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A Remark on Pin(2)-Equivariant Floer Homology

Matthew Stoffregen

Abstract. In this remark, we show how the monopole Frøyshov in-
variant, as well as the analogues of the Involutive Heegaard Floer cor-
rection terms d, d̄ , are related to the Pin(2)-equivariant Floer homol-
ogy SWFHG∗ . We show that the only interesting correction terms of
a Pin(2)-space are those coming from the subgroups Z/4, S1, and
Pin(2) itself.

1. Introduction

Manolescu [11] resolved the triangulation conjecture, establishing that there exist
nontriangulable manifolds in all dimensions at least 5. The proof relies on the
construction of Pin(2)-equivariant Seiberg–Witten Floer homology, where Pin(2)

is the group consisting of two copies of the complex unit circle, with a map j

interchanging the two copies and such that ij = −ji and j2 = −1.
Let F denote the field with two elements. As S1-equivariant monopole Floer

homology associates with a three-manifold with spinc structure an H ∗(BS1) =
F[U ]-module, Pin(2)-equivariant Floer homology associates with a rational
homology three-sphere with spin structure an H ∗(B Pin(2)) = F[q, v]/(q3)-
module, where cohomology is taken with F-coefficients. From the module struc-
ture of Pin(2)-equivariant Floer homology we obtain three invariants of homology
cobordism

α,β, γ : θ3
H → Z,

where θ3
H is the integral homology cobordism group of integral homology three-

spheres. These invariants are related to the Rokhlin invariant μ(Y ) by

α(Y ) ≡ β(Y ) ≡ γ (Y ) ≡ μ(Y ) mod 2

and also satisfy

α(−Y) = −γ (Y ), β(−Y) = −β(Y ).

In particular, these properties for β show that there is no element Y ∈ θ3
H of order

2 with μ(Y ) = 1. Galewski and Stern [3] and Matumoto [12] showed that there
exist nontriangulable manifolds in all dimensions at least 5 if and only if there
exists an element Y ∈ θ3

H of order 2 with μ(Y ) = 1, from which Manolescu’s
disproof of the triangulation conjecture follows. Manolescu’s invariants α,β , and
γ are also defined for rational homology spheres with spin structure, for which
they are Q-valued.
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Let G = Pin(2). Since the introduction of Manolescu’s G-equivariant Floer
homology, denoted SWFHG∗ (Y, s), other versions of Floer homologies with sym-
metries beyond the S1-symmetry have become available. Lin [8] constructed a
Pin(2)-equivariant refinement of monopole Floer homology in the setting of Kro-
nheimer and Mrowka [6], applying also to manifolds with b1 > 0. In the setting of
Heegaard Floer homology introduced by Ozsváth and Szabó [14; 13], Hendricks
and Manolescu [5] point out that naturality questions make it difficult to define
a G-equivariant version of Heegaard Floer homology. However, they proceed by
considering the subgroup Z/4 = 〈j 〉 ⊂ G and define a Heegaard Floer analogue
of SWFHG with respect to this smaller group, denoted HFI(Y, s). As for the men-
tioned theories, HFI(Y, s) is a module over H ∗(BZ/4) = F[U,Q]/(Q2). Using
HFI(Y, s), they associate two (rational) homology cobordism invariants d(Y, s)

and d(Y, s) from the module structure. However, d and d do not generally reduce
to the Rokhlin invariant mod 2.

The purpose of this note is to relate the homology cobordism invariants ob-
tained using theories equivariant with respect to different groups (especially the
groups S1, Z/4, and G itself). In particular, we will see that, roughly speaking, all
homology cobordism invariants that are constructed from Manolescu’s homotopy
type using the Borel homology of a subgroup of Pin(2) are determined by the in-
variants defined using Z/4, S1, and G. For a precise statement, see Theorem 1.5.

We work in the context of Manolescu’s construction of G-equivariant Floer
homology, that is, SWFHG.

We recall that to define SWFHG, Manolescu first associates with a rational
homology sphere with spin structure (Y, s) a G-equivariant stable homotopy type,
denoted SWF(Y, s). Then SWFHG∗ (Y, s) is constructed from SWF(Y, s) by taking
the G-equivariant Borel homology

SWFHG∗ (Y, s) = H̃G∗ (SWF(Y, s)).

Using Z/4 = 〈j 〉 ⊂ G, we may also consider the Z/4-Borel homology of
SWF(Y, s). We define

SWFHZ/4∗ (Y, s) = H̃
Z/4∗ (SWF(Y, s)).

Then SWFHZ/4∗ (Y, s) has an H ∗(BZ/4) = F[U,Q]/(Q2)-module structure, from
which we further define homology cobordism invariants δ(Y, s) ≤ δ(Y, s), which
should correspond, respectively, to the invariants d(Y, s)/2 and d(Y, s)/2 of [5].
It is natural to ask to what extent these Z/4 invariants are determined by α,β , and
γ , and, more generally, by the F[q, v]/(q3)-module structure of SWFHG∗ (Y, s).
We show in Theorem 1.3 how to partially determine δ(Y, s) and δ(Y, s) from
SWFHG∗ (Y, s) but that in general δ(Y, s) and δ(Y, s) are not determined.

