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Gromov–Witten Theory of Target Curves and the
Tautological Ring

Felix Janda

Abstract. In the Gromov–Witten theory of a target curve, we con-
sider descendent integrals against the virtual fundamental class rela-
tive to the forgetful morphism to the moduli space of curves. We show
that cohomology classes obtained in this way lie in the tautological
ring.

0. Introduction

Let X be a nonsingular projective variety over C, let Mg,n(X,β) be the moduli
space of stable maps to X of class β , and let

π : Mg,n(X,β) → Mg,n

be the forgetful map to the moduli space of stable curves.1 The moduli space
Mg,n(X,β) possesses a perfect obstruction theory defining a virtual fundamental
class

[Mg,n(X,β)]vir ∈ H∗(Mg,n(X,β),Q)

of expected dimension [1; 8].
The tautological rings RH ∗(Mg,n) of Mg,n are most compactly defined (see

[2]) as the smallest system of subrings of H ∗(Mg,n)
2 stable under pushforward

and pullback by the maps

• Mg,n+1 → Mg,n forgetting one of the markings,
• Mg1,n1+1 × Mg2,n2+1 → Mg1+g2,n1+n2 gluing two curves at a point,
• Mg−1,n+2 → Mg,n gluing together two markings of a curve.

Although this definition seems restrictive, many geometric classes lie in the tau-
tological ring.

Question 1 (Pandharipande [2]). Does

π∗[Mg,n(X,β)]vir ∈ H∗(Mg,n) ∼= H ∗(Mg,n)

lie inside RH ∗(Mg,n) when X is defined over the field Q of algebraic numbers?
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1See [3] for an introduction to the moduli space of stable maps.
2We will generally work with Q-valued homology and cohomology.
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This question can be answered affirmatively for toric varieties by the method of
virtual localization [4]. We show in this article that the answer is also “yes” in the
case where X is a curve. For this, it is convenient to generalize the question.

In the first direction of generalization, we also allow arbitrary descendent in-
sertions: For each marking, there is an evaluation map evi : Mg,n(X,β) → X.
Furthermore, for each marking, let ψi be the first Chern class of the cotangent line
bundle at marking i. For any choice of n cohomology classes γ1, . . . , γn ∈ H ∗(X)

and nonnegative integers k1, . . . , kn, more general cohomology classes can be de-
fined by

π∗
( n∏

i=1

ψ
ki

i ev∗
i (γi) ∩ [Mg,n(X,β)]vir

)
∈ H ∗(Mg,n).

We will call such a class a “GW-class”. Integrating a GW-class gives the corre-
sponding usual Gromov–Witten descendent invariant. We can again ask whether
GW-classes lie inside RH ∗(Mg,n).

Another direction of generalization is possible via relative Gromov–Witten
theory [6; 7; 5], where for a smooth variety X together with a smooth divisor D,
the moduli space Mg,n(X,β,μ1, . . . ,μm) of relative stable maps is considered.
This moduli space is a compactification of the space of stable maps to X such
that the preimage of D is finite and the cohomology-valued partitions μ1, . . . ,μm

specify for each connected component D′ of D the ramification profile over D′
and the class of the source curve in D′. We follow the convention that the preim-
ages of D are marked, so that a projection map

π : Mg,n(X,β,η1, . . . , ηm) → Mg,n+�(η)

can be defined, where �(η) is the sum of the lengths of the partitions η1, . . . , ηm.

Question 2. Does

π∗
( n∏

i=1

ψ
ki

i ev∗
i (γi) ∩ [Mg,n(X,β,μ1, . . . ,μm)]vir

)
∈ H ∗(Mg,n+�(η))

lie inside RH ∗(Mg,n) when X and D are defined over Q?

The main result of this paper is the following theorem.

Theorem 1. If X is an algebraic curve and D a collection of pairwise distinct
points on X, all (relative) GW-classes lie in the tautological ring RH∗(Mg,n).

To say more about this result, we specialize the discussion to the case where X is
a curve.

