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Effective Bounds on Singular Surfaces in
Positive Characteristic

Jakub Witaszek

Abstract. Using the theory of Frobenius singularities, we show that
13mKX + 45mA is very ample for an ample Cartier divisor A on a
Kawamata log terminal surface X with Gorenstein index m, defined
over an algebraically closed field of characteristic p > 5.

1. Introduction

The positivity of line bundles is a fundamental topic of research in algebraic ge-
ometry. Showing the base point freeness or very ampleness of line bundles allows
for the description of the geometry of algebraic varieties.

The motivation for this paper centers around two questions. The first one is the
following: given an ample Cartier divisor A, find an effective n ∈N for which nA

is very ample. A famous theorem of Matsusaka states that we can find such n ∈ N

that depends only on the Hilbert polynomial of A when the variety is smooth and
the characteristic of the field is equal to zero [20]. This theorem plays a funda-
mental role in constructing moduli spaces of polarized varieties. In positive char-
acteristic, Kollár proved the same statement for normal surfaces [11, Thm. 2.1.2].

The second question motivating the results of this paper is the famous Fujita
conjecture, which, in characteristic zero, is proved only for curves and surfaces.

Conjecture 1.1 (Fujita conjecture). Let X be a smooth projective variety of
dimension n, and let A be an ample Cartier divisor on X. Then KX + (n + 2)A

is very ample.

Fujita-type results play a vital role in understanding the geometry of algebraic
varieties.

In positive characteristic, the conjecture is known only for curves and for sur-
faces that are neither of general type nor quasi-elliptic. This follows from a result
of Shepherd–Barron, which says that on such surfaces, rank two vector bundles
that do not satisfy Bogomolov inequality are unstable [28, Thm. 7]. Indeed, the
celebrated proof by Reider of the Fujita conjecture for characteristic zero surfaces
can be, in such a case, applied without any modifications (see [35; 21]).

Given lack of any progress for positive characteristic surfaces of general type,
Di Cerbo and Fanelli [4] undertook a different approach to the problem. They
proved among other things that 2KX + 4A is very ample if A is ample and X is a
smooth surface of general type in characteristic p ≥ 3.
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In this paper, we consider the aforementioned questions for singular surfaces.
As far as we know, no effective bounds for singular surfaces in positive charac-
teristic have been obtained before. The main theorem is the following.

Theorem 1.2. Let X be a projective surface with Kawamata log terminal singu-
larities defined over an algebraically closed field of characteristic p > 5. Assume
that mKX is Cartier for some m ∈ N. Then, for an ample Cartier divisor A:

• 4mKX + 14mA is base point free, and
• 13mKX + 45mA is very ample.

In particular, Kawamata log terminal surfaces with KX ample and defined in char-
acteristic p > 5 satisfy that 58mKX is very ample, where m is the Gorenstein
index.

The bounds are not sharp. See Theorem 4.1 for a slightly more general state-
ment. Instead of assuming that X is Kawamata log terminal and p > 5, it suffices
to assume that X is F -pure and Q-factorial. The theorem also holds in character-
istic zero, but in such a case the existence of effective bounds follows in an easier
way by Kollár’s effective base point free theorem [12] and the Kodaira vanishing
theorem.

The proof consists of three main ingredients. First, we apply the result of Di
Cerbo and Fanelli on a desingularization of X. This shows that the base locus
of 2mKX + 7mA is zero dimensional. Then we apply the technique of Cascini,
Tanaka, and Xu (see [3, Thm. 3.8]) to show that the base locus of 2(2mKX +
7mA) is empty. Therewith, the very ampleness of 13mKX + 45mA follows from
a generalization of a result of Keeler [10, Thm. 1.1] in the case of F -pure varieties.

As far as we know, after the paper of Cascini, Tanaka, and Xu had been an-
nounced, no one has yet applied their technique of constructing F -pure centers.
We believe that down-to-earth examples provided in our paper may be suitable as
a gentle introduction to some parts of their prolific paper [3].

As a corollary to the main theorem, we obtain the following Matsusaka-type
bounds.

Corollary 1.3. Let A and N be, respectively, an ample and a nef Cartier divi-
sor on a Kawamata log terminal projective surface defined over an algebraically
closed field of characteristic p > 5. Let m ∈ N be such that mKX is Cartier. Then
kA − N is very ample for any

k >
2A · (H + N)

A2
((KX + 3A) · A + 1),

where H := 13mKX + 45mA.

One of the fundamental conjectures in birational geometry is Borisov–Alexeev
boundedness conjecture, which says that ε-klt log Fano varieties are bounded. In
dimension two, it was proved by Alexeev [36, Thm. 6.9]. One of the ingredients of
the proof is the beforementioned result on the boundedness of polarized surfaces
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by Kollár [11, Thm. 2.1.2]. Further, explicit bounds on the volume have been
obtained by Lai [15, Thm. 4.3] and Jiang [9, Thm. 1.3].

For characteristic p > 5, in the proof of the boundedness of ε-klt log del Pezzo
pairs, we can replace Kollár’s result by Theorem 1.2 and hence obtain rough but
explicit bounds on the size of the bounded family.

Corollary 1.4. For any ε ∈ R>0 and a finite set I ⊆ [0,1] ∩ Q, there exist ef-
fectively computable natural numbers b(ε, I ) and n(ε, I ) satisfying the following
property.

Let (X,�) be an ε-klt log del Pezzo surface with the coefficients of � contained
in I , defined over an algebraically closed field of characteristic p > 5. Then, there
exists a very ample divisor H on X such that Hi(X,H) = 0 for i > 0 and

|H 2|, |H · KX|, |H · �|, |KX · �|, |�2|
are smaller than b(ε, I ). Further, H embeds X into Pk , where k ≤ b(ε, I ), and
n(ε, I )� is Cartier.