To translate our further statements into the language of Heegaard Floer homol-
ogy, we note that the S1-Frøyshov invariant δ(Y, s) agrees with d(Y, s)/2, where d

is the Heegaard Floer correction term, according to [7; 1]. Moreover, the invariant
δ is conjecturally related to Frøyshov’s h-invariant from instanton homology [2]:
for all integral homology spheres Y for which h(Y ) has been computed, we have
−h(Y ) = δ(Y ).
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First, we show that although the S1-Frøyshov invariant δ is not determined by
δ and δ, it is determined by SWFHZ/4.

Theorem 1.1. Let (Y, s) be a rational homology three-sphere with spin structure.
Then

δ(Y, s) = 1

2
(min{m ≡ 2μ(Y, s) + 1 mod 2 | ∃x ∈ SWFHZ/4

m (Y, s), x ∈ ImU�

for all � ≥ 0, x /∈ ImQ} − 1).

We next relate the S1- and Z/4-invariants with those coming from G. Here, even
given SWFHG∗ (Y, s), it is not possible to specify δ(Y, s), δ(Y, s), or δ(Y, s) al-
though we have the following theorems.

Theorem 1.2. Let (Y, s) be a rational homology three-sphere with spin structure.
Let

δG(Y, s) = 1

2
(min{m ≡ 2μ(Y, s) + 2 mod 4 | ∃x ∈ SWFHG

m(Y, s), x ∈ Imv�

for all � ≥ 0, x /∈ Imq} − 2).

Then
δ(Y, s) = δG(Y, s) or δG(Y, s) + 1.

Theorem 1.3. Let (Y, s) be a rational homology three-sphere with spin structure.
Let

δG(Y, s) = 1

2
(min{m ≡ 2μ(Y, s) + 2 mod 4 | ∃x ∈ SWFHG

m(Y, s), x ∈ Imv�

for all � ≥ 0, x /∈ Imq2} − 2)

and

δG(Y, s) = 1

2
(min{m ≡ 2μ(Y, s) + 1 mod 4 | ∃x ∈ SWFHG

m(Y, s), x ∈ Imv�

for all � ≥ 0, x /∈ Imq2} − 1).

Then
δ(Y, s) = δG(Y, s) or δG(Y, s) + 1

and
δ(Y, s) = δG(Y, s) or δG(Y, s) + 1.

To interpret δG(Y, s), we may think of it just as the invariant γ but with an ad-
justment coming from the F[v]-torsion submodule of SWFHG∗ (Y, s). Similarly,
δG(Y, s) is an adjustment of γ as well, whereas δG(Y, s) is an adjustment of β .
As an immediate corollary of Theorem 1.3, we have the following:

Corollary 1.4. Let (Y, s) be a rational homology three-sphere with spin struc-
ture. Then

α(Y, s) ≥ δ(Y, s) ≥ β(Y, s) ≥ δ(Y, s) ≥ γ (Y, s).
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Given that the homology cobordism invariants from S1 and Z/4 ⊂ Pin(2) cannot
be determined from the Pin(2)-equivariant homology, it is natural to ask if there
are other subgroups of Pin(2) that produce new homology cobordism invariants.
We show that this is not the case. We call a homology cobordism invariant δI a
generalized Frøyshov invariant if it is constructed analogously to δ, but perhaps
using a different subgroup H of G; for the precise definition, see Section 3.3.

Theorem 1.5. Let {δI } be the set of generalized Frøyshov invariants associated
with a subgroup H ⊂ G. Then

{δI } ⊆ {δ, δ, δ,α,β, γ },
where the generalized Frøyshov invariants are viewed as maps θ3

H → Z.

The proof of Theorem 1.5 also gives the next corollary. We note that the closed
subgroups of G are precisely Z/2 = 〈j2〉, Z/4 = 〈j 〉, S1, cyclic subgroups of S1,
and generalized quaternion groups Q4m = 〈eπi/m, j 〉.
Corollary 1.6. Let H = Q4m ⊂ G for m even, and (Y, s) any rational homology
three-sphere with spin structure. Then the isomorphism type of SWFHG∗ (Y, s) (as
an H ∗(BG)-module) is specified by the isomorphism type of SWFHH∗ (Y, s) as an
H ∗(BH)-module.

Organization

In Section 2, we recall what we will need from equivariant topology. In Section 3,
we define Gysin sequences and then use these to establish Propositions 3.6–3.8,
which form the equivariant topology input for Theorems 1.1–1.3. In Section 3.2,
we state the existence of Manolescu’s Seiberg–Witten Floer stable homotopy type
SWF(Y, s) and show Theorems 1.1–1.3 of the Introduction. In Section 3.3, we
prove Theorem 3.12, which is the equivariant topology input for Theorem 1.5.

2. Spaces of Type SWF

2.1. G-CW Complexes

In this section, we recall the definition of spaces of type SWF from [11] and briefly
review the basics of equivariant topology, referring to Section 2 of [11] for further
details. Spaces of type SWF are the output of the construction of the Seiberg–
Witten Floer stable homotopy type of [11] and [10]; see Section 3.2. Throughout,
all homology will be taken with F= Z/2-coefficients.

Let K be a compact Lie group. A (finite) K-CW decomposition of a space
(X,A) with K-action is a filtration (Xn | n ∈ Z≥0) of X such that

• A ⊂ X0, and X = Xn for n sufficiently large.
• The space Xn is obtained from Xn−1 by attaching K-equivariant n-cells, copies

of (K/H) × Dn, for a closed subgroup H of K .

