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On the Moduli of Isotropic and Helical Minimal
Immersions between Spheres

Kouhei Miura & Gabor Toth

Abstract. DoCarmo–Wallach theory and its subsequent refinements
assert the rich abundance of spherical minimal immersions, minimal
immersions of round spheres into round spheres. A spherical mini-
mal immersion is a conformal minimal immersion f : Sm → Sn; its
components are spherical harmonics of a common order p on Sm, and
the conformality constant is λp/m, where λp is the pth eigenvalue of

the Laplace operator on Sm. In this paper, we impose the additional
constraint of “isotropy” expressed in terms of the higher fundamental
forms of such immersions and determine the dimension of the respec-
tive moduli space. By the work of Tsukada, isotropy can be charac-
terized geometrically by “helicality”, constancy of initial sequences
of curvatures of the image curves of geodesics under the respective
spherical minimal immersions.

We first give a simple criterion for (the lowest order) isotropy of
a spherical minimal immersion in terms of orthogonality relations in
the third (ordinary) derivative of the image curves (Theorem A). This
is then applied in the main result of this paper (Theorem B), which
gives a full characterization of isotropic SU(2)-equivariant spherical
minimal immersions of S3 into the unit sphere of real and complex
SU(2)-modules. Specific examples include the polyhedral minimal
immersions of which the icosahedral minimal immersion (into S12) is
isotropic whereas its tetrahedral and octahedral cousins are not.

1. Introduction

Minimal isometric immersions of round spheres into round spheres form a rich
and subtle class of objects in differential geometry studied by many authors; see
[2; 4; 5; 6; 7; 8; 10; 12; 15; 16; 18; 17; 19; 20; 25; 24; 26; 27] and, for a more com-
plete list, the bibliography at the end of the second author’s monograph [23]. Such
immersions can be written as f : Sm

κ → SV of the round m-sphere Sm
κ of (con-

stant) curvature κ > 0 into the unit sphere SV of a Euclidean vector space V or,
scaling the domain sphere Sm

κ to radius one, as minimal immersions f : Sm → SV

with homothety constant 1/κ . By minimality, the components α ◦ f , α ∈ V ∗ (the
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dual of V ), of f are necessarily eigenfunctions of the Laplacian � of Sm corre-
sponding to the eigenvalue λ = m/κ . Setting λ = λp = p(p + m − 1), p ≥ 1, the
pth eigenvalue, and Hp

m ⊂ C∞(Sm), the corresponding eigenspace of spherical
harmonics of order p on Sm, a homothetic minimal immersion f : Sm → SV with
homothety constant λp/m is called a spherical minimal immersion of degree p.
(For the standard results recalled here and further, see [23, Appendix 2], [26], and
the summary in [24].)

Beyond the classical Veronese immersions Verp : S2 → S2p , p ≥ 2, and vari-
ous generalizations, it is well known that spherical minimal immersions abound.
(For many specific examples, see [5; 6; 24].)

According to the DoCarmo–Wallach theory, for m ≥ 3 and p ≥ 4, the set of
spherical minimal immersions f : Sm → SV of degree p can be parameterized by
a (nontrivial) compact convex body Mp

m in a linear subspace Fp
m of the symmet-

ric square S2(Hp
m). More precisely, this is a parameterization of the congruence

classes of full spherical minimal immersions, where a spherical minimal immer-
sion f : Sm → SV is full if the image of f spans V , and two full spherical min-
imal immersions f : Sm → SV and f ′ : Sm → SV ′ are congruent if f ′ = U ◦ f

for some linear isometry U : V → V ′.
The convex body Mp

m is called the moduli space for spherical minimal im-
mersions f : Sm → SV of degree p. (The moduli space Mp

m is trivial (zero-
dimensional singleton) if and only if m = 2 (and p ≥ 1) or p ≤ 3 (and m ≥ 2).
For the original work of DoCarmo and Wallach, see [7] and [26].)

The group SO(m + 1) acts on the set of all spherical minimal immersions by
precomposition, and this action naturally carries over to the moduli space Mp

m.
This latter action, in turn, is the restriction of the SO(m+ 1)-module structure on
S2(Hp

m) (extended from that of Hp
m) with Fp

m being an SO(m + 1)-submodule.
The complexification of Fp

m decomposes as

Fp
m ⊗R C ∼=

∑
(u,v)∈�p

2 ;u,v even

V
(u,v,0,...,0)
m+1 , (1)

where �p

2 ⊂ R
2 is the closed convex triangle with vertices (4,4), (p,p), and

(2p − 4,4). Here V
(u1,...,ud )
m+1 , d = [(m + 1)/2], denotes the complex irreducible

SO(m + 1)-module with highest weight vector (u1, . . . , ud) relative to the stan-
dard maximal torus in SO(m+ 1). Since the dimension of the irreducible compo-
nents in (1) can be explicitly calculated by the Weyl dimension formula, we obtain
the exact dimension dimMp

m = dimFp
m of the moduli space. (The fact that the

right-hand side in (1) is a lower bound for Fp
m ⊗R C is the main result of the

DoCarmo–Wallach theory. The equality, the so-called exact dimension conjecture
of DoCarmo and Wallach, was proved by the second author in [21]; see also [23,
Chapter 3] and also a subsequent different proof in [27].)

The dimension and subtlety of the moduli space Mp
m increase rapidly with

m ≥ 3 and p ≥ 4. It is therefore natural to impose further geometric restrictions on
the spherical minimal immersions. These, on the one hand, reduce the dimension
and complexity of the moduli space and, on the other hand, give new examples of
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spherical minimal immersions with additional properties. As we will see further,
two competing natural geometric properties of spherical minimal immersions are
“isotropy” and “helicality”.

Let f : Sm → SV be a spherical minimal immersion of degree p. For k =
1, . . . , p, let βk(f ) be the kth fundamental form of f , and Ok

f the kth osculating
bundle of f , both defined on a (maximal) open and dense subset Df ⊂ Sm. (For
a summary on higher fundamental forms, see [26] or [10], and also Section 2.1.)

