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Multiple Lerch Zeta Functions and an Idea of Ramanujan

Sanoli Gun & Biswajyoti Saha

Abstract. In this article, we derive meromorphic continuation of
multiple Lerch zeta functions by generalizing an elegant identity of
Ramanujan. Further, we describe the set of all possible singularities
of these functions. Finally, for the multiple Hurwitz zeta functions,
we list the exact set of singularities.

1. Introduction and Statements of Theorems

In 1917, Ramanujan [18] introduced a novel idea that enabled him to derive an el-
egant functional equation of the classical Riemann zeta function. He showed that
for �(s) > 1, the Riemann zeta function ζ(s) := ∑

n≥1
1
ns satisfies the following

formula:
1 =

∑
k≥0

(s − 1)k(ζ(s + k) − 1), (1)

where the right-hand side of (1) converges normally on any compact subset of
�(s) > 1, and

(s)k := s · · · (s + k)

(k + 1)!
for k ≥ 0 and s ∈ C. An elementary proof of this formula, as suggested by Ecalle
[5], can be deduced from the identity

(n − 1)1−s − n1−s =
∑
k≥0

(s − 1)kn
−s−k,

which is valid for natural numbers n ≥ 2 and s ∈C.
In fact, Ecalle [5] also suggested how a formula similar to (1) can be derived

for the multiple zeta functions. Following Ecalle’s indication, the second author,
Mehta, and Viswanadham [13] derived such a formula for the multiple zeta func-
tions and studied the meromorphic continuations and the set of their polar singu-
larities (see [13] and [16] for details).

Meromorphic continuations of the multiple zeta functions was proved first by
Zhao [20]. Around the same time, Akiyama, Egami, and Tanigawa [1] gave an
alternate proof of meromorphic continuations along with the exact set of polar
hyperplanes for these functions. In [13], the second author, Mehta, and Viswanad-
ham introduced a method of matrix formulation to write down the residues of the
multiple zeta functions in a computable form and thereby reproved the theorem
of Akiyama, Egami, and Tanigawa.
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In this paper, we generalize the identity of Ramanujan to obtain meromorphic
continuations and the set of possible singularities of the multiple Lerch zeta func-
tions (defined below). When r = 1, it was done by the second author in [19]. Let
r > 0 be a natural number, and let Ur be the open subset of Cr defined as

Ur := {(s1, . . . , sr ) ∈Cr | �(s1 + · · · + si) > i for all 1 ≤ i ≤ r}.
Then for real numbers λ1, . . . , λr , α1, . . . , αr ∈ [0,1) and complex r-tuples
(s1, . . . , sr ) ∈ Ur , the multiple Lerch zeta function of depth r is defined by

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

:=
∑

n1>···>nr>0

e(λ1n1) · · · e(λrnr)

(n1 + α1)s1 · · · (nr + αr)sr
, (2)

where e(a) := e2πιa for a ∈R. The series on the right-hand side of (2) is normally
convergent on compact subsets of Ur (see Proposition 1) and hence defines a
holomorphic function there.

Before we state our theorems, let us introduce some more notation. For integers
1 ≤ i ≤ r and k ≥ 0, let

Hi,k := {(s1, . . . , sr ) ∈ Cr | s1 + · · · + si = i − k}.
Also, for 1 ≤ i ≤ r , let

μi :=
i∑

j=1

λj ,

and let Z≤j denote the set of integers less than or equal to j . In this article, we
prove the following theorems.

Theorem 1. Assume that μi /∈ Z for all 1 ≤ i ≤ r . Then Lr(λ1, . . . ,

λr ;α1, . . . , αr ; s1, . . . , sr ) can be extended analytically to the whole Cr .

Remark 1. If r = 1 and λ1 /∈ Z, Lerch [11] showed that L1(λ1;α1; s1) can be
extended to an entire function on C.

Theorem 2. With the notation as before, let i1 < · · · < im be the only indices for
which μij ∈ Z,1 ≤ j ≤ m.

• If i1 = 1, then Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr ) can be meromorphically
continued to Cr with possible simple poles along the hyperplanes

H1,0 and Hij ,k for 2 ≤ j ≤ m with (ij − k) ∈ Z≤j .

• If i1 �= 1, then Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr ) can be meromorphically
continued to Cr with possible simple poles along the hyperplanes

Hij ,k for 1 ≤ j ≤ m with (ij − k) ∈ Z≤j .

Remark 2. Theorem 2 is well known in the special case where r = 1. In this case,
if λ1 ∈ Z, then L1(λ1;α1, s1) is essentially the Hurwitz zeta function and hence
can be extended analytically to C, except at 1, where it has a simple pole with
residue 1.
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Komori [10] considered certain several variable generalizations of the Lerch zeta
function and derived meromorphic continuations of these functions through inte-
gral representation. He also obtained certain estimation of their possible singular-
ities (see [10], Section 3.6).

Now if we choose λi = 0 for 1 ≤ i ≤ r in (2), then we get

Lr(0, . . . ,0;α1, . . . , αr ; s1, . . . , sr ) = ζr (s1, . . . , sr ;α1, . . . , αr),

the multiple Hurwitz zeta function of depth r , and further, if αi = 0 for 1 ≤ i ≤ r ,
then we get

Lr(0, . . . ,0;0, . . . ,0; s1, . . . , sr ) = ζr (s1, . . . , sr ),

the multiple zeta function of depth r .
Akiyama and Ishikawa [2] obtained the meromorphic continuation of the mul-

tiple Hurwitz zeta functions together with their possible polar singularities. In
the particular case where αi ∈ Q for 1 ≤ i ≤ r , they also derived the exact set
of singularities. This has also been done in [14]. Using the Mellin–Barnes in-
tegral formula, Matsumoto [12] showed meromorphic continuation of multiple
Hurwitz zeta functions with possible set of singularities. Finally, we refer the in-
terested reader to [7] and [17], where similar topics are addressed. An expression
for residues together with possible polar hyperplanes was obtained in [9; 14]. For
the multiple Hurwitz zeta functions, we are now able to characterize the exact set
of singularities. This complete characterization is new. More precisely, we have
the following theorem.