When A is a point, we call (X,A) a pointed K-CW complex.
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Let X and Y pointed K-CW complexes, at least one of which is a finite com-
plex. We define the smash product X∧Y as a K-space by letting K act diagonally.
In the case that X = V + is the one-point compactification of a finite-dimensional
K-representation V , we call 	V Y = V + ∧ Y the suspension of Y by V . Define
also

X ∧K Y = (X ∧ Y)/K.

Let EK denote a contractible space with free K-action, and let EK+ denote
EK with a disjoint base point added. The reduced Borel homology and cohomol-
ogy of X are defined by

H̃K∗ (X) = H̃∗(EK+ ∧K X),

H̃ ∗
K(X) = H̃ ∗(EK+ ∧K X).

(1)

Borel homology and cohomology are invariants of K-equivariant homotopy
equivalence.

Furthermore, there is a projection

EK+ ∧K X
π1−→EK+/K = BK+,

which induces a map π∗
1 : H ∗(BK) → H̃ ∗

K(X). Via π∗
1 , H̃ ∗

K(X) and H̃K∗ (X) in-
herit the structure of H ∗(BK)-modules. On H̃ ∗

K(X), H ∗(BK) increases grading,
whereas on H̃K∗ (X), H ∗(BK) decreases grading.

For a subgroup L ⊆ K and a K-CW complex X, we may relate the L-Borel
cohomology and K-Borel cohomology of X. Indeed, there is a quotient map

EK+ ∧L X
π−→EK+ ∧K X,

which induces a map in cohomology

H̃ ∗
K(X)

π∗−→ H̃ ∗
L(X). (2)

We call the map π∗ the restriction map from K to L and write π∗ = resK
L .

Setting a point X in (2), we have a restriction map (of algebras) H ∗(BK) →
H ∗(BL). Then H̃ ∗

L(X) inherits an H ∗(BK)-module structure by restriction. We
denote H̃ ∗

L(X), viewed as a H ∗(BK)-module, by resK
L H̃ ∗

L(X). Then the map

H̃ ∗
K(X)

resKL−→ resK
L H̃ ∗

L(X) (3)

is a map of H ∗(BK)-modules.
Let G = Pin(2) and BG its classifying space. In addition to the definition of

G from the Introduction, we may think of G as the set S1 ∪ jS1 ⊂ H, where S1 is
the unit circle in the 〈1, i〉 plane, with group action on G induced from the group
action of the unit quaternions. Thus S∞ = S(H∞) with its quaternion action is a
free G-space. Since S∞ is contractible, we identify EG = S∞.

Manolescu [11] shows that

H ∗(BG) = F[q, v]/(q3), (4)

where degq = 1 and degv = 4.
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For convenience, we also record

H ∗(BZ/2) = F[W ],
H ∗(BZ/4) = F[U,Q]/(Q2 = 0), (5)

H ∗(BS1) = H ∗(CP ∞) = F[U ],

where degU = 2 and degW = degQ = 1.
For a subset S of a group K , let 〈S〉 denote the subgroup generated by S.

There are inclusions Z/2 = 〈j2〉 ⊂ S1 ⊂ G and Z/4 ∼= 〈j 〉 ⊂ G. We describe the
corresponding restriction maps in Proposition 3.1.

We will also need to use that Borel cohomology behaves well with respect to
suspension.

Proposition 2.1 ([11], Proposition 2.2). Let V be a finite-dimensional represen-
tation of a compact Lie group K . Then, as H ∗(BK)-modules,

H̃ ∗
K(	V X) ∼= H̃ ∗-dimV

K (X),

H̃K∗ (	V X) ∼= H̃K∗-dimV (X).
(6)

We mention three irreducible representations of G:

• The trivial one-dimensional representation R.
• The one-dimensional real vector space on which j ∈ G acts by −1, and on

which S1 acts trivially, denoted R̃.
• The quaternionic representation H, where G acts by left multiplication.

Definition 2.2. Let s ∈ Z. A space of type SWF at level s is a pointed finite
G-CW complex X with

• The S1-fixed-point set XS1
is G-homotopy equivalent to (R̃s)+, the one-point

compactification of R̃s ;
• The action of G on X − XS1

is free.

We define μ(X) ∈Q/2Z by μ(X) = s
2 mod 2.

We will often have occasion later to work with 2μ(X), which we view as an
element of Q/4Z.

We note that, for a space X of type SWF,

H̃G∗ (XS1
) = H̃G∗ ((R̃s)+) = H̃G∗−s(S

0) = H∗−s(BG)

and

H̃ ∗
G(XS1

) = H ∗−s(BG),

using Proposition 2.1.
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Associated with a space X of type SWF at level s, we take the Borel cohomol-
ogy H̃ ∗

G(X), from which Manolescu [11] defines a(X), b(X), and c(X):

a(X) = min{r ≡ 2μ(X) mod 4 | ∃x ∈ H̃ r
G(X), vlx �= 0 for all l ≥ 0},

b(X) = min{r ≡ 2μ(X) + 1 mod 4 | ∃x ∈ H̃ r
G(X), vlx �= 0

for all l ≥ 0} − 1,

c(X) = min{r ≡ 2μ(X) + 2 mod 4 | ∃x ∈ H̃ r
G(X), vlx �= 0

for all l ≥ 0} − 2.