Definition of Isotropy. Let k ≥ 2. A spherical minimal immersion f : Sm →
SV is said to be isotropic of order k if ‖βl(f )(X,X, . . . ,X)‖ are universal con-
stants �l , 2 ≤ l ≤ k (depending only on m and p), for all unit vectors X ∈ Tx(S

m),
x ∈ Df . The constants �l , l ≥ 2, are called the constants of isotropy. Since
the first fundamental form of f is the differential f∗, it is convenient to set
�1 = √

λp/m with �2
1 = λp/m being the homothety constant. (For an extensive

study of isotropy, see Tsukada’s work [25].)

The moduli space Mp;k
m parameterizing the spherical minimal immersions f :

Sm → SV of degree p that are isotropic of order k is a linear slice of the moduli
space Mp

m by an SO(m+1)-submodule Fp;k
m ⊂ Fp

m. We have the decomposition

Fp;k
m ⊗R C ∼=

∑
(u,v)∈�p

k+1;u,v even

V
(u,v,0,...,0)
m+1 , (2)

where the closed convex triangle �p
k ⊂ R

2, k = 2,3, . . . , [p/2], has vertices
(2k,2k), (p,p), and (2(p − k),2k). As before, (2) gives the exact dimension
of the moduli space: dimMp;k

m = dimFp;k
m . (These results have been proved by

Gauchman and the second author, for m ≥ 4, in [10]; and the case m = 3 has been
completed in [23].)

We thus have the filtration

Fp
m = Fp,1

m+1 ⊃ Fp,2
m+1 ⊃ · · · ⊃Fp;[p/2]−1

m+1 ,

where each term is obtained from decomposition (2) by restriction to the respec-
tive triangle in the sequence

�p

2 ⊃ �p

3 ⊃ · · · ⊃ �p

[p/2].

As a byproduct, we obtain that, for p ≤ 2k + 1, the moduli space Mp,k
m is trivial.

(For the original proof of this, see again [25].)
A geometric characterization of isotropy lies in the concept of “helicality” in-

troduced and studied by Sakamoto in a series of papers [18; 17; 19].

Definition of Helicality. A spherical minimal immersion f : Sm → SV of de-
gree p is called helical up to order k if, for any arc-length parameterized geodesic
γ : R → Sm, the first k −1 curvatures of the image curve σ = f ◦γ :R → SV are
nonzero constants, and these constants are universal in that they do not depend on
the choice of γ but only on m and p.
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(Recall that the curvatures are obtained by taking higher-order covariant deriva-
tives of σ ′. Note also that the universal constants have been determined in [9].)

Tsukada’s characterization of isotropy (with appropriate modifications of his
proof of Proposition 5.1 in [25]) is the following:

Theorem. A spherical minimal immersion f : Sm → SV of degree p is isotropic
of order k if and only if it is helical up to order k.

The applications of this result are severalfold. First, a geometrically transparent
interpretation of the moduli space Mp;k

m emerges: it parameterizes the spherical
minimal immersions f : Sm → SV of degree p that are helical up to order k. Sec-
ond, as noted before, dimMp;k

m can be calculated explicitly. In the past, helical
minimal immersions have only been studied individually, and here we have a pre-
cise formula for the dimension of the moduli space of such maps. Third, helicality
is a much simpler condition than isotropy; therefore, in several instances, this con-
dition can be checked by explicit calculation. (See the examples in Section 2.4 and
the computations in Section 3.2.)

The complexity of the condition of isotropy/helicality increases rapidly with
the order. The lowest order of isotropy, isotropy of order two, has special signifi-
cance because of the relative simplicity of the formula expressing the first curva-
ture of the image curve of a geodesic under the immersion. Our first result is the
following:

Theorem A. Let f : Sm → SV be a spherical minimal immersion of degree p.
For a unit vector X ∈ Tx(S

m), let γX :R → Sm be the (arc-length parameterized)
geodesic such that γX(0) = x and γ ′

X(0) = X, and set σX = f ◦ γX : R → SV .
Then f : Sm → SV is isotropic of order two if and only if, for any x ∈ Sm and
X,Y ∈ Tx(S

m) with 〈X,Y 〉 = 0, we have

〈σ (3)
X (0), σ ′

Y (0)〉 = 0. (3)

Here σ
(k)
X , k ≥ 1, is the kth derivative of σX as a vector-valued function (with

values in V ) and viewed as a vector field along the curve σX .
If f : Sm → SV is an isotropic spherical minimal immersion of degree p, then,

for the isotropy constant �2, we have

〈σ (3)
X (0), σ ′

X(0)〉 = −�2
1 − �2

2, ‖X‖ = 1,X ∈ Tx(S
m), x ∈ Sm, (4)

where �2
1 = λp/m.

As shown by the works of DeTurck and Ziller [5; 6], a rich subclass of spherical
minimal immersions is comprised by minimal SU(2)-orbits in spheres (of SU(2)-
modules).

Let Wp , p ≥ 0, be the space of complex homogeneous polynomials of degree
p in two variables z,w ∈ C. Then Wp is a complex irreducible SU(2)-module.
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Given a (nonzero) polynomial

ξ =
p∑

q=0

cqzp−qwq ∈ Wp, (5)

we consider the orbit map fξ : S3 → Wp , fξ (g) = g · ξ = ξ ◦ g−1, g ∈
SU(2), through ξ . (This so-called equivariant construction has been initiated by
Mashimo [12].) Now fξ maps into a unit sphere SWp if and only if

‖ξ‖2 =
p∑

q=0

(p − q)!q!|cq |2 = 1. (6)

Assuming this, we obtain an SU(2)-equivariant map fξ : S3 → SWp .
DeTurck and Ziller showed that fξ is a spherical minimal immersion of degree

p, that is, fξ is homothetic with homothety constant �2
1 = λp/3 = p(p + 2)/3, if

and only if

p−2∑
q=0

(p − q)!(q + 2)!cq c̄q+2 = 0, (7)

p−1∑
q=0

(p − q)!(q + 1)!(p − 2q − 1)cq c̄q+1 = 0, (8)

p∑
q=0

(p − q)!q!(p − 2q)2|cq |2 = �2
1. (9)

(For more details, see [5; 6] or [24; 23].)
Our main result gives a full characterization of order two isotropic SU(2)-

equivariant spherical minimal immersions f : S3 → SWp of degree p as follows:

Theorem B. Let f : S3 → SWp be an SU(2)-equivariant spherical minimal im-
mersion of degree p. Setting f = fξ with ξ ∈ Wp satisfying (5)–(9), fξ is isotropic
of order two if and only if the following system of equations holds:

p−4∑
q=0

(p − q)!(q + 4)!cq c̄q+4 = 0, (10)

p−3∑
q=0

(p − q)!(q + 3)!(p − 2q − 3)cq c̄q+3 = 0, (11)

p−2∑
q=0

(p − q)!(q + 2)!(p − 2q − 2)2cq c̄q+2 = 0, (12)

p−1∑
q=0

(p − q)!(q + 1)!(p − 2q − 1)3cq c̄q+1 = 0, (13)
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p∑
q=0

(p − q)!q!(p − 2q)4|cq |2 = �2
1 + �2

2, (14)

where, for the second constant of isotropy �2, we have

�2
2 = p(p + 2)(p(p + 2) − 3)

5
. (15)

To exhibit specific examples of isotropic SU(2)-equivariant spherical minimal
immersions fξ : S3 → SWp thus amounts to solve the system of equations (6)–
(15). We will do this in Section 2.4.

Systems (7)–(9) and (10)–(14) are special cases of a general pattern, and it is
reasonable to pose the following:

Main Conjecture. Let fξ : S3 → SWp , ξ ∈ Wp , be an SU(2)-equivariant spher-
ical minimal immersion of degree p and order of isotropy k − 1. Then fξ is
isotropic of order k if and only if we have

p−l∑
q=0

(p − q)!(q + l)!(p − 2q − l)2k−lcq c̄q+l = δ0l (�
2
1 + · · · + �2

k),

l = 0,1, . . . ,2k, (16)

where �1, . . . ,�k are the first k constants of isotropy, and δ is the Kronecker
delta.

As noted before, for k = 1 and k = 2, (16) specializes to (7)–(9) and (10)–(14),
respectively. (For easier reference, in these special cases, we preferred to give
those expanded systems.)

2. Preliminaries

2.1. Higher Fundamental Forms and Isotropy

Let f : Sm → SV be a spherical minimal immersion of degree p. For k =
1, . . . , p, we define βk(f ), the kth fundamental form of f , and Ok

f , the kth os-
culating bundle of f . For k = 1, we set β1(f ) = f∗, the differential of f , and
O1

f = T (Sm) regarded as a subbundle of the pull-back f ∗T (SV ). For k ≥ 2,
the kth osculating bundle Ok

f is a subbundle of the normal bundle Nf of f .
The higher fundamental forms and osculating bundles are defined on a (maxi-
mal) open dense set Df ⊂ Sm. On Df , the kth fundamental form is a bundle
map βk(f ) : Sk(T (Sm)) → Ok

f , which is fiberwise onto. The higher fundamental
forms are defined inductively as

βk(f )(X1, . . . ,Xk) = (∇⊥
Xk

βk−1(f ))(X1, . . . ,Xk−1)
⊥k−1 ,

X1, . . . ,Xk ∈ Tx(S
m), x ∈ Dk−1

f , (17)

where ∇⊥ is the natural connection on the normal bundle Nf , ⊥k−1 is the orthog-
onal projection with kernel O0

f ;x ⊕ O1
f ;x ⊕ · · · ⊕ Ok−1

f ;x (O0
f ;x = R · f (x)), and
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Dk
f is the set of points x ∈ Dk−1

f at which the image Ok
f ;x of βk(f ) has maximal

dimension. We set Df = ⋂p

k=0 Dk
f .

In the definition of isotropy in the previous section, the higher fundamental
forms have identical (vectorial) arguments. It is desirable and more revealing to
have an equivalent formulation of isotropy with independent vectorial arguments.
(This has been used by Tsukada [25] and by Gauchman and the second author
[10].)

First, we define the Dirac delta δm,p : Sm → S(Hp
m)∗ by evaluating spherical

harmonics in Hp
m on points of Sm [27]. (The Dirac delta is also known as the

standard minimal immersion; see [7; 26].) Then δm,p is SO(m + 1)-equivariant
with respect to the SO(m + 1)-module structure of (Hp

m)∗ ∼= Hp
m. We write

Sm = SO(m+1)/SO(m) with isotropy subgroup SO(m+1)o = SO(m)⊕[1] ∼=
SO(m) at the base point o = (0, . . . ,0,1). Since SO(m) acts irreducibly on
To(S

m), the Dirac delta δm,p is homothetic and therefore a spherical minimal
immersion.

Moreover, branching (from SO(m + 1) to SO(m)) gives

Hp
m|SO(m) = H0

m−1 ⊕H1
m−1 ⊕ · · · ⊕Hp

m−1,

and this corresponds to the decomposition of the osculating spaces

O0
δm,p;o ⊕O1

δm,p;o ⊕ · · · ⊕Op

δm,p;o.

(See again [7; 26].)
In a technical argument [25, Proposition 3.1], Tsukada gave the following

equivalent formulation of isotropy: A spherical minimal immersion f : Sm → SV

is isotropic of order k, 2 ≤ k ≤ p, if and only if, for 2 ≤ l ≤ k, we have

〈βl(f )(X1, . . . ,Xl), βl(f )(Xl+1, . . . ,X2l )〉
= 〈βl(δm,p)(X1, . . . ,Xl), βl(δm,p)(Xl+1, . . . ,X2l )〉,

X1, . . . ,X2l ∈ Tx(S
m), x ∈ Df . (18)

(Note that, for X = X1 = · · · = X2l (and of unit length) this specializes to the
definition of isotropy we gave in Section 1.)

The condition of isotropy (18) implies that, for 2 ≤ l ≤ k, the osculating bun-
dles Ol

f of f are isomorphic with those of the Dirac delta δm,p . In view of the
decomposition of the osculating spaces for δm,p , for a spherical minimal immer-
sion f : Sm → SV that is isotropic of order k, we have the lower bound

dimV ≥ dim(H0
m−1 ⊕H1

m−1 ⊕ · · · ⊕Hk
m−1) = dimHk

m. (19)

2.2. The Lowest Order Isotropy

In this short section, we obtain a simple condition for isotropy of order two of a
spherical minimal immersion. We will use this to prove Theorem A in Section 3.1.

