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Classification Problem of Holomorphic Isometries
of the Unit Disk Into Polydisks

Shan Tai Chan

Abstract. We study the classification problem of holomorphic iso-
metric embeddings of the unit disk into polydisks as in [Ng10; Ch16a].
We give a complete classification of all such holomorphic isome-
tries when the target is the 4-disk �4. Moreover, we classify those
holomorphic isometric embeddings with certain prescribed sheeting
numbers. In addition, we prove that a known example in the space
HIk(�,�qk;q) is globally rigid for any integers k, q ≥ 2, which gen-
eralizes Theorem 1.1 in [Ch16a].

1. Introduction

In 2011, Mok [Mok11, pp. 262–263] raised a question about the structure of
the space HIk(�,�p) of holomorphic isometric embeddings from (�, k ds2

�)

to (�p,ds2
�p), where ds2

� (resp. ds2
�p ) denotes the Bergman metric on the open

unit disk � in C (resp. the open unit polydisk �p in Cp), and k > 0 is a real con-
stant. More precisely, Mok [Mok11] asked whether all holomorphic isometries
from (�, k ds2

�) to (�p,ds2
�p) are parameterized by the qth root embeddings

for q ≤ p, the diagonal embeddings, and automorphisms of � and �p . This is
precisely Problem 5.1.2 in [Mok11, pp. 262–263], which we call the classifica-
tion problem of holomorphic isometric embeddings of the unit disk into poly-
disks (or simply the classification problem). Note that such a real constant k is
indeed a positive integer satisfying 1 ≤ k ≤ p by [Ng10, p. 2909]. Ng [Ng10]
has provided a complete description of HIk(�,�p) for p = 2,3 and solved the
classification problem affirmatively for the space HI(�,�p) when p = 2 or 3.
Given any f ∈ HIk(�,�p), we call a map given by F = � ◦ f ◦ ψ a reparam-
eterization of f , where � , ψ are some automorphisms of �p , �, respectively.
In the case where k = p, Ng [Ng08; Ng10] showed that any f ∈ HIp(�,�p)

is given by f (z) = (z, . . . , z) up to reparameterizations. The general case where
f ∈ HI(�,�p) for some p ≥ 4 remains unknown. Recently, the author [Ch16a]
has proven that any f ∈ HI1(�,�p;p) is the pth root embedding up to repa-
rameterizations, where p ≥ 2 is an integer. In particular, the 4th root embedding
in HI1(�,�4;4) is globally rigid in the sense of [Mok11, p. 261] (cf. [Ch16a]).
One of the main objectives of this paper is to provide a complete description of
HIk(�,�4) so that the classification problem of all holomorphic isometric em-
beddings from (�, k ds2

�) to (�4, ds2
�4) will be solved as follows:
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Theorem 1.1. Let f ∈ HIk(�,�4) be a holomorphic isometric embedding such
that all component functions of f are nonconstant.

(1) If k = 1, then f is one of the following up to reparameterizations:
(a) the 4th root embedding F4 : � → �4,
(b) (α1, α2 ◦ β1, α3 ◦ (β2 ◦ β1), β3 ◦ (β2 ◦ β1)), where (αj ,βj ) ∈ HI1(�,

�2;2) for j = 1,2,3,
(c) (α1, h

2 ◦ α2, h
3 ◦ α2, h

4 ◦ α2), where (α1, α2) ∈ HI1(�,�2;2) and
(h2, h3, h4) ∈ HI1(�,�3;3),

(d) (β1, α1 ◦ β2, α2 ◦ β2, β3), where (β1, β2, β3) ∈ HI1(�,�3;3) and (α1,

α2) ∈ HI1(�,�2;2),
(e) (α1 ◦ α2, β1 ◦ α2, α3 ◦ β2, β3 ◦ β2), where (αj ,βj ) ∈ HI1(�,�2;2) for

j = 1,2,3.
(2) If k = 2, then f (z) is one of the following up to reparameterizations:

(a) (α1(z), β1(z),α2(z), β2(z)), where (αj ,βj ) ∈ HI1(�,�2;2) for j =
1,2.

(b) (z,α1(z), (α2 ◦β1)(z), (β2 ◦β1)(z)), where (αj ,βj ) ∈ HI1(�,�2;2) for
j = 1,2.

(c) (z,α1(z),α2(z),α3(z)), where (α1, α2, α3) ∈ HI1(�,�3;3).
(3) If k = 3, then f (z) = (z, z,α(z),β(z)) up to reparameterizations, where

(α,β) ∈ HI1(�,�2;2).
(4) If k = 4, then f (z) = (z, z, z, z) is the diagonal embedding up to reparame-

terizations.

Remark. In fact, this theorem says that all holomorphic isometric embeddings
f : (�, k ds2

�) → (�4, ds2
�4) with the isometric constant k are parameterized by

the diagonal embeddings, automorphisms of � (resp. �4), and the pth root em-
beddings up to reparameterizations for 2 ≤ p ≤ 4.

Moreover, we will show that it is possible to provide a complete description of all
holomorphic isometric embeddings with certain prescribed sheeting numbers. In
addition, we prove that a known example in the space HIk(�,�qk;q) is globally
rigid for any integers k, q ≥ 2, which generalizes Theorem 1.1 in [Ch16a].

1.1. Preliminary

Let � ⊂ C be the open unit disk with the Poincaré metric ds2
� = 2 Re(g dz⊗ dz),

where g = −2 ∂2

∂z∂z
log(1 − |z|2). For any integer p ≥ 2, let �p = {(z1, . . . , zp) ∈

Cp | |zj | < 1,1 ≤ j ≤ p} be the polydisk, which is viewed as p copies of �.
Moreover, �p is equipped with the Kähler metric ds2

�p , which is the product
metric induced from the Poincaré metric ds2

�. More precisely, we take the real an-
alytic function −2

∑p

j=1 log(1−|zj |2) as a Kähler potential for ds2
�p (see [Ng10,

p. 2908]). Let P1 = C∪ {∞} be the Riemann sphere.
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Let f : (�, k ds2
�) → (�p,ds2

�p) be a holomorphic isometric embedding with
the isometric constant k and the global sheeting number n (see [Ng10, pp. 2908–
2909]). In this paper, all holomorphic isometric embeddings

f = (f 1, . . . , f p) : (�, k ds2
�) → (�p,ds2

�p)

are assumed to be genuine, i.e., all component functions of f are nonconstant, as
mentioned in [Ng08, p. 7]. We may always assume that f (0) = 0 after composing
with some � ∈ Aut(�p). In [Ng10], we have the functional equation

p∏
μ=1

(1 − |f μ(z)|2) = (1 − |z|2)k ∀z ∈ �

and the polarized functional equation

p∏
μ=1

(1 − f μ(z)f μ(w)) = (1 − zw)k ∀z,w ∈ �.

Let V ⊂ P1 × (P1)p be the irreducible projective-algebraic curve such that
Graph(f ) ⊂ V as obtained in [Ng10, Proposition 4.2]. From [Ng10, p. 2911],
Vj := Pj (V ) is a projective-algebraic curve containing the graph of f j , where
Pj : V → P1 × P1 is defined by Pj (z,w1, . . . ,wp) = (z,wj ), 1 ≤ j ≤ p. Let
π : V → P1 be the finite branched covering given by π(z,w1, . . . ,wp) = z, and
πj : Vj → P1 be defined by πj (z,wj ) = z, 1 ≤ j ≤ p. Recall that f has the global
sheeting number equal to n or, equivalently, π is an n-sheeted branched covering.
In addition, the sheeting number sj of a component function f j of f is defined
so that πj : Vj → P1 is an sj -sheeted branched covering, j = 1, . . . , p. Moreover,
Ng [Ng10, p. 2913] has shown that there is a rational function Rj : P1 → P1 such
that Rj (f

j (z)) = z for z ∈ � and Rj(
1
w

) = 1/Rj (w), so that Rj (∂�) ⊂ ∂� for
1 ≤ j ≤ p, which is indeed obtained from the sj -sheeted branched covering πj

such that Rj is of degree sj . We refer the readers to [Ng10, pp. 2910–2913] for
details.

Given any bounded symmetric domains D � Cn and 	 � CN , Mok [Mok11]
has introduced the space HI(D,	) of all holomorphic isometries from (D,λds2

D)

to (	,ds2
	) for some real constant λ > 0, where ds2

D and ds2
	 denote the

Bergman metrics of D and 	, respectively. In particular, in the case where
D = � and 	 = �p , we also have the spaces HIk(�,�p), HIk(�,�p;n), and
HIk(�,�p;n; s1, . . . , sp) so as to specify the isometric constant k, the sheet-
ing number sj of each component function of the isometries, 1 ≤ j ≤ p, and the
global sheeting number n (see [Mok11, p. 263]).