The paper is organized as follows.
The second section consists of basic preliminaries. In Section 3, we give

a proof of the base point free part of the main theorem. In Section 4, we prove
a technical generalization of the main theorem to arbitrary characteristic. In Sec-
tion 5, we show Matsusaka-type bounds (Corollary 1.3). In Section 6, we derive
effective bounds on log del Pezzo pairs.

As far as we are concerned, the best source of knowledge about Frobenius
singularities are unpublished notes of Schwede [25]. We also recommend [26].

The readers interested in Matsusaka theorem and Fujita-type theorems are en-
couraged to consult [18, Sects. 10.2 and 10.4]. A proof of Reider’s theorem for
normal surfaces in characteristic zero may be found in [22]. Certain other Fujita-
type bounds for singular surfaces in characteristic zero are obtained in [16]. The
effective base point free theorem in characteristic zero is proved in [12]. Various
results on the base point free theorem for surfaces in positive characteristic may
be found in [34] and [19].

2. Preliminaries

We always work over an algebraically closed field k of positive characteristic
p > 0.

We refer to [14] for basic results and basic definitions in birational geometry
like log discrepancy or Kawamata log terminal singularities. We say that a pair
(X,�) is a log Fano pair if −(KX + �) is ample. In the case where dim(X) = 2,
we say that (X,�) is a log del Pezzo pair.

A pair (X,B) is ε-klt if the log discrepancy along any divisor is greater than ε.
Note that the notion of being 0-klt is equivalent to klt.

The Cartier index of (X,�) is the minimal number m ∈ N such that m(KX +
�) is Cartier. If (X,�) is klt, then it must be 1/m-klt.
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Recall that any Kawamata log terminal surface has rational singularities and
is, in particular, Q-factorial (see [32]).

We denote the base locus of a line bundle L by Bs(L). Note that by abuse of
notation we use the notation for line bundles and the notation for divisors inter-
changeably.

We will repeatedly use, without mentioning directly, that KX + 3A is nef,
where X is a projective normal surface, and A is an ample Cartier divisor. This is
a direct consequence of the cone theorem [32, Prop. 3.15].

The following facts are used in the proofs in this paper.

Theorem 2.1 (Mumford regularity [17, Thm. 1.8.5]). Let X be a projective va-
riety, and let M be a globally generated ample line bundle on X. Let F be a
coherent sheaf on X such that Hi(X,F ⊗ M−i ) = 0 for i > 0. Then F is glob-
ally generated.

Theorem 2.2 (Fujita vanishing [17, Thm. 1.4.35] and [17, Rem. 1.4.36]). Let X

be a projective variety, and let H be an ample divisor on X. Given any coherent
sheaf F on X, there exists an integer m(F ,H) such that

Hi(X,F ⊗OX(mH + D)) = 0

for all i > 0, m ≥ m(F ,H), and any nef Cartier divisor D on X.

Theorem 2.3 (Log-concavity of volume). For any two big Cartier divisors D1

and D2 on a normal variety X of dimension n, we have

vol(D1 + D2)
1/n ≥ vol(D1)

1/n + vol(D2)
1/n.

Recall that

vol(D) := lim sup
m→∞

H 0(X,mD)

mn/n! .

Proof of Theorem 2.3. See [4, Thm. 2.2] (cf. [18, Thm. 11.4.9] and [31]). �

2.1. Frobenius Singularities

All the rings in this section are assumed to be geometric and of positive character-
istic, that is, finitely generated over an algebraically closed field of characteristic
p > 0.

One of the most amazing discoveries of singularity theory is that properties of
the Frobenius map may reflect how singular a variety is. This observation is based
on the fact that, for a smooth local ring R, the e-times iterated Frobenius map
R → Fe∗R splits. Further, the splitting does not need to hold when R is singular.

This leads to a definition of F -split rings, rings R such that for divisible enough
e � 0, the e-times iterated Frobenius map Fe : R → Fe∗R splits. For log pairs, we
have the following definition.
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Definition 2.4. We say that a log pair (X,�) is F -pure if for any close point
x ∈ X and any natural number e > 0, there exists a map

φ ∈ HomOX,x
(F e∗OX,x(�(pe − 1)�),OX,x)

such that 1 ∈ φ(F e∗OX,x), where OX,x it the stalk at x ∈ X.

As a consequence of Grothendieck duality (see [5, Lem. 2.9]), we have

Hom(F e∗OX,OX) � H 0(X,ω
1−pe

X ).

This explains the following crucial proposition.

Proposition 2.5 ([23, Thms. 3.11 and 3.13]). Let X be a normal variety. Then,
there is a natural bijection⎧⎨

⎩
Nonzero OX-linear maps
φ : Fe∗OX →OX up to

premultiplication by units

⎫⎬
⎭ ←→

{
Effective Q-divisors � such that

(1 − pe)� ∼ −(1 − pe)KX

}
.

We denote the Q-divisor corresponding to a splitting φ : Fe∗OX → OX by �φ .
The morphism extends to φ : Fe∗OX((pe − 1)�φ) → OX , which gives that
(X,�φ) is F -pure.

Note that we will apply the above proposition mainly for X replaced by
SpecOX,x , where x ∈ X.

Frobenius singularities are alleged to be the correct counterparts of birational
singularities in positive characteristic. This supposition is propped up by the fol-
lowing theorems.

Theorem 2.6 (see [8]). Let (X,B) be a log pair. If (X,B) is F -pure, then (X,B)

is log canonical.

Theorem 2.7 ([6]). Let X be a Kawamata log terminal projective surface defined
over an algebraically closed field of characteristic p > 5. Then X is F -pure.

The last theorem implies even more that X is strongly F -regular. In this paper,
however, we do not need the notion of F -regularity.

