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Almost Gorenstein Rees Algebras of pg-Ideals, Good
Ideals, and Powers of the Maximal Ideals

Shiro Goto, Naoyuki Matsuoka,
Naoki Taniguchi, & Ken-ichi Yoshida

Abstract. Let (A,m) be a Cohen–Macaulay local ring, and let I

be an ideal of A. We prove that the Rees algebra R(I ) is an almost
Gorenstein ring in the following cases:

(1) (A,m) is a two-dimensional excellent Gorenstein normal do-
main over an algebraically closed field K ∼= A/m, and I is a pg-ideal;

(2) (A,m) is a two-dimensional almost Gorenstein local ring hav-
ing minimal multiplicity, and I =m� for all � ≥ 1;

(3) (A,m) is a regular local ring of dimension d ≥ 2, and I =
md−1. Conversely, if R(m�) is an almost Gorenstein graded ring for
some � ≥ 2 and d ≥ 3, then � = d − 1.

1. Introduction

In [6], the authors proved that for any m-primary integrally closed ideal I in a
two-dimensional regular local ring (A,m), its Rees algebra R(I ) is an almost
Gorenstein graded ring. As a direct consequence, we have that the Rees algebra
R(m�) is an almost Gorenstein graded ring for every integer � ≥ 1. The main
purpose of this paper is to extend these results to other classes of rings and ideals.

The notion of almost Gorenstein rings in our sense was introduced by Barucci
and Fröberg [1], where they dealt with one-dimensional analytically unramified
local rings. Goto, Matsuoka, and Phuong [4] extended the notion to arbitrary
(but still of dimension one) Cohen–Macaulay local rings. Goto, Takahashi, and
Taniguchi [8] gave the definition of almost Gorenstein graded/local rings for
higher-dimensional cases.

Let us recall the definition of almost Gorenstein rings.

Definition 1.1 (Goto et al. [8, Def. 3.3]). Let (A,m) be a Cohen–Macaulay
local ring that possesses the canonical module KA. Then A is said to be an almost
Gorenstein local ring if there exists an exact sequence

0 → A → KA → C → 0

of A-modules such that μA(C) = e0
m(C), where μA(C) denotes the number of

elements in a minimal system of generators of C, and e0
m(C) is the multiplicity of

C with respect to m. Note that such an A-module C is called an Ulrich A-module;
see e.g. [8, Sec. 2].
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Let R = ⊕
n≥0 Rn be a Cohen–Macaulay graded ring such that R0 = A is a local

ring. Suppose that R possesses the graded canonical module KR . Then a(R) =
−min{n ∈ Z | [KR]n �= 0} is called the a-invariant of R; see e.g. [9, Def. 3.14].

Definition 1.2 (Goto et al. [8, Def. 8.1]). Let R be as before. Let M be the
unique graded maximal ideal of R and set a = a(R). Then R is said to be an
almost Gorenstein graded ring if there exists an exact sequence

0 → R → KR(−a) → C → 0

of graded R-modules such that μR(C) = e0
M

(C), where μR(C) denotes the num-
ber of elements in a minimal system of generators of C, and e0

M
(C) is the mul-

tiplicity of C with respect to M. Here KR(−a) denotes the graded R-module
whose underlying R-module is the same as that of KR whose grading is given by
[KR(−a)]n = [KR]n−a for all n ∈ Z.

Note that the local ring RM is almost Gorenstein if R is an almost Gorenstein
graded ring because CM is an Ulrich RM-module and KRM

∼= [KR]M. Unfortu-
nately, the converse is not true in general (see e.g. [6, Thms. 2.7 and 2.8] and [8,
Ex. 8.8]).

Any Gorenstein local ring is an almost Gorenstein local ring. Any rational sin-
gularity in dimension two is an almost Gorenstein local ring (see [8, Sec. 11]). All
known examples of Cohen–Macaulay local rings of finite representation type are
almost Gorenstein local rings (see [8, Sec. 12]). Moreover, a numerical semigroup
ring k[[H ]] is an almost Gorenstein ring if and only if H is an almost symmetric
semigroup [1]. Note that the notion of almost Gorenstein rings in our sense is
different from that in [11].

Moreover, the following results are known as examples of higher-dimensional
almost Gorenstein rings. For a parameter ideal Q in a regular local ring A of
dimension d ≥ 3:

(1) the Rees algebra R(Q) = ⊕
n≥0 Qn is an almost Gorenstein graded ring if

and only if Q = m (see [8, Thm. 8.3]);
(2) R(Q)M is always an almost Gorenstein local ring, where M denotes the

unique graded maximal ideal of R(Q) [5].