Theorem 3. The multiple Hurwitz zeta function ζr (s1, . . . , sr ;α1, . . . , αr) has
meromorphic continuation to Cr . Further, all its poles are simple, and they are
along the hyperplanes

H1,0 and Hi,k for 2 ≤ i ≤ r, k ≥ 0

except for i = 2 and k ∈ K , where

K := {n ∈ N | Bn(α2 − α1) = 0},
and Bn(t) denotes the nth Bernoulli polynomial defined by the generating series

xetx

ex − 1
=

∑
n≥0

Bn(t)
xn

n! .

Before proceeding further, we indicate, compare, and contrast some of the other
existing works vis-à-vis our work. In [15], the authors obtain meromorphic con-
tinuation for a multiple Hurwitz zeta function of an arbitrary depth r using bino-
mial expansion. To this end, they deduce a functional equation involving various
multiple Hurwitz zeta functions of a fixed depth r (see Theorem 5.2). The nov-
elty of our work is deducing a functional equation involving multiple Hurwitz
zeta functions of depth r with multiple Hurwitz zeta functions of depth r − 1 (see
Theorem 4). This is the crucial ingredient, which enables us to derive information
about the poles and residues of such functions, which was not done in [15]. The
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use of binomial expansion has also been exploited in [6] for proving the mero-
morphic continuation of multiple Hurwitz zeta functions. More precisely, he uses
products of binomial expansions, which we avoid. Also he deals only with the
diagonal vectors in the r-dimensional complex plane, whereas we allow arbitrary
vectors in Cr . Furthermore, the author does not deal with the poles and residues
of these functions.

The paper is distributed as follows. In the next section, we prove some inter-
mediate results and derive functional identities for the multiple Lerch zeta func-
tion, which are generalizations of the Ramanujan identity (see Theorem 4). In
Section 3, we derive meromorphic continuation of the multiple Lerch zeta func-
tions and a possible set of their singularities using these functional identities. In
Section 4, we follow [13] to write down the relevant functional identity for the
multiple Hurwitz zeta functions in terms of infinite matrices in order to obtain an
expression for residues along the singular hyperplanes (see Theorem 6). Finally
in Section 5, we complete the proof of Theorem 3. For this, we need to use some
fundamental properties of the zeros of the Bernoulli polynomials. These results
are discussed in Section 5.1.

2. Intermediate Results and Generalized Ramanujan’s Identity

In this section, we derive an analogue of (1) (see (3)) for the multiple Lerch zeta
functions. To establish (3), we need some intermediate results. Before we state
our theorem, we start with the notion of normal convergence.

Definition 1. Let X be a set, and let (fi)i∈I be a family of complex-valued
functions defined on X. We say that the family (fi)i∈I is normally summable on
X (or the series

∑
i∈I fi converges normally on X) if

‖fi‖X := sup
x∈X

|f (x)| < ∞ for all i ∈ I

and the family of real numbers (‖fi‖X)i∈I is summable.

Definition 2. Let X be an open subset of Cr , and let (fi)i∈I be a family of mero-
morphic functions on X. We say that (fi)i∈I is normally summable (or

∑
i∈I fi is

normally convergent on all compact subsets of X) if for any compact subset K of
X, there exists a finite set J ⊂ I such that each fi for i ∈ I \ J is holomorphic in
an open neighborhood of K and the family (fi | K)i∈I\J is normally summable
on K . In this case,

∑
i∈I fi is a well-defined meromorphic function on X.

We now have the following theorem.

Theorem 4. Let r ≥ 2 be a natural number, and let λ1, . . . , λr , α1, . . . , αr ∈
[0,1). Then for any (s1, . . . , sr ) ∈ Ur , we have

e(λ1)
∑

k≥−1

(s1)k(α2 − α1)
k+1

× Lr−1(μ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k + 1, s3, . . . , sr )
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= (1 − e(λ1))Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

+
∑
k≥0

(s1)kLr(λ1, . . . , λr ;α1, . . . , αr ; s1 + k + 1, s2, . . . , sr ), (3)

where (s)−1 := 1 and for k ≥ 0,

(s)k := s · · · (s + k)

(k + 1)! ,

and the series on both sides of (3) converge normally on every compact subset
of Ur .

If λ1 = 0, then we rewrite (3) as∑
k≥−1

(s1 − 1)k(α2 − α1)
k+1

× Lr−1(λ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k, s3, . . . , sr )

=
∑
k≥0

(s1 − 1)kLr(0, λ2, . . . , λr ;α1, . . . , αr ; s1 + k, s2, . . . , sr ). (4)

From now on, we call identities (3) and (4) the generalized Ramanujan identity
for the multiple Lerch zeta functions. To prove Theorem 4, we introduce another
notation and prove some intermediate results. For any m ≥ 0, let

Ur(m) := {(s1, . . . , sr ) ∈Cr | �(s1 + · · · + si) > i − m for all 1 ≤ i ≤ r}.
Note that Ur = Ur(0). We first observe that the series on the right-hand side of (2)
is normally convergent on compact subsets of Ur . For this, we need the following
lemma from [13].

Lemma 1. For an integer r ≥ 1, the family of functions(
1

n
s1
1 · · ·nsr

r

)
n1>···>nr>0

converges normally on any compact subset of Ur .