A key tool in the theory of Frobenius splittings is a trace map (see [33] and
[24]). For an integral divisor D on a normal variety X, there is an isomorphism
derived from the Grothendieck duality (see [5, Lem. 2.9]):

HomOX
(F e∗OX(D),OX) � OX(−(pe − 1)KX − D). (1)

Definition 2.8. Let B be a Q-divisor such that (pe − 1)(KX +B) is Cartier. We
call

TreX,B : Fe∗OX(−(pe − 1)(KX + B)) → OX

the trace map. It is constructed by applying isomorphism (1) to the map

HomOX
(F e∗OX((pe − 1)B),OX)

ev−→HomOX
(OX,OX), (2)

which is the dual of the composition OX
Fe−→ Fe∗OX ↪−→ Fe∗OX((pe − 1)B).
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The rank one sheaves in question are not necessary line bundles, but since X is
normal, we can always restrict ourselves to the smooth locus. The trace map can
be also defined when the index of KX + B is divisible by p, but we will not need
it in this paper.

The following proposition reveals the significance of the trace map.

Proposition 2.9 ([5, Prop. 2.10]). Let (X,B) be a normal log pair such that the
Cartier index of KX + B is not divisible by p. Then (X,B) is F -pure at a point
x ∈ X if and only if the trace map TreX,B is surjective at x for all enough divisible
e � 0.

It is easy to see that TreX,B is surjective at x for all divisible enough e � 0 if and
only if it is surjective for just one e > 0 satisfying that (pe − 1)B is Weil. For
convenience of the reader, we give a proof of the proposition.

Proof of Proposition 2.9. The key point is that TreX,B is induced by the evaluation
map (2). Replace X by SpecOX,x . For φ ∈ HomOX

(F e∗OX((pe − 1)B),OX), the
image ev(φ) is defined by the commutativity of the following diagram:

Note that Hom(OX,OX) � OX is generated by the identity morphism id. In par-
ticular, ev is surjective if and only if there exists φ such that ev(φ) = id, which is
equivalent to φ being a splitting. �

Further, we consider another version of the trace map. Let D be a Q-divisor such
that KX + B + D is Cartier. Tensoring the trace map TreX,B by it, we obtain:

TreX,B(D) : Fe∗OX(KX + B + peD) −→ OX(KX + B + D).

By abuse of notation, both versions of the trace map are denoted in the same way.
Later, we will need the following lemma.

Lemma 2.10. Let X be a Q-factorial variety, which is F -pure at a point x ∈ X.
Then, there exists an effective Q-divisor B such that

(pe − 1)(KX + B)

is Cartier for enough divisible e � 0, and (X,B) is F -pure at x. We can take the
coefficients of B to be as small as possible.

More precisely, if we can find B as in this lemma, then there exists a sequence
limj→∞ aj = 0 such that ajB satisfy the conditions of the lemma.

Note that, if the Gorenstein index of X is not divisible by p, then we can just
take B = 0.

Proof of Lemma 2.10. By Proposition 2.5 we know that there exists an effective
Q-divisor � such that (X,�) is F -pure at x ∈ X and the Cartier index of KX +�

at x is not divisible by p.
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In particular, for enough divisible e � 0, there exists a Q-divisor D ∼ (pe −
1)(KX +�) such that x /∈ SuppD. Further, we can find a Cartier divisor E disjoint
with x for which E + D is effective.

Notice that KX +�+D +E ∼ pe(KX +�)+E has Cartier index indivisible
by p for e � 0. Take

B = 1

pn + 1
(� + D + E)

for n � 0. Then

KX + B ∼ KX + � + D + E − pn

pn + 1
(� + D + E),

where both KX + � + D + E and pn(� + D + E) have Cartier indices not
divisible by p. �

2.2. Reider’s Analysis

Reider’s analysis is a method of showing that divisors of the form KX + L are
globally generated or very ample, where L is a big and nef divisor on a smooth
surface X.

The idea is that a base point of KX + L provides us with a rank two vec-
tor bundle E that does not satisfy the Bogomolov inequality c1(E)2 ≤ 4c2(E). In
characteristic zero, such vector bundles are unstable. Using the instability, we can
deduce a contradiction to the existence of a base point when L is “numerically
ample enough”.

In positive characteristic, the aforementioned fact about unstable vector bun-
dles on smooth surfaces is not true in general. However, Shepherd-Barron proved
it for surfaces that are neither of general type nor quasi-elliptic of Kodaira dimen-
sion one [28]. This leads to the following:

Proposition 2.11 ([35, Thm. 2.4]). Let X be a smooth projective surface neither
of general type nor quasi-elliptic with κ(X) = 1, and let D be a nef divisor such
that D2 > 4. Assume that q ∈ X is a base point of KX + D. Then, there exists an
integral curve C containing q , such that D · C ≤ 1.

In particular, for such surfaces, KX +3A is base point free for an ample divisor A.
The goal of this subsection is to prove the following proposition, which covers

all types of surfaces.

Proposition 2.12. Let X be a smooth projective surface, and let D be a nef and
big divisor on it. Assume that q ∈ S is a base point of KX + D. Further, suppose
that

(1) D2 > 4 if X is quasi-elliptic with κ(X) = 1,
(2) D2 > vol(KX) + 4 if X is of general type and p ≥ 3,
(3) D2 > vol(KX) + 6 if X is of general type and p = 2, or
(4) D2 > 4 otherwise.

Then, there exists a curve C containing q such that
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(1a) D · C ≤ 5 if X is quasi-elliptic with κ(X) = 1 and p = 3,
(1b) D · C ≤ 7 if X is quasi-elliptic with κ(X) = 1 and p = 2,
(2) D · C ≤ 1 if X is of general type and p ≥ 3,
(3) D · C ≤ 7 if X is of general type and p = 2, or
(4) D · C ≤ 1 otherwise.