The main results in this paper are the following theorems, which are extensions
of the main result in [6]. Note that any m-primary integrally closed ideal I in a
two-dimensional excellent regular local ring A over an algebraically closed field
satisfies the assumption in the following theorem. Thus, this theorem essentially
extends [6, Thm. 1.3].

Now let (A,m) be a two-dimensional excellent normal local ring over an al-
gebraically closed field. For an m-primary ideal I ⊂ A, I is called a pg-ideal
(see [14]) if the Rees algebra R(I ) is a Cohen–Macaulay normal domain; see the
following section for the definition and basic properties of pg-ideals.

Theorem 1.3 (See Theorem 2.4). Let (A,m) be a two-dimensional excellent
Gorenstein normal local ring over an algebraically closed field, and let I ⊂ A
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be a pg-ideal. Then the Rees algebra R(I ) of I is an almost Gorenstein graded
ring.

Since any two-dimensional rational singularity is an almost Gorenstein local ring
having minimal multiplicity, the following theorem provides a large class of local
rings for which the Rees algebras of all powers of the maximal ideal are almost
Gorenstein graded rings.

Theorem 1.4 (See Theorem 3.5). Let (A,m) be a two-dimensional almost Goren-
stein local ring having minimal multiplicity. Then R(m�) is an almost Gorenstein
graded ring for every � ≥ 1.

Corollary 1.5. Let (A,m) be a two-dimensional rational singularity. Then
R(m�) is an almost Gorenstein graded ring for every � ≥ 1.

The following theorem is a higher-dimensional analog of [6, Cor. 1.4]. We note
that if d = 5 and � = 2, then R(m2)M is an almost Gorenstein local ring, but
R(m2) is not an almost Gorenstein graded ring.

Theorem 1.6 (See Proposition 4.2 and Theorem 4.4). Let (A,m) be a regular
local ring of dimension d ≥ 2 that possesses an infinite residue class field. Then:
(1) R(m�) is an almost Gorenstein graded ring if and only if � = 1, d = 2 or

� = d − 1;
(2) for � ≥ 2 and d ≥ 3, R(m�)M is an almost Gorenstein local ring if and only

if � | d − 1, where M denotes the graded maximal ideal of R(m�).

Note that under the assumption of Theorem 1.6, the associated graded ring G(m�)

is Gorenstein if and only if � | d − 1; see [12, Thm. 2.4].
We now briefly explain how this paper is organized. The proof of Theorem 1.3

is given in Section 2. In Section 3, we prove Theorem 1.4. In Section 4, we prove
Theorem 1.6.

In what follows, unless otherwise specified, (A,m) is a Cohen–Macaulay local
ring. Let KA denote the canonical module of A. For each finitely generated A-
module M , let μR(M) (respectively e0

m(M)) denote the number of elements in
a minimal system of generators for M (respectively, the multiplicity of M with
respect to m).

2. Rees Algebras of pg-Ideals (Proof of Theorem 1.3)

The purpose of this section is to prove Theorem 1.3. Throughout this section, let
(A,m) be a Cohen–Macaulay local ring of dimension two and suppose that A

is generically a Gorenstein ring and that it possesses a canonical ideal KA ⊂ A.
Moreover, let I ⊂ A be an m-primary ideal, and let Q be its minimal reduction
of I . Suppose that I is stable, that is, I 2 = QI and I �= Q, and set J = Q : I .
Then the Rees algebra

R= R(I ) = A[I t] ⊆ A[t]
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of I is a Cohen–Macaulay ring [7] with a(R) = −1, where t denotes an indeter-
minate over A. We denote by M = mR+R+ the graded maximal ideal of R.

2.1. Pg-Ideals

Assume that A is an excellent normal local domain over an algebraically closed
field and there exists a resolution of singularities f : X → SpecA with E =
f −1(m) = ⋃r

i=1 Ei . Then pg(A) = �A(H 1(OX)) is called the geometric genus
of A, which is independent of the choice of the resolution of singularities. Recall
that any m-primary integrally closed ideal I can be written as I = H 0(OX(−Z))

for some resolution of singularities X → SpecA and some anti-nef cycle Z on X

such that IOX = OX(−Z); see e.g. [13, Sec. 18]. Then I is said to be represented
on X by Z.

