T (a,−b) in the tight (S3, ξst) equals −ab, so the max-
imal topological surgery coefficient for a Legendrian surgery is −(ab + 1).
It seems reasonable to conjecture that the theorem holds for all lens spaces
L(ab + 1, a2).

We assume that the reader is familiar with the elements of contact topology on the
level of [7]. In particular, our argument depends on the presentation of contact 3-
manifolds in terms of contact (±1)-surgery diagrams; see [4] and [7, Section 6.4].
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2. Contact Structures on Lens Spaces

As explained in the Introduction, lens spaces come with a natural orientation.
When we speak of a “contact structure” ξ on an oriented 3-manifold, we always
mean a positive oriented contact structure, that is, ξ = kerα with α ∧ dα > 0, and
α is given up to multiplication by a positive function.

The number of tight contact structures on lens spaces has been determined
independently by Giroux [9] and Honda [13].

Theorem 2.1 (Giroux, Honda). On the lens space L(p,q) with p > q > 0 and
gcd(p, q) = 1, the number of tight contact structures is given by

(a0 − 1) · · · (ak − 1),

where the ai ≥ 2 are the terms in the negative continued fraction expansion

p

q
= a0 − 1

a1 − 1

a2 − · · · − 1

ak

=: [a0, . . . , ak].

For our family of lens spaces, this number is easy to compute.

Corollary 2.2. The number of tight contact structures on L(ns2 − s + 1, s2) is
n − 1 for s = 1 and (s + 1)(n − 1) for s ≥ 2.

Proof. The case s = 1 is clear. For s ≥ 2, we claim that

ns2 − s + 1

s2
= [n, s + 2,2, . . . ,2︸ ︷︷ ︸

s−2

].

The result then follows from Theorem 2.1.
Inductively, we see that

[2, . . . ,2︸ ︷︷ ︸
s−2

] = s − 1

s − 2
.

Then

[n, s + 2,2, . . . ,2︸ ︷︷ ︸
s−2

] = n − 1

s + 2 − 1

[2, . . . ,2]
= ns2 − s + 1

s2
,

as claimed. �
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Our aim is to find Legendrian realizations of the torus knot T (s,−(sn − 1))

in some contact structure on S3 such that Legendrian surgery on the knot pro-
duces a tight contact structure on the lens space L(ns2 − s + 1, s2). This re-
quires, first of all, that the Thurston–Bennequin invariant tb of these realiza-
tions equals −s(sn − 1), so that, topologically, we perform a surgery with fram-
ing −(ns2 − s + 1). Secondly, a necessary condition for the contact structure on
the surgered manifold to be tight is that we start with the standard tight contact
structure ξst on S3 or with an exceptional realisation of T (s,−(sn − 1)) in an
overtwisted contact structure; see Remark 1.2(2) for the definition of exceptional
Legendrian knots—these are also referred to as nonloose Legendrian knots.

We will represent T (s,−(sn− 1)) as a Legendrian knot L in a contact surgery
diagram of some contact structure on S3. We will then see directly that Legen-
drian surgery on this knot produces a contact surgery diagram for a tight contact
structure on L(ns2 − s + 1, s2). Thus, with hindsight the contact structure on the
complement of L was tight.

To distinguish the contact structures obtained in this fashion, we need two well-
known homotopical invariants of tangent 2-plane fields on 3-manifolds. The first
is the Euler class, which modulo 2-torsion detects homotopy over the 2-skeleton;
the second is the so-called d3-invariant.

Example 2.3. The Euler class suffices to settle the case s = 1 of the theorem.
In (S3, ξst), there are n − 1 Legendrian realizations of the (oriented) unknot with
tb= −n + 1 and rotation numbers in the range

rot ∈ {−n + 2,−n + 4, . . . , n − 4, n − 2},
given by adding n − 2 zigzags, distributed on the left and the right, to the stan-
dard front projection picture of an unknot with tb = −1 and rot = 0. Legen-
drian surgery on these knots produces the lens space L(n,1). The almost complex
structure on the corresponding symplectic handlebody X, which has cohomology
H 2(X) ∼= Z, has the first Chern class equal to rot, and by [15, Theorem 1.2],
this distinguishes the n − 1 contact structures on L(n,1) up to isotopy.