Proposition 1. For an integer r ≥ 1 and for λ1, . . . , λr , α1, . . . , αr ∈ [0,1), the
family of functions (

e(λ1n1) · · · e(λrnr)

(n1 + α1)s1 · · · (nr + αr)sr

)
n1>···>nr>0

converges normally on any compact subset of Ur .

Proof. The proposition follows immediately from Lemma 1 since∣∣∣∣ e(λ1n1) · · · e(λrnr)

(n1 + α1)s1 · · · (nr + αr)sr

∣∣∣∣ ≤
∣∣∣∣ 1

n
s1
1 · · ·nsr

r

∣∣∣∣ in Ur.

�

We further need the following propositions.
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Proposition 2. Let m ≥ 0 and r ≥ 2 be natural numbers, and let λ1, . . . , λr , α1,

. . . , αr ∈ [0,1). Then the family of functions(
(s1)k

e(λ1n1)e(λ2n2) · · · e(λrnr)

(n1 + α1)s1+k+1(n2 + α2)s2 · · · (nr + αr)sr

)
n1>···>nr>0,

k≥m−1

is normally summable on compact subsets of Ur(m).

Proof. Let K be a compact subset of Ur(m), and let S := sup(s1,...,sr )∈K |s1|. Since
r ≥ 2, we have n1 ≥ 2, and hence for k ≥ m−1 and (s1, . . . , sr ) ∈ Ur(m), we have∥∥∥∥(s1)k

e(λ1n1) · · · e(λrnr)

(n1 + α1)s1+k+1(n2 + α2)s2 · · · (nr + αr)sr

∥∥∥∥
K

≤ (S)k

2k−m+1

∥∥∥∥ 1

n
s1+m
1 n

s2
2 · · ·nsr

r

∥∥∥∥
K

.

Note that (s1, . . . , sr ) ∈ Ur(m) if and only if (s1 + m,s2, . . . , sr ) ∈ Ur . Now the
proof of Proposition 2 follows from Lemma 1 and from the convergence of the
series ∑

k≥m−1

(S)k

2k−m+1
.

�

Proposition 3. Let m ≥ 0 and r ≥ 2 be natural numbers, and let λ1, . . . , λr , α1,

. . . , αr ∈ [0,1). Then the family of functions(
(s1)k(α2 − α1)

k+1 e(μ2n2)e(λ3n3) · · · e(λrnr)

(n2 + α2)s1+s2+k+1(n3 + α3)s3 · · · (nr + αr)sr

)
n2>···>nr>0,

k≥m−1

is normally summable on any compact subset of Ur(m + 1) and hence on Ur .

Proof. As before, let K be a compact subset of Ur(m + 1), and let

S := sup
(s1,...,sr )∈K

|s1|.

Then, for k ≥ m − 1, r ≥ 2, and (s1, . . . , sr ) ∈ Ur(m), we have∥∥∥∥(s1)k
(α2 − α1)

k+1e(μ2n2)e(λ3n3) · · · e(λrnr)

(n2 + α2)s1+s2+k+1(n3 + α3)s3 · · · (nr + αr)sr

∥∥∥∥
≤ (S)k(α2 − α1)

k+1
∥∥∥∥ 1

n
s1+s2+m
2 n

s3
3 · · ·nsr

r

∥∥∥∥.

Note that

(s1, . . . , sr ) ∈ Ur(m + 1) 
⇒ (s1 + s2, s3, . . . , sr ) ∈ Ur−1(m)


⇒ (s1 + s2 + m,s3, . . . , sr ) ∈ Ur−1.

The proof now follows from Lemma 1 (for (r − 1)) and from the convergence of∑
k≥m−1

(S)k(α2 − α1)
k+1

as |α2 − α1| < 1. �
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Proposition 4. Let r ≥ 2 be an integer, and let λ1, . . . , λr , α1, . . . , αr ∈ [0,1).
The family of functions(

e(λ1n1) · · · e(λrnr)

(n1 + α1 − 1)s1(n2 + α2)s2 · · · (nr + αr)sr

)
n1>···>nr>0

is normally summable on any compact subset of Ur .

Proof. Note that∣∣∣∣ e(λ1n1) · · · e(λrnr)

(n1 + α1 − 1)s1(n2 + α2)s2 · · · (nr + αr)sr

∣∣∣∣ ≤
∣∣∣∣ 1

(n1 − 1)s1n
s2
2 · · ·nsr

r

∣∣∣∣.
Also, note that∣∣∣∣

∑
n1≥n2+1

(n1 − 1)−s1

∣∣∣∣ ≤ n
−�(s1)
2 +

∑
n1≥n2+1

n
−�(s1)
1

≤ n
−�(s1)
2 +

∫ ∞

n2

x−�(s1) dx

= n
−�(s1)
2 + 1

�(s1) − 1
n

1−�(s1)
2 .

The proof follows from Lemma 1. �

2.1. Proof of Theorem 4

We begin with the following identity for integers n ≥ 2, real numbers α ≥ 0, and
complex numbers s:

(n + α − 1)−s =
∑

k≥−1

(s)k(n + α)−s−k−1. (5)

It is easily obtained by writing the left-hand side as (n + α)−s(1 − 1
n+α

)−s and

expanding (1 − 1
n+α

)−s as a Taylor series in 1
n+α

.
In (5) we replace n,α, s by n1, α1, s1, respectively, then multiply both sides by

e(λ1n1) · · · e(λrnr)

(n2 + α2)s2 · · · (nr + αr)sr
,

and, finally, sum over n1 > · · · > nr > 0. Using Proposition 4, we get that
∑

n1>···>nr>0

e(λ1n1) · · · e(λrnr)

(n1 + α1 − 1)s1(n2 + α2)s2 · · · (nr + αr)sr

= e(λ1)
∑

n1>···>nr>0

e(λ1n1) · · · e(λrnr)

(n1 + α1)s1(n2 + α2)s2 · · · (nr + αr)sr

+ e(λ1)

×
∑

n2>···>nr>0

e(μ2n2)e(λ3n3) · · · e(λrnr)

(n2 + α1)s1(n2 + α2)s2(n3 + α3)s3 · · · (nr + αr)sr
. (6)
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Now,

(n2 + α1)
−s1 =

∑
k≥−1

(s1)k(α2 − α1)
k+1(n2 + α2)

−s1−k−1.