For brevity, we will suppress the order and refer to a spherical minimal im-
mersion of degree p and order of isotropy two simply as an isotropic spherical
minimal immersion (of degree p).



506 Kouhei Miura & Gabor Toth

Remark. The moduli space parameterizing the (congruence classes of full)
isotropic spherical minimal immersions is Mp;2

m , which by (2) is nontrivial if
and only if p ≥ 6.

By definition, a spherical minimal immersion f : Sm → SV is isotropic (of order
two) if ‖β(f )(X,X)‖ is a universal constant �2 for all unit vectors X ∈ Tx(S

m),
x ∈ Sm.

It is well known that this holds if (and only if) the second fundamental form
β(f ) is pointwise isotropic, that is, for any x ∈ Sm, β(f ) is isotropic on the
tangent space Tx(S

m) as a symmetric bilinear form in the classical sense (with
‖β(f )(X,X)‖ being independent of the unit vector X ∈ Tx(S

m)). (See, e.g., [25,
Proposition 3.1].)

Isotropy (at a point) can be conveniently reformulated in terms of the shape
operator A(f ) of f : Sm → SV as

A(f )β(f )(X,X)X ∧ X = 0, X ∈ Tx(S
m), x ∈ Sm. (20)

Indeed, for x ∈ Sm, polarizing ‖β(f )(X,X)‖2, X ∈ Tx(S
m), we see that β(f ) is

isotropic on Tx(S
m) if and only if

〈β(f )(X,X),β(f )(X,Y )〉 = 〈Aβ(f )(X,X)X,Y 〉 = 0

for all X,Y ∈ Tx(S
m) with 〈X,Y 〉 = 0. (See also [17, (2.2)] or [4, Section 2].)

As expected, higher-order isotropy is more complex. For completeness, we
briefly indicate the condition analogous to (20). Let X ∈ Tx(S

m), x ∈ Df , and
denote by ζk a (locally defined) section of the osculating bundle Ok

f . (We use the
notation in the previous section and tacitly assume that we work over Df ⊂ Sm

so that all osculating bundles are well defined.) We define T k by

T k
X(ζk−1) = (∇⊥

Xζk−1)
Ok

f ,

where ∇⊥ is the connection of the normal bundle Nf , and the osculating bundle
in the superscript indicates orthogonal projection. By (17) we have

βk(f )(X1, . . . ,Xk) = T k
X1

(βk−1(f )(X2, . . . ,Xk))

for (locally defined) vector fields X1, . . . ,Xk on Df .
Let Sk−1

X be the adjoint of T k
X (with respect to the bundle metrics on the re-

spective osculating bundles induced by the Riemannian metric on SV ). Clearly,
we have

Sk−1
X (ζk) = −(∇⊥

Xζk)
Ok−1

f .

Now, polarizing ‖βk(f )(X, . . . ,X)‖2 as before, we obtain that, for x ∈ Sm, βk(f )

is isotropic on Tx(S
m) if and only if

〈βk(f )(X, . . . ,X),βk(f )(X, . . . ,X,Y )〉 = 0

whenever X,Y ∈ Tx(S
m) with 〈X,Y 〉 = 0. We now calculate

〈βk(f )(X, . . . ,X),βk(f )(X, . . . ,X,Y )〉
= 〈βk(f )(X, . . . ,X),T k

Xβk−1(f )(X, . . . ,X,Y )〉
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= 〈Sk−1
X βk(f )(X, . . . ,X),βk−1(f )(X, . . . ,X,Y )〉

= 〈S2
XS3

X · · ·Sk−1
X βk(f )(X, . . . ,X),β(f )(X,Y )〉

= 〈A(f )
S2

XS3
X ···Sk−1

X βk(f )(X,...,X)
X,Y 〉.

Summarizing, we obtain that, for x ∈ Sm, βk(f ), k ≥ 3, is isotropic on Tx(S
m) if

and only if

A(f )
S2

XS3
X ···Sk−1

X βk(f )(X,...,X)
X ∧ X = 0, X ∈ Tx(S

m).

Remark. Another approach for order k isotropy in general is derived by Hong
and Houh [11, Theorem 2.3]. The first k − 1 curvatures are constant if and only
if, for 2 ≤ l ≤ 2k − 1, we have

A(f )(Dl−2β(f ))(X,...,X)X ∧ X = 0, X ∈ Tx(S
m), x ∈ Sm,

where D is the covariant differentiation on T (M)⊕Nf with Nf being the normal
bundle of f . (Note that, in this case, A(Dl−2β(f ))(X...,X)X = 0 for l odd.)

These conditions are formulated in terms of the notion of contact number of
Euclidean submanifolds. See [3; 1] for details for pseudo-Euclidean submani-
folds. The first author generalized this notion for the case of affine immersions in
projectively flat space; see [14].

2.3. SU(2)-Equivariant Minimal Immersions

As noted in Section 1, the moduli space Mp
m parameterizing the congruence

classes of full spherical minimal immersions f : Sm → SV of degree p is non-
trivial if and only if m ≥ 3 and p ≥ 4. The lowest dimension of the domain Sm

for nontrivial moduli is m = 3. This case is of special interest since the product
SU(2) × SU(2) double covers the acting isometry group SO(4). The (projection
of the) first factor SU(2) in this product is an isomorphic copy of SU(2), and it
can be realized as a subgroup of SO(4) by identifying R

4 and C
2 in the usual

way: R4 � (x, y,u, v) �→ (z,w) = (x + ıy, u + ıv) ∈C
2. With this identification,

SU(2) =
{[

a −b̄

b ā

] ∣∣∣∣ |a|2 + |b|2 = 1, a, b ∈ C

}
(21)

becomes a subgroup of SO(4). (Note that this also shows that SU(2) = S3, where
the latter is the unit sphere in C

2.)
The orthogonal matrix γ = diag(1,1,1,−1) ∈ O(4) (or, in complex coordi-

nates, γ : z �→ z, w �→ w̄, (z,w) ∈C
2) conjugates SU(2) to the subgroup

SU(2)′ = γ SU(2)γ ⊂ SO(4), γ −1 = γ.