(7)

Using S1-Borel cohomology, Manolescu [11] also defines

d(X) = min{r | ∃x ∈ H̃ r
S1(X),Ulx �= 0 for all l ≥ 0}. (8)

The well-definedness of a, b, c, and d follows from the equivariant localization
theorem. We list a version of this theorem for spaces of type SWF:

Theorem 2.3 ([17], III (3.8)). Let X be a space of type SWF. Then the inclu-
sion XS1 → X, after inverting v, induces an isomorphism of F[q, v, v−1]/(q3)-
modules:

v−1H̃ ∗
G(XS1

) ∼= v−1H̃ ∗
G(X).

Furthermore,

U−1H̃ ∗
S1(X

S1
) ∼= U−1H̃ ∗

S1(X),

U−1H̃ ∗
Z/4(X

S1
) ∼= U−1H̃ ∗

Z/4(X),

W−1H̃ ∗
Z/2(X

S1
) ∼= W−1H̃ ∗

Z/2(X).

For a space X of type SWF, X is a finite G-complex and so we have that H̃ ∗
G(X)

is finitely generated as an F[v]-module. In particular, the F[v]-torsion part of
H̃ ∗

G(X) is bounded above in grading. Similarly, the F[U ]-torsion parts of H̃ ∗
S1(X)

and H̃ ∗
Z/4(X), as well as the F[W ]-torsion of H̃ ∗

Z/2(X), are bounded above in
grading.

Following (7), we define analogues of a, b, and c for Z/4. In this definition,
recall that μ(X) need not be an integer.

Definition 2.4. For X a space of type SWF, we define d(X) and d(X) by

d(X) = min{r ≡ 2μ(X) mod 2 | ∃x ∈ H̃ r
Z/4(X),Ulx �= 0 for all l ≥ 0},

d(X) = min{r ≡ 2μ(X) + 1 mod 2 | ∃x ∈ H̃ r
Z/4(X),Ulx �= 0

for all l ≥ 0} − 1.

(9)

The well-definedness of d(X) and d(X) follows from Theorem 2.3.
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2.2. Stable G-Equivariant Topology

Here we define stable equivalence for G-spaces and define the Manolescu invari-
ants α,β , and γ and their Z/4-analogues.

Definition 2.5 (see [10]). Let X and X′ be spaces of type SWF, m,m′ ∈ Z, and
n,n′ ∈ Q. We say that the triples (X,m,n) and (X′,m′, n′) are stably equivalent
if n − n′ ∈ Z and there exists a G-equivariant homotopy equivalence for some
r � 0 and some nonnegative M ∈ Z and N ∈Q:

	rR	(M−m)R̃	(N−n)HX → 	rR	(M−m′)R̃	(N−n′)HX′. (10)

Let E be the set of equivalence classes of triples (X,m,n) for a space X of type
SWF, m ∈ Z, n ∈ Q, under the equivalence relation of stable G-equivalence.1

The set E may be considered as a subcategory of the G-equivariant Spanier–
Whitehead category [11] by viewing (X,m,n) as the formal desuspension of X by
m copies of R̃ and n copies of H. We define Borel cohomology for (X,m,n) ∈ E,
as an isomorphism class of H ∗(BK)-modules, by

H̃ ∗
K((X,m,n)) = H̃ ∗

K(X)[m + 4n] (11)

for any closed subgroup K of G. The well-definedness of (11) follows from
Proposition 2.1.

Finally, we define the invariants α,β, γ , δ, δ, and δ associated with an element
of E.

Definition 2.6. For [(X,m,n)] ∈ E, we set

α((X,m,n)) = a(X)

2
− m

2
− 2n, β((X,m,n)) = b(X)

2
− m

2
− 2n,

γ ((X,m,n)) = c(X)

2
− m

2
− 2n,

δ((X,m,n)) = d(X)

2
− m

2
− 2n,

δ((X,m,n)) = d(X)

2
− m

2
− 2n, δ((X,m,n)) = d(X)

2
− m

2
− 2n.

These invariants do not depend on the choice of representative of the class
[(X,m,n)] ∈ E.

For notational convenience later, we also define

μ((X,m,n)) = μ(X) − m

2
− 2n mod 2.

1This convention is slightly different from that of [10]. The object (X,m,n) in the set of stable equiv-
alence classes E, as defined before, corresponds to (X, m

2 , n) in the conventions of [10].
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3. Gysin Sequences

In this section, we recall some facts about Gysin sequences and then provide the
topological input for the results in the Introduction. Gysin sequences were first
applied to the study of Pin(2)-equivariant Floer theory in [9].

3.1. Gysin Sequences for Change-of-Groups

Let K and L be compact Lie groups such that there is a fiber sequence of Lie
groups

L ⊂ K → Sn. (12)

Then there is a Gysin sequence, as in [17, §III.2], given by

· · · −→ H ∗(BK)
e(K,L)∪−−→ H ∗+n+1(BK)

p∗
−→H ∗+n+1(BL)

−→ H ∗+1(BK) −→ · · · , (13)

where e(K,L) is the Euler class of the sphere bundle Sn → BL = EK/L → BK ,
and p : BL → BK is the projection (note that p∗ = resK

L ).

Proposition 3.1. We specify the Euler classes associated with some sequences
of Lie groups as in (12).