Hence, using Proposition 3 (for m = 0), we obtain that

∑
n1>···>nr>0

e(λ1n1) · · · e(λrnr)

(n1 + α1 − 1)s1(n2 + α2)s2 · · · (nr + αr)sr

= e(λ1)Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

+ e(λ1)
∑

k≥−1

(s1)k(α2 − α1)
k+1

× Lr−1(μ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k + 1, s3, . . . , sr ). (7)

On the other hand, using (5) and Proposition 2 (for m = 0), we get that

∑
n1>···>nr>0

e(λ1n1) · · · e(λrnr)

(n1 + α1 − 1)s1(n2 + α2)s2 · · · (nr + αr)sr

=
∑

k≥−1

(s1)kLr(λ1, . . . , λr ;α1, . . . , αr ; s1 + k + 1, s2, . . . , sr ). (8)

Now, equating the right-hand sides of (7) and (8), we deduce (3). This, together
with Proposition 2 and Proposition 3, completes the proof.

3. Proofs of Theorem 1 and Theorem 2

In this section, we use the generalized Ramanujan identities (3) and (4) to prove
Theorem 1 and Theorem 2. We prove these theorems by induction on depth r . We
assume that the multiple Lerch zeta function of depth (r − 1) has already been
extended to Cr , and then by induction on m ≥ 1 we extend the multiple Lerch
zeta function of depth r to each of Ur(m). Since (Ur(m))m≥1 is an open covering
of Cr , we get the desired result.

3.1. Proof of Theorem 1

When r = 1, Theorem 1 is true by Remark 1. Now let r ≥ 2 and μi /∈ Z for
1 ≤ i ≤ r . For any m ≥ 1, we rewrite (3) as

e(λ1)
∑

k≥m−2

(s1)k(α2 − α1)
k+1

× Lr−1(μ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k + 1, s3, . . . , sr )

+ e(λ1)
∑

−1≤k≤m−3

(s1)k(α2 − α1)
k+1

× Lr−1(μ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k + 1, s3, . . . , sr )

= (1 − e(λ1))Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )
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+
∑

k≥m−1

(s1)kLr(λ1, . . . , λr ;α1, . . . , αr ; s1 + k + 1, s2, . . . , sr )

+
∑

0≤k≤m−2

(s1)kLr(λ1, . . . , λr ;α1, . . . , αr ; s1 + k + 1, s2, . . . , sr ).

Now by Proposition 2, Proposition 3, and the induction hypothesis for multiple
Lerch zeta functions of depth (r − 1) we see that all the k-sums in (3) are analytic
in Ur(1). Therefore (3) defines an analytic continuation of

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

as e(λ1) �= 1. Now suppose that we have an analytic continuation of

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

to Ur(m − 1) that satisfies (3) in Ur(m − 1). Thus we get that the sum∑
0≤k≤m−2

(s1)kLr(λ1, . . . , λr ;α1, . . . , αr ; s1 + k + 1, s2, . . . , sr )

is analytic in Ur(m). Again, we appeal to Proposition 2, Proposition 3, and the
induction hypothesis for multiple Lerch zeta functions of depth (r − 1) to deduce
that all the k-sums in (3) are analytic in Ur(m). Hence we obtain an analytic
continuation of

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

to Ur(m). Since (Ur(m))m≥1 is an open covering of Cr , this completes the proof.

3.2. Proof of Theorem 2

When r = 1, Theorem 2 follows from Remark 1 if λ1 /∈ Z and from Remark 2 if
λ1 ∈ Z. Now suppose that r ≥ 2 and Theorem 2 is true for a multiple Lerch zeta
function of depth (r − 1).

3.3. Case 1: i1 = 1

In this case, we have λ1 = 0 and hence use (4). Recall that∑
k≥−1

(s1 − 1)k(α2 − α1)
k+1

× Lr−1(λ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k, s3, . . . , sr )

=
∑
k≥0

(s1 − 1)kLr(0, λ2, . . . , λr ;α1, . . . , αr ; s1 + k, s2, . . . , sr ). (4)

To prove this case, we establish the meromorphic continuation of

(s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

to Cr using (4) and determine all its possible singularities.
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For any m ≥ 1, we know by Proposition 2 and Proposition 3 that the families
of functions(

(s1 − 1)k
e(λ2n2) · · · e(λrnr)

(n1 + α1)s1+k(n2 + α2)s2 · · · (nr + αr)sr

)
n1>···>nr>0,

k≥m

and(
(s1 − 1)k(α2 − α1)

k+1 e(λ2n2)e(λ3n3) · · · e(λrnr)

(n2 + α2)s1+s2+k(n3 + α3)s3 · · · (nr + αr)sr

)
n2>···>nr>0,

k≥m−1

are normally summable on every compact subset of Ur(m).
Now, for any m ≥ 1, we rewrite (3) as
∑

k≥m−1

(s1 − 1)k(α2 − α1)
k+1

× Lr−1(λ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k, s3, . . . , sr )

+
∑

−1≤k≤m−2

(s1 − 1)k(α2 − α1)
k+1

× Lr−1(λ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k, s3, . . . , sr )

= (s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

+
∑
k≥m

(s1 − 1)kLr(0, λ2, . . . , λr ;α1, . . . , αr ; s1 + k, s2, . . . , sr )

+
∑

1≤k≤m−1

(s1 − 1)kLr(0, λ2, . . . , λr ;α1, . . . , αr ; s1 + k, s2, . . . , sr ).

