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The Chow Ring of a Fulton–MacPherson
Compactification

Dan Petersen

Abstract. We give a short proof of a presentation of the Chow ring of
the Fulton–MacPherson compactification of n points on an algebraic
variety. The result can be found already in Fulton and MacPherson’s
original paper. However, there is an error in one of the lemmas used
in their proof. In the process we also determine the Chow rings of
weighted Fulton–MacPherson compactifications.

1. Introduction

For a topological space X, let F(X,n) denote the configuration space of n distinct
ordered points on X. In a seminal paper, Fulton and MacPherson [FM94] studied
the question of how the space F(X,n) can be compactified in the special case
where X is a smooth projective algebraic variety. This question may at first seem
absurd: what could be nicer than the obvious inclusion F(X,n) ↪→ Xn? However,
in algebraic geometry we often wish to compactify an open variety in such a way
that it becomes the complement of a divisor with normal crossings. To this end,
they proposed a different compactification denoted X[n], now called the Fulton–
MacPherson compactification.

Just like Xn, the space X[n] admits a modular interpretation, where the bound-
ary parameterizes certain “degenerate” configurations of points on X. However,
instead of allowing points to collide, the space X[n] is set up so that the variety
X itself is allowed to degenerate in a controlled manner. The effect is that when
points try to come together, X acquires a new irreducible component, a projec-
tive space of the appropriate dimension, on which the points end up and remain
distinct. See [FM94, pp. 194–195] for a more precise description. They show that
the boundary X[n] \ F(X,n) will indeed be a strict normal crossing divisor, that
the combinatorial structure of the boundary strata admits a pleasant combinatorial
description in terms of rooted trees, and that X[n] can be constructed from Xn by
an explicit sequence of blow-ups in smooth centers.

Their construction is related to (and was inspired by) the Deligne–Mumford
compactification Mg,n ⊂ Mg,n of the moduli space of smooth curves of genus
g with n distinct ordered points. In fact, the fiber of Mg,n → Mg over a mod-
uli point [X] is the configuration space F(X,n), and the fiber of Mg,n → Mg

over the same point is the Fulton–MacPherson compactification X[n]. Moreover,
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Fulton and MacPherson’s inductive construction of X[n] as an iterated blow-up
of X[n − 1] × X is very similar to Keel’s construction of M0,n as an iterated
blow-up of M0,n−1 × P1 [Kee92].

One of the results of [FM94] is the calculation of the Chow ring of X[n], con-
sidered as an algebra over the Chow ring of Xn. This is the main theorem of
Section 5 of their paper. Given that X[n] is constructed from Xn by an explicit se-
quence of blow-ups, one might expect this to be rather straightforward, but some
care is needed to manage the combinatorics involved and to avoid redundant re-
lations. Unfortunately, there is a gap in their proof. To carry out the calculation,
they repeatedly apply a number of lemmas about Chow rings of blow-ups; one of
these, Lemma 5.4, is incorrect. We comment more on this in Section 2.

The main result of this note is a different proof of the presentation of the Chow
ring of X[n]. It is plausible that the original proof could be modified to work using
a corrected version of Lemma 5.4, but we choose instead to take a slightly differ-
ent approach, which sidesteps this lemma completely. Moreover, in the process
we compute presentations of the Chow rings of weighted Fulton–MacPherson
compactifications XA[n] for any weights A. The space XA[n] was introduced
by Routis [Rou14] by analogy with Hassett’s moduli space Mg,A of weighted
pointed stable curves [Has03]: the space XA[n] bears the same relationship to the
space X[n] as Mg,A does to Mg,n. This presentation of the Chow ring of XA[n]
was previously given in the same paper of Routis.

Specifically, it is a consequence of general results of Li [Li09] that there are
many possible ways we can construct X[n] from Xn by blow-ups, correspond-
ing to different orderings of the blow-up loci. We choose to work with a differ-
ent inductive construction than Fulton and MacPherson, which has the advan-
tage that each intermediate step and each blow-up center is itself a weighted
Fulton–MacPherson compactification. This leads to a very short inductive argu-
ment, which we carry out in Section 3.