Now let us recall the notion of pg-ideals. Fix a resolution of singularities X →
SpecA. Let Z be an anti-nef cycle on X and assume that OX(−Z) has no fixed
component, that is, H 0(OX(−Z)) �= H 0(OX(−Z − Ei)) for every Ei ⊂ E. Then
we have

�A(H 1(OX(−Z)) ≤ pg(A).

If the equality holds, then OX(−Z) is generated by global sections (see [14,
Thm. 3.1]), and Z is called a pg-cycle.

Definition 2.1 (Okuma et al. [14, Def. 3.2]). An m-primary ideal I ⊂ A is called
a pg-ideal if it is represented by a pg-cycle Z on some resolution of singularities
X → SpecA.

The following criterion for pg-ideals is very useful.

Lemma 2.2 (Okuma et al. [15, Thm. 1.1]). Let I ⊂ A be an m-primary ideal that
is not a parameter ideal. Then the following conditions are equivalent:

(1) I is a pg-ideal;
(2) I 2 = QI for some parameter ideal Q ⊂ I , and In is integrally closed for

every n ≥ 1;
(3) R(I ) is a Cohen–Macaulay normal domain.

Now let us recall the notion of rational singularities (of dimension two). The ring
A is called a rational singularity if pg(A) = 0. For instance, toric singularities and
quotient singularities are typical examples of rational singularities. The notion of
pg-ideals can be regarded as analogous to the notion of integrally closed ideals in
a rational singularity. In fact, Lipman [13, Thm. 12.1] showed that any m-primary
integrally closed ideal of A is a pg-ideal, provided that A is a rational singularity.

It is known that the Rees algebra R(I ) of an integrally closed ideal I in a ra-
tional singularity possesses some good property (e.g. rationality) by Lipman [13].
Moreover, Lemma 2.2 implies that R(I ) is a Cohen-Macaulay normal domain if
I is a pg-ideal of A. We pose the following conjecture.
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Conjecture 2.3. If I ⊂ A is a pg-ideal, then R(I ) an almost Gorenstein graded
ring.

As a partial answer, we prove the following theorem, which implies Theorem 1.3.

Theorem 2.4. Assume that A is Gorenstein under the assumption in this section.
Let I ⊂ A be a pg-ideal, and let Q be its minimal reduction. Put J = Q : I and
R = R(I ). Then there exist a short exact sequence and elements f ∈ m, g ∈ I ,
and h ∈ J such that

0 → R ϕ−→ KR(1) ∼= JR→ C → 0,

where ϕ(1) = h and MC = (f, gt)C. In particular, R is an almost Gorenstein
graded ring.

Corollary 2.5. Assume that A is a rational double point, that is, it is a Goren-
stein rational singularity that is not regular. Then R(I ) is an almost Gorenstein
normal graded ring for any m-primary integrally closed ideal I ⊂ A.

Proof. Under this assumption, any m-primary integrally closed ideal is a pg-ideal
but not a parameter ideal. Thus we can apply Theorem 2.4. �

Since any regular local ring is a rational singularity, we have the following:

Example 2.6. Let A be a regular local ring with dimA = 2. Then R(I ) is an
almost Gorenstein graded ring for any integrally closed ideal I ⊂ A. In particular,
R(m�) is an almost Gorenstein graded ring for every � ≥ 1.

Remark 2.7. Suppose that A is a Gorenstein local ring of dimension two and I =
(a, b) is a parameter ideal of A. Then R(I ) ∼= A[X,Y ]/(aY −bX) is a Gorenstein
ring.

Okuma et al. [14, Thm. 1.2] showed that any excellent normal local domain of
dimension two admits a pg-ideal. Therefore, we obtain from Theorem 1.3 the
following corollary.

Corollary 2.8. For any excellent normal Gorenstein local domain of dimension
two over an algebraically closed field k, there exists an m-primary ideal I such
that R(I ) is an almost Gorenstein graded ring.

Example 2.9 (Okuma et al. [15]). Let p ≥ 1 be an integer.

1. Let A = k[[x, y, z]]/(x2 + y3 + z6p+1). Then Ik = (x, y, zk) is a pg-ideal for
every k = 1,2, . . . ,3p.

2. Let A = k[[x, y, z]]/(x2 + y4 + z4p+1). Then Ik = (x, y, zk) is a pg-ideal for
every k = 2, . . . ,2p. However, I1 = m is not.

When this is the case, pg(A) = p.
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2.2. Proof of Theorem 1.3

In what follows, we always assume that the assumption of Theorem 1.3 holds.
The following lemma, which is a particular case of [2, Lemma 5.1], plays a key
role in the proof. Note that if A is Gorenstein, then it is a particular case of [17,
Thm. 2.7(a)].