Using the previous observation, we obtain that both infinite k-sums in this equa-
tion are analytic in Ur(m). From the induction hypothesis we deduce that the sum

∑
−1≤k≤m−2

(s1 − 1)k(α2 − α1)
k+1

× Lr−1(λ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k, s3, . . . , sr )

has a meromorphic continuation to Cr . Now if the function

(s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

has a meromorphic continuation to Ur(m−1) for each m ≥ 1, then we can deduce
that the sum∑

1≤k≤m−1

(s1 − 1)kLr(0, λ2, . . . , λr ;α1, . . . , αr ; s1 + k, s2, . . . , sr )

has a meromorphic continuation to Ur(m) for each m ≥ 1. Therefore we obtain a
meromorphic continuation of

(s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )
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to Ur(m) by means of (4). Since (Ur(m))m≥1 is an open covering of Cr , we obtain
a meromorphic continuation of

(s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

to Cr .
Now for the set of singularities, we see from (4) that the singularities of

(s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

can only come from that of

Lr−1(λ2, . . . , λr ;α2, . . . , αr ; s1 + s2 + k, s3, . . . , sr )

for all k ≥ −1, and these singularities are known from the induction hypothesis.
Finally, we deduce that

(s1 − 1)Lr(0, λ2, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

has possible polar singularities only along the hyperplanes

Hij ,k for 2 ≤ j ≤ m with (ij − k) ∈ Z≤j .

This completes the proof of this case.

3.4. Case 2: i1 �= 1

Since in this case the applicable generalized Ramanujan identity is (3), a proof
of this case follows exactly the line of argument in the proof of Theorem 1. The
only difference is that, on each of Ur(m), the depth r multiple Lerch zeta function
can only be extended as a meromorphic function. This is because the induction
hypothesis implies that the depth (r − 1) multiple Lerch zeta functions

Lr−1(μ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k + 1, s3, . . . , sr )

for k ≥ −1 can only be extended as meromorphic functions to Cr .
Now for the set of singularities, we see from (3) that the singularities of

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

can only come from that of

Lr−1(μ2, λ3, . . . , λr ;α2, . . . , αr ; s1 + s2 + k + 1, s3, . . . , sr )

for k ≥ −1. These singularities are known from the induction hypothesis, and
hence we deduce that

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

has only possible polar singularities along the hyperplanes

Hij ,k for 1 ≤ j ≤ m with (ij − k) ∈ Z≤j .

This completes the proof of Theorem 2.
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4. Explicit Computations of Residues for Multiple Hurwitz Zeta
Functions

To get the exact set of singularities, we need to calculate the residues of a multiple
Lerch zeta function along its possible polar hyperplanes. For a hyperplane Hi,k ,
by residue of

Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr )

along Hi,k we mean the restriction to Hi,k of the meromorphic function

(s1 + · · · + si − i + k)Lr(λ1, . . . , λr ;α1, . . . , αr ; s1, . . . , sr ).

This particular notion of residue was introduced by Oesterlé [16] during a course
of lectures on multiple zeta values at Institute of Mathematical Sciences, Chen-
nai. This definition has also been used in [13]. It turns out that to study non-
vanishing of these residues, we need information about zero sets of a family of
polynomials with two variables (see Remark 3). However, for multiple Hurwitz
zeta functions, we only have to deal with the family of Bernoulli polynomials.
As the zero set of Bernoulli polynomials is well studied, we just have enough in-
formation to determine the exact set of singularities of the multiple Hurwitz zeta
functions.

In what follows, we obtain a computable expression for residues of the multiple
Hurwitz zeta functions. Note that the applicable generalized Ramanujan identity
in this case is (4). Following this process, we can also obtain a similar expression
for residues of the multiple Lerch zeta functions. For brevity, we do not include
this here. We begin this section with some elementary remarks about infinite tri-
angular matrices.

Let R be a commutative ring with unity. By T(R) we denote the set of upper
triangular matrices of type N × N with coefficients in R. Adding or multiplying
such matrices involves only finite sums, and hence T(R) is a ring and even an R-
algebra. The group of invertible elements of T(R) is the matrices whose diagonal
elements are invertible. Now let P be a matrix in T(R) with all diagonal elements
equal to 0, and let f = ∑

n≥0 anx
n ∈ R[[x]] be a formal power series. Then the

series
∑

n≥0 anPn converges in T(R), and we denote its sum by f (P). For our
purpose, we take R to be the field of rational fractions C(t) in one indeterminate
t over C.