1.1. Conventions

We denote by [n] the set of integers {1, . . . , n}. Following Fulton and MacPher-
son, we say that S,T ⊆ [n] overlap if S∩T /∈ {∅, S, T }. If X is a smooth algebraic
variety, then A•(X) denotes its Chow ring with integer coefficients. However, the
arguments would work equally well for the cohomology ring in any cohomology
theory where Lemmas 2.1 and 3.1 remain valid (i.e. where standard properties
of blow-ups are satisfied). Like Fulton and MacPherson, we use throughout the
language of varieties over algebraically closed fields, even though the results re-
main valid also for the relative Fulton–MacPherson compactification for a smooth
family X → S of varieties over a given nonsingular variety S.

2. Lemma 5.4 in Fulton–MacPherson

We recall the standing assumptions of [FM94, Sec. 5]: Z is a closed subvariety
of Y ; both are smooth and irreducible; A•(Y ) → A•(Z) is surjective; Ỹ denotes
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BlZ Y ; JZ/Y denotes the kernel of A•(Y ) → A•(Z); finally, PZ/Y (t) denotes a
Chern polynomial of Z in Y , that is, a polynomial

PZ/Y (t) = td + a1t
d−1 + · · · + ad ∈ A•(Y )[t],

where d is the codimension of Z, ad = [Z], and ai for 0 < i < d denotes any class
in Ai(Y ) whose restriction to Ai(Z) is the ith Chern class of the normal bundle
of Z. The surjectivity hypothesis implies that Chern polynomials always exist.

They first state the following lemma.

Lemma 2.1 (Lemma 5.3 of [FM94]). A•(Ỹ ) = A•(Y )[E]/〈JZ/Y ·E,PZ/Y (−E)〉.
Lemma 2.1 is due to Keel and is the key idea that makes any of this procedure
work; he used it to find a presentation of A•(M0,n) by generators and relations
[Kee92]. We remark that Keel’s lemma is valid also if Z = ∅, noting that JZ/Y

will be all of A•(Y ) in this case.
The subsequent Lemma 5.4 is claimed to follow by applying Keel’s lemma

twice. Unfortunately, that lemma is incorrect. Let us state a corrected version.

Lemma 2.2 (Lemma 5.4 of [FM94], corrected). Assume that V is another smooth
irreducible subvariety with A•(Y ) → A•(V ) surjective and that V intersects Z

transversally. Then A•(Ỹ ) → A•(Ṽ ) is surjective with kernel 〈JV/Y , JZ∩V/Y ·E〉.
In [FM94, Lemma 5.4] the generators of the kernel are given instead as JV/Y if
Z ∩V is nonempty and 〈JV/Y ,E〉 if Z ∩V is empty. In particular, the conclusion
depends on whether or not Z ∩ V is empty, and as noted here, Keel’s lemma
does not. Clearly, the conclusion of [FM94, Lemma 5.4] will be valid (if Z ∩ V

is nonempty) precisely when JZ∩V/Y · E lies in the ideal generated by JV/Y in
A•(Ỹ ). In particular, [FM94, Lemma 5.4] fails already when Y = P3, V = P2, and
Z = P1, intersecting in a point: we have A•(Ỹ ) = Z[h,E]/〈h4, h2E,E2 −2hE +
h2〉 and JZ∩V/Y · E = 〈hE〉, which is not in the ideal generated by JV/Y = 〈h3〉.

