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Slopes of Fibered Surfaces with a Finite
Cyclic Automorphism

Makoto Enokizono

Abstract. We study slopes of finite cyclic covering fibrations of a
fibered surface. We give the best possible lower bound of the slope of
these fibrations. We also give the slope equality of finite cyclic cov-
ering fibrations of a ruled surface and observe the local concentration
of the global signature of these surfaces on a finite number of fiber
germs. We also give an upper bound of the slope of finite cyclic cov-
ering fibrations of a ruled surface.

Introduction

Let f : S → B be a surjective morphism from a complex smooth projective sur-
face S to a smooth projective curve B with connected fibers. The datum (S,f,B)

or simply f is called a fibered surface or a fibration. A fibered surface f is said
to be relatively minimal if there exist no (−1)-curves contained in fibers of f ,
where a (−1)-curve is a nonsingular rational curve with self-intersection num-
ber −1. The genus g of a fibered surface f is defined to be that of a general fiber
of f . We put Kf = KS − f ∗KB and call it the relative canonical bundle.

Assume that f : S → B is a relatively minimal fibration of genus g ≥ 2 and
consider the following three relative invariants:

χf := χ(OS) − (g − 1)(b − 1),

K2
f = K2

S − 8(g − 1)(b − 1),

ef := e(S) − 4(g − 1)(b − 1),

where b and e(S) respectively denote the genus of the base curve B and the topo-
logical Euler characteristic of S. Then the following are well known:

• (Noether) 12χf = K2
f + ef .

• (Arakelov) Kf is nef.
• (Ueno) χf ≥ 0, and χf = 0 if and only if f is locally trivial (i.e., a holomorphic

fiber bundle).
• (Segre) ef ≥ 0, and ef = 0 if and only if f is smooth.

When f is not locally trivial, we put

λf = K2
f

χf
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and call it the slope of f . Then we see 0 < λf ≤ 12 from the results mentioned.
The slope of a fibration has proven to be sensible to a lot of geometric properties,
both of the fibers of f and of the surface S itself (see [1]). A fibration of slope 12
is called a Kodaira fibration, first examples of which were constructed by Kodaira
[8]. In particular, the upper bound is sharp. As to the lower bound, Xiao [15]
showed the inequality

λf ≥ 4 − 4

g
,

which is nowadays called the slope inequality. Furthermore, fibrations with slope
4 − 4/g are turned out to be of hyperelliptic type ([9] and [15]). Hence, a shaper
lower bound is expected for nonhyperelliptic fibrations.

It is generally believed that there is the lower bound of the slope depending
on the gonality (or the Clifford index) of fibrations. Though there are several
attempts, a general bound is still in fancy. To attack such a problem, one of the
most hopeful strategies may be to extend a special kind of linear system (e.g.,
a gonality pencil) or an automorphism of a general fiber to the whole surface and
to study the fibration through the covering structure on S thus obtained. However,
it is usually impossible to have the desired extension, mainly because the object
in question on the fiber is not unique and the monodromy forces it to change from
one to another (see [3]). So, we are naturally led to consider the toy case that the
fibration f : S → B is obtained from another fibration W → B via a covering
map S → W . Besides the hyperelliptic fibrations, one of the remarkable results in
this direction is obtained by Cornalba and Stoppino [6]. They gave a lower bound
for the slope of double covering fibrations and constructed examples showing its
sharpness, extending a former result for bielliptic fibrations by Barja [2]. See also
[12] for recent developments of double covering fibrations.

In this paper, we consider fibered surfaces induced from a particular type of
cyclic coverings and try to generalize results for double coverings. More precisely,
we shall work in the following situation. A relatively minimal fibration f : S → B

of genus g ≥ 2 is called a primitive cyclic covering fibration of type (g,h,n) if
there exist a (not necessarily relatively minimal) fibration ϕ̃ : W̃ → B of genus
h ≥ 0 and a finite cyclic covering

θ̃ : S̃ = SpecW̃

(n−1⊕
j=0

OW̃ (−j d̃)

)
→ W̃

of order n branched along a smooth curve R̃ ∈ |ñd| for some n ≥ 2 and d̃ ∈
Pic(W̃ ) such that f is the relatively minimal model of f̃ := ϕ̃ ◦ θ̃ . Here, we put
the adjective “primitive” because a finite cyclic covering between nonsingular sur-
faces is not necessarily obtained in this way. Nevertheless, the assumption would
be acceptable because the situation in [6] is exactly the case n = 2 and h > 0, and
a hyperelliptic fibration is nothing more than a primitive cyclic covering fibration
of type (g,0,2). Furthermore, Kodaira fibrations in [8] are among primitive cyclic
covering fibrations with W̃ being a product of two curves.

As the first main result, we shall show the following:
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Theorem 0.1. Let f : S → B be a primitive cyclic covering fibration of type
(g,h,n). If h ≥ 1 and g ≥ (2n − 1)(2hn + n − 1)/(n + 1), then we have

K2
f ≥ 24(g − 1)(n − 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)
χf .

Moreover, we will construct an example showing that the inequality is sharp (Ex-
ample 2.5). Putting n = 2, we recover Cornalba–Stoppino’s inequality shown in
[6]. The essential idea of the proof is analogous to the double covering case. We
take a relatively minimal model ϕ : W → B of ϕ̃ : W̃ → B (unique when h > 0)
and consider the effects to the invariants of the “canonical resolution” of singular
points of the branch curve R ⊂ W (obtained as the direct image of R̃). One of
the striking facts in our setting is that the multiplicities of singular points must be
either 0 or 1 modulo n (Lemma 1.5).

When h = 0, we can move from one relatively minimal model ϕ : W → B to
another via elementary transformations among P1-bundles, in order to standardize
the branch locus. This enables us to prove a more accurate result. Namely, we shall
show the slope equality for them.

Theorem 0.2. There exists a function Ind : Ag,0,n → Q≥0 from the set Ag,0,n of
all fiber germs of primitive cyclic covering fibrations of type (g,0, n) such that
Ind(Fp) = 0 for a general p ∈ B and

K2
f = 24(g − 1)(n − 1)

2(2n − 1)(g − 1) + n(n + 1)
χf +

∑
p∈B

Ind(Fp)

for any primitive cyclic covering fibration f : S → B of type (g,0, n).

This is a generalization of the hyperelliptic case (see [16]). The number Ind(Fp)

is called the Horikawa index of the fiber Fp and is defined in terms of singularity
indices (Definition 4.1) over p ∈ B of the branch locus (see Theorem 4.3 for
details). This enables us to observe that the signature of S is concentrated on
singular fibers by introducing the local signature of a fiber (Corollary 4.5). For a
general discussion on the slope equalities, Horikawa index and the local signature,
see [1].

As the third result, we will give an upper bound of the slope.

Theorem 0.3. Let f : S → B be a primitive cyclic covering fibration of type
(g,0, n) and assume that n ≥ 4. Put

r := 2g

n − 1
+ 2, δ :=

{
0 if r ∈ 2nZ,

1 if r /∈ 2nZ.

Then, the following hold:

(1) If n ≤ r < n(n − 1), then

K2
f ≤

(
12 − 48n2(r − 1)

(n − 1)(n + 1)(r2 − δn2)

)
χf .
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(2) If r ≥ n(n − 1), then

K2
f ≤

(
12 − 48n(n − 1)(r − 1)

n(n + 1)r2 − 8(2n − 1)r + 24n − δn3(n + 1)

)
χf .

This in particular implies that we cannot have a Kodaira fibration when h = 0
and n ≥ 4, even if we consider not only Kodaira’s original constructions but also
such an extended category of primitive cyclic covering fibrations. Unfortunately,
it seems that our method does not work well when n = 3, and we fail to obtain
an upper bound. We leave it as a future study. An upper bound for the slope of
hyperelliptic fibrations was obtained by Matsusaka [13], which was improved by
Xiao [17].

1. Primitive Cyclic Covering Fibrations

Throughout the paper, n denotes an integer greater than 1. We begin with the
following elementary lemma. Note that it does not hold for n = 3, as the case
a = b = 1 shows.

Lemma 1.1. Let n be a positive integer, and a, b integers such that
gcd(a, b,n) = 1. If n ≥ 4, then either a + 2b /∈ nZ or 2a + b /∈ nZ.

Proof. Suppose on the contrary that a + 2b ∈ nZ and 2a + b ∈ nZ. Then we have
3(a + b) ∈ nZ and a − b ∈ nZ by adding and substituting them. If n /∈ 3Z, then it
follows from 3(a + b) ∈ nZ that a + b ∈ nZ, and we conclude a, b ∈ nZ, which
contradicts gcd(a, b,n) = 1. So we can assume that n ∈ 3Z. Put n = 3k with an
integer k ≥ 2. Since a −b ∈ nZ, we may write a = b+3kl with an integer l. Then
2a + b = 3(b + 2kl). Since 2a + b ∈ nZ = 3kZ, we have b ∈ kZ. Then, it follows
that a ∈ kZ, contradicting gcd(a, b,n) = 1. �
Let X be a smooth projective surface, and σ ∈ Aut(X) a holomorphic automor-
phism of X of order n. We denote by Fix(σ ) the set of all fixed points of σ .