Let V ′ be a smooth irreducible algebraic curve, and Y be a compact Riemann
surface. If π ′ : V ′ → Y is a finite branched covering, then, for each point y ∈ Y ,
denote by v(π ′, x) the ramification index of π ′ at x and by b(π ′, y) the branching
order of π ′ at y in the sense of [GH78, p. 217], where x ∈ π ′−1(y). From [Ng08;
Ng10; Ch16a], for f ∈ HI1(�,�p;n; s1, . . . , sp), we denote all branches of f j
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over � by f
j
l , all branches of f j over O := P1 \ � by f

j
l,−, 1 ≤ l ≤ sj , and

f
j

1 := f j , 1 ≤ j ≤ p.
Let H := {τ ∈ C | Im τ > 0} be the the upper half-plane, and Hp :=

{(τ1, . . . , τp) ∈ Cp | Im τj > 0,1 ≤ j ≤ p} for p ≥ 1. Denote by ds2
H the

Poincaré metric on H, so that (H, ds2
H) is of constant Gaussian curvature

−1, i.e, ds2
H = 2 Re(dτ ⊗ dτ/(2(Im τ)2)). Moreover, Hp is equipped with the

Kähler metric ds2
Hp , which is the product metric induced from the Poincaré

metric ds2
H. Mok [Mok12] has defined a map ρp : H → Hp (p ≥ 2) by

ρp(τ) = (τ 1/p, γ τ 1/p, . . . , γ p−1τ 1/p), where γ := eiπ/p and τ 1/p = r1/peiθ/p

for τ = reiθ , 0 < θ < π . From [Mok12], the map ρp : (H, ds2
H) → (Hp, ds2

Hp )

is a nonstandard (i.e., not totally geodesic) holomorphic isometric embedding.
Then, the pth root embedding Fp : (�,ds2

�) → (�p,ds2
�p) can be defined from

ρp via the Cayley transform ι :H → �, τ → τ−i
τ+i

, and target automorphisms (see
[Ch16a]). When p = 2 (resp. p = 3), Fp is called the square-root embedding
(resp. cube-root embedding).

We denote by �p the symmetric group on p elements. Moreover, we say that
two holomorphic maps G1,G2 : D → 	 between bounded symmetric domains
D and 	 are congruent to each other if G1 = φ ◦ G2 ◦ ψ for some φ ∈ Aut(	)

and ψ ∈ Aut(D).

2. General Properties of Holomorphic Isometries in HIk(�,�p)

2.1. Special Branching Behavior of Certain Holomorphic Isometries
in HIk(�,�p)

For holomorphic isometric embeddings f ∈ HIk(�,�p) with certain branching
behaviour, we will prove that the classification problem of such isometries can be
reduced to that of holomorphic isometric embeddings in HIk(�,�p−1).

Lemma 2.1. Let g : � → � be a component function of a holomorphic isometric
embedding f = (f 1, . . . , f p) ∈ HIk(�,�p) satisfying f (0) = 0. Suppose that
there is ϕ ∈ Aut(P1) such that ϕ ◦ g is also a component function of f , where

ϕ(z) := az+b
cz+d

with
(

a b
c d

) := (
u3 0

−det U u1

)
for some unitary matrix U = (

u1 u2
u3 u4

)
sat-

isfying u1, u3 ∈ C \ {0}. Then, we have

(1 − |g(z)|2)(1 − |ϕ(g(z))|2) = 1 − |h(z)|2,
where h : � → C is a holomorphic function defined by

h(z) := g(z) − u4(g(z))2

u1 − (det U)g(z)
.

Proof. We may assume without loss of generality that g = f 1 and ϕ ◦ g = f 2.
Then, R1(f

1(z)) = z = R2(f
2(z)) = R2(ϕ(f 1(z))) so that R1 and R2 ◦ ϕ are

meromorphic functions on P1 satisfying R1|U ′ = (R2 ◦ ϕ)|U ′ , where U ′ is the
image of f 1 in P1, which is an open subset by the Open Mapping Theorem for
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holomorphic functions. In particular, R1 = R2 ◦ ϕ by the Identity Theorem. We
compute

u1h(z) + u2f
1(z)(ϕ ◦ f1)(z)

=u1f
1(z) − u1u4(f

1(z))2

u1 − (det U)f 1(z)
+ u2

u3(f
1(z))2

u1 − (det U)f 1(z)

=f 1(z)

and

u3h(z) + u4f
1(z)(ϕ ◦ f1)(z)

=u3f
1(z) − u3u4(f

1(z))2

u1 − (det U)f 1(z)
+ u4

u3(f
1(z))2

u1 − (det U)f 1(z)

= u3f
1(z)

u1 − (det U)f 1(z)
= ϕ(f 1(z)).

Thus, we have (
f 1(z)

ϕ(f 1(z))

)
= U ·

(
h(z)

f 1(z)ϕ(f 1(z))

)
.

Actually, we also need to show that f 1(z) �= u1/det U for z ∈ � so as to en-
sure that h is holomorphic. Suppose that f 1(z0) = u1/det U for some z0 ∈ �.
Then, ϕ(f 1(z0)) = ∞. This would imply that ∞ = R2(∞) = R2(ϕ(f 1(z0))) =
R1(f

1(z0)) = z0 by [Ng10, p. 2913] and the fact that R2 ◦ϕ = R1, which is a con-
tradiction. Thus, f 1(z) �= u1/det U for z ∈ � so that the function h is holomorphic
on � and continuous on �, i.e., the extension h̃ : � → � of h is continuous. Now,
we have

|f 1(z)|2 + |ϕ(f 1(z))|2 = |h(z)|2 + |f 1(z)ϕ(f 1(z))|2
for z ∈ � because U is an unitary matrix and thus U preserves the Euclidean norm
of holomorphic mappings. The result follows. �

Theorem 2.2. Let f = (f 1, . . . , f p) ∈ HIk(�,�p;n; s1, . . . , sp) with f (0) = 0,
where p ≥ 4 is an integer. Suppose that there is a point z0 ∈ ∂� such that
v(Rσ(j), f

σ(j)(z0)) ≥ 2 (j = p − 1,p) and v(Rσ(μ), f
σ(μ)(z0)) = 1 (μ =

1, . . . , p − 2) for some σ ∈ �p . Then, sσ(p−1) = sσ(p) is an even integer and

there exists ψ ∈ Aut(P1) with ψ(0) = 0 such that ψ ◦ f
σ(p−1)

1 = f
σ(p)

1 so that
Rσ(p) ◦ψ = Rσ(p−1) and ψ is of the form ψ(z) = u3z/(−(det U)z+u1) for some
unitary matrix U = (

u1 u2
u3 u4

)
satisfying u1, u3 ∈C \ {0}. In particular, we have

(1 − |f σ(p−1)(z)|2)(1 − |f σ(p)(z)|2) = 1 − |h(z)|2

for some holomorphic function h on � and thus

(f σ(1), . . . , f σ(p−2), h) : (�, k ds2
�) → (�p−1, ds2

�p−1)

is a holomorphic isometric embedding.
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Remark. The assumption made in the theorem may be replaced by the existence

of a certain branch of f which is of the form
(
f 1

1 , . . . , f
p−2
1 , f

p−1
lp−1

, f
p
lp

)
up to

a permutation of the component functions of f , where lj �= 1 for j = p − 1,p.
Denote by Bπ the branching locus of the finite branched covering π as a subset
of P1 = C∪ {∞}. Then, the assumption may be replaced by that of the existence
of a continuous path γ : [0,1] → P1 \ Bπ such that γ (0) = γ (1) = 0 and perform
(multivalued) analytic continuation of f = (f 1

1 , . . . , f
p

1 ) along γ would come up

with a branch of f which is of the form (g1, . . . , gp), where gσ(j) := f
σ(j)

1 for

1 ≤ j ≤ p − 2 and gσ(μ) := f
σ(μ)
lσ(μ)

with lσ (μ) �= 1 for μ = p − 1,p, and for some
σ ∈ �p .

Proof of Theorem 2.2. We may assume without loss of generality that σ = Id is
the identity permutation. Starting with the branch f = (f 1

1 , . . . , f
p

1 ) at 0, we per-
form (multivalued) analytic continuation along some simple closed loop around
z0 once to obtain (f 1

1 , . . . , f
p−2
1 , f

p−1
2 , f

p

2 ). (Noting that we may relabel the

branches of each f j so that we can obtain f
j

2 by performing (multivalued) an-

alytic continuation of f
j

1 along some simple closed loop around z0 once for
j = p − 1,p.) By the polarized functional equation, we have(

1 − f
p−1
1 (z)f

p−1
2 (0)

)(
1 − f

p

1 (z)f
p

2 (0)
)

= 1

for z ∈ � so that f
p

1 (z) = ψ(f
p−1
1 (z)), where ψ(w) := (

1/f
p

2 (0)
)(

w/(w −
1/f

p−1
2 (0))

)
. Note that f

j

2 (0) ∈ C∗ := C\{0} for j = p−1,p, thus ψ ∈ Aut(P1)

because

det

(
1/f

p

2 (0) 0

1 −1/f
p−1
2 (0)

)
= − 1

f
p

2 (0)f
p−1
2 (0)

�= 0.

In particular, sp−1 = sp and Rp ◦ψ = Rp−1. From the polarized functional equa-
tion, we also have(

1 − f
p−1
2 (z)f

p−1
2 (0)

)(
1 − f

p

2 (z)f
p

2 (0)
)

= 1

so that ψ(f
p−1
2 (z)) = f

p

2 (z) for z ∈ �. Now, we have f
p

2 (0) = ψ(f
p−1
2 (0)) =

|f p−1
2 (0)|2/(f p

2 (0) · (|f p−1
2 (0)|2 − 1)) so that

1

|f p

2 (0)|2 + 1

|f p−1
2 (0)|2

= 1.

