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Curve Arrangements, Pencils, and Jacobian Syzygies

Alexandru Dimca

Abstract. Let C : f = 0 be a curve arrangement in the complex pro-
jective plane. If C contains a curve subarrangement consisting of at
least three members in a pencil, then we obtain an explicit syzygy
among the partial derivatives of the homogeneous polynomial f . In
many cases, this observation reduces the question about the freeness
or the nearly freeness of C to an easy computation of Tjurina numbers.
We also discuss some consequences for Terao’s conjecture in the case
of line arrangements and the asphericity of some complements of ge-
ometrically constructed free curves.

1. Introduction

Let S = C[x, y, z] be the graded polynomial ring in the variables x, y, z with
complex coefficients, and let C : f = 0 be a reduced curve of degree d in the
complex projective plane P

2. The minimal degree of a Jacobian syzygy for f is
the integer mdr(f ) defined to be the smallest integer r ≥ 0 such that there is a
nontrivial relation

afx + bfy + cfz = 0 (1.1)

among the partial derivatives fx , fy , and fz of f with coefficients a, b, c in
Sr , the vector space of homogeneous polynomials of degree r . The knowledge
of the invariant mdr(f ) allows us to decide if the curve C is free or nearly free
by a simple computation of the total Tjurina number τ(C); see [9; 5], and Theo-
rems 1.12 and 1.14 for nice geometric applications. Recall that a curve C as be-
fore is free (resp. nearly free) if and only if τ(C) = (d − 1)2 − r(d − r − 1) (resp.
τ(C) = (d −1)2 − r(d − r −1)−1), where r = mdr(f ). These conditions tell that
the minimal resolution of the graded S-module of Jacobian syzygies AR(f ) ⊂ S3

consisting of all relations of type (1.1) satisfies certain properties; see [5] for de-
tails.

When C is a free (resp. nearly free) curve in the complex projective plane P
2

such that C is not a union of lines passing through one point, then the exponents
of A denoted by d1 ≤ d2 satisfy d1 = mdr(f ) ≥ 1, and we have

d1 + d2 = d − 1 (1.2)

(resp. d1 + d2 = d). Moreover, all the pairs d1, d2 satisfying these conditions may
occur as exponents; see [8]. For more on free hypersurfaces and free hyperplane
arrangements, see [18; 15; 24; 19]. A useful result is the following.
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Theorem 1.1. Let C : f = 0 be a reduced plane curve of degree d . If r0 ≤ mdr(f )

for some integer r0 ≥ 1, then

τ(C) ≤ (d − 1)2 − r0(d − r0 − 1),

and equality holds if and only if C is free with exponents (r0, d − r0 − 1). In
particular, the set F(d, τ ) of free curves in the variety C(d, τ) ⊂ P(Sd) of reduced
plane curves of degree d with a fixed global Tjurina number τ is a Zariski open
subset.

The interested reader may state and prove the completely similar result for nearly
free curves. If the curve C is reducible, then we sometimes call it a curve arrange-
ment. When the curve C can be written as the union of at least three members of
one pencil of curves, we say that C is a curve arrangement of pencil type. Such
arrangements play a key role in the theory of line arrangements; see, for instance,
[12; 16], and the references therein.

In this note, we show that the existence of a subarrangement C′ in a curve ar-
rangement C : f = 0, with C′ of pencil type, gives rise to an explicit Jacobian
syzygy for f . We start with the simplest case where C = A is a line arrangement
and the pencil-type subarrangement C′ comes from an intersection point having
a high multiplicity, say m, in A. This case was considered from a different point
of view by Faenzi and Vallès [11]. However, the construction of interesting syzy-
gies from points of high multiplicity in A is very explicit and elementary in our
note (see formula (2.4)), whereas in [11] the approach involves a good amount of
algebraic geometry. This explicit construction allows us to draw some additional
conclusions for the nearly free line arrangements as well.

Our first main result is the following:

Theorem 1.2. If A : f = 0 is a line arrangement and m is the multiplicity of one
of its intersection points, then either mdr(f ) = d − m, or mdr(f ) ≤ d − m − 1,
and then one of the following two cases occurs:

(1) mdr(f ) ≤ m − 1. Then equality holds, that is, mdr(f ) = m − 1, we have the
inequality 2m < d + 1, and the line arrangement A is free with exponents
d1 = mdr(f ) = m − 1 and d2 = d − m;

(2) m ≤ mdr(f ) ≤ d − m − 1; in particular, 2m < d .

Theorem 1.1 can be used to identify the free curves in the case (2). We show by
examples in the third section that all the cases listed in Theorem 1.2 can actually
occur inside the class of free line arrangements. A number of corollaries of The-
orem 1.2 on the maximal multiplicity m(A) of points in a free or nearly free line
arrangement A are given in Section 2. Note that the case (1) when m = m(A)

corresponds to an equality in Lemma 5.2 in [20].
On the other hand, as a particular case of a result in [6], recalled in Subsec-

tion 2.7, we have the following:
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Proposition 1.3. If A : f = 0 is a line arrangement, then the maximal multiplic-
ity m(A) of points in A satisfies

m(A) ≥ 2d

mdr(f ) + 2
.

In particular, if A is free or nearly free with exponents d1 ≤ d2, then

m(A) ≥ 2d

d1 + 2
.