Lemma 2.10. Suppose that A possesses the canonical ideal K = KA. Then
KR(1) ∼= (QK : KI )R as graded R-modules.

Proof. Since I 2 = QI , if we put ωi = QiK : KI , then ωi = I i−1K = Qi−1K for
every i ≥ 1 and KR(1) is isomorphic to ω1R= (QK : KI )R. �
The following two lemmata play important roles in the proof of the main theorem.

Lemma 2.11 (Okuma et al. [15, Thm. 3.5]). Assume that I is a pg-ideal and J is
an integrally closed m-primary ideal. Then there exist a ∈ I and b ∈ J such that
IJ = aJ + bI .

Lemma 2.12 (Okuma et al. [16]). Assume that I ⊂ A is a pg-ideal. If Q is a
minimal reduction of I , then J = Q : I is also a pg-ideal.

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Assume that A is Gorenstein and I is a pg-ideal. Then
J = Q : I is also a pg-ideal by Lemma 2.12. Hence, Lemma 2.11 implies that
there exist f ∈m, g ∈ I , and h ∈ J such that

IJ = gJ + Ih, mJ = f J +mh

because I, J are pg-ideals and m is integrally closed (see also [18]).

Claim. We claim that M · JR ⊂ (f, gt)JR+Rh.

In fact,

[M · JR]0 = mJ = f J +mh ⊆ f J + Ah = [(f, gt)JR+Rh]0,

[M · JR]1 = IJ +mJI = IJ = gJ + Ih ⊆ [(f, gt)JR+Rh]1,

[M · JR]n = InJ = (gJ )In−1 + In−1Ih ⊆ [(f, gt)JR+ ⊆ Rh]n
for all n ≥ 2.

Thus, we have proved the claim.
Since KR(1) ∼= JR by Lemma 2.10 and a(R) = −1, if we define an R-linear

map ϕ by ϕ(1) = h, then we have an exact sequence

R ϕ→ KR(1) = JR → C → 0,

so that C/MC = C/(f,gt)C. Hence, C is an Ulrich A-module by [8, Lemma
3.1]. As dimCM ≤ 2 < dimR = 3, ϕM is injective by [8, Lemma 3.1] again.
This means ϕ is injective. Therefore, we conclude that R is an almost Gorenstein
graded ring. �
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3. Rees Algebras of Good Ideals

We first recall the notion of good ideals introduced in [3].

Definition 3.1. Let I ⊂ A be an m-primary ideal. Then I is called a good ideal
if I 2 = QI and Q : I = I for some minimal reduction Q of I .

Now assume that m2 = Qm for some minimal reduction Q of m, that is, A has
minimal multiplicity. Then m is an integrally closed good ideal. For instance, if
A is a two-dimensional rational singularity, then m is a good ideal.

The following proposition says that the definition of good ideals is independent
of the choice of its minimal reduction.

Proposition 3.2. Put R = R(I ) and G = G(I) = ⊕
n≥0 In/In+1. Then the fol-

lowing conditions are equivalent:

(1) I is a good ideal;
(2) G is a Cohen–Macaulay ring with a(G) = 1 − d and Soc(Hd

M
(G)) ⊂

[Hd
M

(G)]1−d .

Proof. (1) 
⇒ (2) By definition there exists a minimal reduction Q of I such that
I 2 = QI and Q : I = I . In particular, G is a Cohen–Macaulay ring with a(G) =
1 − d . Write Q = (a1, . . . , ad) and a∗

i := ai + I 2 ∈ [G]1 for i = 1,2, . . . , d . Since
a∗

1 , a∗
2 , . . . , a∗

d forms a regular sequence in G, we have

G/(a∗
1 , . . . , a∗

d)G ∼= G(I/Q) ∼= A/I ⊕ I/Q =: G.

Then

Hd
M(G) ∼= Hd−1

M
(G/a∗

1G)(1) ∼= · · · ∼= H 0
M(G/(a∗

1 , . . . , a∗
d)G)(d) ∼= G(d).

Thus, it suffices to show that Soc(G) ⊂ [G]1. Now suppose that α = (x + I, y +
Q) ∈ Soc(I ), where x ∈ A and y ∈ I . By definition we have (z + I )α = 0 for
any z ∈ I , that is, zx ∈ Q for any z ∈ I . Hence x ∈ Q : I = I because I is good.
Therefore, α = (0 + I, y + Q) ∈ [G]1, as required.