Take a point x ∈ Fix(σ ) and an open neighborhood of U of x such that
σ(U) = U . Let (z1, z2) be a system of local coordinates on U with x = (0,0)

and write σ(z) = (σ1(z1, z2), σ2(z1, z2)). If σi(z1, z2) = ai,1z1 + ai,2z2 + · · · is
the expansion around x, then the Jacobian matrix at x is given by

(Jσ )x =
(

a1,1 a1,2
a2,1 a2,2

)
.

Since σn = Id, we may assume that(
a1,1 a1,2
a2,1 a2,2

)
=

(
ζ k1 0
0 ζ k2

)
,

where ζ = exp(2π
√−1/n), and k1, k2 are integers satisfying 0 ≤ k1 ≤ k2 ≤

n − 1. Since σ 
= Id, we have k2 > 0. It is clear that x is a smooth point on a
one-dimensional fixed locus when k1 = 0 and that it is an isolated fixed point
when k1 > 0. Since σ is of order n, we have gcd(k1, k2, n) = 1. If the Jacobian
matrix at x has the canonical form described before, then we call x a fixed point of
type (k1, k2). Let ρ1 : X1 → X be the blow-up at a fixed point x of type (k1, k2).
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Put E := ρ−1
1 (x) and let σ1 be the automorphism of X1 of order n induced by σ .

Then we easily see that E ⊂ Fix(σ1) when k1 = k2 and that there are exactly
two isolated fixed points on E of respective types (k1, k2 − k1) and (k1 − k2, k2)

when k1 
= k2. With this remark, the following can be shown by using Lemma 1.1
repeatedly.

Lemma 1.2. Let X be a smooth projective surface with an automorphism σ of
order n. If there exists a birational morphism ρ : X̃ → X such that the automor-
phism σ̃ on X̃ induced by σ has no isolated fixed points, then either n ≤ 3, or any
isolated fixed point of σ is of type (k, k) for some k (0 < k < n,gcd(k, n) = 1).

We apply the previous observation to the situation we are interested in. Before
going further, we need some preparations.

Let Y be a smooth projective surface, and R an effective divisor on Y divis-
ible by n in the Picard group Pic(Y ), that is, R is linearly equivalent to nd for
some divisor d ∈ Pic(Y ). Then we can construct a finite n-sheeted covering of Y

with branch locus R as follows. Put A = ⊕n−1
j=0 OY (−jd) and introduce a graded

OY -algebra structure on A by multiplying the section of OY (nd) defining R. Ac-
cording to [4], we call Z := SpecY (A) equipped with the natural surjective mor-
phism ϕ : Z → Y a classical n-cyclic covering of Y branched over R. Locally,
Z is defined by zn = r(x, y), where r(x, y) denotes the local analytic equation of
R. From this we see that Z is normal if and only if R is reduced and is smooth if
and only if so is R. When Z is smooth, we have

ϕ∗R = nR0, KZ = ϕ∗KY + (n − 1)R0, Aut(Z/Y ) � Z/nZ, (1.1)

where R0 is the effective divisor (usually called the ramification divisor) on Z

defined locally by z = 0, and Aut(Z/Y ) is the covering transformation group
for ϕ.

Definition 1.3. A relatively minimal fibration f : S → B of genus g ≥ 2 is
called a primitive cyclic covering fibration of type (g,h,n) if there exist a (not
necessarily relatively minimal) fibration ϕ̃ : W̃ → B of genus h ≥ 0 and a classi-
cal n-cyclic covering

θ̃ : S̃ = SpecW̃

(n−1⊕
j=0

OW̃ (−j d̃)

)
→ W̃

branched over a smooth curve R̃ ∈ |ñd| for some n ≥ 2 and d̃ ∈ Pic(W̃ ) such that
f is the relatively minimal model of f̃ := ϕ̃ ◦ θ̃ .

Remark 1.4. Note that a finite cyclic covering between complex manifolds is not
necessarily obtained in this way. For example, the most typical cyclic n-sheeted
covering between complex lines given by z �→ zn branches over only two points
(0 and ∞). This is why we put the adjective “primitive” to our cyclic covering
fibrations.

Let f : S → B be a primitive cyclic covering fibration of type (g,h,n). We freely
use the notation in Definition 1.3. Let F̃ and �̃ be general fibers of f̃ and ϕ̃,
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respectively. Then the restriction map θ̃ |F̃ : F̃ → �̃ is a classical n-cyclic covering
branched over R̃ ∩ �̃. Since the genera of F̃ and �̃ are g and h, respectively, the
Hurwitz formula gives us

r := R̃�̃ = 2(g − 1 − n(h − 1))

n − 1
. (1.2)

Note that r is a multiple of n. Let σ̃ be a generator of Aut(S̃/W̃ ) � Z/nZ, and
ρ : S̃ → S the natural birational morphism. By assumption, Fix(̃σ ) is a disjoint
union of smooth curves and θ̃ (Fix(̃σ )) = R̃. Let ϕ : W → B be a relatively min-
imal model of ϕ̃, and ψ̃ : W̃ → W the natural birational morphism. Since ψ̃ is a
succession of blow-ups, we can write ψ̃ = ψ1 ◦ · · · ◦ ψN , where ψi : Wi → Wi−1

denotes the blow-up at xi ∈ Wi−1 (i = 1, . . . ,N ) with W0 = W and WN = W̃ .
We define reduced curves Ri on Wi inductively as Ri−1 = (ψi)∗Ri starting from
RN = R̃ down to R0 =: R. We also put Ei = ψ−1

i (xi) and mi = multxi
(Ri−1) for

i = 1,2, . . . ,N .

Lemma 1.5. With this notation, the following hold for any i = 1, . . . ,N .

(1) Either mi ∈ nZ or mi ∈ nZ + 1. Moreover, mi ∈ nZ if and only if Ei is not
contained in Ri .

(2) Ri = ψ∗
i Ri−1 − n[mi

n
]Ei , where [t] is the greatest integer not exceeding t .

(3) There exists di ∈ Pic(Wi) such that di = ψ∗
i di−1 − [mi

n
]Ei and Ri ∼ ndi ,

dN = d̃.

Proof. Since R̃ = RN is reduced, every Ri is reduced. Set dN = d̃. Since
Pic(WN) = ψ∗

N Pic(WN−1)
⊕

Z[EN ], there exist dN−1 ∈ Pic(WN−1) and dN ∈
Z such that dN = ψ∗

NdN−1 − dNEN . Then, inductively, we can take di−1 ∈
Pic(Wi−1) and di ∈ Z such that di = ψ∗

i di−1 − diEi for i = N,N − 1, . . . ,1.
Since R̃ = RN ∼ ñd = ψ∗

N(ndN−1) − ndNEN and RN−1 = (ψN)∗RN , we get
RN−1 ∼ ndN−1, where the symbol ∼ means linear equivalence of divisors. Then,
by induction, we have Ri ∼ ndi for any i.

Now, if Ei is not contained in Ri , then Ri is the proper transform of Ri−1

by ψi , and hence we have mi = ndi . Similarly, if Ei is contained in Ri , then,
since Ri is reduced, Ri −Ei is the proper transform of Ri−1 by ψi , and hence we
have mi = din + 1. In either case, di = [mi/n]. �

A smooth rational curve with self-intersection number −k is called a (−k)-curve.
An irreducible curve on S̃ is called f̃ -vertical if it is contained in a fiber of f̃ ;
otherwise, it is called f̃ -horizontal.

Lemma 1.6. Let E be an f̃ -vertical (−1)-curve on S̃ and put L = θ̃ (E).

(1) If E ⊂ Fix(̃σ ), then L is a ϕ̃-vertical (−n)-curve contained in R̃. Conversely,
for any ϕ̃-vertical (−n)-curve L′ ⊂ R̃, there exists an f̃ -vertical (−1)-curve
E′ such that E′ ⊂ Fix(̃σ ) and θ̃∗L′ = nE′.

(2) If E 
⊂ Fix(̃σ ), then L is a ϕ̃-vertical (−1)-curve, and there exist f̃ -
vertical (−1)-curves E2, . . . ,En such that θ̃∗L = E1 + E2 + · · · + En and
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E1,E2, . . . ,En are disjoint, where E1 = E. Moreover, if ρ : S̃ → S and
ψ : W̃ → W denote the contractions of

⋃n
i=1 Ei and L, respectively, then

there exists a natural classical n-cyclic covering θ : S → W branched over
R = ψ∗R̃ such that θ ◦ ρ = ψ ◦ θ̃ .

Proof. (1) Suppose that E ⊂ Fix(̃σ ). Then L is ϕ̃-vertical and L ⊂ R̃. From the
last, it follows θ̃∗L = nE. Since nL2 = (θ̃∗L)2 = n2E2 = −n2, we get L2 = −n.
Since θ̃ |E : E → L is an isomorphism, we have L � P1, implying that L is a
(−n)-curve. The rest of (1) is clear.