Recall that from Theorem 4 we get that the multiple Hurwitz zeta functions of
depth r satisfy the following generalized Ramanujan identity:∑

k≥−1

(s1 − 1)k(α2 − α1)
k+1ζr−1(s1 + s2 + k, s3, . . . , sr ;α2, α3, . . . , αr)

=
∑
k≥0

(s1 − 1)kζr (s1 + k, s2, . . . , sr ;α1, α2, . . . , αr), (9)

where both series of meromorphic functions converge normally on compact sub-
sets of Cr . Formula (9), together with the set of relations obtained by applying
successively the change of variable s1 �→ s1 + n for n ≥ 1 to (9), can be written
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as

A2(α2 − α1; s1 − 1)Vr−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr )

= A1(s1 − 1)Vr (s1, . . . , sr ;α1, . . . , αr). (10)

Here for an indeterminate t , we have

A1(t) :=

⎛
⎜⎜⎜⎝

t
t (t+1)

2!
t (t+1)(t+2)

3! · · ·
0 t + 1 (t+1)(t+2)

2! · · ·
0 0 t + 2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ , (11)

A2(α2 − α1; t) :=

⎛
⎜⎜⎜⎝

1 t (α2 − α1)
t (t+1)

2! (α2 − α1)
2 · · ·

0 1 (t + 1)(α2 − α1) · · ·
0 0 1 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ (12)

and

Vr (s1, . . . , sr ;α1, . . . , αr) :=

⎛
⎜⎜⎜⎝

ζr (s1, s2, . . . , sr ;α1, . . . , αr)

ζr (s1 + 1, s2, . . . , sr ;α1, . . . , αr)

ζr (s1 + 2, s3 . . . , sr ;α1, . . . , αr)
...

⎞
⎟⎟⎟⎠ . (13)

Note that the matrix A1(t) can be written as

A1(t) = �(t)f (M(t + 1)),

where f is the formal power series

f (x) := ex − 1

x
=

∑
n≥0

xn

(n + 1)! ,

and �(t) and M(t) are as follows:

�(t) :=

⎛
⎜⎜⎜⎝

t 0 0 · · ·
0 t + 1 0 · · ·
0 0 t + 2 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ and M(t) :=

⎛
⎜⎜⎜⎝

0 t 0 · · ·
0 0 t + 1 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

It is easy to see that �(t) and M(t) satisfy the commuting relation

�(t)M(t + 1) = M(t)�(t). (14)

Thus, using (14), we have

A1(t) = f (M(t))�(t).

Further, it is also possible to write that

A2(α2 − α1; t) = h(M(t)),



280 Sanoli Gun & Biswajyoti Saha

where h denotes the power series

e(α2−α1)x =
∑
n≥0

(α2 − α1)
n xn

n! .

Clearly, the matrix A2(α2 − α1; t) is invertible, and we see that

A2(α2 − α1; t)−1A1(t) = f

h
(M(t))�(t) = �(t)

f

h
(M(t + 1)).

Hence the inverse of the matrix A2(α2 − α1; t)−1A1(t) is given by

B(α2 − α1; t) := A1(t)
−1A2(α2 − α1; t) = h

f
(M(t + 1))�(t)−1

= �(t)−1 h

f
(M(t)),

where h
f

is the exponential generating series of the Bernoulli polynomials evalu-
ated at the point (α2 − α1), that is,

h

f
(x) = xe(α2−α1)x

ex − 1
=

∑
n≥0

Bn(α2 − α1)

n! xn.

More precisely, we have

B(α2 − α1; t)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
t

B1(α2−α1)
1!

(t+1)B2(α2−α1)
2!

(t+1)(t+2)B3(α2−α1)
3! · · ·

0 1
t+1

B1(α2−α1)
1!

(t+2)B2(α2−α1)
2! · · ·

0 0 1
t+2

B1(α2−α1)
1! · · ·

0 0 0 1
t+3 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

However, we cannot express the column vector Vr (s1, . . . , sr ;α1, . . . , αr) as
the product of the matrix B(α2 − α1; s1 − 1) and the column vector Vr−1(s1 +
s2 − 1, s3, . . . , sr ;α2, . . . , αr). This is because the infinite series involved in this
product are not convergent. To get around this difficulty, we perform a truncation
process.

We first rewrite (10) in the form

�(s1 − 1)−1Vr−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr )

= f

h
(M(s1))Vr (s1, . . . , sr ;α1, . . . , αr). (16)

For notational convenience, let us denote f
h
(M(s1)) by X(s1). We then choose an

integer q ≥ 1 and define

I := {k | 0 ≤ k ≤ q − 1} and J := {k | k ≥ q}. (17)

Then we write our matrices as block matrices, for example,

X(s1) =
(

XII(s1) XIJ(s1)

0J I XJJ(s1)

)
.
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Hence from (16) we get that

�II(s1 − 1)−1VI
r−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr)

= XII(s1)VI
r (s1, . . . , sr ;α1, . . . , αr)

+ XIJ(s1)VJ
r (s1, . . . , sr ;α1, . . . , αr). (18)

Since XII(s1) is a finite invertible square matrix, we have

XII(s1)
−1�II(s1 − 1)−1 = BII(α2 − α1; s1 − 1).

Therefore we deduce from (18) that

VI
r (s1, . . . , sr ;α1, . . . , αr )

= BII(α2 − α1; s1 − 1)VI
r−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr)

+ YI (s1, . . . , sr ;α1, . . . , αr), (19)

where

YI (s1, . . . , sr ;α1, . . . , αr)

= −XII(s1)
−1XIJ(s1)VJ

r (s1, . . . , sr ;α1, . . . , αr). (20)

All the series of meromorphic functions involved in the products of ma-
trices in formulas (19) and (20) converge normally on all compact subsets
of Cr . Moreover, all entries of the matrices on the right-hand side of (20)
are holomorphic on the open set Ur(q), translate of Ur by (−q,0, . . . ,0).
Therefore the entries of YI (s1, . . . , sr ;α1, . . . , αr) are also holomorphic in
Ur(q). Let ξq(s1, . . . , sr ;α1, . . . , αr) to be the first entry of the column vector
YI (s1, . . . , sr ;α1, . . . , αr). Then we get from (19) that

ζr (s1, . . . , sr ;α1, . . . , αr)

= 1

s1 − 1
ζr−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr)

+
q−2∑
k=0

s1 · · · (s1 + k − 1)

(k + 1)! Bk+1(α2 − α1)

× ζr−1(s1 + s2 + k, s3, . . . , sr ;α2, . . . , αr )

+ ξq(s1, . . . , sr ;α1, . . . , αr) (21)

and that ξq(s1, . . . , sr ;α1, . . . , αr) is holomorphic in the open set Ur(q). In this
formula, whenever empty products and empty sums appear, they are assumed to
be 1 and 0, respectively. Formula (21) can also be obtained by using the Euler–
Maclaurin summation formula (see [2]).