(2) 
⇒ (1) As G is a Cohen–Macaulay ring with a(G) = 1−d , we have I 2 = QI

for some minimal reduction Q of I . Write Q = (a1, . . . , ad) and a∗
i := ai + I 2 ∈

[G]1 for i = 1,2, . . . , d . Then Hd
M

(G) ∼= G(d), where G = A/I ⊕ I/Q.
Now suppose that I is not good, that is, I � Q : I . Then we can choose x ∈

I : m\ I so that x ∈ Q : I . If we put α = x + I ∈ [G]0, then βα = 0 in G for every
β ∈ mG + [G]1, the maximal ideal of G, that is, 0 �= α ∈ [Soc(G)]0. However,
this contradicts the assumption. Therefore, I = Q : I , and I is a good ideal. �

In what follows, we consider the two-dimensional case. As a corollary of Propo-
sition 3.2, we can compute KR(I ) for a good ideal I .

Corollary 3.3. Assume that dimA = 2, I ⊂ A is a good ideal, and A possesses
the canonical ideal K = KA. Set R = R(I ) and G = G(I). Then KR(1) ∼= IKR.
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Proof. Set ω−1 = ω0 = K, ω1 = QK : KI , and ωi = I i−1ω1 for i ≥ 2. Then
[KG]i = ωi−1/ωi for every i ≥ 1; see [2, Thm. 2.1]. By Proposition 3.2 and
duality, KG is generated by [KG]1 as an G-module. Hence ω1/ω2 = [KG]2 ⊂
G · ω0/ω1, that is, ω1 = Iω0 + ω2 = IK + Iω1. This implies that ω1 = IK by
Nakayama’s lemma. It follows from Lemma 2.10 that KR(1) ∼= IKR, as re-
quired. �

In this section, we consider the following question.

Question 3.4. Assume that I is a good ideal. When is R(I ) an almost Gorenstein
graded ring?

The following theorem is the main result in this section, which gives a partial
answer to the question.

Theorem 3.5. Let (A,m) be a two-dimensional almost Gorenstein local ring.
Assume that m is good. Then R(m�) is an almost Gorenstein graded ring for
every � ≥ 1.

Proof. Set R = R(m�). By [8, Rem. 3.2] the ring A contains the canonical ideal
K = KA. Fix an integer � ≥ 1. Note that m� is a good ideal, so that KR(1) ∼=
m�KR by Corollary 3.3. Then it suffices to prove the following claim.

Claim. There exist f ∈m, g ∈m�, and h ∈ m�K such that

m�+1K = fm�K +mh, m2�K = gm�K +m�h.

Note that this gives a proof of the theorem. Indeed, by a similar argument as
in the proof of Theorem 2.4 we have M · KR ⊂ (f, gt)KR + Rh. This yields a
graded short exact sequence

0 →R ψ→ KR(1) ∼= mKR → C → 0,

where ψ(1) = h and MC = (f, gt)C. Namely, R is an almost Gorenstein graded
ring.

Let us prove the claim. First, suppose that A is Gorenstein. Then K = A. By
assumption we can take y, z ∈m such that m2 = (y, z)m. If we set f = y, g = y�,
and h = z�, then

m�+1 = fm� +mh, m2� = gm� +m�h,

as required.
Next, suppose that A is not Gorenstein. Then we have a short exact sequence

0 → A
ϕ→ K = KA → C → 0

such that C is an Ulrich A-module of dimC = 1. If we put x = ϕ(1), then x ∈
K \mK by [8, Cor. 3.10]. Choose y, z ∈ m so that:

(i) (y, z) is a minimal reduction of m;
(ii) the image of (y) in A/AnnA C is a minimal reduction of m/AnnA C.
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From (i) we have m2 = (y, z)m, and thus m� = (y, z)�−1m and m2� = (y�, z�)m�.
Then (ii) implies mC = yC. In particular, mK ⊂ yK+xA. Hence mK = yK+xm

because x /∈mK. Multiplying this by m�, we obtain

m�+1K = ym�K + xzm�

= ym�K + xz(y, z)�−1m

= ym�K + xz�m.

Moreover, we have m2�K = y�m�K + z�m�K. On the other hand,

z�m�K = z�m�−1mK

= z�m�−1(yK + xm)

≡ yz�m�−1K (mod xz�m�)

≡ yz�m�−2(yK + xm) (mod xz�m�)

≡ y2z�m�−2K (mod xz�m�)

≡ · · · ≡ y�z�K (mod xz�m�).