(2) Suppose that E 
⊂ Fix(̃σ ). Then either θ̃∗L is irreducible, or it consists
of n irreducible curves. The first alternative is impossible because if θ̃∗L = E,
then we would have L2 = −1/n, which is absurd. Therefore, θ̃∗L consists of
n irreducible curves E1, . . . ,En. We may assume that E1 = E. Note that some
power of σ̃ maps E isomorphically onto Ei for any i. Therefore, every Ei is
an f̃ -vertical (−1)-curve since so is E. All the Ei must be contracted by ρ

since g > 0. It follows that Ei are mutually disjoint. In particular, we see that
L ∩ R̃ = ∅. Let ρ : S̃ → S and ψ : W̃ → W be the contractions of

⋃n
i=1 Ei

and L, respectively. Then R = ψ∗R̃ is isomorphic to R̃. In particular, it is smooth,
and ψ

∗
R = R̃. There is a uniquely determined element d ∈ Pic(W) satisfying

d̃ = ψ
∗
d. Then we have R ∼ nd. Hence, we can construct a classical n-cyclic

covering θ : Spec(
⊕n−1

j=0 OW(−jd)) → W branched over R. Clearly, it is iso-

morphic to the natural map S → W . �

By this lemma we can assume from the first time that all the f̃ -vertical (−1)-
curves are contained in Fix(̃σ ). In what follows, we tacitly assume this. We de-
compose ρ : S̃ → S into a succession of blow-ups as ρ = ρ1 ◦ · · · ◦ ρk , where
ρi : Si → Si−1 is a blow-up (i = 1, . . . , k), Sk = S̃, and S0 = S.

Lemma 1.7. σ̃ induces on Si an automorphism σi of order n for each i, and the
center of ρi is a fixed point of σi−1.

Proof. Let Ei be the exceptional (−1)-curve of ρi . On Sk = S̃, we put σk = σ̃ .
Then we have Ek ⊂ Fix(σk) by assumption. Then σk induces an automor-
phism σk−1 of Sk−1 of order n. If σk−1(Ek−1) 
= Ek−1, then, as in the proof of
Lemma 1.6(2), we can show that Ek−1 ∩ Fix(σk−1) = ∅. This implies that Ek−1
can be regarded as a (−1)-curve on S̃ disjoint from Fix(̃σ ), contradicting our as-
sumption. Hence, σk−1(Ek−1) = Ek−1, and σk−1 induces an automorphism σk−2

of Sk−2 of order n. Now, an easy inductive argument shows the assertion. �

We put σ := σ0. Since σ̃ has no isolated fixed points, it follows from Lemma 1.2
applied to ρ : S̃ → S that either n ≤ 3 or every isolated fixed point of σ is of type
(l, l) for some l. When n = 2, it is clear that every isolated fixed point is of type
(1,1). For n = 3, we can show the following:

Lemma 1.8. If n = 3, then any isolated fixed point x of σ is of type either (1,1)

or (2,2).
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Proof. Assume that x is an isolated fixed point of type (1,2). Let ρ1 : S1 → S

be the blow-up at x. Then the automorphism σ1 induced by σ has two isolated
fixed points of respective types (1,1) and (2,2) on ρ−1

1 (x). We need to blow S1

up at two such fixed points to get S̃. We denote by E the proper transform of
ρ−1

1 (x) and by Ei the new exceptional (−1)-curves coming from the fixed point
of type (i, i) (i = 1,2). Then E is a (−3)-curve not contained in Fix(̃σ ), whereas
E1,E2 ⊂ Fix(̃σ ). Let L, L1, L2 be the images of E, E1, E2 under θ̃ , respectively.
We easily see that L is a (−1)-curve not contained in R̃ and that L1, L2 are (−3)-
curves contained in R̃. Furthermore, L + L1 + L2 is contained in a fiber of ϕ̃.

On the other hand, θ̃ |E : E → L is a classical 3-cyclic covering branched over
R̃ ∩ L. Recall that R̃ ∩ L contains at least two points L ∩ L1 and L ∩ L2. Since
E and L are smooth rational curves, we apply the Hurwitz formula to see that it
branches over exactly two points. Therefore, L meets R̃ exactly at L∩ (L1 ∪L2).
Since L is a ϕ̃-vertical (−1)-curve, we can assume that ψ̃ contracts L. By what
we have just seen, after the contraction, the image of L will be a double point on
the branch locus. This contradicts Lemma 1.5(1). �
Therefore, we get the following lemma.

Lemma 1.9. Any irreducible curve contracted by ρ is an f̃ -vertical (−1)-curve
contained in Fix(̃σ ).

Proof. We write ρ = ρ1 ◦ · · · ◦ ρk as before. It suffices to show that the center
of ρi is an isolated fixed point of σi−1 for any i. Suppose that the center of ρi

is a smooth point of a one-dimensional fixed locus of σi−1. Let its type be (0, l),
gcd(l, n) = 1. Then, on the exceptional (−1)-curve of ρi , we can find an isolated
fixed point of type (n − l, l). This is impossible by Lemmas 1.2 and 1.8. �
From this lemma we can reconstruct (S̃, σ̃ ) from (S,σ ) by blowing up isolated
fixed points of σ .

2. Lower Bound of the Slope

The purpose of this section is to show the following theorem.

Theorem 2.1. Let f : S → B be a primitive cyclic covering fibration of type
(g,h,n). If h ≥ 1 and g ≥ (2n − 1)(2hn + n − 1)/(n + 1), then K2

f ≥ λg,h,nχf ,
where

λg,h,n = 24(n − 1)(g − 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)
. (2.1)

Remark 2.2. (1) By (1.2) the condition g ≥ (2n − 1)(2hn + n − 1)/(n + 1) is
equivalent to r ≥ 3g/(2n − 1) + 3, and

λg,h,n = 8

1 + r(n + 1)/6(g − 1)
.

(2) The case where h = 0 needs a separate treatment. As we shall see later in
Theorem 4.3, the inequality K2

f ≥ λg,h,nχf also holds for h = 0.
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We keep the notation of the previous section, and, for the time being, we do not
exclude the case where h = 0 from the consideration. We obtain a classical n-
cyclic covering θi : Si → Wi branched over Ri by setting

Si = Spec

(n−1⊕
j=0

OWi
(−jdi )

)
.

Since Ri is reduced, Si is a normal surface.
There exists a natural birational morphism Si → Si−1. Set S′ = S0, θ = θ0,

d = d0, and f ′ = ϕ ◦ θ .

S̃ = SN

θ̃

ρ

SN−1

θN−1

· · · S0 = S′

θ

S

fW̃ = WN

ψN

ϕ̃

WN−1
ψN−1 · · · ψ1

W0 = W

ϕ

B

From Lemma 1.5 we have

Kϕ̃ = ψ̃∗Kϕ +
N∑

i=1

Ei , (2.2)

d̃ = ψ̃∗d−
N∑

i=1

[
mi

n

]
Ei , (2.3)

where Ei denotes the total transform of Ei . Since

KS̃ = θ̃∗(KW̃ + (n − 1)̃d)

and

χ(OS̃ ) = nχ(OW̃ ) + 1

2

n−1∑
j=1

j d̃(j d̃+ KW̃ ),

we get

K2
f̃

= n(K2
ϕ̃ + 2(n − 1)Kϕ̃ d̃+ (n − 1)2̃d2), (2.4)

χf̃ = nχϕ̃ + 1

2

n−1∑
j=1

j d̃(j d̃+ Kϕ̃). (2.5)

Similarly, we have

ω2
f ′ = n(K2

ϕ + 2(n − 1)Kϕd+ (n − 1)2d2), (2.6)

χf ′ = nχϕ + 1

2

n−1∑
j=1

jd(jd+ Kϕ), (2.7)
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where ωf ′ denotes the relative dualizing sheaf of f ′. Combining Eqs. (2.2)–(2.7),
we obtain

ω2
f ′ − K2

f̃
= n

N∑
i=1

(
(n − 1)

[
mi

n

]
− 1

)2

, (2.8)

χf ′ − χf̃ = 1

12
n(n − 1)

N∑
i=1

[
mi

n

](
(2n − 1)

[
mi

n

]
− 3

)
. (2.9)

Lemma 2.3. Assume that

g ≥ 2n − 1

n + 1
(2hn + n − 1)

when h > 0. Then ω2
f ′ ≥ λg,h,nχf ′ , where λg,h,n is the rational number in (2.1).

Proof. Suppose that h = 0. Then R is numerically equivalent to (−r/2)Kϕ +
M� for some M ∈ 1

2Z since ϕ : W → B is a P1-bundle and KW� = −2,
R� = R̃�̃ = r . Moreover, K2

ϕ = 0 and χϕ = 0. Hence, we have

ω2
f ′ = 4(g − 1)(n − 1)

n
M,

χf ′ = 2(2n − 1)(g − 1) + n(n + 1)

6n
M

from (1.2), (2.6) and (2.7). Thus, we get ω2
f ′ = λg,0,nχf ′ .

If h = 1, then K2
ϕ = 0 and χϕ = χ(OW) since ϕ is a relatively minimal elliptic

surface. Then we have

ω2
f ′ − λg,1,nχf ′ = n

(
K2

ϕ − 12(n − 1)

2n − 1
χϕ

)
+ n(n − 1)(n + 1)

2n − 1
Kϕd

= n(n − 1)

2n − 1
((n + 1)Kϕd− 12χϕ). (2.10)

By the canonical bundle formula, Kϕ is numerically equivalent to χ(OW)� +∑l
i=1(1 − 1/ki)�, where {ki | i = 1, . . . , l} denotes the set of multiplicities of all

multiple fibers of ϕ, ki ≥ 2. Hence, we have

Kϕd ≥ χ(OW)�d = 2(g − 1)

n(n − 1)
χ(OW).

Thus,

n(n − 1)

2n − 1
((n + 1)Kϕd− 12χϕ)

≥ n(n − 1)

2n − 1

(
2(n + 1)(g − 1)

n(n − 1)
− 12

)
χ(OW )

= 2

2n − 1
((n + 1)g − (2n − 1)(3n − 1))χ(OW ). (2.11)
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From (2.10), (2.11), and the hypothesis g ≥ (2n − 1)(3n − 1)/(n + 1) we have
ω2

f ′ ≥ λg,1,nχf ′ .