(1) Associated with S1 → G → S0, we have e(G,S1) = q . Further, p∗v = U2.
(2) Associated with Z/4 → G → S1, we have e(G,Z/4) = q2. Further, p∗q = Q

and p∗v = U2.
(3) Associated with Z/2 = 〈j2〉 → Z/4 → 〈j 〉/〈j2〉 = Z/2, we have e(Z/4,

Z/2) = Q. Further, p∗Q = 0, p∗U = W 2.
(4) Associated with Z/2 = 〈j2〉 → S1 → S1/〈j2〉 = S1, we have e(S1,Z/2) = 0.

Further, p∗U = W 2.

We call these Gysin sequences Types (1)–(4), respectively.

Proof. In each case (1)–(4), it is straightforward to see that the Euler class is
specified by the algebraic structure of the entries of the exact sequence (13). For
example, we prove (1). Since H 1(BS1) = 0, we have that p∗q = 0. By exactness
of (13), q is in the image of the Euler class, and since the Euler class e(G,S1) is
of degree 1, we have e(G,S1) = q . The other cases are similar. �

More generally, for a K-CW complex X, we have a sphere bundle

Sn → EK ×L X → EK ×K X (14)

and a Gysin sequence

H ∗
K(X)

e(X)∪−−→ H ∗+n+1
K (X)

p∗
−→H ∗+n+1

L (X) −→ · · · , (15)
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where e(X) is the Euler class of the bundle (14). By construction we have a map
of bundles

EK ×L X

πL

EK ×K X

πK

BL BK

and by functoriality of the Euler class we have

e(X) = π∗
K(e(K,L)). (16)

Fact 3.2. By (16), e(X) = q, q2,Q,0 for types (1)–(4), respectively, for any K-
CW complex X.

We can now relate, in the case of spaces of type SWF, the Z/2,Z/4, S1, and
G-cohomology theories.

We adapt a definition of [9] to our setting.

Definition 3.3. Let S = (L → K → Sn) be one of the sequences of groups in
Proposition 3.1. An abstract S-Gysin sequence G consists of the following:

(1) An H ∗(BK)-module MKand an H ∗(BL)-module ML, both graded by a Z-
coset of Q and bounded below.

(2) An exact triangle of H ∗(BK)-modules

MK e(K,L)∪−
MK

p∗

resK
L ML

ι∗

(17)

where e(K,L) is the Euler class of the sequence S as in Proposition 3.1,
acting on the H ∗(BK)-module MK . Further, ι∗ has degree −n, and p∗ has
degree 0.

(3) In sufficiently high degrees, the triangle (17) is isomorphic to the exact trian-
gle corresponding to S from Proposition 3.1, perhaps with grading shifted.

Proposition 3.4. For all X ∈ E and S = (L → K → Sn), the Gysin sequence

H̃ ∗
K(X)

e(K,L)∪−
H̃ ∗

K(X)

p∗

H̃ ∗
L(X)

ι∗

(18)

is an abstract S-Gysin sequence for S of type (1)–(4). The grading shift in (3) is
2μ(X), upward.

Proof. Properties (1) and (2) of Definition 3.3 are automatically satisfied for
(18); we prove property (3). In sufficiently high degrees d ≥ N for some N ,
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H̃ d
K(X) must be isomorphic to Hd+2μ(X)(BK), and H̃ d

L(X) must be isomorphic
to Hd+2μ(X)(BL) using that X is of type SWF. Recall from the proof of Propo-
sition 3.1 that there is only one choice of maps p∗ and ι∗ that make the triples
H ∗(BK),H ∗(BK), and H ∗(BL) into exact triangles. Since H̃ ∗

K(X) and H̃ ∗
L(X)

are isomorphic to H ∗+2μ(X)(BK) and H ∗+2μ(X)(BL), the same reasoning as in
the proof of Proposition 3.1 shows that there is only one choice of maps p∗ and
ι∗ that make (18) exact in high degrees (namely, the p∗ and ι∗ listed). This estab-
lishes property (3) of Definition 3.3. �
To prove Proposition 3.6, the precursor to Theorem 1.1, we need to compare S1-
and Z/4-invariants despite there being no Gysin sequence relating S1 and Z/4
homology. As an intermediate step, we define

δZ/2(X) = 1

2
(min{m | ∃x ∈ Hm

Z/2(X),W�x �= 0 for all � ≥ 0}) (19)

for X ∈ E.
A priori, δZ/2(X) − μ(X) may be a half-integer (the next lemma implies that

it is, in fact, an integer).

Lemma 3.5. Let X ∈ E. Then δZ/2(X) = δ(X).

Proof. We will use the Gysin sequence of type (4) associated with X. For now,
fix p∗ and ι∗ to refer to the Gysin sequence maps of that type.

First, we establish δ(X) ≥ δZ/2(X). Let x ∈ H̃m
S1(X) be U -nontorsion. For suf-

ficiently large �, by property (3) of Definition 3.3, p∗(U�x) �= 0. By the equiv-
ariance property (2) of the same definition, p∗(U�x) = W 2�p∗x, and so p∗x is a
W -nontorsion element of H̃m

Z/2(X). For notational convenience, define

d
Z/2(X) = min{m ≡ 2μ(X) mod 2 | ∃x ∈ Hm

Z/2(X),W�x �= 0 for all � ≥ 0}.
We have then

min{m ≡ 2μ(X) mod 2 | ∃x ∈ Hm
S1(X),U�x �= 0 for all � ≥ 0} ≥ d

Z/2(X). (20)

We note that the only U -nontorsion elements of H̃ ∗
S1(X) are in degree d ≡

2μ(X) mod 2 by Proposition 3.4. So the left-hand side of (20) is 2δ(X). We also
define

dZ/2(X) = min{m ≡ 2μ(X) + 1 mod 2 | ∃x ∈ Hm
Z/2(X),W�x �= 0 for all � ≥ 0}.