Remark 3. A matrix formulation of the generalized Ramanujan’s identity (4)
would be similar as before. To write down a matrix formulation for identity (3),
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we encounter a family of polynomials Pn(a, c) defined by the generating se-
ries

eax

ex − c
=

∑
n≥0

Pn(a, c)
xn

n!
with c �= 1.

We now observe that the following theorem can be deduced as an immediate
consequence of Theorem 2.

Theorem 5. The multiple Hurwitz zeta function of depth r can be meromorphi-
cally continued to Cr with possible simple poles along the hyperplanes H1,0 and
Hi,k , where 2 ≤ i ≤ r and k ≥ 0. It has at most simple poles along each of these
hyperplanes.

To check if each Hi,k is indeed a polar hyperplane, we compute the residue of
the multiple Hurwitz zeta function of depth r along this hyperplane using (19)
and (21). Recall that it is defined as the restriction of the meromorphic function
(s1 + · · · + si − i + k)ζr (s1, . . . , sr ;α1, . . . , αr) to Hi,k .

Theorem 6. The residue of the multiple Hurwitz zeta function ζr (s1,

. . . , sr ;α1, . . . , αr) along the hyperplane H1,0 is the restriction of ζr−1(s2, . . . ,

sr ;α2, . . . , αr) to H1,0, and its residue along the hyperplane Hi,k , where 2 ≤ i ≤ r

and k ≥ 0, is the restriction to Hi,k of the product of ζr−i (si+1, . . . , sr ;αi+1,

. . . , αr) with the (0, k)th entry of the matrix
i−1∏
d=1

B(αd+1 − αd ; s1 + · · · + sd − d).

Proof. Let q ≥ 1 be an integer. As in the proof of Theorem 2, we know from (21)
that

ζr (s1, . . . , sr ;α1, . . . , αr) − 1

s1 − 1
ζr−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr)

has no pole along H1,0 inside the open set Ur(q). These open sets cover Cr . Hence
the residue of ζr (s1, . . . , sr ;α1, . . . , αr) along H1,0 is the restriction to H1,0 of the
meromorphic function ζr−1(s1 + s2 − 1, s3, . . . , sr ;α2, . . . , αr) or equivalently of
ζr−1(s2, . . . , sr ;α2, . . . , αr). This proves the first part of Theorem 6.

Now let i, k be integers with 2 ≤ i ≤ r and 0 ≤ k < q . Also, let I and J be as
defined in (17). Now, iterating formula (19) (i − 1) times, we get

VI
r (s1, . . . , sr ;α1, . . . , αr)

=
( i−1∏

d=1

BII(αd+1 − αd; s1 + · · · + sd − d)

)

× VI
r−i+1(s1 + · · · + si − i + 1, si+1, . . . , sr ;αi, . . . , αr)

+ Yi,I (s1, . . . , sr ;α1, . . . , αr),
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where Yi,I (s1, . . . , sr ;α1, . . . , αr) is a column matrix whose entries are finite
sums of products of rational functions in s1, . . . , si−1 with meromorphic functions
holomorphic in Ur(q). These entries therefore have no pole along the hyperplane
Hi,k in Ur(q). The entries of

i−1∏
d=1

BII(αd+1 − αd ; s1 + · · · + sd − d)

are rational functions in s1, . . . , si−1 and hence have no poles along Hi,k . It now
follows from the induction hypothesis that the only entry of VI

r−i+1(s1 + · · · +
si − i + 1, si+1, . . . , sr ;αi, . . . , αr) that can possibly have a pole along Hi,k in
Ur(q) is that of index k,

ζr−i+1(s1 + · · · + si − i + k + 1, si+1, . . . , sr ;αi, . . . , αr).

Its residue is the restriction of ζr−i (si+1, . . . , sr ;αi+1, . . . , αr) to Hi,k ∩ Ur(q),
where 2 ≤ i ≤ r and 0 ≤ k < q . Since the open sets Ur(q) for q > k cover Cr ,
the residue of ζr (s1, . . . , sr ;α1, . . . , αr) along Hi,k is the restriction to Hi,k of the
product of the (0, k)th entry of the matrix

i−1∏
d=1

B(αd+1 − αd ; s1 + · · · + sd − d)

with ζr−i (si+1, . . . , sr ;αi+1, . . . , αr). This proves the last part of Theorem 6. �

5. Proof of Theorem 3

5.1. Zeros of Bernoulli Polynomials

The information about the exact set of poles of multiple Hurwitz zeta functions in
Theorem 3 requires knowledge about the zeros of the Bernoulli polynomials. In
this section, we discuss the properties of the zeros of the Bernoulli polynomials
that are relevant to our study.

Recall that the Bernoulli polynomials Bn(t) are defined by

∑
n≥0

Bn(t)
xn

n! = xetx

ex − 1
.

We have the following theorem by Brillhart [3] and Dilcher [4] about the zeros of
Bernoulli polynomials.

Theorem 7 (Brillhart–Dilcher). Bernoulli polynomials have no multiple roots.