Let h ≥ 2. We compute ω2
f ′ − λg,h,nχf ′ by (2.6) and (2.7) as follows:

ω2
f ′ − λg,h,nχf ′

= n(K2
ϕ + 2(n − 1)Kϕd+ (n − 1)2d2)

− λg,h,n

(
nχϕ + 1

4
n(n − 1)Kϕd+ 1

12
n(n − 1)(2n − 1)d2

)
= n(K2

ϕ − λg,h,nχϕ) + n(n − 1)

4
(8 − λg,h,n)Kϕd

+ n(n − 1)

12
(12(n − 1) − (2n − 1)λg,h,n)d

2. (2.12)

Since the slope inequality of ϕ gives us

K2
ϕ ≥ 4(h − 1)

h
χϕ,

we have

K2
ϕ − λg,h,nχϕ = hλg,h,n

4(h − 1)

(
K2

ϕ − 4(h − 1)

h
χϕ

)
+

(
1 − hλg,h,n

4(h − 1)

)
K2

ϕ

≥
(

1 − hλg,h,n

4(h − 1)

)
K2

ϕ. (2.13)

We consider the intersection matrix of {Kϕ,d,�},⎛⎝ K2
ϕ Kϕd Kϕ�

Kϕd d2 d�

Kϕ� d� 0

⎞⎠ . (2.14)

By Arakerov’s theorem we have K2
ϕ ≥ 0, and then the matrix is not negative defi-

nite. Hence, the determinant of (2.14) is nonnegative, that is, we have

2(Kϕd)(d�)(Kϕ�) − d2(Kϕ�)2 − (d�)2K2
ϕ ≥ 0 (2.15)

by the Hodge index theorem. Since

d� = r

n
= 2(g − 1 − n(h − 1))

n(n − 1)

and

Kϕ� = 2(h − 1),

inequality (2.15) is equivalent to

2(g − 1 − n(h − 1))Kϕd− n(n − 1)(h − 1)d2

≥ 1

n(n − 1)(h − 1)
(g − 1 − n(h − 1))2K2

ϕ. (2.16)
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On the other hand, by the definition of λg,h,n we have

n(n − 1)

4
(8 − λg,h,n)

= n(n − 1)(n + 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)
2(g − 1 − n(h − 1)) (2.17)

and
n(n − 1)

12
(12(n − 1) − (2n − 1)λg,h,n)

= n(n − 1)(n + 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)
(−n(n − 1)(h − 1)). (2.18)

Hence, combining (2.12), (2.13), (2.16), (2.17), and (2.18), we get

ω2
f ′ − λg,h,nχf ′

≥ n

(
1 − hλg,h,n

4(h − 1)

)
K2

ϕ

+ (n + 1)(g − 1 − n(h − 1))2

(h − 1)(2(2n − 1)(g − 1) − n(n + 1)(h − 1))
K2

ϕ. (2.19)

Since

1 − hλg,h,n

4(h − 1)
= 2(g − 1)(−hn + 2h − 2n + 1) − n(n + 1)(h − 1)2

(h − 1)(2(2n − 1)(g − 1) − n(n + 1)(h − 1))
,

the right-hand side of inequality (2.19) is

(g − 1)((n + 1)g − (2hn + n − 1)(2n − 1))

(h − 1)(2(2n − 1)(g − 1) − n(n + 1)(h − 1))
K2

ϕ. (2.20)

By the assumption g ≥ (2n−1)(2hn+n−1)/(n+1), (2.20) is nonnegative. �

Proof of Theorem 2.1. Let ε be the number of blow-ups of ρ : S̃ → S. Then we
have

K2
f̃

= K2
f − ε. (2.21)

Using (2.8), (2.9), (2.17), and (2.18), we can calculate K2
f − λg,h,nχf as follows:

K2
f − λg,h,nχf

= K2
f̃

− λg,h,nχf̃ + ε

= ω2
f ′ − n

N∑
i=1

(
(n − 1)

[
mi

n

]
− 1

)2

− λg,h,nχf ′

+ λg,h,n

1

12
n(n − 1)

N∑
i=1

[
mi

n

](
(2n − 1)

[
mi

n

]
− 3

)
+ ε

= ω2
f ′ − λg,h,nχf ′ + 1

12
n(n − 1)((2n − 1)λg,h,n − 12(n − 1))

N∑
i=1

[
mi

n

]2
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+ 1

4
n(n − 1)(8 − λg,h,n)

N∑
i=1

[
mi

n

]
− nN + ε

= ω2
f ′ − λg,h,nχf ′ + n2(n − 1)2(n + 1)(h − 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)

N∑
i=1

[
mi

n

]2

+ 2n(n − 1)(n + 1)(g − 1 − n(h − 1))

2(2n − 1)(g − 1) − n(n + 1)(h − 1)

N∑
i=1

[
mi

n

]
− nN + ε. (2.22)

When h ≥ 1, the right-hand side of (2.22) increases with respect to the multiplic-
ity mi . So we may assume that [mi/n] = 1 for all i = 1, . . . ,N . Then,

n2(n − 1)2(n + 1)(h − 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)

N∑
i=1

[
mi

n

]2

+ 2n(n − 1)(n + 1)(g − 1 − n(h − 1))

2(2n − 1)(g − 1) − n(n + 1)(h − 1)

N∑
i=1

[
mi

n

]
− nN

= n2(n − 2)N

2(2n − 1)(g − 1) − n(n + 1)(h − 1)
((n + 1)(n − 2)(h − 1) + 2(g − 1))

≥ 0.

Combining this with Lemma 2.3, we conclude the proof. �

Remark 2.4. From the proofs of Theorem 2.1 and Lemma 2.3, K2
f = λg,h,nχf if

and only if the following three conditions are satisfied:

(1) Either R is nonsingular, that is, R̃ = R, or n = 2 and R has only negligible
singularities.

(2) The equality sign of the slope inequality of ϕ holds: K2
ϕ = 4(h−1)

h
χϕ .

(3) The intersection matrix of {Kϕ,d,�} is singular, that is, Kϕ , d, � are linearly
dependent in NS(W)R.

This also holds for h = 0 as we shall see in Theorem 4.3. Condition (2) means
that ϕ is locally trivial or hyperelliptic with the Horikawa index 0 (see [9; 15]).
We will give an example of primitive cyclic covering fibrations of type (g,h,n)

with the slope λg,h,n and ϕ being locally trivial in Example 2.5.

Example 2.5. Let B and � be smooth curves of genus b and h, respectively.
Let d1 and d2 be divisors on B and � of degrees N and M , respectively. For N

and M sufficiently large, the divisor d := p∗
1d1 + p∗

2d2 on B × � gives us a base
point free linear system, where p1 and p2 are the natural projections from B × �

to B and to �, respectively. Thus, we can take a smooth divisor R ∈ |nd| for any
n > 0 by Bertini’s theorem. Hence, we may construct a classical n-cyclic covering
θ : S → B × � branched over R. Let f : S → B be the composite of p1 and θ .
We will compute K2

f and χf . Let F be a general fiber of f , and g the genus of F .
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Applying the Hurwitz formula to θ |F : F → � = {t} × �, we have

2g − 2 = n(2h − 2) + (n − 1)n(p∗
1d1 + p∗

2d2)p
∗
1 t

= n(2h − 2) + (n − 1)nM.

Hence,

M = 2(g − 1 − n(h − 1))

n(n − 1)
.

Since Kp1 = p∗
2K� and χp1 = 0, we obtain

K2
f = (θ∗(Kp1 + (n − 1)d))2

= n(p∗
1(n − 1)d1 + p∗

2((n − 1)d2 + K�))2

= 2n(n − 1)N((n − 1)M + 2(h − 1))

and

χf = nχp1 + 1

2

n−1∑
j=1

jd(jd+ Kp1)

= 1

4
n(n − 1)dKp1 + 1

12
n(n − 1)(2n − 1)d2

= 1

4
n(n − 1)N(2h − 2) + 1

12
n(n − 1)(2n − 1)2NM

= 1

6
n(n − 1)N(3(h − 1) + (2n − 1)M).

Thus, we get

K2
f

χf

= 12(2(h − 1) + (n − 1)M)

3(h − 1) + (2n − 1)M

= 24(n − 1)(g − 1)

2(2n − 1)(g − 1) − n(n + 1)(h − 1)

= λg,h,n.

This example implies that the bound of Theorem 2.1 on the slope is sharp when h

and n are fixed arbitrarily.

3. Primitive Cyclic Covering Fibrations of a Ruled Surface

From now on, we concentrate on the case h = 0 and consider primitive cyclic
covering fibrations of type (g,0, n).

In this section, we study singular points on the branch locus R to know how f̃ -
vertical (−1)-curves in the ramification divisor appear. As we have already seen,
this amounts to observing how ϕ̃-vertical (−n)-curves in R̃ appear.

Lemma 3.1. There exists a relatively minimal model ϕ : W → B of ϕ̃ such that if
n = 2 and g is even, then

multx(R) ≤ r

2
= g + 1
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for all x ∈ R, and otherwise,

multx(Rh) ≤ r

2
= g

n − 1
+ 1

for all x ∈ Rh, where Rh denotes the horizontal part of R, that is, the sum of all
ϕ-horizontal components of R.