Recall from [10, Section 4] that with any oriented tangent 2-plane field η on a
closed orientable 3-manifold Y , we can associate a homotopy invariant d3(η) ∈
Q, provided that the Euler class e(η) is a torsion class. This is the homotopy
obstruction over the 3-skeleton of Y in the sense that two such 2-plane fields that
are homotopic over the 2-skeleton are homotopic over Y if and only if they have
the same d3-invariant.

Suppose the contact 3-manifold (Y, ξ) is given in terms of a surgery presen-
tation L = L+ � L− ⊂ (S3, ξst), that is, L is a Legendrian link, and (Y, ξ) is the
result of performing contact (±1)-surgery along the components of the sublinks
L±. In this situation, the d3-invariant can be computed as follows; see [4, Corol-
lary 3.6], where X is the four-dimensional handlebody determined by the surgery
description, χ(X) its Euler characteristic, and σ(X) its signature.



Legendrian Lens Space Surgeries 409

Figure 1 The left-handed trefoils in (S3, ξst) with tb= −6

Proposition 2.4. Suppose that the Euler class e(ξ) is torsion and tb(Li) �= 0
for each Li ∈ L+. Then

d3(ξ) = 1

4
(c2 − 3σ(X) − 2χ(X)) + q, (1)

where q denotes the number of components of L+, and c ∈ H 2(X) is the coho-
mology class determined by c(�i) = rot(Li) for each Li ⊂ L.

For the computation of the rational number c2, write M for the linking matrix of
the link L, with diagonal entries given by the topological surgery framings. Let
rot be the vector of rotation numbers of the link components. Solve the linear
system Mx = rot over Q. Then c2 = xtMx.

3. The Lens Space L(7,4)

To see where the error occurs in [19], we begin with Plamenevskaya’s example
L(7,4), that is, the case n = 2, s = 2. This lens space admits three tight contact
structures.

According to Rasmussen’s result cited in the Introduction, the only way to
obtain L(7,4) by an integral surgery on S3 is a (−7)-surgery along a left-handed
trefoil knot T (2,−3). We therefore need to look for Legendrian realizations of
the left-handed trefoil with tb= −6 either in (S3, ξst) or as an exceptional knot
in an overtwisted contact structure on S3.

By [6, Section 4.1], −6 is the maximal Thurston–Bennequin number for Leg-
endrian realizations of the left-handed trefoil knot in (S3, ξst), and there are pre-
cisely two realizations (as oriented Legendrian knots) with this maximal tb, dis-
tinguished by their rotation numbers rot= ±1. They are shown in Figure 1.

An exceptional realisation L ⊂ S3 of the left-handed trefoil is shown in Fig-
ure 2. We shall check in a moment that tb(L) = −6; Legendrian surgery along L

then produces L(7,4).
The Kirby moves to verify the topological part of this statement are shown in

Figures 3 and 4. The latter shows how to separate L from the surgery link by
1 + 2 handle slides (where in the first step we slide both strands simultaneously),
turning it into a left-handed trefoil in S3. The two-component surgery link does
indeed represent the 3-sphere, since surgery along the 0-framed meridian cancels
the (−2)-surgery; for instance, we can use a slam-dunk [11, Figure 5.30].
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Figure 2 An exceptional left-handed trefoil L with tb= −6

Figure 3 Kirby moves for Figure 2

To see that L is exceptional, observe that—by the cancellation lemma [3] (see
[7, Proposition 6.4.5])—contact (−1)-surgery along L in Figure 2 cancels one of
the contact (+1)-surgeries. Then the remaining surgery diagram contains only a
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Figure 4 The final handle slides

single contact (+1)-surgery along a standard Legendrian unknot, which by [4]
produces the unique tight (and Stein fillable) contact structure on S1 × S2, and
the further contact (−1)-surgeries then produce a Stein fillable and hence tight
contact structure.