Note that case (4) is nothing else but Proposition 2.11. The proof follows step-by-
step the proof by Di Cerbo and Fanelli [4]. The only addition is that the curve C

must contain q . The idea that this must hold has been established in [22] based on
[27], but, for convenience of the reader, we present the full proof further.

The following is crucial in the proof of Proposition 2.12.

Proposition 2.13 ([4]). Consider a birational morphism π : Y → X between
smooth projective surfaces X and Y that are either of general type or quasi-
elliptic with κ(X) = 1. Let D be a big divisor on Y such that H 1(Y,OY (−D)) �= 0

and D
2
> 0. Further, suppose that D := π∗D is nef and

(1) D
2
> vol(KX) if X is of general type and p ≥ 3, or

(2) D
2
> vol(KX) + 2 if X is of general type and p = 2.

Then, there exists a nonzero nonexceptional effective divisor E on Y , such that

kD − 2E is big,

(kD − E) · E ≤ 0, and

0 ≤ D · E ≤ kα

2
− 1,

where E := π∗E, α := D2 − D
2
, and

• k = 3 if X is quasi-elliptic with κ(X) = 1 and p = 3,
• k = 4 if X is quasi-elliptic with κ(X) = 1 and p = 2,
• k = 1 if X is of general type and p ≥ 3, or
• k = 1 or k = 4 if X is of general type and p = 2.

Proof. It follows directly from [4, Prop. 4.3], [4, Thm. 4.4], [4, Prop. 4.6], and [4,
Cor. 4.8]. �

Further, we need the following lemma.

Lemma 2.14 ([22, Lem. 2]). Let D be a nef and big divisor on a smooth surface S.
If

D ≡ D1 + D2

for numerically nontrivial pseudo-effective divisors D1 and D2, then D1 ·D2 > 0.

Now, we can proceed with the proof of the main proposition in this subsection.

Proof of Proposition 2.12. The first case is covered by Proposition 2.11, so we
may assume that X is of general type or quasi-elliptic with κ(X) = 1.
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Let π : Y → X be a blow-up at q ∈ X with exceptional curve F . Given that q

is a base point of KX + D, from the exact sequence

0 →OY (π∗(KX + D) − F︸ ︷︷ ︸
KY +π∗D−2F

) −→ OY (π∗(KX +D)) −→ OF (π∗(KX +D)) → 0

we obtain that

H 1(Y,OY (−π∗D + 2F)) = H 1(Y,OY (KY + π∗D − 2F)) �= 0.

Set D := π∗D − 2F . Since
D

2 = D2 − 4,

we have D
2
> 0, and assertions (1) and (2) in Proposition 2.13 are satisfied. Fur-

ther, using that H 0(Y,D) = H 0(X,OX(D) ⊗ m2
q) and vol(D) > 4, we can easily

check that D is big. Hence, by Proposition 2.13 there exists a nonzero nonexcep-
tional effective divisor E on Y such that

kD − 2E is big,

(kD − E) · E ≤ 0, and

0 ≤ D · E ≤ 2k − 1,

where E = π∗E.
To finish the proof, it suffices to show that E contains a component that inter-

sects F properly. Its pushforward onto X would be the sought-for curve C.
Assume that the claim is not true, that is, E = μ∗E + aF for a ≥ 0. We have

that
0 ≥ (kD − E) · E = (kD − E) · E + (2k + a)a.

This implies kD · E ≤ E2. Since D · E ≥ 0, it follows that E2 ≥ 0. Given that
kD − 2E is big, we may apply Lemma 2.14 with kD = (kD − 2E) + 2E and
obtain kD · E > 2E2. This is a contradiction with the other inequalities in this
paragraph. �

3. Base Point Freeness

The goal of this section is to prove the base point free part of Theorem 1.2.

Lemma 3.1. Let L be an ample Cartier divisor on a normal projective surface X.
Let π : X̃ → X be the minimal resolution of singularities. Then KX̃ + 3π∗L is
nef, and KX̃ + nπ∗L is nef and big for n ≥ 4.

Proof. Take a curve C. We need to show that (KX̃ +3π∗L) ·C ≥ 0. If KX̃ ·C ≥ 0,
then the inequality clearly holds. Thus, by the cone theorem ([32, Thm. 3.13]
and [32, Rem. 3.14]) we need to prove it when C is an extremal ray satisfying
KX̃ · C < 0. In such a case, we have that KX̃ · C ≥ −3.

If C is not an exceptional curve, then 3π∗L ·C ≥ 3, and so the inequality holds.
But C cannot be exceptional because then its contraction would give a smooth
surface (see [14, Thm. 1.28]), and so X̃ would not be a minimal resolution. This
concludes the first part of the lemma.
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As for the second part, KX̃ + nπ∗L is big and nef for n ≥ 4 since adding a nef
divisor to a big and nef divisor gives a big and nef divisor. �

The following proposition yields the first step in the proof of Theorem 1.2.

Proposition 3.2. Let X be a normal projective surface defined over an alge-
braically closed field of characteristic p > 3. Assume that mKX is Cartier for
some m ∈N. Let A be an ample Cartier divisor on X. Then

Bs(m(aKX + bA) + N) ⊆ Sing(X)

for any nef Cartier divisor N , where a = 2 and b = 7.

The proposition is even true for a = 2 and b = 6, but in this case, aKX + bA need
not be ample.

Proof of Proposition 3.2. Let π : X → X be the minimal resolution of singulari-
ties with an exceptional locus E. First, we claim that

Bs(2KX + 7π∗A + M) ⊆ E

for any nef Cartier divisor M on X. Assume that this is true. If m = 1, then the
proposition follows automatically. In general, we note that 2KX + 7π∗A is nef by
Lemma 3.1, and so setting M = (m − 1)(2KX + 7π∗A) + π∗N yields

Bs(m(2KX + 7π∗A) + π∗N) ⊆ E.