Therefore, we have |f j

2 (0)|2 > 1 for j = p − 1,p. Then, one can verify that
ψ(z) = u3z/(−(det U)z + u1), where

U =
(

u1 u2
u3 u4

)
:=

⎛⎝−λf
p

2 (0) 1/f
p

2 (0)

λf
p−1
2 (0) f

p−1
2 (0)

(
1 − 1/|f p

2 (0)|2)
⎞⎠



Classification Problem of Holomorphic Isometries 751

is a unitary matrix with λ =
√(

1 − 1/|f p

2 (0)|2) (
1/|f p

2 (0)|2)eiθ0 for some θ0 ∈
[0,2π). By Lemma 2.1, the holomorphic function h on � defined by

h(z) := f p−1(z) − u4(f
p−1(z))2

u1 − (det U)f p−1(z)

satisfies

(1 − |f p−1(z)|2)(1 − |f p(z)|2) = 1 − |h(z)|2.
Then, (f 1, . . . , f p−2, h) : (�, k ds2

�) → (�p−1, ds2
�p−1) is clearly a holomor-

phic isometric embedding. Hence, there is a rational function Rh such that
Rh(h(z)) = z, and we have 2 · degRh = degRp−1 = sp−1 = sp so that sp = sp−1

is an even integer. �

2.2. Special Sheeting Numbers of Holomorphic Isometries

In the study of the structure of HI1(�,�p;n; s1, . . . , sp) in [Ng10], if sj = 2
for some j , then the study of holomorphic isometries f = (f 1, . . . , f p) :
(�,ds2

�) → (�p,ds2
�p) can be reduced to the study of holomorphic isometries

from (�,ds2
�) to (�p−1, ds2

�p−1). For example, in the proof of Theorem 6.8 in
[Ng10, pp. 2918–2919], Ng has reduced the study of certain f ∈ HI(�,�p) to
the understanding of the space HI(�,�p−1) and so on. For the study of the space
HI1(�,�p;n; s1, . . . , sp), one may ask whether sj = q for some prime number
q ≥ 3 and some j could lead to a similar phenomenon as in the case of sj = 2 for
some j . We do not have any general method to handle such a problem. However,
for some small prime number q ≥ 3, it may be possible for us to use the method in
[Ch16a] to deal with the problem. In this section, we will show that when q = 3,
a similar phenomenon occurs as in the case where sj = 2 for some j .

Lemma 2.3. Suppose that h is a component function of a holomorphic isometric
embedding f : (�, k ds2

�) → (�p,ds2
�p) such that degRh = 3, where Rh : P1 →

P1 is the rational function of degree 3 such that Rh(h(z)) = z, Rh(
1
w

) = 1/Rh(w)

and Rh(∂�) ⊂ ∂�. Then, for any branch point a ∈ ∂� of Rh, we have |w| = 1
for all w ∈ R−1

h (a).

Proof. We may assume without loss of generality that f (0) = 0. Let m be the
number of distinct branch points of Rh, {a1, . . . , am} ⊂ ∂� be the set of all distinct
branch points of Rh and the branching order of Rh at aj is denoted by bj for
1 ≤ j ≤ m. Since degRh = 3, we have

∑m
i=1 bi = 4 so that 2 ≤ m ≤ 4. After

reordering the branch points of h if necessary, we may assume without loss of
generality that b1 ≤ · · · ≤ bm. Then, we have the following possibilities:

(1) m = 2 and (b1, b2) = (2,2);
(2) m = 3 and (b1, b2, b3) = (1,1,2);
(3) m = 4 and (b1, b2, b3, b4) = (1,1,1,1).

If bi = 1 for some i, then |R−1
h (ai)| = 2 and thus R−1

h (ai) = {w1,w2} such that
the ramification index of Rh at w1 (resp. w2) equals 1 (resp. 2) for some distinct
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w1,w2 ∈ P1. We have either |w1| = |w2| = 1 or w1 = 1/w2 by [Ng10, Corol-
lary 4.7]. If w1 = 1/w2, then the ramification order of Rh at w1 would be the
same as that of Rh at w2, which contradicts the assumption that bi = 1. Thus, we
have |w1| = |w2| = 1.

If bi = 2, then clearly |R−1
h (ai)| = 1 and w ∈ R−1

h (ai) would satisfy |w| =
1 because (ai,w) ∈ Vh if and only if (ai,

1
w

) ∈ Vh, where Vh is the projective-
algebraic curve in P1 × P1 containing the graph of h (cf. [Ng10, p. 2912]). Thus,
we have verified that if h is a component function of a holomorphic isometric
embedding from (�, k ds2

�) to (�p,ds2
�p) with degRh = 3, then we have |w| = 1

for all w ∈ R−1
h (ai) and for i = 1, . . . ,m. On the other hand, we have shown that

for an arbitrary branch hl of h, we have |hl(ai)| = 1 for i = 1, . . . ,m. �

Note that Lemma 6.7 in [Ng10, p. 2917] asserts that if the sheeting number
of some component function g of a holomorphic isometry from (�,ds2

�) to
(�p,ds2

�p) is equal to 2, then there exists a holomorphic function h : � → �

such that (g,h) ∈ HI1(�,�2;2). The following proposition provides a similar
result in the case where two component functions of a holomorphic isometry from
(�,ds2

�) to (�p,ds2
�p) have the sheeting numbers equal to 3.

Proposition 2.4. Let p ≥ 3 be an integer. If h1, h2 : � → � are two distinct
component functions of a holomorphic isometric embedding f = (f 1, . . . , f p) :
(�,ds2

�) → (�p,ds2
�p) such that the sheeting numbers of h2 and h3 are equal

to 3, then there is a holomorphic function h3 : � → � such that (h1, h2, h3) :
� → �3 is the cube-root embedding up to reparametrizations, i.e., (h1, h2, h3) ∈
HI1(�,�3;3).

Proof. We may assume without loss of generality that f 1 = h1, f 2 = h2 and
f (0) = 0. Let {a1, . . . , am} ⊂ ∂� be the set of all distinct branch points of
f 1. Suppose that m ≥ 3. Then, there is a branch point a = ai ∈ ∂� such that
bi = 1. Therefore, there is a branch f 1

l of f 1 such that the ramification in-
dex of π1 at (a, f 1

l (a)) is equal to 1 and |f 1
l (a)| = 1. Then, we have a branch(

f 1
l , f 2

l2
, f 3

l3
, . . . , f

p
lp

)
of f for some lj . Consider the functional equation

(
1 − f 1

l (z)f 1
l (a)

)
·

p∏
j=2

(
1 − f

j
lj
(z)f

j
lj
(a)

)
= 1 − za. (2.1)

By comparing the vanishing orders of both sides of Equation (2.1) at a, we see
that |f j

lj
(a)| �= 1 for 2 ≤ j ≤ p. Thus, a is not a branch point of π2; otherwise

we would have |f 2
lj
(a)| = 1 by Lemma 2.3 because the sheeting number of f 2

equals 3.
Since π2 : V2 → P1 is not branched over a ∈ ∂�, we have |(π2)

−1(a)| = 3 and
the set (R2)

−1(a) contains at least one unimodular value because (z,w) ∈ V2 if
and only if ( 1

z
, 1

w
) ∈ V2. Then, we may choose l′ such that |f 2

l′ (a)| = 1 and we

have a branch
(
f 1

l′1
, f 2

l′ , f
3
l′3
, . . . , f

p

l′p
)

of f for some l′j . Consider the functional
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equation (
1 − f 2

l′ (z)f
2
l′ (a)

) ∏
1≤j≤p,j �=2

(
1 − f

j

l′j
(z)f

j

l′j
(a)

)
= 1 − za.

Since a ∈ ∂� is a branch point of π1 and the sheeting number of f 1 equals 3,
we have |f 1

l′1
(a)| = 1 by Lemma 2.3. Now, we have |f 1

l′1
(a)| = |f 2

l′ (a)| = 1. Note

that we have the Puiseux series f 1
l′1
(z) = ϕ1

l′1
((z − a)1/v) for z ∈ B1(a, ε), where

ε > 0 such that B1(a, ε)\{a} does not contain any branch point of any component
function of f and ϕ1

l′1
is some holomorphic function on B1(0, ε1/v). Here v = 1

or v = 2. Then, we have(
1 − ϕ1

l′1
(ξ)ϕ1

l′1
(0)

)(
1 − f 2

l′ (ξ
v + a)f 2

l′ (a)
)

ψ(ξ) = −aξv, (2.2)

where ψ(ξ) := ∏p

j=3

(
1 − f

j

l′j
(ξv + a)f

j

l′j
(a)

)
. Note that 1 − ϕ1

l′1
(ξ)ϕ1

l′1
(0) has a

zero of order 1 at ξ = 0 and that 1−f 2
l′ (ξ

v +a)f 2
l′ (a) has a zero of order v at ξ = 0

since a is not a branch point of π2. Thus, the left hand side of Equation (2.2) has a
zero of order at least v+1 at ξ = 0. However, the right hand side of Equation (2.2)
has a zero of order v at ξ = 0, which is a contradiction. Thus, bi �= 1 for all
i, 1 ≤ i ≤ m. Hence, we have m = 2, i.e., f 1 has precisely two distinct branch
points. Similarly, f 2 can only have two distinct branch points. Then, f 1 and f 2

are component functions of the cube-root embedding up to reparametrizations by
[Ng10, Lemma 4.9].