By definition, δZ/2(X) = (min{d
Z/2(X), dZ/2(X)})/2.

We next show the inequality opposite to (20).
Let x ∈ H̃m

Z/2(X) be a W -nontorsion element with m ≡ 2μ(X) + 1 mod 2.

Then, by property (3) of Definition 3.3, ι∗(W 2�x) = U�ι∗x must be nonzero. In
particular, ι∗x ∈ H̃m−1

S1 (X) is U -nontorsion. Then we obtain

2δ(X) ≤ dZ/2(X) − 1. (21)

Furthermore,
dZ/2(X) = d

Z/2(X) ± 1, (22)
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since for x in one of the sets corresponding to d
Z/2 or dZ/2, Wx is in the

other.
But, combining (20) and (21) we have d

Z/2(X) ≤ dZ/2(X) − 1. So, from (22)

we obtain d
Z/2(X) = dZ/2(X) − 1. It follows that 2δ(X) = d

Z/2(X).
Using the definition of δZ/2(X), the proof is complete. �

The following statement corresponds to Theorem 1.1 of the Introduction.

Proposition 3.6. Let X ∈ E. Then

δ(X) = 1

2
(min{m ≡ 2μ(X) + 1 mod 2 | ∃x ∈ Hm

Z/4(X),U�x �= 0

for all � ≥ 0,Qx = 0} − 1). (23)

Proof. We denote the right-hand side of (23) by δZ/4(X). We consider the ab-
stract Gysin sequence of type (3) associated with X; fix p∗ and ι∗ to refer
to the maps in this type of Gysin sequence. Using Lemma 3.5, we need only
show

δZ/2(X) = δZ/4(X). (24)

We start by showing δZ/4(X) ≤ δZ/2(X). We note that any W -nontorsion element
x of H̃ ∗

Z/2(X) with degx ≡ 2μ(X) + 1 mod 2 must have U�ι∗x = ι∗W 2�x �=
0 for � sufficiently large. However, Qι∗x = 0 by exactness of (17). Thus,
if x ∈ H̃m

Z/2(X) with m ≡ 2μ(X) + 1 mod 2 is W -nontorsion, then there ex-

ists an element ι∗x ∈ H̃m
Z/4(X) that is U -nontorsion and is annihilated by Q.

Thus

min{m ≡ 2μ(X) + 1 mod 2 | ∃x ∈ H̃m
Z/4(X),U�x �= 0 for all � ≥ 0,Qx = 0} − 1

≤ dZ/2(X) − 1.

By the proof of Lemma 3.5, (dZ/2(X) − 1)/2 = δZ/2(X). Then

δZ/4(X) ≤ δZ/2(X).

Next, we show

δZ/2(X) ≤ δZ/4(X). (25)

Indeed, fix m ≡ 2μ(X) + 1 mod 2 and x ∈ H̃m
Z/4(X) so that x is U -nontorsion

and satisfies Qx = 0. Then x ∈ Im ι, say x = ιy, by exactness of (17). However,
since x is U -nontorsion, y is nontorsion as well, so we see that

min{m | ∃x ∈ H̃m
Z/2(X),W�x �= 0 for all � ≥ 0} ≤ 2δZ/4(X).

Recalling the definition of δZ/2(X), this is precisely δZ/2(X) ≤ δZ/4(X), complet-
ing the proof. �

The following proposition corresponds to Theorem 1.2 from the Introduction.
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Proposition 3.7. Let X ∈ E. Fix N ∈ Z. Then δ(X) ≤ 2N +μ(X)+1 if and only
if

min{m ≡ 2μ(X) + 2 mod 4 | ∃x ∈ H̃m
G (X), v�x �= 0 for all � ≥ 0, qx = 0} − 2

2
≤ 2N + μ(X). (26)

Proof. Denote the left-hand side of (26) by δG(X). First, we show that δG(X) ≤
2N + μ(X) implies δ(X) ≤ 2N + μ(X) + 1.

Say δG(X) ≤ 2N + μ(X), that is, there exists a v-nontorsion element x ∈
H̃

4N+2μ(X)+2
G (X), so that qx = 0. Then, by exactness of (17), x ∈ Im ι∗, say

x = ι∗y. Since x is v-nontorsion, y must be U -nontorsion. Thus, δ(X) ≤ degy
2 =

2N + μ(X) + 1.
Next, say that δ(X) ≤ 2N + μ(X) + 1. Let x ∈ H̃

4N+2μ(X)+2
S1 (X) be U -

nontorsion. Then by (1) of Proposition 3.1, ι∗x must be v-nontorsion. In par-
ticular, ι∗x is a v-nontorsion element of H̃

4N+2μ(X)+2
G (X) with q(ι∗x) = 0. Thus

δG(X) ≤ 2N + μ(X), as needed. �

The following proposition corresponds to Theorem 1.3 from the Introduction.