This inequality is sharp, that is, an equality; for some arrangements, see Exam-
ple 3.8.

We say that Terao’s conjecture holds for a free hyperplane arrangement A if
any other hyperplane arrangement B having an isomorphic intersection lattice
L(B) = L(A) is also free; see [15; 26]. This conjecture is open even in the case of
line arrangements in the complex projective plane P

2, in spite of a lot of efforts;
see, for instance, [1; 2]. For line arrangements, since the total Tjurina number
τ(A) is determined by the intersection lattice L(A), it remains to check that A :
f = 0 and B : g = 0 satisfy mdr(f ) = mdr(g) and then apply [9; 5]. Theorem 3.1
in [11] and our results imply the following fact, which is proved in Section 3.

Corollary 1.4. Let A be a free line arrangement with exponents d1 ≤ d2. If

m := m(A) ≥ d1,

then Terao’s conjecture holds for the line arrangement A. In particular, this is the
case where one of the following conditions hold:

(1) d1 = d − m;
(2) m ≥ d/2;
(3) d1 ≤ √

2d + 1 − 1.

Remark 1.5. (i) The fact that Terao’s conjecture holds for the line arrange-
ment A when m = m(A) ≥ d1 + 2 was established in [10] by an approach
not involving Jacobian syzygies. The result for m = m(A) ≥ d1 is implicit in
[11]; see Theorem 3.1 coupled with Remarks 3.2 and 3.3. Moreover, the case
m = m(A) = d1 − 1 for some real line arrangements is discussed in Theorem 6.2
in [11].

(ii) The cases d1 = d − m and m ≥ d/2 in Corollary 1.4 follow also from
the methods described in [26]; see, in particular, Proposition 1.23(i) and Theo-
rem 1.39. Corollary 1.4 follows also from [1, Thm. 1.1(1,3)].

(iii) Case (3) in Corollary 1.4 improves Corollary 2.5 in [5] saying that Terao’s
conjecture holds for A if d1 ≤ √

d − 1.

It is known that Terao’s conjecture holds for the line arrangement A when d =
|A| ≤ 12; see [11]. This result and case (3) in Corollary 1.4 imply the following:

Corollary 1.6. Let A be a free line arrangement with exponents d1 ≤ d2. If

d1 ≤ 4,
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then Terao’s conjecture holds for the line arrangement A.

The stronger result, corresponding to d1 ≤ 5, is established in [11, Thm. 6.3];
see also [1, Cor. 5.5]. In the case of nearly free line arrangements, we have the
following result, which can be proved by the interested reader using the analog of
Theorem 1.1 for nearly free arrangements.

Corollary 1.7. Let A be a nearly free line arrangement with exponents d1 ≤ d2.
If

m(A) ≥ d1,

then any other line arrangement B having an isomorphic intersection lattice
L(B) = L(A) is also nearly free.

Now we present our results for curve arrangements. First, we assume that C is
itself an arrangement of pencil type.

Theorem 1.8. Let C : f = 0 be a curve arrangement in P
2 such that the defining

equation has the form

f = q1q2 · · ·qm

for some m ≥ 3, where degq1 = · · · = degqm = k ≥ 2, and the curves Ci : qi = 0
for i = 1, . . . ,m are members of the pencil P : uC1 + vC2. Assume that P has a
zero-dimensional base locus and that it contains only reduced curves. Then either
mdr(f ) = 2k−2, or m = 3, mdr(f ) ≤ 2k−3, and in addition one of the following
two cases occurs.

1. k ≥ 4 and mdr(f ) ≤ k + 1. Then equality holds, that is, mdr(f ) = k + 1, and
the curve arrangement C is free with exponents d1 = k + 1 and d2 = 2k − 2;

2. k ≥ 5 and k + 2 ≤ mdr(f ) ≤ 2k − 3.

Using [9; 5], we get the following consequence.

Corollary 1.9. Let C be a curve arrangement of pencil type such that the cor-
responding pencil P : uC1 + vC2 has a zero-dimensional base locus and that it
contains only reduced curves. If the number m of pencil members that are curves
of degree k is at least 4, then mdr(f ) = 2k − 2. In particular, in this case the
curve C is free if and only if

τ(C) = (d − 1)2 − 2(k − 1)(d − 2k + 1),

whereas C is nearly free if and only if

τ(C) = (d − 1)2 − 2(k − 1)(d − 2k + 1) − 1.

Again Theorem 1.1 can be used to identify the free curves in case (2). Now we
discuss the case of a curve arrangement containing a subarrangement of pencil
type.
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Theorem 1.10. Let C : f = 0 be a curve arrangement in P
2 such that the defining

equation has the form
f = q1q2 · · ·qmh

for some m ≥ 2, where degq1 = · · · = degqm = k ≥ 1, and the curves Ci : qi = 0
for i = 1, . . . ,m are reduced members of the pencil uC1 + vC2. Assume that the
curves C1 : q1 = 0, C2 : q2 = 0 and H : h = 0 have no intersection points and that
the curve H is irreducible. Then either mdr(f ) = 2k − 2 + deg(h) = d − (m −
2)k − 2, or mdr(f ) ≤ d − (m − 2)k − 3, and then one of the following two cases
occurs.