We claim that f 1 and f 2 have the same set of branch points, say a1, a2 ∈ ∂�.
Assume the contrary that a = aj for some j such that a is a branch point of R1 but
not a branch point of R2. Then, |f 1

l (a)| = 1 for l = 1,2,3 by Lemma 2.3. But then
there exists l′ ∈ {1,2,3} such that |f 2

l′ (a)| = 1 since |(R2)
−1(a)| = 3 and (z,w) ∈

V2 if and only if ( 1
z
, 1

w
) ∈ V2 (cf. [Ng10, p. 2912]). Thus, we obtain a contradiction

by considering the polarized functional equation as before. Therefore, if a is a
branch point of f 1, then a is a branch point of f 2. Similarly, if a is a branch point
of f 2, then a is a branch point of f 1. Hence, the branching loci of R1 and R2 are
the same.

From [Ng10, Lemma 4.9] and the proof of Theorem 6.5 in [Ng10], there is
a single reparmetrization such that f 1, f 2 would become one of the component
functions of the cube-root embedding. Then, f 1 �= f 2 since for each branch of
f = (f 1, . . . , f p), there is only one infinite value as z → ∞ (cf. [Ng10, p. 2917]).
Thus, f 1 and f 2 are precisely two distinct component functions of the cube-root
embedding. Recall that hj = f j for j = 1,2. Therefore, there is a holomorphic
function h3 : � → � such that h3(0) = 0 and (h1, h2, h3) : � → �3 is the cube-
root embedding up to reparametrizations, i.e., (h1, h2, h3) ∈ HI1(�,�3;3). �

Remark. This proposition can be used for classifying all holomorphic isomet-
ric embeddings f : (�,ds2

�) → (�p,ds2
�p) with some special sheeting numbers
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s1, . . . , sp . For example, the structure of the space

HI1(�,�2q+1;n;3,3,32,32, . . . ,3q−1,3q−1,3q,3q,3q) (2.3)

can be completely described by induction as that in [Ng10, Theorem 6.8],
where q ≥ 2 and n satisfying 3q | n, 2q + 1 < n ≤ 22q . Actually, the space in
Equation (2.3) is constructed by compositions of q holomorphic isometries in
HI1(�,�3;3). Similarly, the structure of the space

HI1(�,�2q ′+2;n′;3,3,32,32, . . . ,3q ′
,3q ′

,2 · 3q ′
,2 · 3q ′

) (2.4)

can be completely described by induction, where q ′ ≥ 1 and n′ satisfying (2 ·3q ′
) |

n′, 2q ′ + 2 < n′ ≤ 22q ′+1. Actually, the space in Equation (2.4) is constructed by
compositions of q ′ holomorphic isometries in HI1(�,�3;3) and a holomorphic
isometry in HI1(�,�2). The author has written down the details in his Ph.D.
thesis [Ch16b].

3. Proof of Theorem 1.1

From [Ng10, pp. 2914–2915], if f ∈ HIk(�,�4) is a holomorphic isometric em-
bedding such that all component functions of f are non-constant, then we have
f ∈ HIk(�,�4;n; s1, s2, s3, s4) for some positive integers n, s1, s2, s3, s4 satis-
fying 4

k
≤ n ≤ 8,

∑4
l=1(1/sl) = k and sj | n for j = 1,2,3,4. Recall that k is a

positive integer satisfying 1 ≤ k ≤ 4 by [Ng10, p. 2909]. It turns out that given
some positive integers n, s1, s2, s3, s4 satisfying 4

k
≤ n ≤ 8,

∑4
l=1(1/sl) = k and

sj | n for j = 1,2,3,4, it is possible that the space HIk(�,�4;n; s1, s2, s3, s4) is
empty due to the structure of the irreducible projective-algebraic curve V and the
branching behaviour of each component function of f .

3.1. Classification of Holomorphic Isometries in HI1(�,�4)

Lemma 3.1. Let p ≥ 2 be an integer and n be a prime number satisfying p < n ≤
2p−1. Then, the space HI1(�,�p;n) is empty.

Remark. Note that such a prime n does not exist when p = 2,3, thus the condi-
tion p ≥ 2 could be replaced by p ≥ 4.

Proof of Lemma 3.1. Assume the contrary that the space HI1(�,�p;n) is non-
empty. Then, there is a holomorphic isometric embedding f = (f 1, . . . , f p) :
(�,ds2

�) → (�p,ds2
�p) such that the sheeting number of f j equals sj , sj | n for

1 ≤ j ≤ p and
∑p

j=1(1/sj ) = 1 (cf. [Ng10, pp. 2914–2915]). In particular, we

have sj = n for 1 ≤ j ≤ p because
∑p

j=1(1/sj ) = 1 so that sj �= 1 for any j . This

would imply that 1 = ∑p

j=1(1/sj ) = p
n

so that n = p, which contradicts n > p.
Hence, we have HI1(�,�p;n) = ∅. �

By Lemma 3.1, we have HI1(�,�4;n) = ∅ for n = 5, 7. Thus, we only need to
consider the case where n = 4, 6 or 8. The following are all possibilities of the
global sheeting number n and the sheeting numbers s1, . . . , s4:
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(1) (n, s1, s2, s3, s4) = (4,4,4,4,4).
(2) (n, s1, s2, s3, s4) = (6,3,6,6,3) or (n, s1, s2, s3, s4) = (6,2,6,6,6).
(3) (n, s1, s2, s3, s4) = (8,4,4,4,4) or (n, s1, s2, s3, s4) = (8,2,4,8,8).

In the case where (n, s1, s2, s3, s4) = (4,4,4,4,4), we can apply the global rigid-
ity of the pth root embedding for p ≥ 2 (cf. [Ch16a]). More precisely, any
f ∈ HI1(�,�4;4) is the 4th root embedding up to reparametrizations as we have
mentioned at the beginning of the present paper.

Proposition 3.2 (cf. Theorem 6.8, [Ng10]). If f ∈ HI1(�,�4;8;2,4,8,8), then

f = (α1, α2 ◦ β1, α3 ◦ (β2 ◦ β1), β3 ◦ (β2 ◦ β1))

up to reparametrizations, where (αj ,βj ) ∈ HI1(�,�2;2) for j = 1,2,3.

Proposition 3.3. If f ∈ HI1(�,�4;6;2,6,6,6), then

f = (α1, h
2 ◦ α2, h

3 ◦ α2, h
4 ◦ α2)

up to reparametrizations, where (α1, α2) ∈ HI1(�,�2;2) and (h2, h3, h4) ∈
HI1(�,�3;3).

Proof. We may suppose that f (0) = 0. From [Ng10, Lemma 6.7], we have
f 1 = α1 for some holomorphic isometric embedding (α1, α2) : � → �2 with
the isometric constant 1 and α1(0) = α2(0) = 0. Then, we have

(1 − |f 2(z)|2)(1 − |f 3(z)|2)(1 − |f 4(z)|2) = 1 − |α2(z)|2
because (1 − |α1(z)|2)(1 − |α2(z)|2) = 1 − |z|2. Since 0 is not a branch point,
locally there is an inverse α−1

2 : U ⊂ � → � of α2. Thus,

(1 − |f 2(α−1
2 (z))|2)(1 − |f 3(α−1

2 (z))|2)(1 − |f 4(α−1
2 (z))|2) = 1 − |z|2,

i.e., (f 2 ◦ α−1
2 , f 3 ◦ α−1

2 , f 4 ◦ α−1
2 ) : U → �3 is a holomorphic isometric em-

bedding with the isometric constant 1. From [Mok12, Theorem 1.3.1], we know
that (f 2 ◦ α−1

2 , f 3 ◦ α−1
2 , f 4 ◦ α−1

2 ) can be extended to the whole �, and we let
(h2, h3, h4) : � → �3 be the extension. Then, f j ◦ α−1

2 = hj for j = 2,3,4 and
thus f j = hj ◦ α2 on some open subset. Now, we have a local inverse (f j )−1 =
α−1

2 ◦ (hj )−1. Since the degree of (f j )−1 equals 6 while the degree of α−1
2

equals 2, the degree of (hj )−1 should be equal to 3. Thus (h2, h3, h4) : � → �3

is the cube-root embedding up to reparametrizations by [Ng10, Theorem 8.1].
Hence, f = (f 1, f 2, f 3, f 4) = (α1, h

2 ◦α2, h
3 ◦α2, h

4 ◦α2) up to reparametriza-
tions. �

Proposition 3.4. If f ∈ HI1(�,�4;6;3,6,6,3), then

f = (β1, α1 ◦ β2, α2 ◦ β2, β3)

up to reparametrizations, where (β1, β2, β3) ∈ HI1(�,�3;3) and (α1, α2) ∈
HI1(�, �2;2).
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Proof. We may assume without loss of generality that f = (f 1, f 2, f 3, f 4) satis-
fying f (0) = 0. Then, there is a holomorphic function g : � → � with g(0) = 0
such that (f 1, f 4, g) ∈ HI1(�,�3;3) by Proposition 2.4. From the functional
equation, we have

(1 − |f 2(z)|2)(1 − |f 3(z)|2) = 1 − |g(z)|2.
Since g is a component function of some holomorphic isometry in HI1(�,�3;3),
there is a local inverse g−1 of g around 0 ∈ � so that

(1 − |f 2 ◦ g−1(z)|2)(1 − |f 3 ◦ g−1(z)|2) = 1 − |z|2
on some open neighborhood of 0 in � (cf. [Ng10, p. 2918]). Thus (f 2 ◦g−1, f 3 ◦
g−1) : � → �2 is a germ of holomorphic isometric embedding with the iso-
metric constant 1. In particular, (f 2 ◦ g−1, f 3 ◦ g−1) is a germ of the square-
root embedding at 0 up to reparametrizations. From [Mok12, Theorem 1.3.1],
such a germ of holomorphic isometric embedding can be extended to a holo-
morphic isometric embedding from (�,ds2

�) to (�2, ds2
�2). Therefore, we have

f 2 ◦ g−1 = α1|U , f 3 ◦ g−1 = α2|U for some neighborhood U of 0 in �, where
(α1, α2) ∈ HI1(�,�2;2). Then, f 2 = α1 ◦ g and f 3 = α2 ◦ g on �. Hence,
we have f = (β1, α1 ◦ β2, α2 ◦ β2, β3), where (β1, β2, β3) ∈ HI1(�,�3;3) and
(α1, α2) ∈ HI1(�,�2;2). �

Let f = (f 1, f 2, f 3, f 4) ∈ HI1(�,�4;8;4,4,4,4) and ν : X → V be the
normalization, where X is a compact Riemann surface of genus g(X). Without
loss of generality, we may assume that f (0) = 0. The universal cover of X is
either P1, C or � by the Uniformization Theorem. In any case, we may use the
global holomorphic coordinate ζ on P1 = C ∪ {∞}, C or � to represent a point
in X. Given a non-constant meromorphic function Ŝ on X, denote by Zeros(Ŝ(ζ ))

(resp. Poles(Ŝ(ζ ))) the set of all zeros (resp. poles) of Ŝ not counting multiplici-
ties.