On the other hand, the contact structure on S3 given by the surgery diagram
in Figure 2 (without any surgery along L) is overtwisted, since its d3-invariant is
3/2 (recall that d3(ξst) = −1/2). Indeed, the linking matrix (ordering the knots
from bottom to top) is

M =

⎛
⎜⎜⎜⎜⎝

0 −1 −1 −1 0
−1 0 −1 −1 0
−1 −1 −3 −1 0
−1 −1 −1 −3 −1
0 0 0 −1 −2

⎞
⎟⎟⎟⎟⎠

with signature σ = −1 (instead of computing σ from the matrix, we can see
this from the Kirby moves in Figure 3 by keeping track of the blow-ups and
blow-downs). Since we are adding five 2-handles to the 4-ball, the Euler char-
acteristic of the handlebody is χ = 6. The vector of rotation numbers is rot =
(0,0,1,1,0)t, and the solution of Mx = rot is x = (−7,−7,3,4,−2)t. This
gives c2 = xtMx = 7, and hence d3 = 3/2 with formula (1).
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We still need to check that tb(L) = −6. For this, we may use the formula from
[16, Lemma 6.6]; see also [8, Lemma 3.1] and [5]. Consider the extended linking
matrix

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 −1 −1 0
−1 0 −1 −1 −1 0
−1 −1 0 −1 −1 0
−1 −1 −1 −3 −1 0
−1 −1 −1 −1 −3 −1
0 0 0 0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which now includes L as the first link component, with the first diagonal entry
set to zero. Write tb0 for the Thurston–Bennequin invariant of L as a knot in the
unsurgered copy of S3, that is, here tb0 = −1. Then, in the surgered manifold
(which here is another copy of S3), we have

tb(L) = tb0 + detM0

detM
= −1 + 5

−1
= −6.

Remark 3.1. Alternatively, we can determine tb(L) by keeping track of the
framing of L during the Kirby moves. Start with a Legendrian push-off L′
of L in the original diagram, which has linking −1 with L. In the last dia-
gram of Figure 3, we then have linking number lk(L,L′) = 2 (as knots in
the unsurgered S3). After the handle slides in Figure 4, the parallel knot L′
will likewise pass twice through the (−2)-box, so two strands of L′ will each
receive a (−2)-twisting relative to two strands of L, resulting in tb(L) =
2 − 23 = −6.

Proposition 3.2. Legendrian surgery along the three left-handed trefoil knots in
Figures 1 and 2 produces the three tight contact structures on L(7,4).

Remark 3.3. A word of clarification is in order. The result of a surgery along a
knot does not depend on the orientation of the knot. In what sense, then, can the
two knots in Figure 1 be said to correspond to two nonisotopic contact structures
on a given copy of the lens space L(7,4)?

In an integral surgery diagram, read as a Kirby diagram for a four-dimensional
handlebody X, a choice of orientation on a knot K amounts to a choice of positive
generator in the corresponding Z-summand of H2(X), represented by an oriented
Seifert surface for K glued with the core disc in the handle.

The left-handed trefoil, like all torus knots, is a reversible knot, that is, it is
isotopic to itself with reversed orientation. This means that the two oriented knots
in Figure 1 are topologically isotopic. The time-1 map of this isotopy gives us
an identification of the two handlebodies such that either knot corresponds to
the positive generator of H2(X). It is with respect to this identification that we
compare the resulting contact structures; likewise for the contact structure coming
from Figure 2.

The same comments apply to the general case discussed in the subsequent
sections. In particular, once an orientation of the torus knot has been fixed, we
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can use the Euler class to distinguish contact structures on the lens space resulting
from surgery, without any need to consider the action of diffeomorphisms on the
second cohomology group.

Proof of Proposition 3.2. First of all, observe that Legendrian surgery along the
examples in Figure 1 produces Stein fillable and hence tight contact structures
on L(7,4). The tightness of the contact structure obtained by surgery along the
exceptional left-handed trefoil in Figure 2 was explained previously; this was our
argument for seeing that the Legendrian knot L is indeed exceptional.