(1) mdr(f ) ≤ (m−2)k +1. Then equality holds, that is, mdr(f ) = (m−2)k +1,
and the curve arrangement C is free with exponents d1 = (m − 2)k + 1 and
d2 = d − (m − 2)k − 2;

(2) (m − 2)k + 2 ≤ mdr(f ) ≤ d − (m − 2)k − 3.

In fact, this result holds also when k = 1 and H is just reduced; see Remark 2.3.

Remark 1.11. Note that when C is a line arrangement containing strictly the
pencil-type arrangement C′ and such that degh > 1 (i.e. C contains at least two
lines not in C′), then it is not clear whether the Jacobian syzygy constructed in
(4.3) is primitive. Due to this fact, Theorem 1.2 cannot be regarded as a particular
case of Theorem 1.10.

Exactly as in Corollary 1.9, when mdr(f ) is known, the freeness or nearly free-
ness of C is determined by the global Tjurina number τ(C). This can be seen in
the examples given in Section 4 and in the following three results, which will be
proved in the last two sections.

Theorem 1.12. Let H : h = 0 be an irreducible curve in P
2 of degree e ≥ 3 having

δ ≥ 0 nodes and κ ≥ 0 simple cusps as singularities. Let p be a generic point in
P

2 such that there are exactly m0 = e(e − 1) − 2δ − 3κ simple tangent lines to
H, say L1, . . . ,Lm0 , passing through p. Assume moreover that the δ (resp. κ)
secants L′

j (resp. L′′
k ) determined by the point p and the nodes (resp. the cusps)

of H are transversal to H at each intersection point q , that is, (L,H)q = multq H
for L = L′

j or L = L′′
k . Then the curve

C = H ∪
( ⋃

i=1,m0

Li

)
∪

(⋃
j

L′
j

)
∪

(⋃
k

L′′
k

)

is free with exponents (e, e2 − e − 1 − δ − 2κ), and the complement U = P
2 \ C

is a K(π,1)-space.

In the case of line arrangements, we have the following result, saying that any line
arrangement is a subarrangement of a free K(π,1) line arrangement.

Theorem 1.13. For any line arrangement A in P
2 and any point p of P2 not in A,

the line arrangement B(A,p) obtained from A by adding all the lines determined
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by the point p and by each of the multiple points in A is a free K(π,1) line
arrangement.

The case where p and several multiple points of A are collinear is allowed, and
the line added in such a case is counted just once. Hence, B(A,p) is a reduced
line arrangement. The main part of the next result was stated and proved by a
different method in [25]; see also the Erratum to that paper.

Theorem 1.14. Let C : f = 0 be a curve arrangement in P
2 such that the defining

equation has the form
f = q1q2 · · ·qm

for some m ≥ 3, where degq1 = · · · = degqm = k ≥ 2, and the curves Ci : qi = 0
for i = 1, . . . ,m are members of the pencil spanned by C1 and C2. Assume that
the pencil uC1 + vC2 is generic, that is, the curves C1 and C2 meet transversely in
exactly k2 points. Then the following properties are equivalent:

(1) Any singularity of any singular member Cs
j of the pencil uC1 + vC2 is

weighted homogeneous, and all these singular members Cs
j are among the

m curves Ci in the curve arrangement C;
(2) The curve C is free with exponents (2k − 2,mk − 2k + 1).

When the curve C is free, the complement U = P
2 \ C is a K(π,1)-space.

I would like to thank Aldo Conca and Jean Vallès for useful discussions related to
this paper.

2. Multiple Points and Jacobian Syzygies

2.1. Proof of Theorem 1.1

If C is free with exponents (r0, d − r0 − 1), then the formula for τ(C) is well
known; see, for instance, [20; 7].

Suppose now that r0 < r := mdr(f ) ≤ (d − 1)/2. Then we have

(d − 1)2 − r0(d − 1 − r0) > φ1(r) := (d − 1)2 − r(d − 1 − r) ≥ τ(C) (2.1)

since the function φ1(r) is strictly decreasing on [0, (d − 1)/2], and Theorem 3.2
in [9] yields the last inequality. Next, suppose that r0 < r and (d − 1)/2 < r ≤
d − r0 − 1. It follows from Theorem 3.2 in [9] that

τ(C) ≤ φ2(r) := (d − 1)2 − r(d − r − 1) −
(

2r + 2 − d

2

)
. (2.2)

The function φ2(r) is strictly decreasing on ((d − 4)/2,+∞), and, moreover,

φ1

(
d − 1

2

)
= φ2

(
d − 1

2

)
.

It follows that in this case, we also have τ(C) < (d − 1)2 − r0(d − 1 − r0). There-
fore the equality τ(C) = (d − 1)2 − r0(d − 1 − r0) holds if and only if r = r0, and
we may use [9] or [5] to complete the proof of the first claim.
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To prove the second claim, consider the closed subvariety Xr in P(S3
r )×P(Sd)

given by
Xr = {((a, b, c), f ) : afx + bfy + cfz = 0}.

Note that a polynomial f ∈ Sd satisfies mdr(f ) ≤ r if and only if [f ] ∈ P(Sd) is
in the image Zr of Xr under the second projection. If there is 0 < r0 ≤ (d − 1)/2
such that τ = φ1(r0), then by our discussion, F(d, τ ) is exactly the complement
of Zr0−1 ∩ C(d, τ) in C(d, τ). If such r0 does not exist, then F(d, τ ) = ∅, which
completes the proof.