Proposition 3.8. Let X ∈ E. Then δ(X) ≤ 2N + μ(X) + 1 for some integer N if
and only if

min{m ≡ 2μ(X) + 2 mod 4 | ∃x ∈ H̃m
G (X), v�x �= 0 for all � ≥ 0, q2x = 0} − 2

2
≤ 2N + μ(X). (27)

Further, δ(X) ≤ 2N + μ(X) + 1 if and only if

min{m ≡ 2μ(X) + 1 mod 4 | ∃x ∈ H̃m
G (X), v�x �= 0 for all � ≥ 0, q2x = 0} − 1

2
≤ 2N + μ(X). (28)

Proof. We will consider Gysin sequences of Type (2). Denote the left-hand side
of (27) by δG(X) and that of (28) by δG(X).

First, we show that δ(X) ≤ 2N + μ(X) + 1 implies δG(X) ≤ 2N + μ(X).

Indeed, say δ(X) ≤ 2N + μ(X) + 1 and x ∈ H̃
4N+2μ(X)+3
Z/4 (X), so that x is U -

nontorsion. Then by (2) of Proposition 3.1, ιx is v-nontorsion. Further, q2ιx = 0
by exactness of (17). Thus

min{m ≡ 2μ(X) + 2 mod 4 | ∃x ∈ H̃m
G (X), v�x �= 0 for all � ≥ 0, q2x = 0}

≤ 4N + 2μ(X) + 2.

Then δG(X) ≤ 2N + μ(X), as needed.
Next, suppose δG(X) ≤ 2N + μ(X); we will show δ(X) ≤ 2N + μ(X) + 1.

Choose x ∈ H̃
4N+2μ(X)+2
G (X) so that x is v-nontorsion and q2x = 0. Then x ∈

Im ι, say x = ιy, and y is U -nontorsion in grading 4N + 2μ(X) + 3. We then
obtain δ(X) ≤ 2N + μ(X) + 1, as needed.
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The proof for δ(X) is completely analogous. �

Propositions 3.7 and 3.8 cannot be improved, as we will see in Example 3.13, in
that there exist spaces X1,X2 with isomorphic H̃ ∗

G(Xi) but different δ, δ, and δ

invariants.

3.2. Seiberg–Witten Floer Homology

In this section, we convert the results of the previous section into statements for
three-manifolds. First, we recall the existence of the Seiberg–Witten Floer stable
homotopy type.

Theorem 3.9 (Manolescu [11; 10]). There is an invariant SWF(Y, s), the
Seiberg–Witten Floer spectrum class, of rational homology three-spheres with
spin structure (Y, s), taking values in E. A spin cobordism (W, t), with b2(W) = 0,
from Y1 to Y2, induces a map SWF(Y1, t|Y1) → SWF(Y2, t|Y2). The induced map
is a homotopy-equivalence on S1-fixed-point sets.

Manolescu constructs SWF(Y, s) by using finite-dimensional approximation to
the Seiberg–Witten equations on the Coulomb slice. From SWF(Y, s) we extract
homology cobordism invariants as in the following definition.

Definition 3.10. For a spin rational homology three-sphere (Y, s), the Manoles-
cu invariants α(Y, s), β(Y, s), γ (Y, s), and δ(Y, s) are defined by α(SWF(Y, s)),
β(SWF(Y, s)), γ (SWF(Y, s)), and δ(SWF(Y, s)), respectively. We further define

δ(Y, s) = δ(SWF(Y, s)) and δ(Y, s) = δ(SWF(Y, s)).

All these quantities are invariant under homology cobordism.
Proof of Theorems 1.1–1.3. These theorems follow by applying Propositions

3.6–3.8 to SWF(Y, s) and dualizing.

3.3. Equivariant Homology of Subgroups of G

Here we make precise and prove Theorem 1.5. We first define generalized
Frøyshov invariants.

Let H ⊆ G be a Lie subgroup of G. Note that H ∗(BG) is periodic, that is, cup
product with v ∈ H ∗(BG) defines an isomorphism of F-modules

Hn(BG) → Hn+4(BG)

for all n ≥ 0. It turns out that H ∗(BH) is also periodic; fix P ∈ H ∗(BH) so that
cup product with P induces an isomorphism H ∗(BH) → H ∗+degP (BH).

For a space X of type SWF at level s, let ι : XS1 → X denote the inclusion map
of the S1-fixed point set, and let ι∗ denote the induced map in Borel cohomology

ι∗ : H̃ ∗
H (X) → H̃ ∗

H (XS1
) = H ∗+s(BH).
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Definition 3.11. For a homogeneous element e of H ∗(BH)/P (with Z/degP -
grading) and X ∈ E, we define the generalized Frøyshov invariant δH,e(X) by

(min{m ≡ 2μ(X) + deg e mod (degP) |
∃x ∈ H̃m

H (X), ι∗x = P ke for some k} − deg e)/2. (29)

The well-definedness of the quantity δH,e(X) is guaranteed by the equivariant
localization theorem. It is apparent that all of α,β, γ, δ and δ and δ are particular
cases of generalized Frøyshov invariants.

Theorem 3.12. Let H ⊂ G a Lie subgroup, and let {δH,e} be the set of general-
ized Frøyshov invariants associated with H . Then

{δH,e} ⊆ {δ, δ, δ,α,β, γ },
where the generalized Frøyshov invariants are viewed as maps E → Z. Moreover,
δ(X) and δ(X) are not generally determined by H̃G∗ (X).

Proof. We refer to Example 3.13 for the last assertion, so we need only determine
δH,e.