In particular, Bs(m(2KX + 7A) + N) ⊆ π(E), which concludes the proof.
Hence, we are left to show the claim. Assume by contradiction that there exists

a base point q ∈ X of 2KX + 7π∗A + M such that q /∈ E.
We apply Proposition 2.12 for D = KX + 7π∗A + M . The assumptions are

satisfied because, by Lemma 3.1, D is big and nef, and, by Theorem 2.3,

vol(D) ≥ vol(KX) + 49, if X is of general type, and

vol(D) ≥ vol(KX + 4π∗A) + vol(3π∗A) > 9 in general.

Here, we used that KX + 4π∗A is nef and big by Lemma 3.1.
Therefore, there exists a curve C containing q such that

C · D ≤ 1.

We can write D = (KX + 3π∗A + M) + 4π∗A. Since C is not exceptional, C ·
π∗A > 0. Thus, we obtain a contradiction. �

By Proposition 3.2 and Theorem 2.7 the base point free part of Theorem 1.2 fol-
lows from the following proposition by taking L := m(aKX + bA) − KX .

Proposition 3.3. Let X be an F -pure Q-factorial projective surface defined over
an algebraically closed field of characteristic p > 0. Let L be an ample Q-divisor
on X such that KX + L is an ample Cartier divisor and

Bs(KX + L + M) ⊆ Sing(X)
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for every nef Cartier divisor M . Then 2(KX + L) + N is base point free for every
nef Cartier divisor N .

If we assume that dim Bs(KX +L+M) = 0, then the same proof will give us that
3(KX + L) + N is base point free.

Before proceeding with the proof, we would like to give an example explaining
an idea of how to show the proposition if we worked in characteristic zero.

Remark 3.4. Here, X is a smooth surface defined over an algebraically closed
field k of characteristic zero, and L is an ample Cartier divisor on it. The goal of
this remark is to prove the following statement by applying a well-known strat-
egy:

if KX + L is ample and dim Bs(KX + L) = 0, then 3(KX + L)

is base point free.

Take any point q ∈ Bs(KX + L). It suffices to show that 3(KX + L) is base
point free at q . By assumptions, KX + L defines a finite map outside of its
zero-dimensional base locus, and so there exist divisors D1,D2,D3 ∈ |KX + L|
without common components such that the multiplier ideal sheaf J (X,�) for
� = 2

3 (D1 + D2 + D3) satisfies

dimJ (X,�) = 0 and

q ∈ J (X,�).

Note that � ∼Q 2(KX + L).
Let W be a zero-dimensional subscheme defined by J (X,�). We have the

following exact sequence:

0 →OX(3(KX + L)) ⊗J (X,�) → OX(3(KX + L)) → OW(3(KX + L)) → 0.

Since 3(KX + L) ∼Q KX + � + L, by the Nadel vanishing theorem [18,
Thm. 9.4.17]

H 1(X,OX(3(KX + L)) ⊗J (X,�)) = 0,

and so

H 0(X,OX(3(KX + L))) −→ H 0(W,OW(3(KX + L)))

is surjective. Since dimW = 0, we get that 3(KX + L) is base point free along
W , and so it is base point free at q .

Proof of Proposition 3.3. Take an arbitrary closed point q ∈ X. We need to show
that q /∈ Bs(2(KX + L) + N). By taking M = KX + L + N in the assumption we
get that Bs(2(KX +L)+N) ⊆ Sing(X). Hence, we can assume that q ∈ Sing(X).

By assumptions, KX + L defines a finite map outside of its zero-dimensional
base locus, so there exist divisors D1,D2 ∈ |KX +L| such that dim(D1 ∩D2) = 0
and q ∈ D1 ∩D2. Let W be the scheme defined by the intersection of D1 and D2.
By definition, IW = ID1 + ID2 .
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By Theorem 2.2 we can choose e > 0 such that

H 1
(

X,OX

(
pe − 1

2
L + M

)
⊗ IW

)
= 0

for any nef Cartier divisor M .
By Lemma 2.10 we know that there exists an effective Q-divisor B such that

(pe − 1)(KX + B)

is Cartier and

TrX,B : Fe∗OX(−(pe − 1)(KX + B)) −→OX

is surjective at q for enough divisible e � 0. If the Gorenstein index of X is not
divisible by p, then we can take B = 0. Further, we may assume that 1

2L − B is
ample.

Now, take maximal λ1, λ2 ∈ Z≥0 such that

TrX,� : Fe∗L → OX

is surjective at the stalk OX,q , where

L := OX(−(pe − 1)(KX + B) − λ1D1 − λ2D2), and

� := B + λ1

pe − 1
D1 + λ2

pe − 1
D2.

The pair (X,�) is F -pure by Proposition 2.9. We want to show the existence
of the following diagram:

To show that such a diagram exists, we need to prove that the image of
Fe∗ (L ⊗ IW ) under TrX,� is contained in mq . This follows from the fact that
IW = O(−D1) + O(−D2) and from the maximality of λ1, λ2. More precisely,
the image of

Fe∗OX(−(pe − 1)(KX + B) − (λ1 + 1)D1 − λ2D2)

must be contained in mq , and analogously for λ2 replaced by λ2 + 1.
So, we tensor this diagram by the line bundle OX(KX + � + H), where

H := 2(KX + L) − (KX + �) + N,

and take H 0 to obtain the diagram



Effective Bounds in Positive Characteristic 379

Note that KX + � + H = 2(KX + L) + N . Further, by Theorem 2.6, (X,�)

is log canonical at q ∈ X, and so by Lemma 3.5 we get

λ1

pe − 1
+ λ2

pe − 1
≤ 1.