2.2. Proof of Theorem 1.2

We first show that an intersection point p of multiplicity m gives rise to the syzygy

Rp : apfx + bpfy + cpfz = 0, (2.3)

where degap = degbp = deg cp = d − m, such that the polynomials ap , bp , cp

have no common factor in S. Let f = gh, where g (resp. h) is the product of
linear factors in f corresponding to lines in A passing (resp. not passing) through
the point p. If we choose the coordinates on P

2 such that p = (1 : 0 : 0), then g is
a homogeneous polynomial in y, z of degree m, whereas each linear factor L in
h contains the term in x with a nonzero coefficient aL. Moreover, degh = d − m.
It follows that

fx = ghx = gh
∑
L

aL

L
= f

P

h
,

where P is a polynomial of degree d −m− 1 such that P and h have no common
factors. This implies that

dhfx = dPf = xPfx + yPfy + zPfz, (2.4)

that is, we get the required syzygy Rp by setting ap = xP − dh, bp = yP , and
cp = zP .

Now, by the definition of mdr(f ) we get mdr(f ) ≤ d − m, and it remains to
analyze the case mdr(f ) < d −m. Let R1 be the syzygy of degree mdr(f ) among
fx , fy , fz. It follows that Rp is not a multiple of R1, and hence when

degR1 + degRp = mdr(f ) + d − m ≤ d − 1,

we can use Lemma 1.1 in [23] and get case (1). Case (2) is just the situation where
case (1) does not hold, so there is nothing to prove.

Remark 2.3. The method of proof of Theorem 1.2 gives a proof of Theorem 1.10
when k = 1 and H is a reduced curve, not necessarily irreducible. Indeed, H re-
duced implies that h and hx cannot have any common factor. Any such irreducible
common factor would correspond to a line passing through p = (1 : 0 : 0), and h

does not have such factors by assumption.

Theorem 1.2 clearly implies the following corollary, saying that the highest mul-
tiplicity of a point of a (nearly) free line arrangement cannot take arbitrary values
with respect to the exponents.
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Corollary 2.4. (i) If A is a free line arrangement with exponents d1 ≤ d2, then
either m = d2 + 1 or m ≤ d1 + 1.

(ii) If A is a nearly free line arrangement with exponents d1 ≤ d2, then either
m = d2 or m ≤ d1.

Claim (i) in Corollary 2.4 should be compared with the final claim in Corollary
4.5 in [11] and looks like a dual result to Corollary 1.2 in [1]. As a particular case
of Corollary 2.4 we get the following:

Corollary 2.5. (i) If A is a free line arrangement with exponents d1 ≤ d2 and
m > d/2, then m = d2 + 1.

(ii) If A is a nearly free line arrangement with exponents d1 ≤ d2 and m ≥ d/2,
then m = d2.

The following consequence of Theorem 1.2 is also obvious.

Corollary 2.6. If A is a line arrangement such that 2m = d , then either
mdr(f ) = m and A is not free, or mdr(f ) = m − 1 and A is free with exponents
(m − 1,m).

2.7. Proof of Proposition 1.3

For the reader’s convenience, we recall some facts from [6]; see also [7]. Let C

be a reduced plane curve in P
2 defined by f = 0. Let αC be the minimum of the

Arnold exponents αp of the singular points p of C. The plane curve singularity
(C,p) is weighted homogeneous of type (w1,w2;1) with 0 < wj ≤ 1/2 if there
are local analytic coordinates y1, y2 centered at p and a polynomial g(y1, y2) =∑

u,v cu,vy
u
1 yv

2 with cu,v ∈ C, where the sum is over all pairs (u, v) ∈ N2 with
uw1 + vw2 = 1. In this case, we have

αp = w1 + w2; (2.5)

see, for instance, [6]. With this notation, Corollary 5.5 in [6] can be restated as
follows.

Theorem 2.8. Let C : f = 0 be a degree d reduced curve in P2 having only
weighted homogeneous singularities. Then AR(f )r = 0 for all r < αCd − 2.

In the case of a line arrangement C = A, a point p of multiplicity k has by the pre-
vious discussion the Arnold exponent αp = 2/k. It follows that, for m = m(A),
we have

αC = 2

m
, (2.6)

and hence Theorem 2.8 implies

mdr(f ) ≥ 2

m
d − 2. (2.7)
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In other words,

m ≥ 2d

mdr(f ) + 2
, (2.8)

exactly as claimed in Proposition 1.3.

2.9. Proof of Corollary 1.7

Let B be defined by g = 0. Then Corollary 2.5(ii) applied to A implies that d1 =
d − m, and hence, in particular,

τ(A) = (d − 1)2 − (d − m)(m − 1) − 1;
see [5]. Note that τ(A) = τ(B) since for a line arrangement, the total Tjurina
number is determined by the intersection lattice; see, for instance, [8, Sect. 2.2].
If mdr(g) = d − m, then our characterization of nearly free arrangements in [5]
via the total Tjurina number implies that B is also nearly free.

On the other hand, if mdr(g) < d − m, then Theorem 1.2 applied to the ar-
rangement B implies that the only possibility given the assumption m ≥ d/2 is
that B is free with exponents (m − 1, d − m); in particular,

τ(B) = (d − 1)2 − (d − m)(m − 1).