Hence m2�K = y�z�K+xz�m�. Setting f = y, g = y� ∈m�, and h = xz� ∈ m�K,
we obtain the required equality. �

Let us explore the example to show how Theorem 3.5 works.

Example 3.6. Let r ≥ 2 be an integer. Let A = k[[sr , sr−1t, . . . , str−1, t r ]] be
the r th Veronese subring of k[[s, t]]. Note that (A,m) is a rational singularity. Set

K = (sr−1t, sr−2t2, . . . , str−1).

If we take
x = str−1 ∈ K, y = sr , z = t r ,

then mK = ymK + xm and m2 = (y, z)m. Thus, R(m) is an almost Gorenstein
graded ring.

If A is a Cohen–Macaulay local ring of e0
m(A) = 2, then it has minimal multiplic-

ity, and it is Gorenstein, that is, K = A.

Example 3.7. Suppose that (A,m) is a Cohen–Macaulay local ring of e0
m(A) = 2.

Then R(m) is an almost Gorenstein graded ring.

In the rest of this section, we consider Question 3.4 in the higher-dimensional
case. To prove our result, we need the following lemma, which is very useful in
proving the almost Gorensteinness of the Rees algebra.

Lemma 3.8. Let (A,m) be a regular local ring, and let I � A be an ideal of
positive height. Set R= R(I ). If RM is a Cohen–Macaulay local ring with KR =∑c+1

i=1 Rt i for some c ≥ 0, then RM is an almost Gorenstein local ring.

Proof. Note that

KR ∼= At + At2 + · · · + Atc +Rtc+1.
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Set C = KR/Rtc+1. Then C ∼= At +At2 +· · ·+Atc ∼= A⊕c as A-modules. If we
set a = Rc+ and R = R/a, then C is an R-module because aC = 0. Moreover,
A ↪→ R → R is a finite morphism, and mR is a reduction of M = M/a, so that
we have

e0
M(C) = e0

M
(C) = e0

mR(C) = e0
m(C) = e0

m(A) · rankAC = 1 · c = c.

On the other hand, since μR(C) = c, CM is an Ulrich RM-module, and thus
RM is an almost Gorenstein local ring. �

The following theorem gives a complete answer to Question 3.4 in the higher-
dimensional Gorenstein case.

Theorem 3.9. Suppose that A is a Gorenstein local ring of d = dimA ≥ 3 and
that I ⊂ A is a good ideal. Set R= R(I ). Then we have:

(1) The following conditions are equivalent:
(a) R is an almost Gorenstein graded ring;
(b) R is Gorenstein;
(c) d = 3.

(2) If A is a regular local ring, then RM is an almost Gorenstein local ring.
Conversely, if RM is an almost Gorenstein local ring but not Gorenstein,
then A itself is a regular local ring.

Proof. (1) (c) 
⇒ (b) By [3, Prop. 2.2], G(I) is a Gorenstein ring with
a(G(I)) = 1 − d = −2. Hence R(I ) is Gorenstein by the Goto–Shimoda the-
orem (see [7]).

(b) 
⇒ (a) This is trivial.

(a) 
⇒ (c) Now suppose that R is an almost Gorenstein graded ring but not
Gorenstein. Then there exists an exact sequence of graded R-modules

0 → R ϕ−→ KR(1) → C → 0

such that μR(C) = e0
M

(C). As ϕ(1) /∈ MKR(1), we may assume that ϕ(1) = t .
Then

C = A/I ⊕ A/I 2 ⊕ · · · ⊕ A/Id−2 ⊕ I/Id−1 ⊕ · · · ⊃ R/Id−2R(−d + 2),

and dimC = dimR/Id−2R (= d). This implies that e0
M

(C) ≥ e0
M

(R/Id−2R).
For each prime P ∈ Assh(R/IR), we have dimRP = htIR = 1 and I d−2RP �

· · ·� IRP �RP . Thus the associative formula implies that

e0
M(C) ≥ e0

M(R/Id−2R) ≥ �RP
(RP /Id−2RP ) ≥ d − 2.

On the other hand,

e0
M(C) = μR(C) = μR(KR) − 1 = (d − 2) − 1 = d − 3.

This is a contradiction.



Almost Gorenstein Rees Algebras 169

(2) First, suppose that A is a regular local ring. Since I is a good ideal, we have
that R is a Cohen–Macaulay ring with KR ∼= Rt + Rt2 + · · · + Rtd−2. Hence,
RM is an almost Gorenstein local ring by Lemma 3.8.