Recall that the cohomology of an algebraic curve X of genus h over C has a
basis

{1, α1, . . . , αh,β1, . . . , βh,ω}
such that 1 is the identity of the cup product, ω is the Poincaré dual of a point, and
the αi ∈ H 1,0(X,C) and βi ∈ H 0,1(X,C) form a symplectic basis of H 1(X,C),
that is, αi ∪ βi = ω and βi ∪ αi = −ω for all i, and all other cup products vanish.
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The particular case of Theorem 1 where X = P1 was proven in [2]. A large part
of our proof is a reduction to this particular case. We also build on the series of
articles [10; 9; 11], which gives an effective way to calculate all relative Gromov–
Witten invariants of X.

We now give an overview of the proof of Theorem 1. If the GW-class has
only even cohomology insertions, then we can use the degeneration formula to
calculate the GW-class in terms of GW-classes of P1 relative to a point, and by
the results of [2] these are also tautological. This is done in Section 1.

In the presence of odd insertions, new phenomena can occur. For example, we
might obtain odd classes in H ∗(Mg,n). These can only be tautological if they
vanish, since by definition tautological classes are algebraic. More generally, we
might obtain classes inside a piece Hi,j (Mg,n) of the Hodge diamond with i 	= j .
We call such classes unbalanced.

Corollary. All unbalanced GW-classes of curves vanish.

In fact, we will first prove this corollary in Section 4 and use it as an input for the
proof of Theorem 1.

The remaining GW-classes are balanced. In Section 5 we will give an algo-
rithm to calculate such GW-classes in the presence of odd cohomology in terms
of GW-classes with only even insertions. It is a straightforward generalization of
the algorithm given in [11].

If there are odd insertions, then we cannot use a degeneration formula to reduce
to the case of P1. Still, it is possible to deform X into a chain of elliptic curves
to reduce to the genus 0 and genus 1 cases. This is done in Section 2. Therefore,
starting from Section 3, we will assume X to be of genus one.

As in [11], we will use the following properties of Gromov–Witten theory to
relate GW-classes with odd insertions to those with only even insertions:

• algebraicity of the virtual fundamental classes,
• invariance under monodromy transformations of X,
• degeneration formulae,
• vanishing relations from the group structure on an elliptic curve.

We study relations coming from the monodromy invariance of Gromov–Witten
theory and the group structure of an elliptic curve in Sections 3.1 and 3.2, respec-
tively.

For the proof of the corollary, we will only need the results from Sections 2,
3.1, and 4. It is even possible to adapt the proof so that the use the reduction to
genus 1 is not necessary. Its proof is the main new part of this article.

We have tried to apply the analogous methods in the case where X is a quintic
surface, but they do not seem to suffice in this case.

Notation and Conventions

Because of our extensive use of the degeneration formula, we will always allow
our source curves to be disconnected. So we will always work with disconnected
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Gromov–Witten invariants, GW-classes, and a tautological ring of not necessarily
connected curves. These can however be related to their connected counterparts
in a purely combinatorial fashion.

The only possible curve classes of X are multiples of the class of X. We write
Mg,n(X,d) for the space of stable maps of curve class d[X] or, in other words,
of degree d .

We use the notation

〈τk1(γ1) . . . τkn(γn) | η〉Xg,d :=
∫

[Mg,n(X,η)]vir

n∏
i=1

ψ
ki

i ev∗
i (γi)

for relative Gromov–Witten invariants, where η = (η1, . . . , ηm) is a collection of
partitions. For GW-classes, we use the analogous but nonstandard notation

[τk1(γ1) . . . τkn(γn) | η]Xr
:= π∗

( n∏
i=1

ψ
ki

i ev∗
i (γi) ∩ [Mg,n(X,η)]vir

)
∈ H2r (Mg,n+�(η)).

We have left out the degree d since it is the size of any of the usual partitions
η1, . . . , ηm. The notation also does not specify the genus g of the source curve
since it is determined by the formula

r = 2g − 2 + n + d(2 − 2h) −
n∑

i=1

(ki + codim(γi)) −
m∑

i=1

(d − �(ηi)).

If this would lead to a half-integer value of g, we define the GW-class to be zero.

1. Even Classes

We consider the computation of GW-classes of a curve X with only even inser-
tions.

There is a nonsingular family Xt of curves of genus h > 0 over C such that
Xt

∼= X for t 	= 0 and X0 is an irreducible curve of geometric genus h − 1 with
a node. The degeneration formula relates the GW-classes of X to the GW-classes
of the normalization X̃0 of X0 relative to the two preimages of the marked point.
It is important to note that the even classes of X can be lifted to Xt . All of this
discussion generalizes to the situation of X relative to marked points q1, . . . , qm.