Proof. We take a relatively minimal model ϕ : W → B of ϕ̃ arbitrarily. Suppose
that there exists a point x of R at which R has the multiplicity greater than r/2. Let
� be the fiber of ϕ through x. We will perform the elementary transformation at x

as follows: Let ψ1 : W1 → W be the blow-up at x, E1 = ψ−1
1 (x) the exceptional

(−1)-curve, and E′
1 the proper transform of �. Then, E′

1 is also a (−1)-curve. Let
ψ ′

1 : W1 → W ′ be the contraction of E′
1, and ϕ′ : W ′ → B the induced fibration.

Set x′ = ψ ′
1(E

′
1) and �′ = ψ ′

1(E1). Then, �′ is the fiber of ϕ′ over t = ϕ(�). Let m

denotes the multiplicity of R at x. Put R1 = ψ∗
1 R−n[m/n]E1 and R′ = (ψ ′

1)∗R1.
Let m′ denote the multiplicity of R′ at x′. Then it follows from Lemma 1.5 that
R1 = (ψ ′

1)
∗R′ − n[m′/n]E′

1. Since R� = R1ψ
∗
1 � = R1(E1 + E′

1), we have[
m

n

]
+

[
m′

n

]
= r

n
.

Moreover, since m > r/2, we get[
m′

n

]
≤ r

2n
≤

[
m

n

]
.

Hence, we have m′ ≤ r/2 + 1 from Lemma 1.5. Moreover, m′ ≤ r/2 when n = 2
and g is even. If m′ = r/2 + 1, then we have m′ ∈ nZ + 1, and hence E′

1 is
contained in R1. In particular, � is contained in R. Since r/2 ∈ nZ, we have
m = r/2 + 1. Hence, the multiplicity of Rh at x is r/2. If m′ ≤ r/2, then we
replace the relatively minimal model W with W ′. Since the number of singulari-
ties of R are finite, we obtain a relatively minimal model satisfying the condition
inductively. �

In the sequel, we tacitly assume that our relatively minimal model ϕ : W → B of
ϕ̃ enjoys the property of the lemma.

Remark 3.2. Recall that r is a multiple of n. If n ≥ 3 and R has a singular
point of multiplicity m ≥ 2, then m ≤ r/2 + 1 from Lemma 3.1, whereas m ∈ nZ

or m ∈ nZ + 1 by Lemma 1.5. It follows that r ≥ 2n when n ≥ 3 and R has a
singular point. If r = n ≥ 3, then R is nonsingular, and we have K2

f = λg,0,nχf

by Lemma 2.3. If n = 2, then r = 2g + 2 ≥ 6 since g ≥ 2.

Recall that the gonality of a nonsingular projective curve is the minimum of the
degree of surjective morphisms to P1. The gonality of a fibered surface is defined
to be that of a general fiber (see [11]).

Lemma 3.3. The gonality of a primitive cyclic covering fibration of type (g,0, n)

is n when r ≥ 2n.
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Proof. We use the so-called Castelnuovo–Severi inequality. Assume contrary that
the general fiber F has a morphism onto P1 of degree k < n. This, together with
the natural map F → F/〈σ |F 〉 � P1, defines a morphism � : F → P1 × P1. If
� is of degree m onto the image �(F), then m is a common divisor of n, k, and
�(F) is a divisor of bidegree (n/m,k/m). In particular, the arithmetic genus of
�(F) is given by (n/m−1)(k/m−1). Now, let F ′ be the normalization of �(F).
Since the cyclic n-covering F → P1 factors through F ′, we see that the induced
covering F ′ → P1 of degree n/m is a totally ramified covering branched over r

points. Then, by the Hurwitz formula we have 2g(F ′) = (n/m − 1)(r − 2). Since
the genus g(F ′) of F ′ is not greater than the arithmetic genus of �(F), we get
r ≤ 2(k/m), which is impossible since r ≥ 2n and k < n. A more careful study
shows that the gonality pencil is unique when r ≥ 3n and that the gonality of F

is not less than n/2 when r = n. �
As we saw in Section 1, f̃ -vertical (−1)-curves in Fix(̃σ ) are in one-to-one cor-
respondence with ϕ̃-vertical (−n)-curves in R̃ via θ̃ . So we need to know how
ϕ̃-vertical (−n)-curves in R̃ appear during the process of “modulo n resolution”
ψ̃ : W̃ → W of R.

Let L � P1 be a ϕ̃-vertical curve contained in R̃. Then we have θ̃∗L = nD for
some f̃ -vertical D � P1 contained in Fix(̃σ ). If D2 = −a, then L2 = −an. The
image of L by the natural morphism ψ̃ : W̃ → W is either a point or a fiber of ϕ.
In either case, we define a curve C and a number c as follows.

• If ψ̃(L) is a point, then L is the proper transform of an exceptional (−1)-curve,
say, Ej . Since E2

j = −1 and L2 = −an, Ej is blown up an − 1 times in total
to get L. We put C = Ej and c = an − 1.

• If ψ̃(L) is a fiber � of ϕ, then L is the proper transform of �. Since �2 = 0 and
L2 = −an, � is blown up an times in total to get L. We put C = � and c = an.

In the former case, since Ej is contained in Rj , the multiplicity of Rj−1 at the
point obtained by contracting Ej is in nZ + 1. We will drop j and simply write
R instead of Rj for the time being.

Let x1, . . . , xl be all the singular points of R on C, and mi the multiplicity of R

at xi . Clearly, we have 1 ≤ l ≤ c. We consider a local analytic branch D of R −C

around xi whose multiplicity at xi is m ≥ 2 (i.e., D has a cusp at xi ). Then we
have one of the following:

(i) D is not tangent to C at xi . If we blow xi up, then the proper transform of D

does not meet that of C. Hence, we have (DC)xi
= m, where (DC)xi

denotes
the local intersection number of D and C at xi .

(ii) D is tangent to C at xi . If we blow xi up, then one of the following three
cases occurs.
(ii.1) The proper transform of D is tangent to neither that of C nor the ex-

ceptional (−1)-curve.
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�

(ii.2) The proper transform of D is tangent to the exceptional (−1)-curve.
Then the multiplicity m′ of the proper transform of D at the singular
point is less than m, and we have (DC)xi

= m + m′.

�

(ii.3) The proper transform of D is still tangent to that of C.

�

We perform blowing-ups at xi and points infinitely near to it. Then case (ii.3) may
occur repeatedly, but at most a finite number of times. Suppose that the proper
transform of D becomes not tangent to that of C just after kth blow-up. If the
proper transform of D is as in (ii.1) after the kth blow-up (or D is as in (i) when
k = 0), then we have (DC)xi

= (k + 1)m. If the proper transform of D is as in
(ii.2) after the kth blow-up, then we have (DC)xi

= km + m′. In either case, it is
convenient to consider as if D consists of m local branches D1, . . . ,Dm smooth
at xi and such that (DjC)xi

= k + 1 for j = 1, . . . ,m in the former case and

(DjC)xi
=

{
k for j = 1, . . . ,m − m′,
k + 1 for j = m − m′ + 1, . . . ,m

in the latter case. We call Dj a virtual local branch of D.

Notation 3.4. For a positive integer k, we let si,k be the number of such vir-
tual local branches D• satisfying (D•C)xi

= k, among those of all local analytic
branches of R − C around xi . Here, when multxi

(D) = 1, we regard D itself as a
virtual local branch. We let imax be the greatest integer k satisfying si,k 
= 0.

We put xi,1 = xi and mi,1 = mi . Let ψi,1 : Wi,1 → W be the blow-up at xi,1 and
put Ei,1 = ψ−1

i,1 (xi,1) and Ri,1 = ψ∗
i,1R − n[mi,1/n]Ei,1. Inductively, we define

xi,j , mi,j , ψi,j : Wi,j → Wi,j−1, Ei,j , and Ri,j to be the intersection point of the
proper transform of C and Ei,j−1, the multiplicity of Ri,j−1 at xi,j , the blow-
up of Wi,j−1 at xi,j , the exceptional curve for ψi,j , and Ri,j = ψ∗

i,jRi,j−1 −
n[mi,j /n]Ei,j , respectively. Put ibm = max{j | mi,j > 1}, that is, the number of
blowing-ups occurring over xi . We may assume that ibm ≥ (i + 1)bm for i =
1, . . . , l − 1 after rearranging the index if necessary.
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Lemma 3.5. With this notation and assumption, the following hold.

(1) If n ≥ 3, then ibm = imax for all i. If n = 2, then ibm = imax (resp. ibm =
imax + 1) if and only if mi,imax ∈ 2Z (resp. mi,imax ∈ 2Z+ 1).

(2) mi,1 = ∑imax
k=1 si,k + 1 and mi,ibm ∈ nZ.

(3) mi,j ∈ nZ (resp. nZ + 1) if and only if mi,j+1 = ∑imax
k=j+1 si,k + 1 (resp.∑imax

k=j+1 si,k + 2).

(4) ((R − C)C)xi
= ∑imax

k=1 ksi,k .

(5) c = ∑l
i=1 ibm.