Therefore, H is ample, and

KX + � + peH

∼ pe−1

2
L + (pe−1)

(
1

2
L − B

)
+(pe+1−λ1−λ2)(KX + L)+peN︸ ︷︷ ︸

nef

.

The right vertical arrow is surjective since TrX,� : Fe∗L → OX is surjective
and dimW = 0. The upper horizontal arrow is surjective since

H 1
(

X,OX

(
pe − 1

2
L + M

)
⊗ IW

)
= 0

for any nef Cartier divisor M . Thus, the lower horizontal arrow is surjective, and
so the proof of the base point freeness is completed. �

The following lemma was used in the proof.

Lemma 3.5. Let (X,B + a1D1 + a2D2) be a log canonical two-dimensional pair
such that B is an effective Q-divisor, a1, a2 ∈ R≥0, and D1 and D2 are Cartier
divisors intersecting at a singular point x ∈ X. Then a1 + a2 ≤ 1.

Of course, the lemma is not true when x is a smooth point.

Proof of Lemma 3.5. Consider a minimal resolution of singularities π : X̃ → X.
Write

KX̃ + �X̃ + π∗(B + a1D1 + a2D2) = π∗(KX + B + a1D1 + a2D2).

Since π is a minimal resolution, we have that �X̃ ≥ 0.
Take an exceptional curve C over x. Since D1 and D2 are Cartier, the coeffi-

cient of C in �X̃ + π∗(B + a1D1 + a2D2) is greater than or equal to a1 + a2.
Since (X̃,�X̃ +π∗(B +a1D1 +a2D2)) is log canonical, this concludes the proof
of the lemma. �

3.1. Very Ampleness

The goal of this subsection is to show the following proposition and finish off the
proof of Theorem 1.2.

Proposition 3.6 (cf. [24, Cor. 4.5], [10, Thm. 1.1]). Let X be an F -pure pro-
jective variety of dimension n. Let D be an ample Q-Cartier divisor such that
KX + D is Cartier, and let L be an ample globally generated Cartier divisor.
Then KX + (n + 1)L + D is very ample.
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The proof follows very closely the strategy described in [10]. Theorems of a sim-
ilar flavor have been obtained by Schwede [24], Smith [29; 30], and Hara [7].

First, we need a slight generalization of [17, Example 1.8.22].

Lemma 3.7 (cf. [17, Examples 1.8.18 and 1.8.22]). Let X be a normal projective
variety of dimension n. Consider a coherent sheaf F and a point x ∈ X. Let B be
a globally generated ample line bundle. If

Hi+k−1(X,F ⊗ B−(i+k)) = 0

for 1 ≤ i ≤ n and 1 ≤ k ≤ n, then F ⊗ mx is globally generated.

Proof. Set F(−i) := F ⊗ B−i . Our goal is to prove that

Hi(X,F(−i) ⊗ mx) = 0

for all i > 0. Then, Theorem 2.1 would imply the global generatedness of F ⊗mx .
Since B is ample and globally generated, it defines a finite map, and so

there exist sections s1, s2, . . . , sn ∈ H 0(X,B) intersecting in a zero-dimensional
scheme W containing x. By the same argument as in [17, Example 1.8.22], using
[17, Prop. B.1.2(ii)] we get that

Hi(X,F(−i) ⊗ IW ) = 0 for i > 0.

To conclude the proof of the lemma, we consider the short exact sequence

0 −→ IW −→ mx −→ mx/IW −→ 0

and tensor it by F(−i) to get the short exact sequence

0 −→ G −→F(−i) ⊗ IW −→ F(−i) ⊗ mx −→ F(−i) ⊗ (mx/IW ) −→ 0,

where the term

G := ker(F(−i) ⊗ IW −→F(−i) ⊗ mx)

comes from the fact that F may not be flat. Since mx/IW is flat off W , we have
that

dim Supp(Tor1(F(−i),mx/IW )) = 0,

and so Hi(X,G) = 0 for i > 0. A simple diagram chasing shows that Hi(X,

F(−i) ⊗ mx) = 0 for i > 0, and so we are done. �

Proof of Proposition 3.6. Choose a point q ∈ X. To prove the theorem, it suffices
to show that OX(KX + (n + 1)L + D) ⊗ mx is globally generated at q for all
x ∈ X. Set L := OX(L).

Since X is F -pure, Proposition 2.9 and Lemma 2.10 imply that there exists an
effective Q-divisor B such that

(pe − 1)(KX + B)

is Cartier for divisible enough e > 0 and TreX,B is surjective at q . If the Gorenstein
index of X is not divisible by p, then we can take B = 0. Further, we may assume
that D − B is ample.
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Tensoring TreX,B((n + 1)L + D − B) by mx , we obtain the morphism

Fe∗OX(KX + B + pe((n + 1)L + D − B)) ⊗ mx

−→OX(KX + (n + 1)L + D) ⊗ mx,

which is surjective at q , and so it suffices to show that Fe∗OX(KX + B + pe((n +
1)L + D − B)) ⊗ mx is globally generated for divisible enough e > 0.

However, this follows from Lemma 3.7 since

Hi+k−1(X,F e∗OX(KX + B + pe((n + 1)L + D − B)) ⊗L−(i+k))

= Hi+k−1(X,OX(KX + B + pe((n + 1 − i − k)L + D − B))) = 0

for e � 0 and 1 ≤ i + k − 1 ≤ n by Serre vanishing. �

Now, the proof of the main theorem is straightforward.

Proof of Theorem 1.2. It follows directly from Theorem 2.7, Proposition 3.2,
Proposition 3.3, and Proposition 3.6. �

4. Generalizations of the Main Theorem

In this section, we present a technical generalization of Theorem 1.2.