Let

M =
∏
h∈H

τoh
(1)

∏
h′∈H ′

τo′
h′ (ω)

be a monomial in insertions of even classes, and let η1, . . . , ηm be choices of split-
tings at the relative points. Since the target curve is irreducible, the degeneration
formula [7] in this case says that

[M | η1, . . . , ηm]Xr =
∑

|μ|=d

z(μ)ι∗[M | η1, . . . , ηm,μ,μ]X̃0
r ,
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where the sum is over partitions μ = (μ1, . . . ,μ�(μ)), the automorphism factor
z(μ) is defined by

z(μ) = |Aut(μ)|
�(μ)∏
i=1

μi,

and ι is the map gluing together the last two markings.
Using this formula repeatedly, we can reduce the genus h until we arrive at the

case of X = P1 relative to q1, . . . , qn, which has been studied in [2]. This implies
that Theorem 1 is true in the case that all γi are even classes.

2. Reduction to Genus One

Recall that we have chosen a symplectic basis αi,βi ∈ H 1(X,C). There is a de-
formation Y → P1 of X into X̃ = E ∪ X′, a curve of genus one and a curve of
genus h − 1 connected at a node p. Moreover, the symplectic basis of H 1(X,C)

can be lifted to Y such that over X̃ the classes α1, β1 give a symplectic basis of
H 1(E,C) and the other αi and βi give a symplectic basis of H 1(X′,C). Further-
more, the deformation can be chosen such that ω deforms to the Poincaré dual
class of a point on the genus 1 curve. Similarly, in the relative theory, the defor-
mations of the relative points q1, . . . , qm can be assumed to lie on the genus 1
component.

The degeneration formula is slightly more complicated to write down in this
case since there is a choice for the splitting of the domain curve into two parts,
one for each component of X̃, and a choice of splitting μ at p. For each partition
g = g1 + g2 + �(μ) − 1 of g, there is a gluing map

ι : Mg1,n1+�(η)+�(μ) × Mg2,n2+�(μ) → Mg,n1+n2+�(η),

gluing two curves along the last �(μ) markings.
Let Mω , M1, and M2 be monomials in insertions of elements in {ω}, {α1, β1},

and {αi,βi | i 	= 1}, respectively. Furthermore, let M := τoH
(1) where

τoH
(1) :=

∏
h∈H

τoh
(1)

is a monomial in insertions of the identity. After a change of sign, a general GW-
class we wish to calculate is of the form

[MMωM1M2 | η1, . . . , ηm]Xr .

By the degeneration formula this equals∑
r1+r2=r,

|μ|=d,I⊂H

z(μ)ι∗([τoI
(1)MωM1 | η1, . . . , ηm,μ]Er1

, [τoH\I (1)M2 | μ]X′
r2

).

Since the tautological rings are compatible with ι, we can induct on the genus
of X to reduce to the case where X is of genus 1. Let us fix a symplectic basis α, β
of H 1(X,C) for this and the following sections. In this case, we can use a different
degeneration to simplify the problem further. Namely, X can be degenerated to X
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with a rational tail. This can be used to move the ω insertions and all but one
relative point to the rational tail.

We have therefore reduced the proof of Theorem 1 to showing the following
statements.

Theorem 2. Let X be a curve of genus 1 relative to a point p with symplectic
basis α,β ∈ H 1(X,C). Then, for every partition η of d and any monomial M in
insertions of identity classes α and β , the classes

[M | η]Xr
lie in the tautological ring RH ∗(Mg,n+�(η)). In particular, if the number of inser-
tions of α does not equal the number of insertions of β , then the class is zero.

3. Relations

In this section, we introduce two suitably generalized methods of [11] to produce
relations between relative GW-classes of genus one targets.

3.1. Relations from Monodromy

By choosing a suitable loop in the moduli space M1,1 starting at the point cor-
responding to (X,p) around the point corresponding to the nodal elliptic curve,
we obtain a deformation of X to itself that leaves the even cohomology invariant
while it acts on H 1(X,C) via(

α

β

)
→ φ

((
α

β

))
:=

(
1 0
1 1

)(
α

β

)
=

(
α

α + β

)
.