This is a contradiction with the previous formula for τ(A), so this case is impos-
sible.

3. On Free Line Arrangements

3.1. Proof of Corollary 1.4

The proof of Corollary 1.4 is based on Theorem 3.1 in [11], which we recall now
in a slightly modified form; see also [8, Sect. 2.2].

Theorem 3.2. Let B be an arrangement of d lines in P
2 and suppose that there

are two integers k ≥ 1 and � ≥ 0 such that d = 2k + � + 1 and that there is an
intersection point in B of multiplicity e such that

k ≤ e ≤ k + � + 1. (3.1)

Then the arrangement B is free with exponents (k, k + �) if and only if the total
Tjurina number of B satisfies the equality

τ(B) = (d − 1)2 − k(k + �). (3.2)

Remark 3.3. A new proof of Theorem 3.2 can be given using our Theorems 1.1
and 1.2 and Theorem 3.2 in [9].

To prove the first claim of Corollary 1.4, we apply Theorem 2 in [11] to the ar-
rangement B. Corollary 2.5 implies that m = m(A) = m(B) ≤ d2 + 1. Then we
can set k = d1, � = d2 − d1, and e = m, and we get

k = d1 ≤ e = m ≤ k + � + 1 = d2 + 1.
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It follows that τ(B) = τ(A) = (d − 1)2 − d1d2, and hence the line arrangement B
is free with exponents d1, d2.

The last claim of Corollary 1.4 follows since m < d1 implies via Proposi-
tion 1.3 that

2d

d1 + 2
< d1.

But this quadratic inequality in d1 holds if and only if d1 >
√

2d + 1 − 1.

3.4. Some Examples of Free Line Arrangements

Now we consider some examples of line arrangements. First, we show by exam-
ples that all the cases listed in Theorem 1.2 and Corollary 2.6 can in fact occur
inside the class of free line arrangements.

Example 3.5. The line arrangement

A : f = xyz(x − z)(x + z)(x − y) = 0

is free with exponents (2,3) and has m = 4 > d/2 = 3. Hence, we are in the
situation d1 = mdr(f ) = 2 = d − m.

Example 3.6. The line arrangement

A : f = xyz(x − z)(x + z)(x − y)(x + y)(y − z) = 0

is free with exponents (3,4) and has m = 4 = d/2. Hence, we are in the situation
d1 = mdr(f ) < 4 = d − m and d1 = mdr(f ) = m − 1, as in Corollary 2.6.

Similarly, the line arrangement

A : f = xyz(x − z)(x + z)(x − y)(x + y)(y − z)(y + z) = 0

is free with exponents (3,5) and has m = 4 < d/2. Hence, we are in the situation
d1 = mdr(f ) < 5 = d − m and d1 = mdr(f ) = m − 1.

Example 3.7. The line arrangement

A : f = xyz(x − z)(x + z)(x − y)(x + y)(y − z)(y + z)(x + 2y)(x − 2y)

× (x + 2z)(x − 2z)(y − 2z)(y + 2z)(x + y − z)(x − y + z)

× (−x + y + z)(x + y + z) = 0

is free with exponents (9,9) and has m = 6 < 19/2. Hence, we are in the situation
m = 6 ≤ mdr(f ) = d1 = 9 < d − m = 13.

Finally, we give an example showing that the inequality in Proposition 1.3 is
sharp.

Example 3.8. The line arrangement

A : f = (x3 − y3)(y3 − z3)(x3 − z3) = 0
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is free with exponents (4,4) and has

m = 3 = 2d

d1 + 2
.

4. Pencils and Jacobian Syzygies

Let C : f = 0 be a curve arrangement in P
2 such that the defining equation has the

form
f = q1q2 · · ·qmh = gh

for some m ≥ 2, where degq1 = · · · = degqm = k, and the curves Ci : qi = 0 for
i = 1, . . . ,m are reduced members of the pencil P : uC1 + vC2. Assume that P
has a zero-dimensional base locus and that it contains only reduced curves. In
terms of equations, we can write

qi = q1 + tiq2 (4.1)

for i = 3, . . . ,m and some distinct complex numbers ti ∈ C
∗. In other words, the

curve subarrangement C′ : g = 0 of C consists of m ≥ 2 reduced members of a
pencil.

Finding a Jacobian syzygy for f as in (1.1) is equivalent to finding a homoge-
neous 2-differential form

ω = ady ∧ dz − bdx ∧ dz + cdx ∧ dy

on C
3 with polynomial coefficients a, b, c ∈ Sr such that

ω ∧ df = 0. (4.2)

4.1. The Case Where C Is a Pencil

When h = 1, that is, when C = C′ is a pencil itself, we can clearly take

ω = dq1 ∧ dq2; (4.3)

see also Lemma 2.1 in [25]. This form yields a primitive syzygy of degree 2k − 2
if we show that

(i) ω �= 0 and
(ii) ω is primitive, that is, ω cannot be written as eη for e ∈ S with deg e > 0

and η a 2-differential form on C
3 with polynomial coefficients. Such a polynomial

e is called a divisor of ω.
The first claim follows from Lemma 3.3 in [5] since q1 = 0 is a reduced curve

and q1 and q2 are not proportional. Claim (ii) is a consequence of Lemma 2.5 in
[25] or can be easily proven directly by the interested reader.