Conversely, assume that RM is an almost Gorenstein local ring but not Goren-
stein. We may assume that d ≥ 4. Take an exact sequence

0 →RM → KRM
→ CM → 0

such that CM is an Ulrich RM-module. Then we obtain

μR(MKR) ≤ μR(M) + μR(MC) ≤ μR(M) + d · (μR(KR) − 1).

Since μR(KR) = d − 2, μR(M) = μA(m) + μA(I), and

M · KR = (mt,mt2, . . . ,mtd−2, I td−1),

we obtain

(d − 2)μA(m) + μA(I) ≤ μA(m) + μA(I) + d(d − 3).

This implies μA(m) = d , that is, A is a regular local ring, as required. �

4. Higher-Dimensional Case (Proof of Theorem 1.6)

In this section, we prove Theorem 1.6. In what follows, let (A,m) be a regular
local ring of dimension d ≥ 2 with infinite residue class field, and let � ≥ 1 be an
integer.

Remark 4.1. First, suppose that � = 1. Then R(m�) = R(m) is an almost Goren-
stein graded ring because the maximal ideals m of a regular local ring is a param-
eter ideal; see [5, Thm. 1.3].

Next, suppose that d = 2. Then [6, Cor. 1.4] implies that R(m�) is an almost
Gorenstein graded ring for every � ≥ 1.

Finally, suppose that � = d − 1. Then R(md−1) is a Gorenstein ring, and thus
it is an almost Gorenstein graded ring; see e.g. [5, Prop. 2.3].

Thus, to prove Theorem 1.6, we restrict our attention to the case where � ≥ 2 and
d ≥ 3.

Proposition 4.2. Let � ≥ 2 and d ≥ 3 be integers. Assume that R(m�)M is an
almost Gorenstein local ring. Then � is a divisor of d − 1.

Proof. The graded canonical module of the Rees algebra R(m) is given by

KR(m)
∼= At + At2 + · · · + Atd−2 +

∑
n≥d−1

mn−d+1tn;

see e.g. [2, Lemma 5.1]. This formula and [10, Prop. 2.5] imply

KR(m�)
∼=

b∑
n=1

Atn +
∑

n≥b+1

mn�−d+1tn, where b =
⌊

d − 2

�

⌋
=

⌈
d − 1

�

⌉
− 1.
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Now, set J = m(b+1)�−d+1, R = R(m�), and M = mR + R+. Then K :=
KR(m�) is generated by t, t2, . . . , tb , and J tb+1 as an R-module. Hence

μR(K) = b + μA(J ). (4.1)

Similarly, since MK is generated by mt,mt2, . . . ,mtb , mJ tb+1, and m�J tb+2,
we have

μR(MK) = b · μA(m) + μA(mJ ) + μA(m�J ). (4.2)

Now assume that RM is an almost Gorenstein local ring. Then we must prove
the following claim.

Claim. μA(mJ ) + μA(m�J ) ≤ μA(m�) + d · μA(J ).

We consider the exact sequence

0 → RM → KRM
→ C → 0

of RM-modules with μRM
(C) = e0

MRM
(C). Then [8, Cor. 3.10] implies that

μRM
(C) = μRM

(KRM
) − 1 = μR(KR) − 1

and
0 →MRM → MKRM

→ MC → 0

is exact. Moreover, as C is an Ulrich RM-module and A is regular, we have

μR(MK) = μRM
(MKRM

) ≤ μRM
(MRM) + μRM

(MC)

≤ μR(M) + d · μRM
(C)

= μA(m) + μA(m�) + d · (μR(K) − 1)

= μA(m�) + d · μR(K).

By substituting (4.1) and (4.2) for this, we obtain the desired claim.
Note that μA(mk) = (

k+d−1
d−1

)
and J = m(b+1)�−d+1. Using the claim, we have(

(b + 1)� + 1

d − 1

)
+

(
(b + 2)�

d − 1

)
≤

(
� + d − 1

d − 1

)
+ d ·

(
(b + 1)�

d − 1

)
. (4.3)

The opposite inequality follows from the following lemma, and thus � is a divisor
of d − 1. �

Lemma 4.3. Let � ≥ 2 and d ≥ 3 be integers and set b = � d−2
�

�. Then(
(b + 1)� + 1

d − 1

)
+

(
(b + 2)�

d − 1

)
≥

(
� + d − 1

d − 1

)
+ d ·

(
(b + 1)�

d − 1

)
. (4.4)

In addition, equality holds if and only if � is a divisor of d − 1.