This theorem was first proved for the odd Bernoulli polynomials by Brillhart [3]
and later extended for the even Bernoulli polynomials by Dilcher [4]. Theorem 7
amounts to say that the Bernoulli polynomials Bn+1(t) and Bn(t) are relatively
prime as they satisfy the relation

B ′
n+1(t) = (n + 1)Bn(t) for all n ≥ 1,
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where B ′
n+1(t) denotes the derivative of the polynomial Bn+1(t). With the theo-

rem of Brillhart and Dilcher in place, we can now describe the exact set of sin-
gularities of the multiple zeta functions. For that, it is convenient to have some
intermediate lemmas.

5.2. Some Intermediate Lemmas

Lemma 2. Let x, y be two indeterminates, and let the matrix B be as in (15). Then
all the entries in the first row of the matrix

B(β − α;x)B(γ − β;y),

where 0 ≤ α,β, γ < 1, are nonzero rational functions in x, y with coefficients
in R.

Proof. Since entries of these matrices are indexed by N × N, the entries of the
first row are written as the (0, k)th entry for k ≥ 0. Let us denote the (0, k)th entry
by a0,k . Then we have the formula

x(y + k)a0,k =
k∑

i=0

(x)i−1(y + i + 1)k−i−1Bi(β − α)Bk−i (γ − β)

for all k ≥ 0. As the Bernoulli polynomial B0(t) is equal to 1, we get a0,0 = 1
xy

and hence nonzero. For k ≥ 1, we first note that the set of polynomials

P := {(x)i−1(y + i + 1)k−i−1 : 0 ≤ i ≤ k}
is linearly independent over R.

Now suppose that B1(β − α) �= 0. We know by Theorem 7 that at least one of
Bk(γ − β) and Bk−1(γ − β) is nonzero. It now follows from the linear indepen-
dence of the set of polynomials in P that a0,k �= 0.

Next suppose that B1(β − α) = 0, i.e. β − α = 1/2. Then γ − β �= 1/2 as 0 ≤
α,γ < 1. Hence B1(γ − β) �= 0. Again by Theorem 7 we know that at least one
of Bk(β −α) and Bk−1(β −α) is nonzero. Now by linear independence of the set
of polynomials in P we get a0,k �= 0. This completes the proof of Lemma 2. �

Lemma 3. Let n ≥ 0 be an integer, and let x, x1, . . . , xn be (n+ 1) indeterminate.
Let D be an infinite square matrix whose entries are indexed by N × N and is in
the ring R(x1, . . . , xn). Further, suppose that all the entries in the first row of D
are nonzero. Then, for any α,β ∈ R, all the entries in the first row of the matrix
DB(β − α;x) are nonzero, where the matrix B is as in (15).

Proof. We first note that each column of B(β − α;x) has at least one nonzero
entry and the nonzero entries of each of these columns are linearly independent
over R as rational functions in x with coefficients in R. Since all the entries in the
first row of D are nonzero, the proof is complete by the previous observation. �

We are now ready to prove Theorem 3.
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5.3. Proof of Theorem 3

When 1 ≤ i ≤ r and k ≥ 0, the restriction of

ζr−i (si+1, . . . , sr , αi+1, . . . , αr )

to Hi,k is a nonzero meromorphic function. Hence, to prove Theorem 3, we need
to show that when 2 ≤ i ≤ r and k ≥ 0, the (0, k)th entry of the matrix

i−1∏
d=1

B(αd+1 − αd ; s1 + · · · + sd − d)

is identically zero if and only if i = 2 and k ∈ J . By changing coordinates this is
equivalent to say that when t1, . . . , ti−1 are indeterminate, the (0, k)th entry of the
matrix

i−1∏
d=1

B(αd+1 − αd; td )

is nonzero in R(t1, . . . , ti−1) except when i = 2 and k ∈ J .
For i = 2, our matrix is B(α2 − α1; t1), and hence our assertion follows imme-

diately. Now assume that i ≥ 3. By Lemma 2 we know that all the entries in the
first row of the matrix

B(α2 − α1; t1)B(α3 − α2; t2)
are nonzero in R(t1, t2). Hence the theorem follows from Lemma 2 if i = 3 and
from repeated application of Lemma 3 if i > 3.

5.4. A Particular Case

Theorem 3 shows that precise knowledge about zeros of Bernoulli polynomials
determines the exact set of singularities of the multiple Hurwitz zeta functions.
Now we have precise knowledge about the rational zeros of the Bernoulli polyno-
mials (see Inkeri [8]).

Theorem 8 (Inkeri). The rational zeros of a Bernoulli polynomial Bn(t) can only
be 0,1/2, and 1. This happens only when n is odd and precisely in the following
cases:

(1) Bn(0) = Bn(1) = 0 for all odd n ≥ 3,
(2) Bn(1/2) = 0 for all odd n ≥ 1.

Using Theorem 8, we deduce the following corollary of Theorem 3. A particular
case of this corollary, namely when αi ∈ Q for all 1 ≤ i ≤ r , was proved in [2].

Corollary 1. If α2 − α1 = 0, then the exact set of singularities of the multiple
Hurwitz zeta function ζr (s1, . . . , sr ;α1, . . . , αr) is given by the hyperplanes

H1,0,H2,1,H2,2k and Hi,k for all k ≥ 0 and 3 ≤ i ≤ r.
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If α2 − α1 = 1/2, then the exact set of singularities of the multiple Hurwitz zeta
function ζr (s1, . . . , sr ;α1, . . . , αr) is given by the hyperplanes

H1,0,H2,2k and Hi,k for all k ≥ 0 and 3 ≤ i ≤ r.

If α2 − α1 is a rational number �= 0,1/2, then the exact set of singularities of
the multiple Hurwitz zeta function ζr (s1, . . . , sr ;α1, . . . , αr) is given by the hy-
perplanes

H1,0 and Hi,k for all k ≥ 0 and 2 ≤ i ≤ r.
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