3. Calculation of the Chow Ring

We now give a calculation of the Chow ring of X[n]. We do this in two steps.
First, we give a presentation of the Chow rings of weighted Fulton–MacPherson
compactifications XA[n]. This presentation was determined previously by Routis
[Rou14]; however, his proof uses the incorrect Lemma 5.4. Routis’s presentation
of these Chow rings does not specialize to that obtained by Fulton–MacPherson
in the case where all weights are 1; there are a number of excess relations in the
presentation. We show that when all weights are 1, these excess relations can in
fact be omitted, recovering the original presentation of Fulton and MacPherson.
(This will be easier than trying to get rid of excess relations in each step of the
induction.)
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3.1. The Weighted Fulton–MacPherson Compactification

Let A = (a1, . . . , an) ∈ [0,1]n be a collection of weights, and fix a smooth va-
riety X. Following Routis, we consider the weighted Fulton–MacPherson com-
pactification XA[n] of n points on X. Roughly speaking, it is a variant of the
usual Fulton–MacPherson compactification where a subset S ⊆ [n] of the mark-
ings are allowed to coincide if and only if

∑
i∈S ai ≤ 1. The space XA[n] can

also be described as a wonderful compactification [Li09]: for each S such that∑
i∈S ai > 1, consider the diagonal �S ⊂ Xn. The collection of all these diago-

nals form a building set whose wonderful compactification is XA[n]. In the ex-
treme cases A = (0,0, . . . ,0) resp. A = (1,1, . . . ,1) we recover the spaces Xn

and X[n], respectively. See [Rou14] for a more precise description of these spaces
and their properties.

We remark that we do not actually need the weights to carry out the con-
struction, only the combinatorial information about which subsets of [n] satisfy∑

i∈S ai > 1. We shall say that S ⊆ [n] is large if
∑

i∈S ai > 1 and that S is small
otherwise. The collection of small subsets can be any abstract simplicial complex
with vertex set [n], and XA[n] depends only on this abstract simplicial complex.

If A and A′ are weights with ai ≥ a′
i for all i, then there is a reduction mor-

phism XA[n] → XA′ [n]. In terms of the modular interpretation of these spaces,
it contracts all extraneous components that have total weight less than 1 after re-
ducing weights from A to A′. The hyperplanes HS = {a ∈ [0,1]n : ∑i∈S ai = 1}
separate the cube [0,1]n into different chambers, and if A and A′ are in the same
chamber, then XA[n] → XA′ [n] is an isomorphism. If A and A′ are in adjacent
chambers, separated by the hyperplane HT , then XA[n] is the blow-up of XA′ [n]
in the iterated strict transform �̃T ⊂ XA′ [n] of �T ⊂ Xn. This follows from
Li’s general theory: XA′ [n] is a wonderful compactification of an arrangement
of subvarieties in Xn, and XA[n] is the wonderful compactification obtained by
adding �T to the arrangement. Since �T is a maximal element of the arrange-
ment, XA[n] can be obtained by first blowing up all members of the arrangement
except �T —which produces XA′ [n]—and then blowing up the strict transform
�̃T of �T . See also [Rou14, Thm. 5], which specializes to this statement when
(using Routis’s notation) GA \ GB is a singleton.

We call �̃T a coincidence set; it consists of those configurations where the
markings indexed by T coincide with each other. We observe that �̃T ⊂ XA[n]
is itself a weighted Fulton–MacPherson compactification, where all the points
indexed by T have been removed, and we have instead added a point of weight∑

i∈T ai . To see this, use that �̃T is a wonderful compactification, given by the
iterated blow-up of �T

∼= Xn−|T |+1 in the arrangement of subvarieties given by
{�T ∩ �S : ∑

i∈S ai > 1}, and that here we may restrict our attention to S ⊂ [n]
that are either disjoint from T or contain T .

We can thus construct XA[n] inductively by starting with Xn—corresponding
to the weight vector (0,0, . . . ,0)—and increasing the weights along a path from
the origin to A in [0,1]n in such a way that we only intersect at most one of the
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hyperplanes HT at a given time. Equivalently, we start with the simplex on n ver-
tices as our abstract simplicial complex of “small” sets, and then we remove one
maximal face of the complex at a time. At each step of this inductive procedure
we are blowing up a weighted Fulton–MacPherson compactification in a locus
that is also isomorphic to a weighted Fulton–MacPherson compactification.