Proof. Item (1) is clear from the definitions of imax and ibm. Since mi,j is the num-
ber of virtual local branches of Ri,j−1 through xi,j , we get the first equality of (2)
and (3) by Lemma 1.5. In (2), “+1” is the contribution of C. If mi,imax ∈ nZ+ 1,
then xi,imax+1 is a double point, which is impossible when n ≥ 3 by Lemma 1.5.
Thus, we have shown (2). Item (4) is clear from the definition of si,k . For each i,
we blow up xi ∈ C and its infinitely near points on the proper transforms of C

exactly imax times. Hence, we have (5). �

Put t = (R − C)C. It is the number of branch points r if ϕ̃(L) is a fiber of ϕ,
whereas it is the multiplicity at the point x to which C is contracted if ϕ̃(L) is a
point. By Lemma 3.5(4) we get

t =
l∑

i=1

imax∑
k=1

ksi,k.

Let ci be the cardinality of {j | mi,j ∈ nZ+ 1}. Clearly, we have 0 ≤ ci ≤ ibm − 1.
Set di,j = [mi,j /n].
Proposition 3.6. We have the following equalities:

t + c +
l∑

i=1

ci =
l∑

i=1

ibm∑
j=1

mi,j ,
t + c

n
=

l∑
i=1

ibm∑
j=1

di,j .

Proof. It follows from Lemma 3.5 that

t =
l∑

i=1

imax∑
k=1

ksi,k =
l∑

i=1

( ibm∑
j=1

mi,j − ibm − ci

)
=

l∑
i=1

( ibm∑
j=1

mi,j − ci

)
− c.

Hence, we have the first equality. The second is clear from the first. �

Lemma 3.7. The following hold:

(1) When n ≥ 3, mi,j ≥ mi,j+1 with equality if and only if si,j = 0 when
mi,j ∈ nZ or si,j = 1 when mi,j ∈ nZ + 1. When n = 2, mi,j + 1 ≥ mi,j+1
with equality only if mi,j ∈ 2Z+ 1 and mi,j+1 ∈ 2Z.

(2) If mi,j−1 ∈ nZ+ 1 and mi,j ∈ nZ, then mi,j > mi,j+1.
(3) If mi,j = ndi,j + 1 ∈ nZ+ 1, then di,j − di,j+1 ≥ n − 3.
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Proof. If mi,j < mi,j+1, then we have si,j = 0 and mi,j + 1 = mi,j+1 since
mi,j − mi,j+1 = si,j − 1, si,j , or si,j + 1. Then mi,j ∈ nZ + 1, and we get
mi,j+1 ∈ nZ + 2 by Lemma 3.5(2). This contradicts Lemma 1.5 when n ≥ 3.
Hence, mi,j ≥ mi,j+1. The rest of (1) follows from Lemma 3.5(2). If mi,j−1 ∈
nZ+ 1 and mi,j ∈ nZ, then mi,j = ∑imax

k=j si,k + 2 and mi,j+1 = ∑imax
k=j+1 si,k + 1

by Lemma 3.5(2). Then, mi,j − mi,j+1 = si,j + 1 > 0, and hence (2) follows.
Suppose that mi,j = ndi,j + 1 ∈ nZ + 1. Let C′ be the exceptional curve Ei,j

and define x′
i,j , m′

i,j , d ′
i,j , c′, et cetera on C′ similarly to C. Since C′ becomes

a (−a′n)-curve by blowing up for some a′ ≥ 1, we have c′ = a′n − 1. We may
assume that mi,j+1 = m′

1,1. Then we have

mi,j + c′

n
=

l′∑
p=1

p′
max∑

q=1

d ′
p,q ≥ di,j+1 + c′ − 1.

Hence, we get

di,j − di,j+1 ≥ a′(n − 1) − 2

≥ n − 3,

and thus (3) follows. �

Proposition 3.8. (1) If g < (n − 1)(an(n − 1)/2 − 1), then there are no ϕ̃-
vertical (−an)-curves in R̃.

(2) If (n − 1)(an(n − 1)/2 − 1) ≤ g < (n − 1)(an2 − (a + 1)n − 1), then any
ϕ̃-vertical (−an)-curve in R̃ is the proper transform of a fiber of ϕ.

(3) Let x be a singular point of multiplicity m ∈ nZ+1. If the proper transform L

of the exceptional curve obtained by blowing up at x is a (−an)-curve, then
[m/n] ≥ a(n − 1) − 1.

Proof. Let L be a ϕ̃-vertical (−an)-curve in R̃. Since

t + c

n
=

l∑
i=1

imax∑
j=1

di,j ≥ c

by Proposition 3.6, we get t ≥ (n − 1)c.
If L is the proper transform of a fiber of ϕ, then t = r and c = an. Hence,

r ≥ an(n − 1). Then

g ≥ (n − 1)

(
an(n − 1)

2
− 1

)
by (1.2).

If L is the proper transform of an exceptional curve E appeared in ψ̃ , then m ≥
(an− 1)(n− 1), where m denotes the multiplicity of the branch locus at the point
obtained by contracting E. Hence, (3) follows. Moreover, we have m ≤ r/2 + 1
by Lemmas 3.1 and 3.5(1). Then we get

g ≥ (n − 1)(an2 − (a + 1)n − 1)

from the previous two inequalities and (1.2).
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By an easy computation we can show that

(n − 1)(an2 − (a + 1)n − 1) ≥ (n − 1)

(
an(n − 1)

2
− 1

)
with equality if and only if (a,n) = (1,3). In sum, we get (1) and (2). �
When a = 1, we get the following:

Corollary 3.9. (1) If g < (n − 2)(n − 1)(n + 1)/2, then any irreducible com-
ponent of R̃ is ϕ̃-horizontal.

(2) If (n − 2)(n − 1)(n + 1)/2 ≤ g < (n − 1)(n2 − 2n − 1), then any ϕ̃-vertical
(−n)-curve in R̃ is the proper transform of a fiber of ϕ.

(3) The multiplicity of any singular point of the branch locus of type nZ + 1 is
greater than or equal to (n − 1)2.

4. Slope Equality, Horikawa Index and the Local Signature

Let f : S → B be a primitive cyclic covering fibration of type (g,0, n). Firstly,
we introduce singularity indices.

Definition 4.1 (Singularity index α). Let k be a positive integer. For p ∈ B , we
consider all the singular points (including infinitely near ones) of R on the fiber
�p of ϕ : W → B over p. We let αk(Fp) be the number of singular points of
multiplicity either kn or kn + 1 among them and call it the kth singularity index
of Fp , the fiber of f : S → B over p. Clearly, we have αk(Fp) = 0 except for a
finite number of p ∈ B . We put αk = ∑

p∈B αk(Fp) and call it the kth singularity
index of f .

We also define 0th singularity index α0(Fp) as follows. Let D1 be the sum of
all ϕ̃-vertical (−n)-curves contained in R̃ and put R̃0 = R̃ − D1. Then, α0(Fp)

is the ramification index of ϕ̃|R̃0
: R̃0 → B over p, that is, the ramification index

of ϕ̃|(R̃0)h
: (R̃0)h → B over p minus the sum of the topological Euler number

of irreducible components of (R̃0)v over p. Then α0(Fp) = 0 except for a finite
number of p ∈ B , and we have∑

p∈B

α0(Fp) = (Kϕ̃ + R̃0)R̃0

by definition. We put α0 = ∑
p∈B α0(Fp) and call it the 0th singularity index of f .

Remark 4.2. The singularity indices just defined are somewhat different from
those defined in [16] for n = 2 because all singular points are “essential” if n ≥ 3.
We can check that the value of αk(Fp) does not depend on the choice of the
relatively minimal model of W̃ → B satisfying Lemma 3.1 by the same argument
for n = 2 in [16].

Let ε(Fp) be the number of (−1)-curves contained in Fp and put ε =∑
p∈B ε(Fp). This is no more than the number of blowing-ups appearing in

ρ : S̃ → S.
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Now, we compute the numerical invariants of f using singularity indices. Re-
call that R is numerically equivalent to −rKϕ/2 + M� for some half-integer M .
We express M in terms of singularity indices by calculating (Kϕ̃ + R̃)R̃ in two
ways. From (2.2) and (2.3) we have

(Kϕ̃ + R̃)R̃ =
(

ψ̃∗(Kϕ + R) +
N∑

i=1

(
1 − n

[
mi

n

])
Ei

)(
ψ̃∗R − n

[
mi

n

]
Ei

)

= (Kϕ + R)R −
N∑

i=1

n

[
mi

n

](
n

[
mi

n

]
− 1

)
=

((
1 − r

2

)
Kϕ + M�

)(
− r

2
Kϕ + M�

)
−

∑
k≥1

nk(nk − 1)αk,

and, thus,

(Kϕ̃ + R̃)R̃ = 2(r − 1)M − n
∑
k≥1

k(nk − 1)αk. (4.1)

On the other hand, we have

(Kϕ̃ + R̃)R̃ = (Kϕ̃ + R̃0)R̃0 + D1(Kϕ̃ + D1) = α0 − 2ε. (4.2)

Hence,

M = 1

2(r − 1)

(
α0 + n

∑
k≥1

k(nk − 1)αk − 2ε

)
(4.3)

by (4.1) and (4.2).
Next, we compute K2

f and χf . We have

d̃2 = d2 −
N∑

i=1

[
mi

n

]2

= 2r

n2
M −

∑
k≥1

k2αk,

d̃Kϕ̃ = dKϕ +
N∑

i=1

[
mi

n

]
= −2M

n
+

∑
k≥1

kαk,

K2
ϕ̃ = K2

ϕ − N = −
∑
k≥1

αk.