In fact, the complete monodromy group acts trivially on the even cohomology and
via the standard SL2(Z)-representation on H 1(X,C) ∼= C2.

Because of the deformation invariance of Gromov–Witten theory, applying this
transformation to all the descendent insertions leaves the GW-class invariant. This
gives a relation between GW-classes.

We will use only these relations to establish the vanishing of unbalanced
classes in Section 4.

For the proof of Theorem 2, we consider certain linear combinations of these
relations, which have a nice form if we assume that the vanishing of GW-classes
of unbalanced classes has already been shown. Let I and J be index sets of the
same order, and

n : I → Q and m : J → Q

be refined descendent assignments. Here, a refined descendent assignment is a
formal Q-linear combination of usual descendent assignments. Monomials of de-
scendents with such assignments are just expanded multilinearly. Refined descen-
dent assignments only serve as a formal tool here. We consider the resulting GW-
classes to lie in the Q-vector space⊕

g≥0

H�(Mg,n+�(η)).
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Generalizing the definition of the map ι∗ suitably, we can apply the degeneration
formula also to GW-classes involving refined descendent assignments.

For a subset δ ⊂ I , let S(δ) be the set of all subsets of I � J of cardinality |I |
containing δ. For any D ⊆ I � J , we may consider the class

τn,m(D) :=
∏
i∈I

τni
(γ D

i )
∏
j∈J

τmj
(γ D

j ),

where

γ D
k =

{
α if k ∈ D,

β otherwise.

Finally, we consider a monomial

N =
∏
h∈H

τoh
(1)

∏
h′∈H ′

τo′
h′ (ω)

in the monodromy invariant insertions.

Proposition 1. The monodromy relation R(N,n,m, δ) = 0 holds for any proper
subset δ ⊂ I . Here

R(N,n,m, δ) =
∑

D∈S(δ)

[Nτn,m(D)]Xd .

Proof. Consider the application of the monodromy transform φ to[
N

∏
i∈I

τni
(γ δ

i )
∏
j∈J

τmj
(β)

]X

d

.

This class vanishes since it is unbalanced because δ ⊂ I is a proper subset. After
applying φ, all terms but those with exactly |I | insertions of α vanish. The sum
of these remaining terms is exactly R(N,n,m, δ). �

3.2. Relations from the Elliptic Action

Using the group structure of X induced by identifying X with its Jacobian via a
point 0 ∈ X gives another set of relations.

Let the small diagonal of Xr be the subset

{(x, . . . , x) : x ∈ X} ⊂ Xr,

and �r ∈ Hr−1(Xr,C) be its Poincaré dual. To obtain the relations, we will use
the fact that �r is invariant under the diagonal action of the elliptic curve X on
Xr and the Künneth decomposition of �r .

Let K and H be two ordered index sets, and P a set partition of K into subsets
of size at least 2. For any part p of P , we have a product evaluation map

φp : Mg,K�H (X,d) → X|p|.
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Let l : K →  be an assignment of descendents. Finally, let M be a monomial in
insertions of the identity

M =
∏
h∈H

τoh
(1).

Proposition 2. The elliptic vanishing relation V (M,P, l) = 0 holds. Here

V (M,P, l) := π∗
(∏

h∈H

ψ
oh

h

∏
k∈K

ψ
lk
k

∏
p∈P

φ∗
p(�|p|) ∩ [Mg,K�H (X,d)]vir

)
. (1)

Notice that no insertions of ω appear and that we do not work in the relative
theory. There is a natural generalization to a more general assignment l : K →
Q.

Proof of Proposition 2. The elliptic curve X acts on the moduli space
Mg,H�K(X,d) by the action induced from the group operation X × X → X.
The action can be used to fix the image in X of one marked point q . This gives an
X-equivariant splitting

Mg,H�K(X,d) ∼= ev−1
q (0) × X.