This is the projection of the second factor in the product SU(2)×SU(2) to SO(4)

via the double cover. Both subgroups SU(2) and SU(2)′ are normal in SO(4),
and we have SU(2) ∩ SU(2)′ = {±I }.
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In view of this, it is natural to consider (full) spherical minimal immersions
f : S3 → SV of degree p that are SU(2)-equivariant, that is, there exists a homo-
morphism ρf : SU(2) → SO(V ) such that

f ◦ g = ρf (g) ◦ f, g ∈ S3. (22)

The homomorphism ρf (associated to SU(2)-equivariance) defines an SU(2)-
module structure on the Euclidean vector space V . Moreover, the natural isomor-
phism between V and the space of components Vf = {α ◦ f | α ∈ V ∗} ⊂ Hp

3
(through the dual V ∗) is SU(2)-equivariant, and we obtain that V is an SU(2)-
submodule of the restriction Hp

3 |SU(2).
In general, the irreducible complex SU(2)-modules are parameterized by their

dimension, and they can be realized as submodules appearing in the (multiplic-
ity one) decomposition of the SU(2)-module of complex homogeneous polyno-
mials C[z,w] in two variables. For p ≥ 0, the pth submodule Wp , dimC Wp =
p + 1, comprises the homogeneous polynomials of degree p. With respect to
the L2-scalar product (suitably scaled), the standard orthonormal basis for Wp

is {zp−qwq/
√

(p − q)!q!}pq=0. For p odd, Wp is irreducible as a real SU(2)-
module. For p even, the fixed point set Rp of the complex antilinear self map
zqwp−q �→ (−1)qzp−qwq , q = 0, . . . , p, of Wp is an irreducible real submodule
with Wp = Rp ⊗R C.

For the space of complex-valued spherical harmonics Hp

3 of order p, we have

Hp

3 = Wp ⊗ W ′
p,

as complex SO(4)-modules, where W ′
p is the SU(2)′-module obtained from the

SU(2)-module Wp via conjugation by γ , and the tensor product is understood by
the double cover SU(2) × SU(2) → SO(4). Restricting to SU(2), we obtain

Hp

3 = (p + 1)Wp

as complex SU(2)-modules.
For real-valued spherical harmonics, for p even, this gives

Hp

3 = (p + 1)Rp.

Similarly, for p odd, we have

Hp

3 = p + 1

2
Wp

as real SU(2)-modules.
Returning to our SU(2)-equivariant spherical minimal immersion f : S3 →

SV , we see that the SU(2)-module V is isomorphic with a multiple of Rp for p

even and with a multiple of Wp for p odd. As a byproduct, we also obtain that the
dimension of V is divisible by p + 1 if p is even and by 2(p + 1) if p is odd.

Remark. SU(2)-equivariant spherical minimal immersions f : S3 → SV of de-
gree p that are isotropic of order k are parameterized by the SU(2)-equivariant
moduli space (Mp,k

3 )SU(2). It is a compact convex body in the fixed point set
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(Fp;k
3 )SU(2), which, in view of the double cover SU(2) × SU(2) → SO(4), is an

SU(2)′-module. We have

(Fp,k

3 )SU(2) =
[p/2]∑

q=k+1

R′
4q

as real SU(2)′-modules. In particular, we have the dimension formula

dim(Mp;k
3 )SU(2) = dim(Fp;k

3 )SU(2)

=
(

2

[
p

2

]
+ 2k + 3

)([
p

2

]
− k

)
, p ≥ 2k + 2. (23)

To seek explicit examples of SU(2)-equivariant spherical minimal immersions
f : S3 → SV , it is natural to consider the simplest case where V = Wp (regardless
the parity of p).

Examples. The quartic (p = 4) minimal immersion I : S3 → SW4 = S9, the
SU(2)-orbit map of the polynomial ξ = (

√
6/24)(z4 −w4)+ (

√
2/4)z2w2 ∈ W4,

is archetypal in understanding the structure of the moduli space (M4
3)

SU(2)

and thereby M4
3; see [24]. Moreover, the sextic (p = 6) tetrahedral minimal

immersion Tet : S3 → SR6 = S6, the SU(2)-orbit map of the polynomial ξ =
(1/(4

√
15))zw(z4 − w4) ∈ R6 ⊂ W6, is a famous example because it realizes

the minimum range dimension among all nonstandard spherical minimal immer-
sions of S3. (For more details, see [12; 13], and for an extensive list of SU(2)-
equivariant spherical minimal immersions, see [5; 6; 23].)

2.4. Isotropic and Nonisotropic Examples

The archetypal SU(2)-equivariant spherical minimal immersions are the tetra-
hedral, octahedral, and icosahedral minimal immersions. As recognized by De-
Turck and Ziller [5; 6], they are the SU(2)-orbits of Felix Klein’s minimum-
degree absolute invariants of the tetrahedral, T , octahedral, O , and icosahedral,
I , groups in R2d ⊂ W2d for d = 3,4,6. As such, they realize minimal embeddings
of the tetrahedral, S3/T ∗, octahedral, S3/O∗, and icosahedral, S3/I ∗, manifolds,
where the asterisk indicates the respective binary groups. (For more details, see
also [23, Section 1.5].)

Example 1. The tetrahedral minimal immersion Tet : S3 → SR6 = S6 can-
not be isotropic for reasons of dimension since, for any isotropic SU(2)-
equivariant spherical minimal immersion f : S3 → SV , by (19) we have dimV ≥
dimH2

3 = 9.

Example 2. The dimension restriction in the previous example does not exclude
the octahedral minimal immersion Oct : S3 → SR8 = S8 to be isotropic; however,
it is the SU(2)-orbit of the octahedral invariant ξ = c0(z

8 + 14z4w4 + w8) ∈
R8, c0 = 1/(96

√
21), which does not satisfy (10) or (14). Hence the octahedral

minimal immersion is not isotropic.
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Example 3. The icosahedral minimal immersion I : S3 → SR12 = S12 is the
SU(2)-orbit of Klein’s icosahedral invariant ξ = c1(z

11w + 11z6w6 − zw11) ∈
R12, c1 = 1/(3600

√
11). It follows by direct substitution that it is isotropic. Note

that this has been proved by Escher and Weingart [8] using basic representation
theoretical tools. (See also [23, Remark 2 in Section 4.5].)