3.2. The Inductive Proof

For S ⊂ [n], we let �S be the corresponding diagonal in Xn, and JS =
ker(A•(Xn) → A•(�S)). Let PS(t) denote a Chern polynomial for �S in Xn.
Specifically, if S = {i1, . . . , ik}, then we may set PS(t) = ∏k−1

j=1 Pij ij+1(t), where

Pij (t) =
d∑

�=1

pr∗i (cd−�(T X))t� + [�ij ]

is a Chern polynomial for �ij ⊂ Xn.
We will need the following lemma.

Lemma 3.1. Let as before Y be a smooth variety, Z a closed irreducible smooth
subvariety, V another smooth closed subvariety not contained in Z, and Ṽ ⊂ Ỹ =
BlZ Y the strict transform. Then:

(1) If Z and V intersect transversally, then PV/Y (t) is a Chern polynomial for
Ṽ ⊂ Ỹ .

(2) If Z is contained in V , then PV/Y (t − E) is a Chern polynomial for Ṽ ⊂ Ỹ ,
where E is the class of the exceptional divisor.

Proof. [FM94, Lemma 5.2]. �

Together with Keel’s lemma, we are now in a position to give a presentation of
the Chow rings of weighted Fulton–MacPherson compactification.

Theorem 3.2 (Routis). Let A = (a1, . . . , an) ∈ [0,1]n, and let XA[n] denote the
corresponding weighted Fulton–MacPherson compactification. We have

A•(XA[n]) = A•(Xn)[DS]/relations,

where there is a variable DS for all large subsets S ⊆ [n], and the relations are

(1) DS · DT = 0 if S and T overlap,
(2) JS · DS = 0,
(3) for each large subset S, PS(−∑

S⊆V DV ) = 0,
(4) if S is large and S′ is arbitrary, and |S ∩ S′| = 1, then

DS · PS′
(

−
∑

S∪S′⊆V

DV

)
= 0.

Theorem 3.3. If T is a small subset of [n], then let �̃T denote the corresponding
coincidence set in XA[n].
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(i) The ideal J�̃T /XA[n] is generated by JT , and the elements DS for large S that
overlap T , and for each set T ′ such that |T ∩T ′| = 1 and T ∪T ′ is large, the
element

PT ′
(

−
∑

T ∪T ′⊆V

DV

)
.

(ii) A Chern polynomial of �̃T is given by

PT

(
t −

∑
T ⊂V

V large

DV

)
.

Proof. We prove Theorems 3.2 and 3.3 simultaneously by induction over n and
over the number of large subsets of [n].

To prove Theorem 3.2, we write XA[n] as a blow-up of XA′ [n] in a coinci-
dence set �̃T , where A′ has one fewer large set than A. By induction we know
the Chow ring of XA′ [n], the ideal J�̃T /XA′ [n], and the Chern polynomial of �̃T ,
so the Chow ring of XA[n] is completely determined by Lemma 2.1. We get a
new generator DT and check that the extra relations are exactly those predicted
by Theorem 3.2. This finishes the proof.

For Theorem 3.3(i), we have noted that the coincidence set �̃T is again a
weighted Fulton–MacPherson compactification, where all the points indexed by
T have been removed, and we have instead added a point of weight

∑
i∈T ai . By

induction we therefore have a presentation of A•(�̃T ) by generators and relations
using Theorem 3.2. Let IT be the ideal described in Theorem 3.3(i). To prove
Theorem 3.3(i), it suffices to verify that if we take the presentation of A•(XA[n])
from Theorem 3.2 and divide by the ideal IT , then we recover the presentation of
A•(�̃T ).

The map A•(XA[n]) → A•(�̃T ) maps A•(Xn) to A•(�T ) = A•(Xn)/JT , and
it sends a generator DS to 0 if S and T overlap and to a corresponding generator
in A•(�T ) otherwise. Thus, A•(XA[n])/IT is an algebra over A•(�T ) with the
same generators as A•(�̃T ), and it is clear that the relations of the form (1) and
(2) are satisfied in A•(XA[n])/IT .