Proof. Set i = d − 2 − b�. Then 0 ≤ i ≤ � − 1. Note that(
n

m

)
=

(
n − 1

m

)
+

(
n − 1

m − 1

)
for n,m ≥ 2.
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By substituting this equality we have(
(b + 2)�

d − 1

)
=

(
(b + 1)� + � − 1

d − 1

)
+

(
(b + 1)� + � − 1

d − 2

)

=
(

(b + 1)� + � − 2

d − 1

)
+

(
(b + 1)� + � − 2

d − 2

)
+

(
(b + 1)� + � − 1

d − 2

)

= · · · =
(

(b + 1)� + i + 1

d − 1

)
+

�−1∑
j=i+1

(
(b + 1)� + j

d − 2

)

=
(

� + d − 1

d − 1

)
+

�−1∑
j=i+1

(
(b + 1)� + j

d − 2

)
.

On the other hand,

d ·
(

(b + 1)�

d − 1

)
=

(
(b + 1)�

d − 1

)
+ (d − 1)

(
(b + 1)�

d − 1

)

=
(

(b + 1)�

d − 1

)
+ ((b + 1)� − d + 2)

(
(b + 1)�

d − 2

)

=
(

(b + 1)�

d − 1

)
+ (� − i)

(
(b + 1)�

d − 2

)

=
(

(b + 1)� + 1

d − 1

)
+ (� − i − 1)

(
(b + 1)�

d − 2

)
.

Thus (
(b + 1)� + 1

d − 1

)
+

(
(b + 2)�

d − 1

)
−

{(
� + d − 1

d − 1

)
+ d ·

(
(b + 1)�

d − 1

)}

=
�−1∑

j=i+1

{(
(b + 1)� + j

d − 2

)
−

(
(b + 1)�

d − 2

)}
≥ 0

because i ≤ � − 1. Therefore, the equality of (4.4) holds if and only if i =
� − 1. �
To complete the proof of Theorem 1.6, we give the following theorem.

Theorem 4.4. Suppose that � ≥ 2, d ≥ 3, and � | d − 1. Set R= R(m�). Then:

(1) RM is an almost Gorenstein local ring;
(2) if � �= d − 1, then R is not an almost Gorenstein graded ring.

Proof. Set b = d−1
�

− 1. Then b ≥ 0 and

KR ∼= Rt +Rt2 + · · · +Rtb +Rtb+1.

(1) This follows from Lemma 3.8.
(2) Now suppose that R is an almost Gorenstein graded ring. Then there exists a

short exact sequence

0 → R ϕ→ KR(1) → C → 0
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Table 1 When is R(m�) almost Gorenstein?

d \ � 1 2 3 4 5 6 7 8 9

2 Gor AG AG AG AG AG AG AG AG
3 AG Gor X X X X X X X
4 AG X Gor X X X X X X
5 AG AGL X Gor X X X X X
6 AG X X X Gor X X X X
7 AG AGL AGL X X Gor X X X
8 AG X X X X X Gor X X
9 AG AGL X AGL X X X Gor X

10 AG X AGL X X X X X Gor

of graded R-modules, so that C is an Ulrich R-module. Since ϕ(1) is part of
a minimal set of generators of [KR]1 by [8, Cor. 3.10], we may assume that
ϕ(1) = t without loss of generality. Then

C = KR(1)/Rt ∼= Rt2 + · · · +Rtb+1

yields that μR(C) ≤ b < d−1
�

.
If we put I = m�, then

C =
∞∑

n=2

Cn
∼= A/I ⊕ A/I 2 ⊕ · · · ⊕ A/Ib ⊕ I/Ib+1 ⊕ · · · .

Thus
C ⊃ Rtb+1 ∼= R/IbR(−(b + 1)),

and hence

e0
M(C) ≥ e0

M(R/IbR) ≥ e0
M(R/IR) = e0

M(G(I)) = e0
I (A) = �d · e0

m(A) = �d .

As � ≥ 2 and b ≥ 1, we have �d > d
�

> d−1
�

= b + 1. Therefore e0
M

(C) >

b + 1 ≥ μR(C), which contradicts the assumption. �
In Table 1 we present part of the list of (d, �) for which, over a d-dimensional
regular local ring (A,m), the Rees algebra R(m�) is a Gorenstein ring (Gor), an
almost Gorenstein graded ring (AG), or R(m�)M is an almost Gorenstein local
ring (AGL).
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