Conjecture 1. There are no isotropic spherical minimal immersions f : S3 →
SR8 or f : S3 → SR10 . (Over the reals, (6)–(14) represent 15 quadratic equations,
for R8, in 9 variables, and, for R10, in 11 variables; both highly overdetermined
systems.)

Note that if Conjecture 1 holds, then the icosahedral minimal immersion is the
minimum-(co)dimension isotropic spherical minimal immersion.

Conjecture 2. The icosahedral minimal immersion is unique (up to isometries
of the domain and the range) among all isotropic SU(2)-equivariant spherical
minimal immersions with range R12. (Note that even for R12, system (6)–(14) is
slightly overdetermined: 15 equations in 13 variables.)

Example 4. As a slight modification of Example 3, we let ξ = c1(z
11w +

11ız6w6 − zw11) (with c1 as there). Then ξ belongs to W12 (and not R12), and
the corresponding (full) isotropic SU(2)-equivariant spherical minimal immer-
sion fξ : S3 → SW12 = S25 has the binary dihedral group D∗

5 as its invariance
group, and it gives a minimal embedding of the dihedral manifold S3/D∗

5 into S25.

The isocahedral minimal immersion and this last example are in the complete list
of DeTurck and Ziller of all spherical minimal embeddings of three-dimensional
space forms. (See [5; 6] and also [23, Section 1.5].) Using Theorem B, a sim-
ple case-by-case check shows that these are the only isotropic spherical minimal
immersions in this list.

We have W12 = 2R12 as real SU(2)-modules, so that Example 4 immediately
raises the problem of minimal multiplicity; that is, for given p ≥ 6 even, what
is the minimal 1 ≤ k ≤ p + 1 such that an isotropic SU(2)-equivariant spherical
minimal immersion f : S3 → SkRp exists. Using deeper representation theoretical
tools, the second author in [22, Corollary to Theorem 3] showed the existence of
isotropic SU(2)-equivariant spherical minimal immersions f : S3 → S4R6 and
f : S3 → S6R8 (the latter of order of isotropy 3).

Isotropic SU(2)-equivariant spherical minimal immersions with range Wp

abound for p ≥ 11 as the following examples show.

Example 5. Letting cq = 0 for q �≡ 0 (mod 5), q = 0, . . . ,11, (6)–(14) give

|c0|2 = 1

29 · 35 · 54 · 11
, |c5|2 = 11

27 · 33 · 54
, |c10|2 = 1

29 · 35 · 54
.

Setting ξ = c0z
11 + c5z

6w5 + c10zw
10 ∈ W11, we obtain isotropic SU(2)-

equivariant spherical minimal immersions fξ : S3 → SW11 = S23.
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Example 6. For a somewhat more symmetric example in W12, once again letting
cq = 0 for q �≡ 0 (mod 5), q = 0, . . . ,12, by (6)–(14), we have

|c0|2 = 25

12! · 52 · 7
, |c5|2 = 2 · 3 · 11

5! · 7! · 52 · 7
, |c10|2 = 11

2! · 10! · 52
.

Setting ξ = c0z
12 + c5z

7w5 + c10z
2w10 ∈ W12, we obtain isotropic SU(2)-

equivariant spherical minimal immersions fξ : S3 → SW12 = S25.

3. Proofs

3.1. Proof of Theorem A

We let ∇ denote the Levi–Civita covariant differentiation on Sm and D the covari-
ant (ordinary) differentiation on the Euclidean vector space V . Letting ι : SV → V

denote the inclusion, we have

DXY = ∇XY + β(f )(X,Y ) − 〈X,Y 〉ι (24)

for any locally defined vector fields X,Y on Sm. As usual, we identify locally
defined vector fields with their images under any immersions (such as f : Sm →
SV , ι ◦ f : Sm → V , etc.). With this, for any unit tangent vector X ∈ Tx(S

m),
x ∈ Sm, we have

Dσ ′
X
σ

(k)
X = σ

(k+1)
X , k ≥ 0, (25)

as vector fields along σX . Using (24)–(25), we now calculate

σ ′′
X = Dσ ′

X
σ ′

X = β(f )(σ ′
X,σ ′

X) − (λp/m)σX,

where ∇σ ′
X
σ ′

X = 0 since γX is a geodesic. Using this, we have

σ
(3)
X = Dσ ′

X
σ ′′

X = Dσ ′
X
(β(f )(σ ′

X,σ ′
X) − (λp/m)σ ′

X)

= ∇⊥
σ ′

X
β(f )(σ ′

X,σ ′
X) −A(f )β(f )(σ ′

X,σ ′
X)σ

′
X − (λp/m)σ ′

X,

where ∇⊥ denotes the covariant differentiation of the normal bundle Nf of f :
Sm → SV , and A(f ) is the shape operator of f . For unit tangent vectors X,Y ∈
Tx(S

m), x ∈ Sm, this gives

〈σ (3)
X (0), σ ′

Y (0)〉 = −〈A(f )β(f )(X,X)X,Y 〉 − (λp/m)〈X,Y 〉.
The equivalence of (3) and (20) is now clear.

Setting X = Y ∈ Tx(S
m), x ∈ Sm, with ‖X‖ = 1, we obtain

〈σ (3)
X (0), σ ′

X(0)〉 = −‖β(f )(X,X)‖2 − λp

m
= −�2

2 − λp

m
.

The last statement in (4) and thereby Theorem A follows.
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3.2. Proof of Theorem B

We first need to develop several computational tools.
In the Lie algebra su(2), we take the standard (orthonormal) basis

X =
[

0 1
−1 0

]
, Y =

[
0 ı

ı 0

]
, Z =

[
ı 0
0 −ı

]
.

The unit sphere Ssu(2) ⊂ su(2) can then be parameterized by spherical coordinates
as

U = U(θ,ϕ) = cos θ cosϕ · X + sin θ cosϕ · Y + sinϕ · Z
=

[
ı sinϕ eıθ cosϕ

−e−ıθ cosϕ −ı sinϕ

]
∈ Ssu(2), θ, ϕ ∈R.