Recall that π : V → P1 is the finite branched covering defined by (z,w1,w2,

w3,w4) → z. Then, π ◦ ν(ζ ) = R(ζ ) is a non-constant meromorphic function on
X with precisely 8 distinct poles and 8 distinct zeros. Let Sj (ζ ) := (Pr2 ◦(Pj ◦
ν))(ζ ) for 1 ≤ j ≤ 4, where Pr2 : P1 × P1 → P1 is the projection onto the second
factor, Pj : V → P1 × P1 is defined by (z,w1,w2,w3,w4) → (z,wj ) and Vj =
Pj (V ) for 1 ≤ j ≤ 4. Then, Sj is a non-constant meromorphic function on X with
precisely two distinct poles and two distinct zeros. Moreover, we have R(ζ ) =
Rj(Sj (ζ )) for 1 ≤ j ≤ 4.

Let (f 1
l1
, f 2

l2
, f 3

l3
, f 4

l4
) be a branch of f over � for some lj ∈ {1,2,3,4}. For

ζ ∈ U ′ := ν−1(Graph(f )), we have f j (R(ζ )) = Sj (ζ ) for 1 ≤ j ≤ 4. Note that

for any branch f
j
l of f j , 1 ≤ l, j ≤ 4, there are precisely two distinct branches

of f over � with the j th-component function being equal to f
j
l because Sj :

X → P1 is a degree 2 branched covering and the graph of each branch of f

over � (resp. P1 \ �) lies in the regular part of the variety V . The following
consideration comes from [Mok]. From the polarized functional equation, for ζ ∈
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U ′ := ν−1(Graph(f )) and w ∈ �, we have

4∏
j=1

(
1 − Sj (ζ )f

j
lj
(w)

)
= 1 − R(ζ )w. (3.1)

Fixing w ∈ �, both sides of Equation (3.1) are meromorphic functions on X.
Thus, by the Identity Theorem of meromorphic functions on compact Riemann
surfaces, the above equality holds true for ζ ∈ X and w ∈ �. Putting w = 0 in
Equation (3.1), we have

4∏
j=1

(
1 − Sj (ζ )f

j
lj
(0)

)
= 1 ∀ζ ∈ X.

Lemma 3.5. If f = (f 1, f 2, f 3, f 4) ∈ HI1(�,�4;8;4,4,4,4), then there is a
branch of f over � which is of the form (g1, . . . , g4), where gσ(j) := f

σ(j)

1 (j =
1,2) and gσ(μ) := f

σ(μ)
lσ(μ)

with lσ (μ) �= 1 (μ = 3,4) for some σ ∈ �4.

Proof. We assume without loss of generality that f (0) = 0. Let ν : X → V be
the normalization. Assume the contrary that f does not have a branch of the
desired form. From the functional equation, it is known that f cannot have a
branch of the form

(
f σ(1), f σ(2), f σ(3), f

σ(4)
jσ(4)

)
over � up to a permutation of

component functions of f , where σ ∈ �4 and jσ(4) �= 1. Otherwise, we would

have |f σ(4)
jσ(4)

(z)|2 = |f σ(4)(z)|2 so that f
σ(4)
jσ(4)

(0) = f σ(4)(0) = 0, which contradicts

the fact that f
σ(4)
jσ(4)

and f σ(4) are distinct branches and 0 is not a branch point of
Rσ(4). Then, we have some branches of f over � which are of the forms(

f 1, f 2
l
(1)
2

, f 3
l
(1)
3

, f 4
l
(1)
4

)
,

(
f 1

l
(2)
1

, f 2, f 3
l
(2)
3

, f 4
l
(2)
4

)
,(

f 1
l
(3)
1

, f 2
l
(3)
2

, f 3, f 4
l
(3)
4

)
,

(
f 1

l
(4)
1

, f 2
l
(4)
2

, f 3
l
(4)
3

, f 4), (3.2)

where l
(k)
j �= 1 for each j , k. Note that performing (multivalued) analytic continu-

ation of (f 1, f 2, f 3, f 4) along some simple closed loop around each branch point
of Rj in C, 1 ≤ j ≤ 4, would produce all branches of f over � because Reg(V )

is connected (cf. Proposition 1 in [MN10, pp. 2634–2635] for the structure of V

and properties of the branches of f ). From the polarized functional equation, we
have

3∏
j=1

(
1 − Sσ(j)(ζ )β

(σ(4))
σ (j)

)
= 1

for each σ ∈ �4, where for each k ∈ {1,2,3,4}, β
(k)
j := f

j

l
(k)
j

(0) ∈ C∗ =
C \ {0} for j ∈ {1,2,3,4} \ {k}. Note that the poles of 1 − Sj (ζ )β

(l)
j are pre-
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cisely the poles of Sj (ζ ) for j ∈ {1,2,3,4} \ {l} and l = 1,2,3,4. More-

over, 1 − Sj (ζ )β
(l)
j has precisely two distinct zeros and two distinct poles for

j ∈ {1,2,3,4} \ {l} and l = 1,2,3,4.
Consider the branch

(
f 1

l
(4)
1

, f 2
l
(4)
2

, f 3
l
(4)
3

, f 4
)
. Then, there is a unique branch of f

over � which is of the form
(
f 1

k1
, f 2

k2
, f 3

l
(4)
3

, f 4
k4

)
with k4 �= 1 because we already

have the branch (f 1, f 2, f 3, f 4) of f , Sj is a degree 2 branched covering and all
points in ν−1(π−1(∞)) are not ramification points of Sl for 1 ≤ l ≤ 4. We claim
that kj �= l

(4)
j for j = 1,2.

If kj = l
(4)
j for j = 1,2, then we would have |f 4(z)|2 = |f 4

k4
(z)|2 for z ∈ �,

which leads to a contradiction by the arguments above. If k1 = l
(4)
1 and k2 �= l

(4)
2 ,

then we have

1 − S2(ζ )β
(4)
2 =

(
1 − S2(ζ )f 2

k2
(0)

)(
1 − S4(ζ )f 4

k4
(0)

)
from the functional equation so that

S4(ζ ) = 1

f 4
k4

(0)

(
β

(4)
2 − f 2

k2
(0)

)
· S2(ζ )

1 − S2(ζ )f 2
k2

(0)
.

Thus, S4 = ϕ ◦S2 for some ϕ ∈ Aut(P1). But then this implies that all branches of
f are of the form (f 1

l1
, f 2

l , f 3
l3
, f 4

l ) for some l1, l3, l ∈ {1,2,3,4} by performing
(multivalued) analytic continuation, which contradicts the existence of the branch(
f 1

l
(4)
1

, f 2
l
(4)
2

, f 3
l
(4)
3

, f 4
)
. Similarly, if k2 = l

(4)
2 and k1 �= l

(4)
1 , then this also leads to a

contradiction. Hence, kj �= l
(4)
j for j = 1,2.

From the functional equation, we have

1 − S4(ζ )f 4
k4

(0) = 1 − S1(ζ )β
(4)
1

1 − S1(ζ )f 1
k1

(0)

1 − S2(ζ )β
(4)
2

1 − S2(ζ )f 2
k2

(0)

and
∏3

j=1

(
1 − Sj (ζ )β

(4)
j

) = 1. Thus, we have

Zeros
(

1 − S4(ζ )f 4
k4

(0)
)

⊆ Zeros

((
1 − S1(ζ )β

(4)
1

)(
1 − S2(ζ )β

(4)
2

))
= Zeros

(
1

1 − S3(ζ )β
(4)
3

)
= Poles(S3(ζ ))

Since S3 has two distinct simple poles and 1 − S4(ζ )f 4
k4

(0) has two distinct
simple zeros, we have Zeros

(
1 − S4(ζ )f 4

k4
(0)

) = Poles(S3(ζ )). Therefore, there
are two distinct points y1, y2 ∈ V (resp. x1, x2 ∈ X) such that ν(xj ) = yj =(∞, α

j

1 , α
j

2 ,∞,1/f 4
k4

(0)
)

for j = 1,2, and {x1, x2} = Zeros
(
1 − S4(ζ )f 4

k4
(0)

) =
Poles(S3(ζ )), where α

j

1 , α
j

2 ∈ C∗, j = 1,2. Note that x1, x2 ∈ X are two distinct
unramified points of π ◦ ν : X → P1 and y1, y2 ∈ V are smooth points on V .
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Then, we have two distinct branches of f over P1 \ � which are of the forms
(f 1

l1,−, f 2
l2,−, f 3

l3,−, f 4
l4,−), (f 1

n1,−, f 2
n2,−, f 3

l3,−, f 4
l4,−) such that

y1 = (∞, f 1
l1,−(∞), f 2

l2,−(∞), f 3
l3,−(∞), f 4

l4,−(∞)
)
,

y2 = (∞, f 1
n1,−(∞), f 2

n2,−(∞), f 3
l3,−(∞), f 4

l4,−(∞)
)
.