For the examples in Figure 1, we compute d3 = −2/7 from M = (−7), χ = 2,
σ = −1, and c2 = −1/7. By [10, Proposition 2.3] the first Chern class of the Stein
surface (X,J ) described by the respective diagram evaluates to rot= ±1 on the
positive generator of H2(X). The Euler class of the respective contact structure
induced on the boundary ∂X = L(7,4) then equals ±1 ∈ H 2(L(7,4)) = Z7, so
the two contact structures are nonisotopic.

For the example in Figure 2, Legendrian surgery cancels one of the contact
(+1)-surgeries. The remaining diagram has linking matrix (ordering the knots
from bottom to top)

M =

⎛
⎜⎜⎝

0 −1 −1 0
−1 −3 −1 0
−1 −1 −3 −1
0 0 −1 −2

⎞
⎟⎟⎠

with signature σ = −2. The Euler characteristic of the handlebody is χ = 5, and
the vector of rotation numbers is rot= (0,1,1,0)t. The solution of Mx = rot
is given by x = (−1,0,0,0)t, and hence c2 = xtMx = 0 and d3 = (0 + 6 −
10)/4 + 1 = 0, which distinguishes this contact structure from the other two. �

Remark 3.4. For Legendrian surgery diagrams of the three tight structures on
L(7,4) involving two-component links, see [19, Figure 6]. The error in [19] oc-
curs in the computation of the d3-invariant for the contact structure coming from
the examples in Figure 1; Plamenevskaya obtains d3 = 0 and then argues, cor-
rectly, that the two structures with d3 = −2/7 cannot come from an exceptional
trefoil.

4. The Lens Spaces L(4m + 3,4)

As a first generalization, we now prove Theorem 1.1 for s = 2 but arbitrary n.
Here we distinguish the contact structures by their Euler classes. For notational
convenience, we set m = n − 1, so instead of L(4n − 1,4), we consider the lens
spaces L(4m + 3,4) with m ≥ 1.

The lens space L(4m + 3,4) is obtained by −(4m + 3)-surgery on the torus
knot T (2,−(2m + 1)), so we need to find Legendrian realizations of this torus
knot with tb= −(4m + 2).

The following result belongs to Etnyre and Honda [6, Section 4.1], where the
reader can also find explicit front projection diagrams of the knots in question.
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Figure 5 Exceptional realizations of T (2,−(2m + 1)), m = k + l + 1

Proposition 4.1 (Etnyre–Honda). The maximal Thurston–Bennequin invariant
of Legendrian realizations of T (2,−(2m + 1)) in (S3, ξst) is −(4m + 2). Up to
Legendrian isotopy, there are 2m realizations with this maximal tb, with rotation
number in the range

rot ∈ {−2m + 1,−2m + 3, . . . ,2m − 3,2m − 1}.
Legendrian surgery on these knots yields 2m tight contact structures on the lens
space L(4m + 3,4), distinguished by their Euler class in H 2(L(4m + 3,4)) =
Z4m+3, which, as before, is given by the reduction of the rotation number modulo
4m + 3.

The remaining m tight contact structures on L(4m + 3,4) have to come from
exceptional realisations of the torus knot T (2,−(2m + 1)) in some overtwisted
contact structure on S3.

Proposition 4.2. For (k, l) ∈ N0 ×N0 with k + l = m − 1, the Legendrian knot
L shown in the contact surgery diagram of Figure 5 is an exceptional realization
of T (2,−(2m + 1)) in S3 with tb= −(4m + 2).

Remark 4.3. Exceptional realizations of the torus knots T (2,−(2m + 1)) have
previously been described in [16]. The Kirby moves in Figure 3 are those of [16,
Figure 18]. However, the purported exceptional realizations in [16, Figure 17] do
not actually correspond to this Kirby diagram.
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Proof of Proposition 4.2. The Kirby moves in Figures 3 and 4 once again confirm
the topological part of the statement. Simply replace the (−2)-framing in the first
diagram of Figure 3 by −(m+1) = −n, which remains unchanged throughout the
moves, and instead of the 1 + 2 slides in Figure 4, perform 1 +n slides. Likewise,
the argument that surgery along L in Figure 5 produces a tight contact structure
is as before.