To show the relations of the form (3), we need to prove firstly that if S is large
and disjoint from T , then PS(−∑

S⊆V DV ) = 0 in A•(XA[n])/IT —but this is
clear since it is one of the defining relations in A•(XA[n])—and secondly that if
S is large and contains T , then if we write S = T ∪ T ′ with |T ∩ T ′| = 1, then
PT ′(−∑

S⊆V DV ) = 0. The reason for this latter relation is that if S contains T ,
then PS is not the Chern polynomial of �S in �T , but PT ′ is. But the elements
PT ′(−∑

S⊆V DV ) are precisely the remaining generators of IT .
For the relations of the form (4), there is similarly nothing to prove if S′ is

disjoint from T . The interesting case is thus where S′ contains T ; that is, we need
to show that if S is large, and S′ is an arbitrary set with |S ∩S′| = 1 or S ∩S′ = T ,
and S′ contains T , then if write S′ = T ∪ T ′ for some T ′ with |T ∩ T ′| = 1,
then DS · PT ′(−∑

S∪S′⊆V DV ) = 0. (Again, we get PT ′ since this is the Chern
polynomial of �S′ in �T .) But since the ring only contains generators DV for
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V not overlapping T , this relation is the same as DS · PT ′(−∑
S∪T ′⊆V DV ) = 0.

This is one of the defining relations in A•(XA[n]) since we may take |S ∩T ′| = 1
without loss of generality.

Finally, Theorem 3.3(ii) is a direct consequence of Lemma 3.1. We need only
to observe that at each step we blow up a minimal coincidence set, and thus any
other coincidence set will either meet the blow-up center transversely or contain
it [Li09, Lemma 2.6]. �

Routis’s result does not specialize to the original presentation of A•(X[n]) given
by Fulton and MacPherson when A = (1, . . . ,1) because of the redundancies in
the presentation. We now show how the presentation can be simplified in this case
to obtain the original result.

Theorem 3.4 (Fulton–MacPherson). Suppose that A = (1,1, . . . ,1). Then the
presentation of A•(X[n]) can be simplified to

A•(X[n]) = A•(Xn)[DS]/relations,

where there is a variable DS for all S ⊆ [n] with |S| ≥ 2, and the relations are

(1) DS · DT = 0 if S and T overlap,
(2) JS · DS = 0,
(3) for any i �= j , Pij (−∑

i,j∈V DV ) = 0.

Proof. We argue first that the given relations imply PS(−∑
S⊆V DV ) = 0 by in-

duction over |S| with base case |S| = 2. Write S = T ∪ {j} and let i ∈ T . Then
we have

PS

(
−

∑
S⊆V

DV

)
= PT

(
−

∑
S⊆V

DV

)
Pij

(
−

∑
S⊆V

DV

)
.

Note that

PT

(
−

∑
S⊆V

DV

)
= PT

(
−

∑
T ⊆V

DV

)
−

(
terms divisible by some DW

where W contains T but not j

)

and that the first of these two terms vanishes by induction. The second term is
killed by multiplication with Pij (−∑

i,j⊆V DV )—which is zero—but then also
by multiplication with Pij (−∑

S⊆V DV ) by removing terms that necessarily van-
ish because W and V overlap.

The relations DS · PS′(−∑
S∪S′⊆V DV ) are easily derived: we have

PS′(−∑
S′⊆V DV ) = 0 by the previous paragraph. Now multiply with DS and

remove terms that vanish because S and V overlap. �

Acknowledgments. The error in Lemma 5.4 of [FM94] was pointed out to me
in a referee report for the paper [Pet15]. I am grateful to the anonymous referee
of that paper for remarkably careful reading. I have since been informed that the
error was first noticed by Andrei Mustaţǎ in 2002.
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