4.2. The Case Where C Is Not a Pencil

If degh = d − km > 0, then we set

ω = adq1 ∧ dq2 + bdq1 ∧ dh + cdq2 ∧ dh (4.4)
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with a, b, c ∈ S to be determined. Condition (4.2) becomes

g

[
a−bh

(
1

q2
+ t3

q3
+· · ·+ tm

qm

)
+ch

(
1

q1
+ 1

q3
+· · ·+ 1

qm

)]
dq1 ∧dq2 ∧dh = 0.

We have the following result.

Lemma 4.3. Assume that the curves C1 : q1 = 0, C2 : q2 = 0, and H : h = 0 have
no common point. Then the 2-form ω = adq1 ∧ dq2 + bdq1 ∧ dh + cdq2 ∧ dh

with a = −mh, b = −q2, and c = q1 is nonzero and satisfies ω ∧ df = 0. More-
over, any divisor of ω is a divisor of the Jacobian determinant J (q1, q2, h) of the
polynomials q1, q2, and h. In particular, if h is irreducible, then ω is primitive.

Proof. Since the ideal (q1, q2, h) is m-primary, where m = (x, y, z), it follows
that

dq1 ∧ dq2 ∧ dh = J (q1, q2, h)dx ∧ dy ∧ dz �= 0;
see [13], p. 665. This shows in particular that ω �= 0. Indeed, we have

ω ∧ dq1 = q1J (q1, q2, h)dx ∧ dy ∧ dz

and

ω ∧ dq2 = q2J (q1, q2, h)dx ∧ dy ∧ dz.

Since q1 and q2 have no common factor, these equalities show that any divisor e

of ω divides J (q1, q2, h).
Let � be the contraction of differential forms with the Euler vector field; see

Chapter 6 in [4] for more details if needed. Then we have

J (q1, q2, h)�(dx ∧ dy ∧ dz)

= �(dq1 ∧ dq2 ∧ dh)

= kq1dq2 ∧ dh − kq2dq1 ∧ dh + (d − mk)hdq1 ∧ dq2

= kω + d · hdq1 ∧ dq2.

This implies that any divisor e of ω and of J (q1, q2, h) divides h as well. Since h

does not divide J (q1, q2, h) (see [13], p. 659), the last claim follows. �

The main results based on the facts cited are Theorems 1.8 and 1.10, stated in the
Introduction. Their proofs are exactly the same as the proof of Theorem 1.2 using
our discussion.

Remark 4.4. The case r = d − m in Theorem 1.2, the case r = 2k − 2 in The-
orem 1.8, or the case r = 2k − 2 + deg(h) in Theorem 1.10 can sometimes be
discarded, using inequality (2.2), if r = mdr(f ) > (d − 1)/2.

Now we illustrate these results by some examples.

Example 4.5. (i) The line arrangement

A : f = (xk − yk)(yk − zk)(xk − zk) = 0
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for k ≥ 2 is seen to be free with exponents (k + 1,2k − 2) using Theorem 1.14.
This arrangement has m(A) = k for k ≥ 3, and hence the Jacobian syzygy con-
structed in the proof of Theorem 1.2 has degree d − m(A) = 2k. The Jacobian
syzygy constructed in (4.3) has degree d2 = 2k − 2, and hence we are in case (1)
of Theorem 1.8 when k ≥ 4. Theorems 1.1 and 1.2 give an alternative proof for
the freeness of A. The same method shows that the arrangement

A′ : f = xyz(xk − yk)(yk − zk)(xk − zk) = 0

for k ≥ 2 is free with exponents (k + 1,2k + 1).
(ii) The curve arrangement

C : f = xyz(x3 + y3 + z3)[(x3 + y3 + z3)3 − 27x3y3z3] = 0

is just the Hesse arrangement from [25] with one more smooth member of the
pencil added. We have k = 3 and m = 5, and hence r = mdr(f ) = 4 follows from
Theorem 1.8. Moreover, the Jacobian syzygy constructed in (4.3) has minimal de-
gree r = mdr(f ), and this is always the case by Theorem 1.8 when k = 3 or when
m > 3. To compute the total Tjurina number τ(C) of C, note that the nine base
points of the pencil are ordinary 5-fold points, and hence each contributes with
16 to τ(C). There are four singular members of the pencil in C, each a triangle,
and hence we should add 12 to τ(C) for these 12 nodes that are the vertices of the
four triangles. It follows that

τ(C) = 9 × 16 + 12 = 156 = (d − 1)2 − r(d − r − 1) = 142 − 4 × 10,

which shows that C is free with exponents (4,10) using [9; 5].

Remark 4.6. Note that the line arrangements A, A′, and C in the last example are
all arrangements associated with some complex reflection groups (the monomial
groups, the full monomial groups, and, respectively, the exceptional group G25),
and hence their freeness follows from [15, Thm. 6.60] as well.

Example 4.7. (i) The line arrangement

A : f = (xk − yk)(yk − zk)(xk − zk)x = 0

is seen by a direct computation to be free with exponents (k + 1,2k − 1). This
arrangement has m(A) = k + 1 for k ≥ 2, and hence the Jacobian syzygy con-
structed in the proof of Theorem 1.2 has degree d − m(A) = 2k. The Jacobian
syzygy constructed in (4.3) has degree d2 = 2k − 1, and hence we are in case (1)
of Theorem 1.10.