For the computation of tb(L) in the surgered S3, observe that only the last
diagonal entry −2 in the matrices M and M0 (before Proposition 3.2) needs to be
replaced by −(m + 1). By expanding the respective determinants along the last
row, we find that detM = −1 remains unchanged and detM0 = −3 + 4(m+ 1) =
4m + 1. This gives tb(L) = −(4m + 2), as desired.

Next, we compute the d3-invariant of the surgered S3. As before, we have
σ = −1 and χ = 6. We have

rot= (0,0,1,1, l − k)t,

and the solution of Mx = rot is given by

x = (−6k − 2l − 7,−6k − 2l − 7,3k + l + 3,3k + l + 4,−2)t.

It follows that d3 = 2k + 3/2, so the contact structure is overtwisted, and L is
exceptional. �

The following proposition shows that Legendrian surgery along these exceptional
knots produces the required m tight structures on L(4m + 3,4), distinct from the
2m we found previously.

Proposition 4.4. Legendrian surgery along the knot L shown in Figure 5 (for
the various choices of k, l) produces m tight contact structures on L(4m + 3,4)

with Euler class in H 2(L(4m + 3,4)) = Z4m+3 in the range

−2m + 2,−2m + 6, . . . ,2m − 6,2m − 2 mod 4m + 3.

Proof. We compute the Euler class of the contact structures on L(4m + 3,4)

obtained via Legendrian surgery along these exceptional knots. To this end, we
need to compute the rotation number of L as a knot in the overtwisted S3 ob-
tained by surgery along the link in Figure 5. According to [16, Lemma 6.6] (cf.
[8, Lemma 3.1]), this rotation number is given by

rot(L) = rot0 − 〈rot,M−1lk〉,
where rot0 denotes the rotation number of L in the unsurgered copy of S3

(here rot0 = 0), and lk is the vector of linking numbers of L with the com-
ponents of the surgery link. We give L the clockwise orientation in the diagram.
Then

lk= (−1,−1,−1,−1,0)t

and

M−1lk= (−4m − 2,−4m − 2,2m + 1,2m + 2,−2)t.
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This yields

rot(L) = −(4m + 3) + 2(l − k) ≡ 2(l − k) mod 4m + 3.

Hence, modulo 4m + 3, the rotation number can take m distinct values in the
range

rot ∈ {−2m + 2,−2m + 6, . . . ,2m − 6,2m − 2}. �

Here is an alternative way to compute the Euler class of the contact structure on
L(4m + 3,4) obtained by surgery on the link in Figure 5 (including a contact
(−1)-surgery along L), which is more direct than computing rot(L) in the surg-
ered S3.

Write X for the four-dimensional handlebody described by this diagram, so
that ∂X = L(4m+3,4). The first homology group H1(∂X) = Z4m+3 is generated
by the classes of the meridians [μL], [μ1], . . . , [μ5], and the relations are given
by the linking matrix, cf. [4]. For ease of notation, we change all signs in that
matrix: ⎛

⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 1 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 3 1 0
1 1 1 1 3 1
0 0 0 0 1 m + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

[μL]
[μ1]
[μ2]
[μ3]
[μ4]
[μ5]

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This yields the relations

(4m + 3)[μ4] = 0,

−[μL] = [μ1] = [μ2] = 2[μ4],
[μ3] = −[μ4],
[μ5] = −4[μ4],

so that, indeed, H1(∂X) = Z4m+3, generated by the class [μ4]. The class [μL] can
likewise be taken as a generator, since −2(m + 1)[μL] = (4m + 4)[μ4] = [μ4].

Now, as discussed in [4], the Poincaré dual of the Euler class e(ξ) of the contact
structure on ∂X is given by the vector of rotation numbers of the link components,
expressed in terms of the classes of meridians, that is,

e(ξ) = [μ3] + [μ4] + (l − k)[μ5]
= 2(l − k)[μL],

which confirms the calculation in the foregoing proof.