If nj = lj and ni �= li for distinct i, j ∈ {1,2}, then we have

1 − f i
li ,−(z)f i

li ,−(w) = 1 − f i
ni ,−(z)f i

li ,−(w)

for z,w ∈ P1 \ � from the functional equation, which implies that f i
li ,− = f i

ni ,−
so that li = ni , a plain contradiction. Thus, nj �= lj for j = 1,2. Now, we have
α1

l �= α2
l for l = 1,2. From the functional equation, we have(

1 − f 1
l1,−(z)f 1

n1,−(w)
)(

1 − f 2
l2,−(z)f 2

n2,−(w)
)

=
(

1 − f 1
l1,−(z)f 1

l1,−(w)
)(

1 − f 2
l2,−(z)f 2

l2,−(w)
)

so that

1 − f 1
l1,−(z)α2

1

1 − f 1
l1,−(z)α1

1

= 1 − f 2
l2,−(z)α1

2

1 − f 2
l2,−(z)α2

2

,

which implies that f 1
l1,−(z) = ϕ(f 2

l2,−(z)) for some ϕ ∈ Aut(P1) satisfying

ϕ(0) = 0. Denote by O := P1 \ �. Thus, R1 ◦ ϕ|f 2
l2,−(O) = R2|f 2

l2,−(O). Since

f 2
l2,−(O) ⊂ P1 is open, we have R1 ◦ ϕ = R2 by the Identity Theorem for mero-

morphic functions on irreducible holomorphic varieties [Gun90, p. 177]. We
claim that Rj(h(z)) = z for some holomorphic function h on � implies h = f

j
l

for some l and h(0) = f
j
l (0). Actually, there is an open neighborhood B0 of 0

in � such that Rj |Ul
: Ul → B0 is biholomorphic and h(0) = f

j
l (0) for some

l since 0 is not a branch point of Rj , where Ul is some open neighborhood of

f
j
l (0) in P1. Then, (Rj |Ul

)−1|B0 = h|B0 = f
j
l |B0 and thus h = f

j
l by the Iden-

tity Theorem. Therefore, this implies that ϕ ◦ f 2 is one of the branches of f 1

over �. Since (ϕ ◦ f 2)(0) = 0, we have ϕ ◦ f 2 = f 1 because 0 is not a branch
point of any Rj , 1 ≤ j ≤ 4. But then performing (multivalued) analytic continu-
ation of (f 1, f 2, f 3, f 4) could only produce branches of f over � of the form
(f 1

l , f 2
l , f 3

l3
, f 4

l4
) for some l, l3, l4 ∈ {1,2,3,4}, which contradicts Equation (3.2).

Hence, there is a branch of f over � which is of the desired form. �

Proposition 3.6. If f ∈ HI1(�,�4;8;4,4,4,4), then

f = (α1 ◦ α2, β1 ◦ α2, α3 ◦ β2, β3 ◦ β2)

up to reparametrizations, where (αj ,βj ) ∈ HI1(�,�2;2), j = 1,2,3.

Proof. We may assume without loss of generality that f (0) = 0. By Lemma 3.5,
there is a branch of f over � which is of the form (g1, . . . , g4), where gσ(j) :=
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f
σ(j)

1 for 1 ≤ j ≤ 2 and gσ(μ) := f
σ(μ)
lσ(μ)

with lσ (μ) �= 1 for μ = 3,4, and for some
σ ∈ �4. Then, it follows from Theorem 2.2 that

(1 − |f σ(3)(z)|2)(1 − |f σ(4)(z)|2) = 1 − |h(z)|2

for some holomorphic function h : � → C. Thus, it follows from the func-
tional equation that (f σ(1), f σ(2), h) ∈ HI1(�,�3). Since the sheeting num-
bers of both f σ(1) and f σ(2) are equal to 4, the sheeting number of h equals
2 and h is a component function of some isometry in HI1(�,�2;2) (cf. [Ng10,
Theorem 8.1]). This shows that (f σ(1), f σ(2), h) ∈ HI1(�,�3;4;4,4,2). From
[Ng10, Theorem 8.1], we have (f σ(1), f σ(2), h) = (α5 ◦ g,β5 ◦ g,h) up to
reparametrizations, where (α5, β5) ∈ HI1(�,�2;2) and (g,h) ∈ HI1(�,�2;2)

for some holomorphic function g : � → �. Moreover, (1−|f σ(3)(h−1(z))|2)(1−
|f σ(4)(h−1(z))|2) = 1 − |z|2 for z ∈ B1(0, ε) ⊂ �, where ε > 0 is some real con-
stant. Thus, (f σ(3) ◦ h−1, f σ(4) ◦ h−1) : B1(0, ε) → �2 is a local holomorphic
isometric embedding which can be extended to the whole unit disk � (cf. [Mok12,
Theorem 1.3.1]), where the isometric constant equals 1. Therefore, we have
f σ(3) = α4 ◦ h and f σ(4) = β4 ◦ h for some (α4, β4) ∈ HI1(�,�2;2). Hence,
(f σ(1), f σ(2), f σ(3), f σ(4)) = (α5 ◦ g,β5 ◦ g,α4 ◦ h,β4 ◦ h) up to reparametriza-
tions so that f = (α1 ◦ α2, β1 ◦ α2, α3 ◦ β2, β3 ◦ β2) up to reparametrizations,
where (αj ,βj ) ∈ HI1(�,�2;2) for j = 1,2,3. �

Combining the above results, part (1) of the Theorem 1.1 is proved.

3.2. Classification of Holomorphic Isometries in HIk(�,�4) for k ≥ 2

In this section, we consider the case where k = 2,3 or 4. The following is part (2)

of Theorem 1.1.

Proposition 3.7. Let f : (�,2ds2
�) → (�4, ds2

�4) be a holomorphic isometric
embedding. Then, f (z) is of one of the following forms up to reparametrizations:

(1) (α1(z), β1(z),α2(z), β2(z)), where (αj ,βj ) ∈ HI1(�,�2;2) for j = 1,2.
(2) (z,α1(z), (α2 ◦β1)(z), (β2 ◦β1)(z)), where (αj ,βj ) ∈ HI1(�,�2;2) for j =

1,2.
(3) (z,α1(z),α2(z),α3(z)), where (α1, α2, α3) ∈ HI1(�,�3;3).

Moreover, the space HI2(�,�4;n;2,2,2,2) is non-empty only if n = 2 or n = 4.

Proof. We may assume without loss of generality that f (0) = 0. Let sj be the
sheeting number of f j and n be the global sheeting number (cf. [Ng10, p. 2911]).
In the case where k = 2, we have 2 ≤ n ≤ 8. If n = 5, then we have

∑4
j=1(1/sj ) =

2 with sj | 5 for 1 ≤ j ≤ 4. Thus, l+ 4−l
5 = 2 for some integer l ≥ 0, but this would

imply that 4l = 6, which is a contradiction. If n = 7, then we have
∑4

j=1(1/sj ) =
2 with sj | 7 for 1 ≤ j ≤ 4. Therefore, l + 4−l

7 = 2 for some integer l ≥ 0, but this
would imply that 6l = 10, which is again a contradiction. Then, we have n /∈ {5,7}
so that n = 2,3,4,6 or 8.
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In a priori for n = 6 or n = 8, it is possible that (n, s1, s2, s3, s4) =
(6,2,2,2,2), (6,1,3,3,3), (6,1,2,3,6), (8,2,2,2,2) or (8,1,2,4,4).

If s1 = 1, then f 1(z) = z up to reparametrizations so that the problem re-
duces to the study of HI1(�,�3), which is completely described by [Ng10, The-
orem 8.1]. If (n, s1, s2, s3, s4) = (6,1,3,3,3), then (f 2, f 3, f 4) is the cube-root
embedding up to reparametrizations by [Ng10, Theorem 8.1] and this implies that
n = 3, which is a contradiction. If (n, s1, s2, s3, s4) = (6,1,2,3,6), then we would
have a holomorphic isometry in HI1(�,�3;n′;2,3,6) so that n′ ≥ 6, which con-
tradicts n′ ≤ 4 (cf. [Ng10, Proposition 5.2]). If (n, s1, s2, s3, s4) = (8,1,2,4,4),
then (f 2, f 3, f 4) is of the form (α1, α2 ◦ β1, β2 ◦ β1) for (αj ,βj ) ∈ HI1(�,�2),
j = 1,2, by [Ng10, Theorem 8.1] and thus n = 4, which is a contradiction. This
rules out the cases where (n, s1, s2, s3, s4) = (6,1,3,3,3), (n, s1, s2, s3, s4) =
(6,1,2,3,6) or (n, s1, s2, s3, s4) = (8,1,2,4,4). Therefore, the only possible
global sheeting numbers n and sheeting numbers s1, . . . , s4 are the following:

(1) (n, s1, s2, s3, s4) = (n,2,2,2,2), n = 2,4,6 or 8,
(2) (n, s1, s2, s3, s4) = (4,1,2,4,4),
(3) (n, s1, s2, s3, s4) = (3,1,3,3,3).