(ii) Consider the curve arrangement C : f = x(xm−1 − ym−1)(xy + z2) for
m ≥ 3. Here k = 1 and d = m + 2. Theorem 1.10 implies that r = mdr(f ) =
deg(h) = 2. To compute the total Tjurina number τ(C) of C, note that (0 : 0 : 1) is
an ordinary m-fold point, and hence it contributes to τ(C) by (m − 1)2. Each of
the (m − 1) lines in xm−1 − ym−1 meets the smooth conic H : xy + z2 = 0 in two
points and so has a contribution to τ(C) equal to 2. The line x = 0 is tangent to
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H at the point p = (0 : 1 : 0), and hence at p the curve C has an A3 singularity. It
follows that

τ(C) = (m − 1)2 + 2(m − 1) + 3 = m2 + 2 = (d − 1)2 − r(d − r − 1) − 1.

Using [5], we infer that the curve C is nearly free with exponents (2,m). The same
method shows that the curve arrangement C′ : f = xy(xm−2 −ym−2)(xy +z2) for
m ≥ 3 is free with exponents (2,m − 1).

4.8. Proof of Theorem 1.12

It is known that the degree of the dual curve H∗ is given by m0 = e(e − 1) −
2δ − 3κ ; see [13], p. 280, and hence the existence of points p as claimed is clear.
We apply Theorem 1.10 to the curve C, with k = 1 and d = m + e, where m =
m0 + δ + κ is the total number of lines in C. Using the known inequality for an
irreducible curve

δ + κ ≤ (e − 1)(e − 2)

2
,

we obtain r = mdr(f ) = e.
To compute of the global Tjurina number τ(C) as in Example 4.7(ii), we have

to add the following contributions:

(1) τ(C,p) = (m − 1)2 = (e2 − e − 1 − δ − 2κ)2;
(2) the singularities of C along each tangent line Li except p have the total Tju-

rina number e + 1, so we get in all the contribution

m0(e + 1) = (e(e − 1) − 2δ − 3κ)(e + 1)

from the tangent lines;
(3) the singularities of C along each secant line L′

j except p have the total Tjurina
number e + 2, so we get in all a contribution δ(e + 2).

(4) the singularities of C along each secant line L′′
k except p have the total Tjurina

number e + 3; see, for instance, [21, Lemma 2.7], so we get in all the contri-
bution κ(e+3). Indeed, all the singularities with Milnor number at most 7 are
known to be weighted homogeneous, and hence the Tjurina number coincides
with the Milnor number in these cases.

When we add up these contributions, we get

τ(C) = (d − 1)2 − r(d − r − 1).

Hence, C is free with exponents (r, d − r − 1) = (e, e2 − e − 1 − δ − 2κ) using
[9; 5]. The fact that the complement U is aspherical follows from the fact that
the projection from p on a generic line L in P

2 induces a locally trivial fibration
F → U → B , where both the fiber F and the base B are obtained from P

1 by
deleting finitely many points; see [4, Ch. 4].
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4.9. Proof of Theorem 1.13

Let e be the number of lines in A, and m the number of extra lines contained
in B(A,p). We set d = e + m. First, we determine τ(B(A,p)). Since all the
singularities of a line arrangement are weighted homogeneous, τ(B(A,p)) =
μ(B(A,p)), the total Milnor number of the line arrangement B(A,p). This num-
ber enters in the following formula for the Euler number of (the curve given by
the union of all the lines in) B(A,p).

χ(B(A,p)) = χ(Cd) + μ(B(A,p)) = 3d − d2 + μ(B(A,p)),

where Cd denotes a smooth curve of degree d , see [4, Cor. 5.4.4]. By the additivity
of the Euler numbers we get

χ(U) = χ(P2) − χ(B(A,p)) = 3 − 3d + d2 − μ(B(A,p)),

where U = P
2 \ B(A,p). Projection from p induces a locally trivial fibration,

with total space U , and fiber (resp. base) a line P
1 with e + 1 (resp. m) points

deleted. The multiplicative property of the Euler numbers yields

χ(U) = (1 − e)(2 − m).

The last two equalities can be used to get

τ(B(A,p)) = μ(B(A,p)) = (d − 1)2 − e(m − 1).

By Theorem 1.1 it remains only to show that mdr(f ) ≥ min{e,m − 1}. Note that
Theorem 1.2 applied to the arrangement B(A,p) and the multiple point p shows
that either mdr(f ) = d − m = e + m − m = e or mdr(f ) ≥ m − 1. The proof is
complete since the asphericity of U follows exactly as in the proof before, using
the obvious locally trivial fibration given by the central projection from p.

Note that in this proof the point p is not necessarily the point of highest multi-
plicity of the arrangement B(A,p).

5. The Case of Generic Pencils

Let C : f = 0 be a curve arrangement in P2 such that the defining equation has the
form

f = q1q2 · · ·qm

for some m ≥ 2, where degq1 = · · · = degqm = k, and the curves Ci : qi = 0 for
i = 1, . . . ,m are members of the pencil P : uC1 + vC2. We say that the pencil
P is generic if the following condition is satisfied: the curves C1 and C2 meet
transversely in exactly k2 points. If this holds, then the generic member of P is
smooth, and any member of the pencil P is smooth at any of the k2 base points.
Let us denote by Cs

j for j = 1, . . . , p all the singular members in this pencil P .
We have the following result.
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Proposition 5.1. If the pencil P is generic, then the sum of the total Milnor
numbers of the singular members Cs

j in the pencil satisfies
∑

j=1,p

μ(Cs
j ) = 3(k − 1)2.