In particular, there exists an algebraic quotient

Mg,H�K(X,d)/X ∼= ev−1
q (0)

of Mg,H�K(X,d).
Notice that the products in (1) are pulled back via the projection map

Mg,H�K(X,d) → Mg,H�K(X,d)/X

from an analogous class on the quotient space. Furthermore, the virtual funda-
mental class is also pulled back from the quotient. Thus, the push–pull formula
applied to the projection map implies that the GW-class must vanish. �

To apply these relations, we need to reformulate them as relations between GW-
classes of X. To rewrite the φp-pullbacks as products of usual pullbacks via the
evaluation maps, we Künneth-decompose the classes �r . For example, for �2
and �3, we have

�2 = 1 ⊗ ω + ω ⊗ 1 − α ⊗ β + β ⊗ α,

�3 = 1 ⊗ ω ⊗ ω + ω ⊗ 1 ⊗ ω + ω ⊗ ω ⊗ 1 − ω ⊗ α ⊗ β + ω ⊗ β ⊗ α

− α ⊗ ω ⊗ β + β ⊗ ω ⊗ β − α ⊗ β ⊗ ω + β ⊗ α ⊗ ω.

In general, �r is a sum �r = �even
r + �odd

r , where �even
r is the sum of the r

classes of the form
ω ⊗ · · · ⊗ ω ⊗ 1 ⊗ ω · · · ⊗ ω,

and �odd
r is the sum of the

(
r
2

)
linear combinations of classes

−ω ⊗ · · · ⊗ ω ⊗ α ⊗ ω ⊗ · · · ⊗ ω ⊗ β ⊗ ω ⊗ · · · ⊗ ω

+ω ⊗ · · · ⊗ ω ⊗ β ⊗ ω ⊗ · · · ⊗ ω ⊗ α ⊗ ω ⊗ · · · ⊗ ω.
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We are mostly interested in the odd summand since the even summand is usually
already known by an induction hypothesis.

4. Unbalanced Classes

In this section, let us fix a monomial M in insertions of even classes of X and an
index set I for the odd insertions. Our aim is to show that the classes

C(S) :=
[
M ·

∏
i∈I

τni
(γ

I\S
i ) | η

]X

r

,

where

γ
I\S
i :=

{
α if i /∈ S,

β if i ∈ S,

vanish in the unbalanced case, that is, where |I | 	= 2|S|.
By symmetry, for the proof of the vanishing C(S) = 0, we can assume that

2|S| < |I |. We then proceed by induction on |S|, starting with the empty case
|S| < 0.

Choose a subset J ⊂ I of size 2|S| + 1 containing S. For any subset T ⊂ J of
size |S| + 1, consider the monodromy relation

C(T ) =
[
M ·

∏
i∈I

τni
(φ(γ

I\T
i )) | η

]X

r

=
∑
S′⊂T

C(S′).

After subtracting the left-hand side from the right-hand side and using the induc-
tion hypothesis, we obtain the relation

0 = R(T ) :=
∑
S′⊂T

|S′|=|S|

C(S′). (2)

Relation (2) can be inverted as

C(S′) =
|S|∑
i=0

(−1)i+|S|c−1
i

∑
T ⊂J

|T |=|S|+1,|T ∩S′|=i

R(T ),

where

ci := (|S| + 1)

(|S|
i

)
	= 0.

Therefore, C(S′) = 0 for any S′ ⊂ J of size |S|. In particular, we have established
the induction step C(S) = 0.

5. Balanced Classes

In this section, we finish the proof of Theorem 2 in the remaining case of balanced
classes, therefore giving a proof of Theorem 1. We follow the discussion of [11,
Section 5.5] and try to keep the notation as similar as possible. Compared to [11],
there is one additional induction on the codimension.
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The following lemma will be used to determine relative GW-classes from a set
of related absolute GW-classes. Before stating the lemma, we need to introduce a
special refined descendent assignment.

Let P(d) be the set of partitions of d , and QP(d) the Q-vector space of func-
tions from P(d) to Q. Let

τ̃ (ω) =
∞∑

q=0

cqτq(ω)

be a refined descendent of ω. The Gromov–Witten theory of P1 relative to a point
gives, for each v ≥ 0, a function

γv : P(d) → Q, η → 〈τ̃ (ω)v | η〉P1
.

Fact. There exists a Q-linear combination τ̃ (ω) depending on d such that the set
of functions

{γ0, γ1, . . .}
spans QP(d).

Proof. This is Lemma 5.6 in [11]. Its proof uses the Gromov–Witten Hurwitz
correspondence [10]. �

We fix such a refined descendent assignment τ̃ (ω). Let us define

ψ̃ =
∞∑

q=0

cqψq

so that formally τ̃ (ω) = τψ̃ (ω).