Theorem 4.1. Let X be an F -pure Q-factorial projective surface defined over an
algebraically closed field of characteristic p > 0. Assume that mKX is Cartier
for some m ∈ N. Let L be an ample Cartier divisor on X, and let N be any nef
Cartier divisor. The following holds.

• If X is neither of general type nor quasi-elliptic with κ(X) = 1, then
2mKX + 8mL + N is base point free, and
7mKX + 27mL + N is very ample.

• If p = 3 and X is quasi-elliptic with κ(X) = 1, then
2mKX + 12mL + N is base point free, and
7mKX + 39mL + N is very ample.

• If p = 2 and X is quasi-elliptic with κ(X) = 1, then
2mKX + 16mL + N is base point free, and
7mKX + 51mL + N is very ample.

• If p ≥ 3 and X is of general type, then
4mKX + 14mL + N is base point free, and
13mKX + 45mL + N is very ample.

• If p = 2 and X is of general type, then
4mKX + 22mL + N is base point free, and
13mKX + 69mL + N is very ample.

The bounds are rough. The theorem is a direct consequence of the following
proposition.
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Proposition 4.2. Let X be a normal projective surface defined over an alge-
braically closed field of characteristic p > 0. Assume that mKX is Cartier for
some m ∈N. Let A be an ample Cartier divisor on X. Then

Bs(m(aKX + bA) + N) ⊆ Sing(X)

for any nef Cartier divisor N , where

• a = 1, b = 4 if X is neither of general type nor quasi-elliptic with κ(X) = 1,
• a = 1, b = 6 if X is quasi-elliptic with κ(X) = 1 and p = 3,
• a = 1, b = 8 if X is quasi-elliptic with κ(X) = 1 and p = 2,
• a = 2, b = 7, if X is of general type and p ≥ 3,
• a = 2, b = 11 if X is of general type and p = 2.

Proof. This follows from Proposition 2.12 by exactly the same proof as of Propo-
sition 3.2. �

Proof of Theorem 4.1. This follows directly from Theorem 2.7, Proposition 4.2,
Proposition 3.3, and Proposition 3.6. �

5. Matsusaka-Type Bounds

The goal of this section is to prove Corollary 1.3. The key part of the proof is the
following proposition.

Proposition 5.1. Let A be an ample Cartier divisor, and let N be a nef Cartier
divisor on a normal projective surface X. Then kA − N is nef for any

k ≥ 2A · N
A2

((KX + 3A) · A + 1) + 1.

Proof. The proof is exactly the same as [4, Thm. 3.3]. The only difference is that,
for singular surfaces, the cone theorem is weaker, so in the statement we have
KX + 3D instead of KX + 2D. �

The following proof is exactly the same as of [4, Thm. 1.2].

Proof of Proposition 1.3. By Theorem 1.2 we know that H is very ample. By the
proposition we know that kA − (H + N) is a nef Cartier divisor. Thus, by the
proof of Theorem 1.2

H + (kA − (H + N))︸ ︷︷ ︸
nef

= kA − N

is very ample. �

Applying Theorem 4.1, we obtain the following:

Corollary 5.2. Let A and N be respectively an ample and a nef Cartier divisor
on an F -pure Q-factorial projective surface defined over an algebraically closed
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field of characteristic p > 0. Let m ∈N be such that mKX is Cartier. Then kA−N

is very ample for any

k >
2A · (H + N)

A2
((KX + 3A) · A + 1),

where

• H := 7mKX +27mA if X is neither quasi-elliptic with κ(X) = 1 nor of general
type,

• H := 7mKX + 39mA if X is quasi-elliptic with κ(X) = 1 and p = 3,
• H := 7mKX + 51mA if X is quasi-elliptic with κ(X) = 1 and p = 2,
• H := 13mKX + 45mA if X is of general type and p ≥ 3,
• H := 13mKX + 69mA if X is of general type and p = 2.

6. Bounds on log del Pezzo Pairs

The goal of this section is to prove Corollary 1.4. We need the following facts.

Proposition 6.1. Let (X,�) be an ε-klt log del Pezzo pair for 0 < ε < 3−1/2.
Let π : X → X be the minimal resolution. Then

(a) 0 ≤ (KX + �)2 ≤ max(9, �2/ε + 4 + 4
�2/ε ),

(b) rk Pic(X) ≤ 128(1/ε)5,
(c) 2 ≤ −E2 ≤ 2/ε for any exceptional curve E of π : X → X,
(d) if m is the Q-factorial index at some point x ∈ X, then

m ≤ 2(2/ε)128/ε5
.

Proof. Point (a) follows from [9, Thm. 1.3]. Points (b) and (c) follow from [1,
Cor. 1.10] and [1, Lem. 1.2], respectively. Last, (d) follows from the fact that the
Cartier index of a divisor divides the determinant of the intersection matrix of the
minimal resolution of a singularity (see also the paragraph below [15, Thm. A]).

�
Further, we need to prove the following:

Lemma 6.2. Let (X,�) be a klt log del Pezzo pair such that m(KX +�) is Cartier
for some natural number m ≥ 2. Then

(1) 0 ≤ (KX + �) · KX ≤ 3mmax(9,2m + 4 + 2
m

), and
(2) |K2

X| ≤ 128m5(2m − 1).

Recall that if a log del Pezzo pair (X,�) with Cartier index m is klt, then it must
be 1/m-klt.

Proof. The nonnegativity in (1) is clear since

(KX + �) · KX = (KX + �)2 − (KX + �) · � ≥ 0.

Further, by the cone theorem, KX − 3m(KX + �) is nef, and thus

(KX + �) · (KX − 3m(KX + �)) ≤ 0.