Now, we deal with these cases:

(1) Let f = (f 1, f 2, f 3, f 4) ∈ HI2(�,�4;n;2,2,2,2). Then, each f j be-
comes one of the component functions of the square-root embedding from
[Ng10, Lemma 6.7]. From [Ng10, Colloary 4.7], for each branch point
a ∈ ∂� of some component function f j of f , we have |f j (a)|2 = 1. From
the use of the Puiseux series of each component function f j of f around a
branch point a ∈ ∂� of f j , we see that either a is a branch point of all com-
ponent functions of f or a is a branch point of another component f l of f

(l �= j ) and a is not a branch point of other component functions f μ of f

(μ /∈ {l, j}).
Then, either (i) the branching loci of all component functions of f are the

same or (ii) for any branch point a ∈ ∂� of each component function f j of
f , a is only a branch point of f l for some l �= j and not a branch point of f μ

for μ /∈ {l, j}.
(i) If the branching loci of all component functions of f are the same, then

there is a single reparametrization of f so that each f j is one of the α1, β1,
where (α1, β1) ∈ HI1(�,�2) is the square-root embedding. From the proof
of Theorem 6.5 in [Ng10], since for every branch of f there are precisely
two component functions of f which take the value ∞ at ∞, only two of
the f j ’s are α1 and the remaining two component functions of f are β1 up
to reparametrizations. In particular, f is (α1, β1, α1, β1) up to reparametriza-
tions for some (α1, β1) ∈ HI1(�,�2).

(ii) Suppose that for any branch point a ∈ ∂� of each component function
f j of f , a is only a branch point of f l for some l �= j and not a branch point
of f μ for μ /∈ {l, j}. We may assume that f 1 and f 2 have a common branch
point a ∈ ∂� and a is not a branch point of f 3, f 4. Then, after performing
(multivalued) analytic continuation along a simple continuous closed loop
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around a ∈ ∂� once, we obtain another branch (f 1
l , f 2

l , f 3, f 4) of f for
some l �= 1. From the proof of Theorem 2.2, we have

(1 − |f 1(z)|2)(1 − |f 2(z)|2) = 1 − |h(z)|2
for some holomorphic function h : � → �. Thus, (h,f 3, f 4) ∈ HI2(�,�3).
Since both f 3 and f 4 have sheeting numbers equal to 2, it follows from
[Ng10] that the sheeting number of h is equal to 1, i.e., h(z) = z up to
reparametrizations. In particular, (f 1, f 2) ∈ HI1(�,�2) and thus (f 3, f 4) ∈
HI1(�,�2). Hence, f is (α1, β1, α2, β2) up to reparametrizations for some
(αj ,βj ) ∈ HI1(�,�2), j = 1,2.

In any case, it follows that any f ∈ HI2(�,�4;n;2,2,2,2) is (α1, β1,

α2, β2) up to reparametrizations for some (αj ,βj ) ∈ HI1(�,�2), j = 1,2.
Note that the branching loci of αj and βj are the same for each j , where j =
1,2. By performing (multivalued) analytic continuation of the given isometry
f ∈ HI2(�,�4;n;2,2,2,2), the global sheeting number n is at most 4, i.e.,
either n = 2 or n = 4. This rules out the possibility of n being equal to 6 or 8.

If f = (f 1, f 2, f 3, f 4) ∈ HI2(�,�4;2;2,2,2,2), then the branching
loci of all f j are the same so that there is a single parametrization of f

to make f j to be either α1 or β1, where (α1, β1) : � → �2 is the square-
root embedding. Moreover, since for each branch of f , there are only two
component functions take the value ∞ at ∞, so f = (α1, β1, α1, β1) up to
reparametrizations.

If f ∈ HI2(�,�4;4;2,2,2,2), then f = (α1, β1, α2, β2) up to reparame-
trizations, where (αj ,βj ) ∈ HI1(�,�2;2) for j = 1,2 such that the branch-
ing loci of (α1, β1) is different from that of (α2, β2).

(2) Let f = (f 1, f 2, f 3, f 4) ∈ HI2(�,�4;4;1,2,4,4). Then, f 1(z) = z up
to reparametrizations so that (f 2, f 3, f 4) ∈ HI1(�,�3;4;2,4,4). From
[Ng10], we have (f 2, f 3, f 4) = (α1, α2 ◦ β1, β2 ◦ β1) up to reparametriza-
tions, where (αj ,βj ) ∈ HI1(�,�2;2) for j = 1,2.

(3) Now, we consider the case where n = 3. The only possibility is that
(s1, s2, s3, s4) = (1,3,3,3). Then, we have f 1(z) = z up to reparametriza-
tions so that

(1 − |f 2(z)|2)(1 − |f 3(z)|2)(1 − |f 4(z)|2) = 1 − |z|2
and thus (f 2, f 3, f 4) : � → �3 is a holomorphic isometric embedding with
the isometric constant equal to 1. From [Ng10, Theorem 8.1], (f 2, f 3, f 4)

has to be the cube-root embedding up to reparametrizations. Thus f (z) =
(z,α1(z),α2(z),α3(z)) up to reparametrizations, where (α1, α2, α3) : � →
�3 is the cube-root embedding. �

The following is part (3) of Theorem 1.1.

Proposition 3.8. Let f : (�,3ds2
�) → (�4, ds2

�4) be a holomorphic isomet-
ric embedding. Then, f (z) = (z, z,α(z),β(z)) up to reparametrizations, where
(α,β) ∈ HI1(�,�2;2).
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Proof. We may assume without loss of generality that f (0) = 0. Note that∑4
j=1(1/sj ) = 3, so there exists j such that 1/sj ≥ 3

4 . But then sj ≤ 4
3 <

2 implies sj = 1 so that f j (z) = z up to reparametrizations. We may as-
sume without loss of generality that f 1(z) = z. Then, (1 − |f 2(z)|2)(1 −
|f 3(z)|2)(1 − |f 4(z)|2) = (1 − |z|2)2 so that (f 2, f 3, f 4) ∈ HI2(�,�3). It fol-
lows from Theorem 8.2 in [Ng10] that (f 2(z), f 3(z), f 4(z)) = (z,α(z),β(z)) up
to reparametrizations, where (α,β) ∈ HI1(�,�2;2). The result follows. �

Combining the results, Theorem 1.1 is proved when k = 1,2,3. For the case
where the isometric constant k equals 4, it is known from [Ng10, p. 2909] that
f (z) = (z, z, z, z) is the diagonal embedding up to reparametrizations. Hence,
Theorem 1.1 is proved completely.

4. Generalizations of the Global Rigidity of the pth Root Embedding

In [Ch16a], the author has proven that any holomorphic isometric embedding in
HI1(�,�p;p) is the pth root embedding Fp up to reparametrizations, which
means that Fp is globally rigid in HI1(�,�p;p) in the sense of [Mok11].
This kind of phenomenon also occurs for the space HIk

(
�,�p; p

k

)
, where k,

p are positive integers satisfying p ≥ 2, k | p and p
k

≥ 2. Note that the case
of HIk

(
�,�p; p

k

)
is precisely the minimal case of HIk(�,�p) in terms of the

global sheeting number. More precisely, we will show that all holomorphic isome-
tries in HIk(�,�qk;q) are globally rigid for positive integers q , k satisfying
q ≥ 2 and k ≥ 1. The following may be regarded as an analogue of [Ch16a, Theo-
rem 1.1] because the technique of proving [Ch16a, Theorem 1.1] is still valid for
a more general situation with slight modifications.

Proposition 4.1. Let p and k be integers satisfying p ≥ 2, 1 ≤ k ≤ p, p
k

∈ Z

and p
k

≥ 2. Let f = (f 1, . . . , f p) : (�, k ds2
�) → (�p,ds2

�p) be a holomorphic
isometric embedding with the global sheeting number q := p

k
and the isometric

constant k. Then, f = (g1, . . . , gk) up to reparametrizations, where gj = Fq up
to reparametrizations for 1 ≤ j ≤ k such that the branching loci of all gj ’s are
the same and Fq = (F 1

q , . . . ,F
q
q ) : � → �q is the qth root embedding.

Lemma 4.2 (Analogue of Lemma 4.9 in [Ch16a]). Under the same assumptions
as in Proposition 4.1, suppose that q ≥ 4 is an even integer and π has 3 distinct
branch points a1, a2, a3 ∈ ∂�. Then, there is a component function f j of f such
that f̃ j (�) ⊂ �, where f̃ = (f̃ 1, . . . , f̃ qk) : � → �qk is the continuous mapping
such that f̃ |� = f .