(For simplicity, unless needed, we suppress the angular variables.) An important
feature of the spherical coordinates to be used in the sequel is that, for given θ,ϕ ∈
R, the vectors U(θ,ϕ), U(θ + π/2,0), and U(θ,ϕ + π/2) form an orthonormal
basis of su(2) (which, for θ = ϕ = 0, reduces to the standard basis).

Moreover, since U2 = −I , we have

U2l = (−1)lI and U2l+1 = (−1)lU, l ≥ 1.

Hence, for the exponential map exp : su(2) → SU(2), we obtain

exp(t · U) =
∞∑

j=0

1

j ! (tU)j =
∞∑
l=0

(−1)l
t2l

(2l)!U
2l +

∞∑
l=0

(−1)l
t2l+1

(2l + 1)!U
2l+1

= cos t · I + sin t · U
=

[
cos t + ı sinϕ sin t eıθ cosϕ sin t

−e−ıθ cosϕ sin t cos t − ı sinϕ sin t

]
, t ∈ R. (26)

Recall from Section 1 the equivariant construction, which associates with a
unit vector ξ ∈ Wp , p ≥ 4, the orbit map fξ : S3 → SWp defined by

fξ (g) = g · ξ = ξ ◦ g−1, g ∈ SU(2).

Here SU(2) = S3, the unit sphere in C
2. For computational purposes, it is con-

venient to identify C
2 with the space of quaternions H via (a, b) �→ a + jb,

(a, b) ∈ C
2. With this, S3 becomes the unit sphere SH. The unit quaternion

g = a + jb ∈ SH has the inverse

g−1 = g∗ = (ā,−b) = (a + jb)−1 = ā − jb.

Using the realization Wp as an SU(2)-submodule of C[z,w], we obtain the ex-
plicit representation

fξ (g)(z,w) = ξ(g−1(z,w)) = ξ((ā − jb)(z + jw))

= ξ((āz + b̄w) + j (−bz + aw))

= ξ(āz + b̄w,−bz + aw), g = (a, b) = a + jb ∈ S3.

For the proof of Theorem B, we need to simplify the condition of isotropy of
fξ in Theorem A. As the first step, we note that, since fξ is SU(2)-equivariant,
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the vanishing of the scalar products in (3) need to hold only for unit vectors in the
tangent space T1(S

3) = su(2).
Let U ∈ T1(S

3) = TI (SU(2)) = su(2) be a unit vector, and consider the geo-
desic γU : R → S3, γU(0) = 1, and γ ′

U(0) = U . Letting U = U(θ,ϕ), θ,ϕ ∈ R,
by (26) we have

γU (t) = (cos t + ı sinϕ sin t,−e−ıθ cosϕ sin t) ∈ S3, t ∈R.

Following Theorem A, we let σU = fξ ◦ γU :R → SWp be the image curve under
fξ . By the explicit representation above, we obtain

σU(t) = ξ(a(t), b(t)), t ∈R, (27)

where

a(t) = a(t, θ, ϕ) := (cos t − ı sinϕ sin t)z − (eıθ cosϕ sin t)w

= z · cos t + (−ı sinϕ · z − eıθ cosϕ · w) sin t,

b(t) = b(t, θ, ϕ) := (e−ıθ cosϕ sin t)z + (cos t + ı sinϕ sin t)w

= w · cos t + (e−ıθ cosϕ · z + ı sinϕ · w) sin t.

It is a simple but crucial fact that, for given θ,ϕ ∈ R, the pair (a(t), b(t)), t ∈ R,
satisfies the system of differential equations

da

dt
= −ı sinϕ · a(t) − eıθ cosϕ · b(t),

db

dt
= e−ıθ cosϕ · a(t) + ı sinϕ · b(t),

with initial conditions a(0) = z, b(0) = w. (Note that the coefficient matrix is in
SU(2).)

We now expand ξ ∈ Wp as in (5). Evaluating ξ on the pair (a(t), b(t)), t ∈ R,
by (27), we obtain

σU(t) =
p∑

q=0

cqa(t)p−qb(t)q, t ∈ R.

(It will be convenient to define cq = 0 for the out-of-range indices q < 0 and
q > p.) Taking derivatives and using the last system of differential equations, a
simple induction gives the following:

Lemma 1. Given θ,ϕ ∈ R, for any k ∈N, we have

σ
(k)
U (t) =

p∑
q=0

c(k)
q a(t)p−qb(t)q, t ∈R,

where the coefficients c
(k)
q = c

(k)
q (θ,ϕ) are given by

c(k)
q = e−ıθ cosϕ · (q + 1)c

(k−1)
q+1 − ı sinϕ · (p − 2q)c(k−1)

q

− eıθ cosϕ · (p − q + 1)c
(k−1)
q−1 , q = 0, . . . , p. (28)

Here c
(0)
q = cq , q ∈ Z, and c

(k)
q = 0 for the out-of-range indices q < 0 and q > p.
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We now assume that fξ : S3 → SWp is a spherical minimal immersion, that is,
the coefficients of ξ in the expansion (5) satisfy (6)–(9). Our task is to give a
necessary and sufficient condition for fξ to be isotropic (of order two).

We now let

U1 := U(θ,ϕ), U2 := U(θ + π/2,0),

U3 := U(θ,ϕ + π/2), θ,ϕ ∈R.

We observe that, for given θ,ϕ ∈ R, {U1,U2,U3} ⊂ T1(S
3) is an orthonormal

basis. Because of the arbitrary position of U1 (given by the arbitrary choices of θ

and ϕ), and linearity in the first derivative in (3), Theorem A gives the following:

Lemma 2. Let fξ : S3 → SWp be an SU(2)-equivariant spherical immersion.
Then fξ is isotropic if and only if, for any θ,ϕ ∈ R, we have

〈σ (3)
U1

(0), σ ′
U2

(0)〉 = 〈σ (3)
U1

(0), σ ′
U3

(0)〉 = 0. (29)

In this case, for the constant of isotropy �2, we have 〈σ (3)
U1

(0), σ ′
U1

(0)〉 = −�2
1 −

�2
2.