Thus, we get

K2
f̃

= −n
∑
k≥1

αk + 2n(n − 1)

(
−2M

n
+

∑
k≥1

kαk

)

+ n(n − 1)2
(

2rM

n2
−

∑
k≥1

k2αk

)

= 2(n − 1)((n − 1)r − 2n)

n
M − n

∑
k≥1

((n − 1)k − 1)2αk
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and

χf̃ = 1

12
n(n − 1)(2n − 1)

(
2rM

n2
−

∑
k≥1

k2αk

)
+ 1

4
n(n − 1)

(
−2M

n
+

∑
k≥1

kαk

)

= n − 1

6n
(r(2n − 1) − 3n)M − n(n − 1)

12

∑
k≥1

((2n − 1)k2 − 3k)αk

by (2.4) and (2.5). Hence, substituting (4.3), we obtain

K2
f = n − 1

r − 1

(
(n − 1)r − 2n

n
(α0 − 2ε) + (n + 1)

∑
k≥1

k(−nk + r)αk

)
− n

∑
k≥1

αk + ε,

χf = n − 1

12(r − 1)

(
(2n − 1)r − 3n

n
(α0 − 2ε) + (n + 1)

∑
k≥1

k(−nk + r)αk

)
.

These give us

ef = 12χf − K2
f = (n − 1)α0 + n

∑
k≥1

αk − (2n − 1)ε (4.4)

by Noether’s formula. Furthermore, we have

K2
f − λg,0,nχf

= n

(2n − 1)r − 3n

∑
k≥1

((n + 1)(n − 1)(−nk2 + rk) − (2n − 1)r + 3n)αk

+ ε,

where λg,0,n is the rational number defined in (2.1). In this expression, the
coefficient of αk is nonnegative since r ≥ 2n. In fact, the quadratic function
(n + 1)(n − 1)(−nk2 + rk) − (2n − 1)r + 3n in k is monotonically increasing
in the interval [1, r/2n], and its value at k = 1 is n(n − 2)(r − n − 2) ≥ 0.

We put

Ind(Fp) = n
∑
k≥1

(
(n + 1)(n − 1)(r − nk)k

(2n − 1)r − 3n
− 1

)
αk(Fp) + ε(Fp). (4.5)

Let Ag,0,n be the set of all fiber germs of primitive cyclic covering fibrations of
type (g,0, n). Then (4.5) defines a well-defined function Ind : Ag,0,n → Q≥0,
called the Horikawa index (see [1]). Note that we have Ind(Fp) = 0 when either
r = n ≥ 3 (in this case, R is smooth) or p ∈ B is general. We have shown the
following:

Theorem 4.3. Let f : S → B be a primitive cyclic covering fibration of type
(g,0, n). Then

K2
f = λg,0,nχf +

∑
p∈B

Ind(Fp),
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where λg,0,n is the rational number in (2.1), and Ind : Ag,0,n → Q≥0 denotes the
Horikawa index defined by (4.5).

Remark 4.4. As we saw in Lemma 3.3, the gonality of f is n when r ≥ 2n.
Therefore, the lower bound of the slope of n-gonal fibrations cannot exceed

λg,0,n = 12(n − 1)

2n − 1

(
1 − n(n + 1)

2(2n − 1)(g − 1) + n(n + 1)

)
.

When n = 2, we have λg,0,2 = 4 − 4/g, and, therefore, the theorem recovers
the slope equality for hyperelliptic fibrations. When n = 3, we have λg,0,3 =
24(g − 1)/(5g + 1), which coincides with the lower bound of the slope of
semistable trigonal fibrations in [14]. This is expected to hold also for unstable
ones (see [10, p. 20]), and ours serves a new evidence for that. When n = 4,
we have λg,0,4 = 36(g − 1)/(7g + 3), which is strictly greater than the bound
24(g − 1)/(5g + 3) given in [5] for semistable (nonfactorized) tetragonal fibra-
tions.

Now, we state a topological application of the slope equality. For an oriented
compact real four-dimensional manifold X, the signature Sign(X) is defined to
be the number of positive eigenvalues minus the number of negative eigenvalues
of the intersection form on H 2(X). Using the singularity indices, we observe the
local concentration of Sign(S) on a finite number of fiber germs.

Corollary 4.5. Let f : S → B be a primitive cyclic covering fibration of type
(g,0, n). Then,

Sign(S) =
∑
p∈B

σ(Fp),

where σ : Ag,0,n → Q is defined by

σ(Fp) = −(n − 1)(n + 1)r

3n(r − 1)
α0(Fp)

+
∑
k≥1

(
(n − 1)(n + 1)(−nk2 + rk)

3(r − 1)
− n

)
αk(Fp)

+ 1

3n(r − 1)
((n + 2)(2n − 1)r − 3n)ε(Fp),

which is called the local signature of Fp .

Proof. Once we have the Horikawa index, we can define the local signature ac-
cording to [1] as follows. By the index theorem (see [7, p. 126]) we have

Sign(S) =
∑

p+q≡0(mod 2)

hp,q(S) = K2
f − 8χf .
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Put λ = λg,0,n. Then λ < 12. From the slope equality K2
f = λχf + Ind, where

Ind = ∑
p∈B Ind(Fp), and Noether’s formula 12χf = K2

f + ef we get

K2
f = 12

12 − λ
Ind+ λ

12 − λ
ef

χf = 1

12 − λ
Ind+ 1

12 − λ
ef .

Then

Sign(S) = 4

12 − λ
Ind− 8 − λ

12 − λ
ef .

Substituting (4.4) and (4.5), the desired equality follows by the definition of
σ(Fp). �

5. Upper Bound of the Slope

Let f : S → B be a primitive cyclic covering fibration of type (g,0, n). In this
section, we give an upper bound of the slope of f . Let the situation be as in the
previous section.

For a vertical divisor T and p ∈ B , we denote by T (p) the greatest subdivisor
of T consisting of components of the fiber over p. Then T = ∑

p∈B T (p). We

consider a family {Li}i of vertical irreducible curves in R̃ over p satisfying:

(i) L1 is the proper transform of the fiber �p or a (−1)-curve E1.
(ii) For i ≥ 2, Li is the proper transform of an exceptional (−1)-curve Ei that

contracts to a point xi on Ck or its proper transform for some k < i, where
we let C1 to be E1 or �p according to whether L1 is the proper transform of
which curve, and Cj = Ej for j < i.

(iii) {Li}i is the largest among those satisfying (i) and (ii).

The set of all vertical irreducible curves in R̃ over p is decomposed into the
disjoint union of such families uniquely. We denote it as

R̃v(p) = D1(p) + · · · + Dηp(p), Dt (p) =
∑
k≥1

Lt,k,

where ηp denotes the number of the decomposition, and {Lt,i}i satisfies (i), (ii),
(iii). Let Ct,k be the exceptional (−1)-curve or the fiber �p the proper transform
of which is Lt,k .

Definition 5.1. Let j t
a(Fp) be the number of irreducible curves with self-

intersection number −an contained in Dt(p). Put ja(Fp) := ∑ηp

t=1 j t
a(Fp),

j t (Fp) := ∑
a≥1 j t

a(Fp), and j (Fp) := ∑ηp

t=1 j t (Fp).
Let α+

0 (Fp) be the ramification index of ϕ̃ : R̃h → B over p. It is clear that
ε(Fp) = j1(Fp) and α(Fp) = α+

0 (Fp) − 2
∑

a≥2 ja(Fp).
Let ιt (Fp) and κt (Fp) be the number of singular points over p of types nZ

and nZ + 1, respectively, at which two proper transforms of Ct,k meet. We put
ι(Fp) = ∑ηp

t=1 ιt (Fp) and κ(Fp) = ∑ηp

t=1 κt (Fp).
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Lemma 5.2. The following hold:

(1) ι(Fp) = j (Fp) − ηp .
(2) α+

0 (Fp) ≥ (n − 2)(j (Fp) − ηp + 2κ(Fp)).
(3)

∑
k≥1 αk(Fp) ≥ ∑

a≥1(an − 2)ja(Fp) + 2ηp − κ(Fp).

Proof. We consider the following graph Gt : The vertex set V (Gt ) is defined

by the symbol set {vt,k}j t (Fp)

k=1 . The edge set E(Gt ) is defined by the sym-
bol set {ex}x , where x moves among all singularities contributing to ιt (Fp). If
Ct,k or a proper transform of it meets that of Ct,k′

at a singularity x of type
nZ, the edge ex connects vt,k and vt,k′

. By the definition of the decomposition
R̃v(p) = D1(p)+· · ·+Dηp(p), the graph Gt is connected for any t = 1, . . . , ηp .
Since this graph Gt has no loops, we have ιt (Fp) = j t (Fp) − 1. Thus, we get (1)
by summing it up for t .

When Lt,k is a (−an)-curve, Lt,k is obtained by blowing Ct,k up an−1 (or an

when k = 1 and Ct,1 = �p) times. Thus, disregarding overlaps, Dt(p) is obtained
by blowing up∑

a≥1

(an − 1)j t
a(Fp)

(
or

∑
a≥1

(an − 1)j t
a(Fp) + 1

)
times. Thus, the number of singular points needed to obtain Dt(p) can be ex-
pressed as∑
a≥1

(an − 1)j t
a(Fp) + 1 − ιt (Fp) − κt (Fp) =

∑
a≥1

(an − 2)j t
a(Fp) + 2 − κt (Fp).