5. The Lens Spaces L(ns2 − s + 1, s2)

Finally, we deal with the general case n ≥ 2, s ≥ 2 of Theorem 1.1. The relevant
result from [6] can now be phrased as follows.
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Figure 6 Exceptional realizations of T (s,−(sn − 1))

Proposition 5.1 (Etnyre–Honda). The maximal Thurston–Bennequin invariant
of Legendrian realisations of T (s,−(sn − 1)) in (S3, ξst) is −s(sn − 1). Up to
Legendrian isotopy, there are 2(n−1) realizations with this maximal tb, with the
rotation number in the range

{−(n − 1)s + 1,−(n − 3)s ± 1, . . . , (n − 3)s ± 1, (n − 1)s − 1}.
As in the case s = 2, Legendrian surgery along these knots gives us 2(n− 1) tight
contact structures on L(ns2 − s + 1, s2). It remains to find (s − 1)(n − 1) ex-
ceptional realizations of T (s,−(sn − 1)) in S3, which will give us the remaining
tight structures on the lens space.

Proposition 5.2. For (k, l) ∈ N0 × N0 with k + l = n − 2 and (p, q) ∈ N0 ×
N (sic!) with p + q = s − 1, the Legendrian knot L shown in Figure 6 is an
exceptional realization of T (s,−(sn − 1)) in S3 with tb= −s(sn − 1).

Proof. For the topological aspect of the statement, see the Kirby moves in Fig-
ure 7. The effect of the final 1 +n handle slides is now shown in Figure 8. Before,
we explained that the cancellation of the two surgeries (after the handle slides)
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Figure 7 Kirby moves for Figure 6

can be interpreted as a slam-dunk of the 0-framed meridian, which turns the (−n)-
framed unknot into an unknot with surgery framing −n−1/0 = ∞. Alternatively,
we can actually interpret the complete move (handle slides and cancellation of the
surgeries) as a slam-dunk of the (−n)-framed meridian to the 0-framed unknot.
This turns the latter into an unknot with framing 0 − 1/(−n) = 1/n and leaves L

unchanged. The (1/n)-surgery along the unknot is equivalent to removing a tubu-
lar neighborhood of the unknot, twisting the neck −n times, and then regluing
the solid torus with the identity map. This results in the diagram on the right of
Figure 8.
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Figure 8 The final handle slides as a slam-dunk

The linking matrix, which we need for the computation of various invariants,
is now

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1

s − 1︷ ︸︸ ︷
− 1 −1 . . . −1 −1 0

−1 0 −1 −1 . . . −1 −1 0
−1 −1 −3 −2 . . . −2 −1 0
−1 −1 −2 −3 . . . −2 −1 0
...

...
...

...
. . .

...
...

...

−1 −1 −2 −2 . . . −3 −1 0
−1 −1 −1 −1 · · · −1 −s − 1 −1
0 0 0 0 · · · 0 −1 −n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To verify that L is exceptional, we compute the d3-invariant of the contact
structure on S3 described by the surgery diagram in Figure 6. The number of
2-handles in this Kirby diagram is s + 3, so the Euler characteristic of the handle-
body is χ = 4 + s. The signature is σ = −1 − (s − 2) = 1 − s, since, compared
with with the diagram in Figure 5, we have s − 2 additional (−1)-framed unknots
from the blow-downs shown in Figure 7.

The vector of rotation numbers is

rot= (0,0,1, . . . ,1︸ ︷︷ ︸
s−1

, q − p, l − k)t,

and the solution x of Mx = rot is given by

(−1 − su,−1 − su,u, . . . , u︸ ︷︷ ︸
s−1

, u + 1,−2q)t,

where u := k − l + 2qn − 1. It follows that

c2 = xtMx = 4nq2 + 4q(k − l) − s + 1

and

d3 = nq2 + q(k − l) − 1

2
.