Lemma 1. Let M , L, A, and B be monomials in insertions of 1, ω, α, and β ,
respectively:

M =
∏
h∈H

τoh
(1), L =

∏
h′∈H ′

τo′
h′ (ω),

A =
∏
i∈I

τni
(α), B =

∏
j∈J

τmj
(β),

and let η ∈ P(d) be a splitting. Then the GW-classes

[MAB | η]Xr , [MLAB]Xr,d
are tautological if the classes

[M ′τ̃ (ω)vAB]Xr,d , [M ′AB | μ]Xr ′

are tautological for arbitrary v ≥ 0, r ′ ≤ r , μ ∈ P(d), and divisors M ′ of M

except (possibly) in the case r ′ = r , M ′ = M .
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Proof. We first study the case M = 1, r = 0. There is a degeneration of X into
X ∪pt P

1 we have already studied in Section 2. The corresponding degeneration
formula spells here

[τ̃ (ω)vAB]X0,d =
∑
|η|=d

z(η)ι∗([AB | η]X0 , [τ̃ (ω)v | η]P1

0 ).

By Fact, letting v vary this determines [AB | η]X0 for all η. The degeneration
formula

[LAB]X0,d =
∑
|η|=d

z(η)ι�([LAB | η]X0 , [τ̃ (ω)v | η]P1

0 )

then determines the second kind of GW-class if M = 1, r = 0.
In general, there are additional sums in the degeneration formula, one for the

distribution of the factors of M and one for the splitting of the domain curve.
However, by the hypothesis of the lemma and the fact that we already have shown
the tautologicalness of GW-classes of P1, only the summand corresponding to the
distribution of all of M to X and all of r to X may be nontautological. But then
we can mirror our argument in the simple case. �

5.1. Simple Case

To illustrate the principle of the proof, we start with the GW-classes with only two
odd insertions (one of each α and β). So for descendent assignments n and m, a
monomial of identity insertions

M =
∏
h∈H

τoh
(1),

and the choice of splitting μ for the relative point, we wish to determine

[Mτn(α)τm(β) | μ]Xr
in terms of GW-classes with only even insertions. By induction on r and M ,
assume that this statement has already been proven for all r ′ ≤ r and M ′ | M

except (possibly) in the case r ′ = r , M ′ = M .
Let Kv be an index set with v + 2 elements. We first look at the elliptic van-

ishing relation V (M, {Kv}, l), where l assigns ψ̃ to every element of Kv . The
relation contains 2

(
v+2

2

)
summands that contain odd classes, and in fact since the

descendent assignment is identical for each element of Kv , each of them is equal
to

−[Mτ̃(ω)vτ̃ (α)τ̃ (β)]Xr,d ,

which we thus have determined in terms of even GW-classes.
Lemma 1 and the induction hypothesis yield the determination of the classes

[Mτ̃(α)τ̃ (β) | η]Xr , [MLτ̃(α)τ̃ (β)]Xr,d (3)

for any monomial L in descendents of ω.
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Next, we look at the elliptic vanishing relation V (M, {Kv}, l), where this time
the descendent assignment l takes the value ψ̃ at all but the first element of Kv ,
where it takes the value ψn. The even terms are still of no relevance, but now
there are four kinds of odd summands. They are

−(v + 1)[Mτ̃(ω)vτn(α)τ̃ (β)]Xr,d
+(v + 1)[Mτ̃(ω)vτn(β)τ̃ (α)]Xr,d

−
(

v + 1

2

)
[Mτ̃(ω)v−1τn(ω)τ̃ (α)τ̃ (β)]Xr,d

+
(

v + 1

2

)
[Mτ̃(ω)v−1τn(ω)τ̃ (β)τ̃ (α)]Xr,d .

We are only interested in the first pair of summands since the second two are
determined by (3). Applying the relation R(Mτ̃(ω)v, {ψn}, {ψ̃},∅), we see that
the first two summands are equal. Therefore, we now know

[Mτ̃(ω)vτn(α)τ̃ (β)]Xr,d
and by Lemma 1 also

[Mτn(α)τ̃ (β) | η]Xr , [MLτn(α)τ̃ (β)]Xr,d . (4)

Repeating this argument, we successively determine

[Mτ̃(α)τm(β) | η]Xr , [MLτ̃(α)τm(β)]Xr,d , (5)

[Mτn(α)τm(β) | η]Xr . (6)

For (5), we need the elliptic vanishing relation V (M, {Kv}, l), where l takes the
value ψ̃ on all but the last elements of Kv , where it is ψm. As before, two terms
in this relation are not yet determined, and these are proportional to each other by
the monodromy relation R(Mτ̃(ω)v, {ψ̃}, {ψm},∅).