Proof. From the proof of [Ch16a, Proposition 4.4], we see that the ramification
index v(π, x) is independent of the choice of x ∈ π−1(aj ) for each j . More-
over, we will see in the proof of Proposition 4.1 that the branching loci of all
component functions of f are the same and coincide with the branching locus of
π . Let the ramification index of π at x ∈ π−1(aj ) be vj for j = 1,2,3. Then,
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from [Ch16a, Remark 4.5] we also have the Riemann-Hurwitz formula 2q − 2 =∑3
j=1 q

(
1 − 1

vj

)
and all possible (v1, v2, v3) are listed on Table 1 in [Ch16a,

p. 355]. We may write aj = eiθj for j = 1,2,3 and assume that 0 ≤ θ1 < θ2 <

θ3 < 2π without loss of generality. Let A3,1 = {eiθ ∈ ∂� | θ ∈ (θ3, θ1 + 2π)},
A1,2 = {eiθ ∈ ∂� | θ ∈ (θ1, θ2)} and A2,3 = {eiθ ∈ ∂� | θ ∈ (θ2, θ3)}. Since
m = 3, each component function of f can only map precisely one connected com-
ponent A ⊂ ∂� \ {a1, a1, a3} into ∂�. Then, by properness of the holomorphic
isometric embedding f (cf. [Mok12]), we may suppose that f̃ μ(A3,1) ⊂ ∂� for
1 ≤ μ ≤ k and f̃ j (A3,1) �⊂ ∂� for k + 1 ≤ j ≤ qk; f̃ μ(A1,2) ⊂ ∂� for k + 1 ≤
μ ≤ 2k and f̃ j (A1,2) �⊂ ∂� for 1 ≤ j ≤ k or 2k + 1 ≤ j ≤ qk; f̃ μ(A2,3) ⊂ ∂�

for 2k + 1 ≤ μ ≤ 3k and f̃ j (A2,3) �⊂ ∂� for 1 ≤ j ≤ 2k or 3k + 1 ≤ j ≤ qk.
For all cases listed on Table 1 in [Ch16a, p. 355], we have v3 = 2. In or-

der to be consistent to the above setting, by continuity of the map f̃ , we
would have |f̃ μ(a3)| = 1 for 1 ≤ μ ≤ k or 2k + 1 ≤ μ ≤ 3k, |f̃ j (a3)| < 1 for
k + 1 ≤ j ≤ 2k or 3k + 1 ≤ j ≤ qk by arguments in the proof of Lemma 4.3
in [Ch16a]; |f̃ μ′

(a2)| = 1 for 2k + 1 ≤ μ′ ≤ 3k or k + 1 ≤ μ′ ≤ 2k and
|f̃ μ′′

(a1)| = 1 for k + 1 ≤ μ′′ ≤ 2k or 1 ≤ μ′′ ≤ k. Actually, arguments in the
proof of Lemma 4.3 in [Ch16a] would imply that if the ramification index of
π at (ai, f

1
l (ai), . . . , f

qk
l (ai)) equals s, then there exist distinct j1, . . . , jsk ∈

{1, . . . , qk} such that |f jμ

l (ai)| = 1 for 1 ≤ μ ≤ sk. If 2 ≤ s < q , then |f j
l (ai)| �=

1 for j /∈ {j1, . . . , jsk}. The only difference is that in the proof of Lemma 4.3 in
[Ch16a, p. 352], we replace the term 1 − |z|2 by (1 − |z|2)k in the functional
equation, replace the term −aiξ

s by (−ai)
kξks in the polarized functional equa-

tion and also replace p by q . The argument of comparing the vanishing orders of
holomorphic functions at ξ = 0 is still valid. Now, we assume the contrary that

�j ∈ {1, . . . , kq} such that f̃ j (�) ⊂ �. (4.1)

Then, for 3k + 1 ≤ μ ≤ qk, we should have |f̃ μ(a2)| = 1 or |f̃ μ(a1)| = 1.
In any case listed on Table 1 in [Ch16a, p. 355], the number of elements in the

set
I2 := {μ ∈ Z | 3k + 1 ≤ μ ≤ qk, |f̃ μ(a2)| = 1 or |f̃ μ(a1)| = 1}

is at most 2(
q
2 · k − 2k) = (q − 4)k because we already have |f̃ μ′

(a2)| = 1 for
2k + 1 ≤ μ′ ≤ 3k or k + 1 ≤ μ′ ≤ 2k, |f̃ μ′′

(a1)| = 1 for k + 1 ≤ μ′′ ≤ 2k or
1 ≤ μ′′ ≤ k and v1, v2 ≤ q

2 . Note that |f̃ j (a3)| < 1 for k +1 ≤ j ≤ 2k or 3k +1 ≤
j ≤ qk, by the assumption made in Equation (4.1), the set I2 would have precisely
(q − 3)k elements. This leads to a contradiction. Hence, we conclude that there
exists j ∈ {1, . . . , qk} such that f̃ j (�) ⊂ �. �

Proof of Proposition 4.1. Assume without loss of generality that f (0) = 0.
Note that

∑kq

j=1(1/sj ) = k and sj | q so that sj ≤ q . Then, k = ∑kq

j=1
1
q

≤∑kq

j=1(1/sj ) = k implies that sj = q for 1 ≤ j ≤ p. The method used in the
proof of the global rigidity of the pth root embedding can be applied to the study
of HIk(�,�kq;q) since sj = q for 1 ≤ j ≤ kq , so that all rational functions Rj
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are equivalent, i.e., Ri = Rj ◦ϕji for some ϕji ∈ Aut(P1). From the arguments in
the study of the minimal case in [Ng10], the branching loci of all component func-
tions of f are the same, and for each point (z,w1, . . . ,wp) ∈ V , the ramification
index of πj at (z,wj ) equals the ramification index of πi at (z,wi) for distinct i,
j , 1 ≤ i, j ≤ p. Let {a1, . . . , am} ⊂ ∂� be the set of all distinct branch points of
π : V → P1. Then, for each connected component A ⊂ ∂� \ {a1, . . . , am}, there
are precisely k component functions of f that map A into ∂�. From the argu-
ments in the proof of Proposition 4.4 in [Ch16a], we have 2 ≤ m ≤ 3, and Table 1
in [Ch16a, p. 355] still provides all possible cases when q ≥ 4 is even and m = 3.
In fact, we only need to modify the arguments in the proof of Proposition 4.4 in
[Ch16a], namely replacing the term 1 − |z|2 (resp. −aiξ

s ) by (1 − |z|2)k (resp.
(−ai)

kξks ) in the functional equation (resp. polarized functional equation) and
also replacing p by q . The argument of comparing the vanishing orders of holo-
morphic functions at ξ = 0 is still valid.

If q = 2 or q ≥ 3 is odd, then it follows from the arguments in the proof of
both Proposition 4.4 and Corollary 4.6 in [Ch16a] that f has precisely two dis-
tinct branch points. If q ≥ 4 is an even integer and m = 3, then it follows from
Lemma 4.2 that f̃ j (�) ⊂ � for some j , which contradicts the maximum prin-
ciple as in the proof of Proposition 4.8 in [Ch16a]. Thus m �= 3, so that m = 2.
Therefore, all component functions of f are some component functions of the qth
root embedding up to reparameterizations (see Lemma 4.9 in [Ng10, p. 2913]).
Note that π : V → P1 is also q-sheeted. By the proof of Theorem 6.5 in [Ng10]
and the polarized functional equation

qk∏
j=1

(
1 − f j (z)f j (w)

) = (1 − zw)k

for fixed w ∈ � \ {0}, each branch of f has precisely k distinct component func-
tions that take the value ∞ at ∞. Thus, these k component functions of f are the
same component function of the qth root embedding up to reparameterizations.
We may suppose without loss of generality that f μk+1, . . . , f μk+k are the same
component function of Fq up to reparameterizations for each μ = 0, . . . , q−1 and
that for 1 ≤ j, i ≤ k, f μk+j and f μ′k+i are not congruent to the same component
function of Fq , provided that μ �= μ′. In addition, (f j , f j+k, . . . , f j+(q−1)k) is
the qth root embedding Fq up to reparameterizations for 1 ≤ j ≤ k. The result
follows. �

Remark. As an application of Theorem 1.1, we can solve the classification
problem for the space HIp−l(�,�p) when l = 1,2. In fact, given any f ∈
HIp−l(�,�p) for p ≥ 5 and l = 1 (resp. l = 2), it follows from direct com-
putation via Ng’s identity

∑p

j=1(1/sj ) = p − l (see [Ng10]) that there are p − 2
(resp. at least p − 4) component functions f j of f with sheeting numbers equal
to 1, so that f j (z) = z up to reparameterizations. This shows that such a holo-
morphic isometry f is given by f (z) = (g1(z), g2(z)) up to reparameterizations
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for some g1 ∈ HIμ(�,�μ) and g2 ∈ HIp−l−μ(�,�p−μ), where μ is the num-
ber of component functions of f with the sheeting numbers equal to 1. Here we
apply Theorem 1.1 precisely when l = 2 and μ = p − 4. The details can be found
in [Ch16b]. This gives a complete classification of all holomorphic isometries in
HIp−l(�,�p) when l = 1,2 and p ≥ 3. (Noting that the cases where p = 3,4
have been done by Ng [Ng10] and the author in Theorem 1.1, respectively.) More-
over, the result obtained for the case where p = 4 and l = 1 is precisely that in
Proposition 3.8.

On the other hand, by applying both Proposition 4.1 and Theorem 1.1
we have solved the classification problem for the subspace HIk(�,�p;n) of
HIk(�,�p) whenever the global sheeting number n is a prime number such
that HIk(�,�p;n) is nonempty. More precisely, if f ∈ HIk(�,�p;n) for some
prime number n, then f is parameterized by the nth root embedding, the diagonal
embeddings, and automorphisms of � and �p , respectively. This has been done
in the Ph.D. thesis of the author [Ch16b].
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