For q ≥ 1, as assumed in the proposition, we have d3 > −1/2 = d3(ξst), so this
diagram does indeed define an overtwisted contact structure on S3.
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For the computation of tb(L) in the surgered S3, we determine the deter-
minants of M and the extended matrix M0 by a simple row reduction. We find
detM = (−1)s−1 and detM0 = (−1)s−1(1 − s(sn − 1)). The formula from Sec-
tion 3 then yields tb(L) = −s(sn − 1). �

Remark 5.3. Analogous to Remark 3.1, we can alternatively compute tb(L)

from the effects of the Kirby moves on the framing given by a Legendrian
push-off L′ of L in the original diagram. After the moves in Figure 7, we have
lk(L,L′) = s (as knots in the unsurgered S3). After the slam-dunk in Figure 8, s

strands of the parallel knot L′ receive a (−n)-twist relative to each of the s strands
of L, so we arrive at tb(L) = s − ns2 = −s(sn − 1).

The final lemma tells us that the tight contact structures on L(ns2 − s + 1, s2)

obtained by Legendrian surgery on these (s − 1)(n − 1) Legendrian realizations
of T (s,−(sn − 1)) in S3 can be distinguished from one another—and from the
ones coming from Proposition 5.1—by their Euler class. This completes the proof
of Theorem 1.1.

Lemma 5.4. The Euler class of the tight contact structure ξ = ξk,l,p,q on the lens
space L(ns2 − s + 1, s2) obtained by surgery on the link in Figure 6, including a
contact (−1)-surgery along L, is

e(ξ) = (p − q + 1)ns + (l − k)s mod ns2 − s + 1.

Remark 5.5. Notice that l − k takes values in the range

l − k ∈ {−n + 2,−n + 4, . . . , n − 4, n − 2};
for p − q + 1, the range is

{−s + 2,−s + 4, . . . , s − 4, s − 2}.
So the first summand in the expression e(k, l,p, q) for e(ξ) varies in steps of size
2ns, whereas the second summand ranges between ±(n − 2)s. This means that
there are no duplications in this list of Euler numbers, at least before reducing
modulo ns2 − s + 1.

In Z we have

emin := −ns2 + (n + 2)s ≤ e(k, l,p, q) ≤ ns2 − (n + 2)s =: emax,

so emax − emin < 2(ns2 − s +1). When we bring the negative e(k, l,p, q) modulo
ns2 − s + 1 into the range (0, ns2 − s + 1), they are congruent to 1 modulo s,
whereas the positive e(k, l,p, q) are divisible by s, so there are no duplications
even modulo ns2 − s + 1. Moreover, we have

emin + ns2 − s + 1 = (n + 1)s + 1 > (n − 1)s − 1

and
−(n − 1)s + 1 + ns2 − s + 1 = ns2 − ns + 2 > emax,

which implies that there are also no duplications with the Euler numbers (modulo
ns2 − s + 1) coming from Proposition 5.1.



Legendrian Lens Space Surgeries 421

Proof of Lemma 5.4. We label the meridional classes corresponding to the knots
in Figure 6 from bottom to top as

[μL], [μ1], [μ2], [ν1], . . . , [νs−1], [αs], [βn].
We then compute the relations between these generators from the matrix M as in
Section 4 to obtain

[μ1] = −[μL], [μ2] = −[μL], [ν1] = · · · = [νs−1] = (1 − ns)[μL],
[αs] = −ns[μL], [βn] = s[μL], (ns2 − s + 1)[μL] = 0.

From the vector rot we then compute

e(ξ) = [ν1] + · · · + [νs−1] + (q − p)[αs] + (l − k)[βn]
= ((p − q + 1)ns + (l − k)s)[μL],

as claimed. �

Remark 5.6. In the proofs of Propositions 4.2 and 5.2, we used the d3-invariant
to show that L lives in an overtwisted contact structure on S3, and hence L is
exceptional, since Legendrian surgery along L produces a tight contact struc-
ture. The information that L is exceptional was not actually necessary for proving
Theorem 1.1. Rather, the converse is true: the fact that the resulting tight contact
structure on L(ns2 − s + 1, s2) is different from any structure obtained from a
Legendrian realization of T (s,−(sn − 1)) in (S3, ξst) gives an alternative crite-
rion for establishing the exceptional character of L.
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