This, together with (a) in Proposition 6.1, implies (1).
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To prove (2), we proceed as follows. Let π : X → X be the minimal resolution
of singularities of X. By Proposition 6.1(b) we have rk Pic(X) ≤ 128m5, and so
−9 ≤ −K2

X
≤ 128m5. Indeed, the self-intersection of the canonical bundle on a

minimal model of a rational surface is 8 or 9, and each blow-up decreases it by
one.

Write
KX +

∑
aiEi = π∗KX,

where Ei are the exceptional divisors of π . Notice that since X → X is minimal
and X is klt, we have 0 ≤ ai < 1. By applying (b) and (c) from Proposition 6.1
we obtain

|K2
X| =

∣∣∣∣
(

KX +
∑

aiEi

)
· KX

∣∣∣∣
≤ |KX|2 + 128m5(2m − 2)

≤ 128m5(2m − 1). �

Proof of Corollary 1.4. By Proposition 6.1 the Q-factorial index of X is bounded
with respect to ε. Indeed, the Q-factorial index is bounded at each point by (d),
and the number of singular points is bounded by (b). Hence, we can assume that
there exists m ∈ N bounded with respect to ε and I , such that mKX , m�, and
m(KX + �) are Cartier.

Set a = 13m and b = 45m2. By Theorem 1.2 and Remark 6.7 the divisor H :=
aKX −b(KX +�) is very ample, and Hi(X,H) = 0 for i > 0. Proposition 6.1(a)
and Lemma 6.2 imply that H 2, |H · KX|, H · �, |KX · �|, and |�2| are bounded
with respect to m.

The ample divisor H embeds X into a projective space of dimension
χ(OX(H)) = H 0(X,OX(H)), which is bounded with respect to m by the
Riemann–Roch theorem. �

If mKX and m(KX + �) are Cartier for m > 1, then we can easily calculate that
it suffices to take

b(ε, I ) = (a2 + b2)

(
128m5(2m − 1) + max

(
9,2m + 4 + 2

m

))
,

where a = 13m and b = 45m2.

Remark 6.3. Corollary 1.4 and the Riemann–Roch theorem for surfaces with ra-
tional singularities imply that the absolute values of the coefficients of the Hilbert
polynomial of X with respect to H are bounded with respect to ε and I . Further,
let n ∈ N be such that n� is Cartier. Then the absolute values of the coefficients
of the Hilbert polynomial of n� with respect to H |n� are bounded with respect
to ε, I , and n. Indeed,

χ(On�(mH)) = mn� · H − 1

2
n� · (n� + KX)

for m ∈ Z by the Riemann–Roch theorem and the adjunction formula.
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Remark 6.4. One of the reasons for our interest in the corollary is that it provides
bounds on ε-klt log del Pezzo surfaces that are independent of the characteristic.
In particular, it shows the existence of a bounded family of ε-klt log del Pezzo
surfaces over SpecZ (see [2, Lem. 3.1]). We were not able to verify whether Kol-
lár’s bounds depend on the characteristic or not. We believe that stating explicit
bounds might ease the life of future researchers who want to handle questions
related to the behavior of log del Pezzo surfaces in mix characteristic or for big
enough characteristic.

6.1. Effective Vanishing of H 1

The goal of this subsection is to give a proof of the following proposition.

Proposition 6.5. Let X be a normal projective surface. Then

Hi(X,OX(D)) = 0 for i > 0,

where D = 3KX + 14A + N is Cartier for an ample Cartier divisor A and a nef
Q-Cartier divisor N .

It was pointed to us by the anonymous referee that the proposition follows from a
result of Kollár. We present this approach below.

First, let us recall the aforementioned result.

Theorem 6.6 ([13, Thm. II.6.2 and Rem. II.6.7.2]). Let X be a normal, projective
variety defined over a field of characteristic p. Let L be an ample Q-Cartier Weil
divisor on X satisfying H 1(X,OX(−L)) �= 0. Assume that X is covered by a
family of curves {Dt } such that X is smooth along a general Dt and

((p − 1)L − KX) · Dt > 0.

Then, through every point x ∈ X, there is a rational curve C ⊆ X such that

L · C ≤ 2 dimX
L · Dt

((p − 1)L − KX) · Dt

.

Proof of Proposition 6.5. Set L = 2KX + 14A + N . Since D is Cartier and ωX

is reflexive, we get that ωX ⊗ OX(−D) = OX(−L). Thus, by Serre duality we
need to show that Hi(X,OX(−L)) = 0 for i < 2. However, by the cone theo-
rem we have that KX + 3A is nef, and so L is ample, giving in particular that
H 0(X,OX(−L)) = 0. Hence, we are left to show that H 1(X,OX(−L)) = 0.

To this end, we suppose by contradiction that H 1(X,OX(−L)) �= 0 and apply
Theorem 6.6 for a general pencil of curves {Dt } in some very ample linear system.
Since (p − 1)L − KX is ample, the assumptions of the theorem are satisfied. In
particular, we get a curve C such that

L · C ≤ 4
L · Dt

((p − 1)L − KX) · Dt

,
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and since L is ample, this in turn gives

L · C ≤ 4
L · Dt

(L − KX) · Dt

.

Since KX + 3A is nef, we have L · C ≥ 8. Further, KX · Dt < (L − KX) · Dt

since L − KX = KX + 14A + N . Therefore,

8 ≤ L · C < 4

(
2(L − KX) · Dt

(L − KX) · Dt

)
= 8,

which is a contradiction. �

Remark 6.7. Proposition 6.5 shows, under the assumptions and notation of Theo-
rem 1.2, that the very ample divisor H := 13mKX + 45mA satisfies Hi(X,H) =
0 for i > 0. Similar statements hold for very ample divisors considered in Theo-
rem 4.1.
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