Then, the number of singular points needed to obtain R̃v(p) is
ηp∑
t=1

(∑
a≥1

(an − 2)j t
a(Fp) + 2 − κt (Fp)

)
=

∑
a≥1

(an − 2)ja(Fp) + 2ηp − κ(Fp).

This gives us (3).
It remains to show (2). Let �̃p = ∑

i miGi be the irreducible decomposition.
Then we have

α+
0 (Fp) = r − #(Supp(R̃h) ∩ Supp(�̃p))

=
∑

i

miR̃hGi − #

(
Supp(R̃h) ∩ Supp

(⋃
i

Gi

))
≥

∑
i

(mi − 1)R̃hGi.

Let xt,1, . . . , xt,ιt (Fp) be all singular points over p of type nZ at which two proper
transforms of Ct,k meet. Let Et,k be the exceptional curve obtained by blowing
up at xt,k and mt,k the multiplicity of the fiber over p along Et,k . Let us estimate∑ηp

t=1

∑ιt (Fp)

k=1 (mt,k −1)R̃hÊ
t,k . If there exists a singular point of type nZ on Et,k ,

then we replace Et,k to the exceptional curve E obtained by blowing up at this
point. Repeating this procedure, we may assume that there exist no singular points
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of type nZ on Et,k . If there exists a singular point of type nZ + 1 on Et,k , then
the proper transform of the exceptional (−1)-curve obtained by blowing up at this
point belongs to other Du(p) and becomes Lu,1 in Du(p). Since the multiplicity
of �̃p along it is not less than mt,k > 1, we do not have to consider this situa-
tion. Thus, we may assume that there exist no singularities on Et,k , and we have

R̃hÊ
t,k ≥ n−2. On the other hand, we see that

∑ιt (Fp)

k=1 mt,k ≥ 2ιt (Fp)+2κt (Fp).
Hence, we have∑

i

(mi − 1)R̃hGi ≥
ηp∑
t=1

ιt (Fp)∑
k=1

(mt,k − 1)R̃hÊ
t,k

≥ (n − 2)

ηp∑
t=1

ιt (Fp)∑
k=1

(mt,k − 1)

≥ (n − 2)

ηp∑
t=1

(ιt (Fp) + 2κt (Fp))

= (n − 2)(ι(Fp) + 2κ(Fp)).

Since ι(Fp) = j (Fp) − ηp , we get (2). �
Using Lemma 5.2, we give an upper bound of the slope.

Theorem 5.3. Let f : S → B be a primitive cyclic covering fibration of type
(g,0, n) and assume that n ≥ 4. Put

r := 2g

n − 1
+ 2, δ :=

{
0 if r ∈ 2nZ,

1 if r /∈ 2nZ.

Then, the following hold:

(1) If n ≤ r < n(n − 1), then

K2
f ≤

(
12 − 48n2(r − 1)

(n − 1)(n + 1)(r2 − δn2)

)
χf .

(2) If r ≥ n(n − 1), then

K2
f ≤

(
12 − 48n(n − 1)(r − 1)

n(n + 1)r2 − 8(2n − 1)r + 24n − δn3(n + 1)

)
χf .

Proof. First, assume that r ≥ n(n − 1). We put

μ = 48n(n − 1)(r − 1)

n(n + 1)r2 − 8(2n − 1)r + 24n − δn3(n + 1)
, μ′ = n − 1

12(r − 1)
μ.

By the formulae for χf and ef obtained in the previous section, we get

(12 − μ)χf − K2
f

= ef − μχf

= (n − 1)α0 + n
∑
k≥1

αk − (2n − 1)ε
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− μ′
(

r(2n − 1) − 3n

n
α0 + (n + 1)

∑
k≥1

(−nk2 + rk)αk

− 2(r(2n − 1) − 3n)

n
ε

)
=

(
n − 1 − r(2n − 1) − 3n

n
μ′

)
α0

+
∑
k≥1

(
Q(k) + n − (n + 1)(r2 − δn2)

4n
μ′

)
αk

−
(

2n − 1 − 2(r(2n − 1) − 3n)

n
μ′

)
ε,

where

Q(k) = μ′
(

n(n + 1)

(
k − r

2n

)2

− n(n + 1)δ

4

)
≥ 0.

Therefore,

(12 − μ)χf − K2
f ≥ Anα0 + Bn

∑
k≥1

αk − (2An + 1)ε, (5.1)

where

An = n − 1 − r(2n − 1) − 3n

n
μ′, Bn = n − (n + 1)(r2 − δn2)

4n
μ′.

By the definitions of μ and μ′ we see that An and Bn are positive rational numbers
satisfying

−2An + nBn − 1 = 0. (5.2)

We will show that the right-hand side of (5.1) is nonnegative by estimating it on
each fiber Fp . By Lemma 5.2 we have

Anα0(Fp) + Bn

∑
k≥1

αk(Fp) − (2An + 1)ε(Fp)

≥
∑
a≥2

((n − 4)An + (an − 2)Bn)ja(Fp)

+ ((n − 4)An + (n − 2)Bn − 1)j1(Fp)

− ((n − 2)An − 2Bn)ηp + (2(n − 2)An − Bn)κ(Fp)

=
∑
a≥2

(−2An + anBn)ja(Fp) + (−2An + nBn − 1)j1(Fp)

+ ((n − 2)An − 2Bn)(j (Fp) − ηp) + (2(n − 2)An − Bn)κ(Fp).

When n ≥ 4, we can show that (n − 2)An − 2Bn > 0, and thus all coefficients of
ja(Fp), j (Fp) − ηp , κ(Fp) are nonnegative by (5.2). Hence, we get (1).

Assume that n ≤ r < n(n − 1). We put

μ = 48n2(r − 1)

(n − 1)(n + 1)(r2 − δn2)
, μ′ = n − 1

12(r − 1)
μ
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and

An = n − 1 − r(2n − 1) − 3n

n
μ′, Bn = n − (n + 1)(r2 − δn2)

4n
μ′.

Clearly, An > 0 and Bn = 0. By Corollary 3.9 we get j (Fp) = 0 for any p ∈ B .
Thus, we get

(12 − μ)χf − K2
f ≥ Anα

+
0 + Bn

∑
k≥1

αk = Anα
+
0 ≥ 0,

which is the desired inequality. �

Appendix

Let f : S → B be a fibration of genus g ≥ 2. Put ef (Fp) = e(Fp) − e(F ) for any
fiber Fp , where F is a general fiber. It is well known that ef (Fp) ≥ 0 with equal-
ity if and only if Fp is a smooth curve of genus g and that ef = ∑

p∈B ef (Fp). In
Section 4, we have defined the Horikawa index and the local signature for prim-
itive cyclic covering fibrations of type (g,0, n) using singularity indices. How-
ever, in general, it is not known whether Horikawa indices or local signatures, if
they exist, are unique (see [1]). As to primitive cyclic covering fibrations of type
(g,0, n), we have obtained another local concentration of ef in (4.4). Therefore,
we may have two apparently distinct expressions of Sign(S) in this case from the
proof of Corollary 4.5. In this appendix, we show that two expressions coincide.
Namely:

Proposition A.1. Let f : S → B be a primitive cyclic covering fibration of type
(g,0, n). Then we have

ef (Fp) = (n − 1)α0(Fp) + n
∑
k≥1

αk(Fp) − (2n − 1)ε(Fp)

for any p ∈ B .

Proof. It is sufficient to show that

ef̃ (F̃p) = (n − 1)α+
0 (Fp) + n

∑
k≥1

αk(Fp) − 2(n − 1)j (Fp).

Let N = ∑
k≥1 αk(Fp) be the number of blow-ups on �p , and �̃p = ∑N

i=0 mi�i

be the irreducible decomposition. We may assume that �i and R̃h are transverse
for simplicity. Put ri = �iR̃ and Fi = θ̃∗�i . Then,

Fp =
N∑

i=0

miFi =
∑
ri>0

miFi +
∑
ri=0

mi(Fi,1 + · · · + Fi,n) +
∑
�i⊂R̃

minF ′
i ,

where Fi,j and F ′
i are smooth rational curves. For ri > 0, the restriction map

Fi → �i is an n-cyclic covering. From the Hurwitz formula, we have 2g(Fi) −
2 = −2n + (n − 1)ri . Let N1, N2, and N3 be the numbers of intersection points
of two �i and �j that is contained in R̃h, not contained in R̃h, and that one �i



Slopes of Fibered Surfaces with a Finite Cyclic Automorphism 153

is contained in R̃, respectively. Clearly, it follows that N = N1 + N2 + N3. Let
J = j (Fp), and K be the number of �i such that ri = 0. Then, we have

e(F̃p) =
∑
ri>0

e(Fi) + 2nK + 2J − N1 − nN2 − N3

=
∑
ri>0

(2n − (n − 1)ri) + 2nK + 2J − N1 − nN2 − N3

= 2n(N + 1) − 2(n − 1)J − (n − 1)
∑
ri>0

ri − N − (n − 1)N2.

Since e(F̃ ) = 2n − (n − 1)r , we have

ef̃ (F̃p) = (2n − 1)N − 2(n − 1)J + (n − 1)

(
r −

∑
ri>0

ri

)
− (n − 1)N2.

On the other hand, we have

α+
0 (Fp) = r − #(Supp(�̃p) ∩ Supp(R̃))

= r −
∑
ri>0

ri + N1 + N3.

Combining these equalities, the assertion follows. �
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