For (6), we use the relation V (M, {Kv}, l) with l having the value ψ̃ on all but
the first and the last element of Kv , where it takes the values n and m, respectively.
To see that there is only a pair of not yet determined terms, we in particular need to
use (4) and (5). We finish with the use of the relation R(Mτ̃(ω)v, {ψn}, {ψm},∅).

5.2. General Case

Let I and J be two ordered index sets of the same size, and let

n : I → Q, m : J → Q

be general descendent assignments. To prove Theorem 2, for a monomial M in
insertions of the identity, we need to calculate the GW-classes[

M
∏
i∈I

τni
(α)

∏
j∈J

τmj
(β) | η

]X

r,d

in terms of lower GW-classes. This follows from the following lemma.
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Lemma 2. For s, t ≥ 0, the GW-classes[
M

∏
i≤s

τni
(α)

∏
s<i∈I

τ̃ (α)
∏

J�j≤t

τmj
(β)

∏
t<j

τ̃ (β) | η
]X

r

,

[
ML

∏
i≤s

τni
(α)

∏
s<i∈I

τ̃ (α)
∏

J�j≤t

τmj
(β)

∏
t<j

τ̃ (β)

]X

r,d

,

for an arbitrary monomial L in insertions of point classes ω are determined in
terms of the GW-classes with strictly less insertions as well as[

M ′ ∏
i≤s′

τni
(α)

∏
s′<i∈I

τ̃ (α)
∏

J�j≤t ′
τmj

(β)
∏
t ′<j

τ̃ (β) | η
]X

r ′
,

[
M ′L′ ∏

i≤s′
τni

(α)
∏

s′<i∈I

τ̃ (α)
∏

J�j≤t ′
τmj

(β)
∏
t ′<j

τ̃ (β)

]X

r ′,d
,

(7)

where L′ is an arbitrary monomial in insertions of ω, and we have (r ′, s′, t ′,M ′) <

(r, s, t,M). Here we have used the partial order defined by (r ′, s′, t ′,M ′) ≤
(r, s, t,M) if and only if r ′ ≤ r , s′ ≤ s, t ′ ≤ t , and M ′ | M .

Proof. We need additional notation. For v ≥ 0, let W be an index set of cardinal-
ity v. Define Kv by

Kv = I � W � J

with order implicit in the notation. Let lf [s]l[t] : Kv → Q be the descendent as-
signment with

lf [s]l[t](k) =

⎧⎪⎨
⎪⎩

nk if k is one of the first s elements of I,

mk if k is one of the first t elements of J,

ψ̃ else.

We call the s first elements of I ⊂ Kv and the t first elements of J ⊂ Kv special
elements of Kv with respect to (s, t).

Let σ : I → J be a bijection, which we can, using the orders on I and J , also
interpret as a permutation of I . Let Pσ be the set partition of Kv with the first part
{1, σ (1)} ∪ W and pairs {i, σ (i)} as the other parts.

Consider the relations V (M,Pσ , lf [s],l[t]) for varying σ . By the induction hy-
pothesis we only need to consider the terms from the Künneth decomposition
with exactly |I | + |J | odd insertions. After expanding the product, there are
2 · (

v+2
2

) · 2|I |−1 terms of this kind. If we consider the odd part of the Künneth
decomposition corresponding to the part {1, σ (1)} ∪ W of P in more detail, then
we see that, depending on the s, t and σ(1), still different kinds of terms might
occur. We only need to take into account the terms with the least possible amount
of point classes ω distributed to the special elements of Kv with respect to (s, t)
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since all possible other terms are of the form (7) for

(s′, t ′) ∈ {(s − 1, t), (s, t − 1), (s − 1, t − 1)}.
The remaining terms occur still with a combinatorial multiplicity Cσ depending
on the number of special elements in {1, σ (1)}. These multiplicities are

Cσ =

⎧⎪⎨
⎪⎩

1 if {1, σ (1)} contains 2 special elements,

v + 1 if {1, σ (1)} contains 1 special elements,(
v+2

2

)
if {1, σ (1)} contains 0 special elements.