For the proof of Theorem B, we need a convenient scalar product on Wp ⊂
C[z,w] or, more generally, on the space of complex spherical harmonics Hp

3 . As
usual, we identify Hp

3 with the space of complex-valued degree p harmonic ho-
mogeneous polynomials on C2 = R4. To define this scalar product, we will regard
a complex polynomial χ in the complex variables z,w ∈ C as a real polynomial
in the variables z, w, z̄, w̄. Then, for χ1, χ2 ∈ Hp

3 , we define the scalar product on
Hp

3 by

〈χ1, χ2〉 = �
(

χ1

(
∂

∂z̄
,

∂

∂w̄
,

∂

∂z
,

∂

∂w

)
χ̄2

)
,

where � stands for real part, and χ1 acts on the conjugate χ̄2 as a polynomial
differential operator. (This form of the scalar product on Hp

3 has been used in [5;
6; 24].) Note that, with respect to this scalar product, {zp−qwq/

√
(p − q)!q!}pq=0

is an orthonormal basis of Wp as stated in Section 1.

Proof of Theorem B. We need to work out the two scalar products in (29) in terms
of the coefficients cq , q = 0, . . . , p, in (5). In both cases the explicit calculations
are very similar. The vanishing of the first scalar product will imply (10)–(13),
whereas the vanishing of the second will give (10)–(14). Hence we will treat only
the second scalar product in (29).

Using Lemma 1, for fixed θ,ϕ ∈ R, we have

〈σ (3)
U1

(0), σ ′
U3

(0)〉 = �
( p∑

q=0

(p − q)!q! · c(3)
q (θ,ϕ)c

(1)
q (θ,ϕ + π/2)

)

=
4∑

k=−4

ekıθBk, (30)
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where the last exponential sum is obtained by repeated application of the recur-
rence in (28). In this last sum, each Bk , k = −4, . . . ,4, is independent of the
variable θ . In particular, the scalar product on the left-hand side of (30) vanishes
for all θ,ϕ ∈ R if and only if the (Fourier) coefficients Bk , k = −4, . . . ,4, vanish
for all ϕ ∈R.

Expanding the factors c
(3)
q (θ,ϕ)c

(1)
q (θ,ϕ + π/2), q = 0, . . . , p, in (30) in

terms of the coefficients cq , q = 0, . . . , p, requires long but straightforward com-
putations. It turns out that the expressions

ekıθBk + e−kıθB−k, k = 0, . . . ,4, (31)

are the least cumbersome to determine. (For k = 0, this reduces to 2B0, which we
included here.)

We begin with the simplest case, namely k = 4. As noted before, a straightfor-
ward computation gives

e4ıθB4 + e−4ıθB−4 = 2 cos3 ϕ sinϕ

p−4∑
q=0

(p − q)!(q + 4)! · �(e4ıθ cq c̄q+4).

Clearly, this vanishes for all θ,ϕ ∈R if and only if (10) holds.
The cases k = 1,2,3 are similar but longer. We will discuss only the case

k = 1. We have

eıθB1 + e−ıθB−1 = cos4 ϕ

2

p−1∑
q=0

(p − q)!(q + 1)!

· [3(p − 2q − 1)3 + 2(4 − (p + 1)2)(p − 2q − 1)]
· �(eıθ cq c̄q+1)

− 3 cos2 ϕ sin2 ϕ

2

p−1∑
q=0

(p − q)!(q + 1)!

· [7(p − 2q − 1)3 − (3(p + 1)2 − 20)(p − 2q − 1)]
· �(eıθ cq c̄q+1)

+ 2 sin4 ϕ

p−1∑
q=0

(p − q)!(q + 1)!

· [(p − 2q − 1)3 + (p − 2q − 1)] · �(eıθ cq c̄q+1),

where � stands for imaginary part. By (8) the second term (with common factor
(p − 2q − 1)) in each square bracket cancels. With this, the simplified expression
vanishes for all θ,ϕ ∈ R if and only if (13) holds. (Note that we recover (13) three
times corresponding to each sum.)

The cases k = 3 and k = 2 are similar, and they yield (11) and (12), respec-
tively.
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Finally, we treat the case k = 0. We have

B0 = cos3 ϕ sinϕ

8

p∑
q=0

(p − q)!q!

· [15(p − 2q)4 + 18(2 − p(p + 2))(p − 2q)2 + 3p2(p + 2)2

− 8p(p + 2)]|cq |2 − cosϕ sin3 ϕ

2

p∑
q=0

(p − q)!q!

· [5(p − 2q)4 − (3p(p + 2) − 16)(p − 2q)2 − 4p(p + 2)]|cq |2. (32)

(We keep the factor p(p + 2) intact as it is the pth eigenvalue of the Laplacian
on S3.) Now, B0 = 0 for all θ,ϕ ∈ R if and only if each of the two sums vanish
separately. We split the first as

15
p∑

q=0

(p − q)!q!(p − 2q)4|cq |2

+ 18(2 − p(p + 2))

p∑
q=0

(p − q)!q!(p − 2q)2|cq |2

+ (3p2(p + 2)2 − 8p(p + 2))

p∑
q=0

(p − q)!q!|cq |2 = 0.

By (9) and (6), the second and third sums are equal to p(p + 2)/3 and 1, re-
spectively. Rearranging, we obtain (14). The second sum in (32) gives the same
result.

Finally, to determine the constant of isotropy �2, by (4) in the last statement
of Theorem A, we need to calculate

〈σ (3)
U1

(0), σ ′
U1

(0)〉 = �
( p∑

q=0

(p − q)!q! · c(3)
q (θ,ϕ)c

(1)
q (θ,ϕ)

)
.

Once again expanding, akin to the previous computations, we obtain

〈σ (3)
U1

(0), σ ′
U1

(0)〉 = −p(p + 2)(3p(p + 2) − 4)

15
.

Combining this with (4), the last statement of Theorem B follows. �

Acknowledgment. The authors wish to thank the referee for the careful read-
ing and the many suggestions, which led to the improvement of the original man-
uscript.

Note Added in Proof. Most recently the second author resolved Conjectures
1 and 2 in Section 2.4. Details will appear elsewhere.
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