Proof. First, recall that μ(Cs
j ) is the sum of the Milnor numbers of all the sin-

gularities of the curve Cs
j . Then we consider two smooth members D1 : g′

1 = 0
and D2 : g′

2 = 0 in the pencil and consider the rational map φ : X → C, where
X = P

2 \ D1 and

φ(x : y : z) = g′
2(x, y, z)

g′
1(x, y, z)

.

Then it follows that φ is a tame regular function (see [22]) whose singular points
are exactly the union of the singular points of the curves Cs

j for j = 1, . . . , p.
From the general properties of tame functions it follows that∑

j=1,p

μ(Cs
j ) =

∑
a∈X

μ(φ,a) = χ(X,X ∩ D2).

Since the Euler characteristic of complex constructible sets is additive, we get

χ(X,X ∩ D2) = χ(P2) − χ(D1) − χ(D2) + χ(D1 ∩ D2)

= 3 + 2k(k − 3) + k2 = 3(k − 1)2. �

Remark 5.2. Let k ≥ 2 and consider the discriminant hypersurface Dk ⊂ P(Sk)

consisting of singular plane curves of degree k. Then it is known that degDk =
3(k − 1)2; see, for instance, [25]. It follows that a generic pencil P as defined
before and thought of as a line in P(Sd) has the following transversality property:

(T ) For any intersection point p ∈P ∩Dk , we have the equality

multp Dk = (Dk,P)p, (5.1)

where multp Dk denotes the multiplicity of the hypersurface Dk at the point p,
and (Dk,P)p denotes the intersection multiplicity of the hypersurface Dk and the
line P at the point p.

To see this, we use the inequality multp Dk ≤ (Dk,P)p , which holds in gen-
eral, and the equality multp Dk = μ(C(p)), where C(p) is the degree k reduced
curve corresponding to the point p; see [3]. Then we have

3(k − 1)2 = degDk =
∑

p∈Dk∩P
(Dk,P)p ≥

∑
p∈Dk∩P

multp Dk

=
∑

p∈Dk∩P
μ(C(p)) = 3(k − 1)2,

where the last equality follows from Proposition 5.1.

We also have the following:
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Corollary 5.3. If P is a generic pencil of degree k plane curves with k ≥ 2,
then the number of points in the intersection P ∩Dk satisfies

|P ∩Dk| ≥ 3.

Moreover, the equality |P ∩Dk| = 3 holds if and only if each of the three singular
fibers of the pencil P is a union of k concurrent lines, that is, we are essentially
in the situation of Example 4.5(i).

Proof. This claim follows from Proposition 5.1 and the well-known inequality

μ(C′) ≤ (k − 1)2

for any reduced plane curve C′ of degree k, where equality holds if and only if C′ is
a union of k concurrent lines. Indeed, for the inequality, we can use the primitive
embedding of lattices given in formula (4.1), p. 161 in [4], or [14, Prop. 7.13].
When we have equality, the claim follows from the fact that a Milnor lattice of an
isolated hypersurface singularity cannot be written as an orthogonal direct sum of
sublattices; see [14, Prop. 7.5] for a precise statement. �

Note that in any pencil P of degree k curves, the number of completely reducible
fibers C′ (i.e. fibers C′ such that C′

red is a line arrangement) is at most 4, and the
only known example is the Hesse pencil generated by a smooth plane cubic and
its Hessian; see [27].

5.4. Proof of Theorem 1.14

First, we assume (1) and prove (2). For this, we compute the total Tjurina number
τ(C), taking into account the fact that the singularities of C are of two types: the
ones coming from the singularities of the singular members Cs

j and the k2 base
points, each of which is an ordinary m-fold point. It follows that

τ(C) =
∑

j=1,p

τ (Cs
j ) + k2(m − 1)2 = 3(k − 1)2 + k2(m − 1)2 (5.2)

since τ(Cs
j ) = μ(Cs

j ), all the singularities being weighted homogeneous.
Assume first that m ≥ 4. Then Corollary 1.9 implies that r = mdr(f ) = 2k−2,

and equation (5.2) yields τ(C) = (d − 1)2 − r(d − 1 − r), that is, C is free.
Consider now the case m = 3. If r = mdr(f ) = 2k − 2, then the same proof as

before works. Moreover, if we are in case (1) of Theorem 1.8, that is, mdr(f ) =
k + 1 = r0, then again we get

τ(C) = (d − 1)2 − r0(d − 1 − r0),

and hence C is free in this case as well. It remains to discuss case (2) in Theo-
rem 1.8. This can be done using Theorem 1.1, thus completing the proof of the
implication (1) ⇒ (2). The implication (2) ⇒ (1) is obvious using [17].

To prove the last claim, note that the pencil uC1 + vC2 induces a locally trivial
fibration F → U → B , where the fiber F is a smooth plane curve minus k2 points,
and the base is obtained from P

1 by deleting finitely many points.
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