The last case can only occur if s = 0.
Let V be the relation obtained by summing these relations over all permuta-

tions σ and weighting with C−1
σ and a sign,∑

σ

(−1)(
|I |
2 ) sign(σ )C−1

σ V (M,Pσ , lf [s],l[t]),

and removing terms determined by the induction hypothesis or of the form (7) for
(s′, t ′) as before. Using the notation from Section 3.1, we can write

V =
∑
δ⊂I

∑
D∈S∗(δ)

(−1)|I |−|δ||δ|!(|I | − |δ|)!
[
Mτ̃(ω)v

∏
i≤s

τni
(γ D

i )
∏

s<i∈I

τ̃ (γ D
i )

∏
J�j≤t

τmj
(γ D

j )
∏
t<j

τ̃ (γ D
j )

]X

r,d

,

where S∗(δ) denotes the set of all subsets of I � J such that D ∩ I = δ. Using the
substitution

ek =
∑
|δ|=k

∑
D∈S∗(δ)[

Mτ̃(ω)v
∏
i≤s

τni
(γ D

i )
∏

s<i∈I

τ̃ (γ D
i )

∏
J�j≤t

τmj
(γ D

j )
∏
t<j

τ̃ (γ D
j )

]X

r,d

,

we can write V more compactly as

V =
|I |∑

k=0

(−1)|I |−kk!(|I | − k)!ek.

We wish to eliminate e0, . . . , e|I |−1 from V to obtain a formula for

e|I | =
[
Mτ̃(ω)v

∏
i≤s

τni
(α)

∏
s<i∈I

τ̃ (α)
∏

J�j≤t

τmj
(β)

∏
t<j

τ̃ (β)

]X

r,d

.

Let R(�) be the sum

R(�) =
∑
|δ|=�

R(Mτ̃(ω)v,n′,m′, δ),
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where n′ and m′ are the restrictions of lf [s],l[t] to I and J , respectively. Since
unbalanced GW-classes vanish, we have the expansion

R(�) =
∑
|δ|≥�

∑
D∈S∗(δ)

(|δ|
�

)
[
Mτ̃(ω)v

∏
i≤s

τni
(γ D

i )
∏

s<i∈I

τ̃ (γ D
i )

∏
J�j≤t

τmj
(γ D

j )
∏
t<j

τ̃ (γ D
j )

]X

r,d

=
∑
k≥�

(
k

�

)
ek.

The following lemma in linear algebra gives us the formula for the desired e|I |.

Lemma 3. Let e0, . . . , en be a basis of the vector space Qn+1. Then the vectors

V =
n∑

k=0

(−1)n−kk!(n − k)!ek

and

R(�) =
∑
k≥�

(
k

�

)
ek

for 0 ≤ � < n form a basis of Qn+1.

Proof. Note that by formally extending the definition of R(�) to R(n) we obtain
an (n + 1) × (n + 1) lower unitriangular matrix R with coefficients

Rab =
(

a

b

)
.

The matrix R is therefore invertible, and the coefficients of its inverse R−1 are

(R−1)ab = (−1)a+b

(
a

b

)
.

In particular, the R(0), . . . ,R(n − 1) are linearly independent. To show that V

is not a linear combination of these vectors, we expand V in terms of the basis
corresponding to R,

V =
n∑

�=0

c�R(�),

and check that the coefficient cn is nonzero:

cn =
n∑

k=0

(−1)n+k

(
n

k

)
(−1)n−kk!(n − k)! = (n + 1)!

�
We next apply Lemma 1 to determine[

M
∏
i≤s

τni
(α)

∏
s<i∈I

τ̃ (α)
∏

J�j≤t

τmj
(β)

∏
t<j

τ̃ (β) | η
]X

r

using the induction hypothesis for the r induction.
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By a degeneration argument as in the simple case, we finally obtain a formula
for [

ML
∏
i≤s

τni
(α)

∏
s<i∈I

τ̃ (α)
∏

J�j≤t

τmj
(β)

∏
t<j

τ̃ (β)

]X

r,d

.
�
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