First, consider strict subgroups Z/n = H ⊂ S1.
If n is odd, then H ∗(BZ/n;Z/2) ∼= F, concentrated in degree 0, and so there

are no generalized Frøyshov invariants. For n even, we first note that

H ∗(BZ/n;Z/2) = H ∗(BZ/2r ;Z/2)

for n = 2rn′ and n′ odd (see, e.g., Proposition 3G.1 of [4]). In fact,

H ∗(BZ/2r ;Z/2) = F[Q,U ]/Q2 (30)

for r ≥ 2, where degQ = 1 and degU = 2 as usual. To see this, we recall (see
Example 3G.5 in [4]) that

H ∗(BZ/2r+1;Z/2) → H ∗(Z/2r ;Z/2)

is an isomorphism in even degrees and zero in odd degrees. Combining this with
the fact that H 1(BZ/2r ;Z/2) ∼= F for all r and the fact that the cup product with
U (for any r) is an isomorphism

H ∗(BZ/2r ;Z/2) → H ∗+2(BZ/2r ;Z/2),

we obtain (30).
Using the ring structure as before, an argument as in Lemma 3.5 shows that,

for n even, the only associated generalized Frøyshov invariant is δZ/n,1 and that
δZ/n,1 = δ (in principle, there are two separate Frøyshov invariants when r ≥ 2;
however, they turn out to agree). Thus the generalized Frøyshov invariants asso-
ciated with a subgroup of S1 are determined by δ and determine δ.

Next, consider a strict subgroup H ⊂ G not contained in S1 and not equal to
Z/4. Then H is a generalized quaternion group Q4m = 〈eπi/m, j 〉 with m ≥ 2.

First, let m be even. We note H 1(BQ4m) = Hom(Q4m,F) = F2. Then, since
H 1(BG) = F, we see that the Gysin sequence associated to the sphere bundle

S1 → BQ4m → BG
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splits:
H ∗(BQ4m) = H ∗(BG) ⊕ H ∗(BG)[−1] (31)

as an H ∗(BG)-module. Recall that H ∗(BG) acts on H ∗(BQ4m) by the map
p : H ∗(BG) → H ∗(BQ4m).

Let r generate H 1(BG)[−1] in the decomposition (31). Then the homoge-
neous elements of H ∗(BQ4m)/(v) are

1, q, q + r, r, q2, q2 + qr, qr, and q2r.

Furthermore, we note from the definition of δH,e that, for X ∈ E,

δH,f (X) ≥ δH,e(X) if f divides e. (32)

Repeating the argument in the proof of Propositions 3.7 and 3.8, we see that

δr (X) ≥ α(X), δq+r (X) ≥ α(X), δqr (X) ≥ β(X),

δqr+q2(X) ≥ β(X), δq2r (X) ≥ γ (X),
(33)

δ1(X) ≤ α(X), δq(X) ≤ β(X), δq2(X) ≤ γ (X). (34)

However, δr (X) ≤ δ1(X) by (32), so δr (X) ≤ δ1(X) = α(X). Similarly, we obtain
that all the inequalities in (33) and (34) are equalities. Thus δH,e(X) are in fact
determined by α(X),β(X), and γ (X). This completes the proof for the even m

case.
If m is odd, then we have H ∗(BQ4m) ∼= H ∗(BZ/4). The argument of

Lemma 3.5 then adapts to show that the generalized Frøyshov invariants of Q4m

and Z/4 agree. �

Theorem 1.5 follows from Theorem 3.12, whereas Corollary 1.6 is a conse-
quence of the proof of Theorem 3.12. We close with an example showing that
SWFHG∗ (Y, s), as an H ∗(BG)-module, does not determine δ, δ, or δ.

Example 3.13. There are pointed G-stable homotopy types X1 and X2 such that

H̃ ∗
G(X1) = H̃ ∗

G(X2) = V+
8 ⊕ V+

1 ⊕ V+
2 ⊕ F2

3 ⊕ F4,

where V+
n denotes the F[v]-module F[v] with grading shifted up by n, and Fn

denotes a copy of F concentrated in degree n. Furthermore,

δ(X1) = δ(X1) = 2, δ(Xi) = 0 and δ(X2) = δ(X2) = 3.

To specify the q-action, let t8, t1, and t2 be F[v]-generators of V+
8 , V+

1 , and
V+

2 respectively, whereas y3, y
′
3 generate F2

3, and y4 generates F4. Then qt8 =
v2t1, qt1 = t2, qt2 = y3, and qy′

3 = y4.
We give a description of the chain complexes of X1 and X2 over CCW∗ (G) =

F[s, j ]/(sj = j3s, s2 = j4 + 1 = 0) where deg s = 1 and deg j = 0. Indeed,
CCW∗ (X1) is F[f,x1, x3, x4, x5, y3] with ∂(x1) = f , ∂(x3) = (1 + j)3sx1,
∂(x4) = (1 + j)x3, ∂(x5) = (1 + j)x4 + sx3, and ∂(y3) = (1 + j)2sx1. We have
CCW∗ (X2) = F[f,x1, x3, x4, y3, y5], where the differentials are as before, and
∂(y5) = (1 + j)2sy3. The calculation of the Manolescu invariants for both exam-
ples is an application of the techniques of [16; 15]. It is not known to the author
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if the spaces X1 and X2 are realized as SWF(Y, s) for some rational homology
sphere Y .
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