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On Coxeter Mapping Classes and Fibered
Alternating Links

Eriko Hironaka & Livio Liechti

Abstract. Alternating-sign Hopf plumbing along a tree yields fibered
alternating links whose homological monodromy is, up to a sign, con-
jugate to some alternating-sign Coxeter transformation. Exploiting
this tie, we obtain results about the location of zeros of the Alexan-
der polynomial of the fibered link complement implying a strong case
of Hoste’s conjecture, the trapezoidal conjecture, bi-orderability of the
link group, and a sharp lower bound for the homological dilatation of
the monodromy of the fibration. The results extend to more general
hyperbolic fibered 3-manifolds associated with alternating-sign Cox-
eter graphs.

1. Introduction

In this paper, we study mapping classes defined by bipartite Coxeter graphs with
sign-labels on the vertices determined by the bipartite structure. If the graph is
connected and has at least two vertices, then these alternating-sign Coxeter map-
ping classes are pseudo-Anosov, and if the Coxeter graph is a tree, then the as-
sociated mapping class is the monodromy of an alternating fibered knot or link,
which we call an (alternating) Coxeter link.

There has long been interest in the location of roots of Alexander polynomials
for alternating links. Murasugi [18] showed that the coefficients of the polynomi-
als have alternating signs, and hence no real root can be negative. Hoste conjec-
tured that the real part of all zeros must be bounded from below by −1. This and
related conjectures were settled for some classes of alternating links in [15; 13;
27; 7].

Using properties of alternating-sign Coxeter transformations, we give a simple
proof that the roots of the Alexander polynomials for alternating Coxeter links are
real and positive. By a result of Perron and Rolfsen [20] this implies that the fun-
damental group of the complement of an alternating Coxeter link is bi-orderable.
Applying an interlacing property for alternating-sign Coxeter graphs, we show
that the homological dilatations are monotone under graph inclusion. Thus, the

minimum homological dilatation achieved by an alternating Coxeter link is 3+√
5

2 ,
the square of the golden ratio. Similar properties hold for the Alexander polyno-
mial of the mapping torus of alternating-sign Coxeter mapping classes.
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Remark 1. Hirasawa and Murasugi [7] similarly studied the roots of Alexander
polynomials for quasi-rational knots and links, which include the Coxeter links
discussed in this paper, and they also proved stability and interlacing properties of
the Alexander polynomial for these examples. By applying the constructs of Cox-
eter graphs and Coxeter transformations in this paper, we simplify their proofs in
this context and extend the results to more general mapping classes and mapping
tori associated to alternating-sign Coxeter graphs.

1.1. Alexander Polynomials of Alternating Knots and Links

The Alexander polynomial �(t) ∈ Z[t] is an invariant of a finitely presented
group with a prescribed homomorphism onto Z. Given a knot or link K in S3,
each oriented Seifert surface S defines a surjective homomorphism of π1(S

3 \K)

to Z by algebraic intersection of closed paths with S. Denote by �S(t) the associ-
ated Alexander polynomial. If M = S3 \ K is fibered over the circle with fiber S

and monodromy φ, then �S(t) is the characteristic polynomial of the homologi-
cal monodromy φhom : H1(S;R) → H1(S;R) (this can be deduced from either the
Fox calculus or the Seifert algorithm for finding �S(t); see, for example, [24]).
Given any mapping class φ on a surface S, write �S,φ(t) for the characteristic
polynomial of the homological monodromy. It follows that if K is a fibered link
with monodromy (S,φ), and �K(t) is the Alexander polynomial of K , then we
have

�K(t) = �S(t) = �S,φ(t).

There are few restrictions on the Alexander polynomial: any monic reciprocal
polynomial can be realized as �S,φ(t) up to multiples of t and (t − 1), where
(S,φ) is the monodromy of some fibered link [12]. The story is different when
we confine ourselves to alternating knots and links: those that admit a planar pro-
jection such that over and under crossings are alternating. Murasugi [18] showed
that if S is the Seifert surface defined by an alternating planar projection, then
�(−t) has degree 2g, and the coefficients for the powers tk are all strictly pos-
itive or strictly negative for 0 ≤ k ≤ 2g. This implies, for example, that any real
root of �(t) must be positive.

In 2002, Hoste conjectured the following:

Conjecture 2 (Hoste). For alternating knots, the real part of any zero of the
Alexander polynomial is strictly greater than −1.

A lower bound on the real part of roots of �(t) was found by Lyubich and Mura-
sugi [15] for two-bridge links. The results were later improved by Koseleff and
Pecker [13] and Stoimenow [27]. Hirasawa and Murasugi [7] showed that for a
large class of alternating links, the roots of the Alexander polynomial are real and
positive, a property of integer polynomials known as real stability.

Our first result is the following:
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Theorem 3. If (S,φ) is an alternating-sign Coxeter mapping class, then
�(S,φ)(t) has real stability. In particular, the Alexander polynomial of an al-
ternating Coxeter link has real stability.

Fox’s trapezoidal conjecture concerns the coefficients of Alexander polynomials
of alternating knots.

Conjecture 4 ([4]). Let �(t) = a2gt
2g + · · · + a0 be the Alexander polynomial

of an alternating knot. Then there exists an integer k satisfying 0 ≤ k ≤ g such
that

|a0| < · · · < |ak| = · · · = |a2g−k| > · · · > |a2g|.
The trapezoidal conjecture has been verified for several classes of alternating
knots, for example, for algebraic alternating knots by Murasugi [19] and alter-
nating knots of genus two by Ozsváth and Szabó [22] and Jong [11].

Real stability implies the trapezoidal property for integer polynomials. The
coefficient sequence of a polynomial a2gt

2g + · · · + a0 ∈ R[t] with only positive
real roots is strictly log-concave, that is,

a2
i > ai−1ai+1

for all i = 2, . . . ,2g − 1; see, for example, [29]. Thus, the trapezoidal property of
Alexander polynomials of alternating Coxeter links follows from Theorem 3 (cf.
[7]). More generally, we have the following:

Corollary 5. If (S,φ) is an alternating-sign Coxeter mapping class, then
�(S,φ)(t) is trapezoidal. In particular, alternating-sign Coxeter links have trape-
zoidal Alexander polynomials.

1.2. Bi-orderable Groups

A second application of Theorem 3 is the bi-orderability of knot groups and fun-
damental groups of 3-manifolds.

A group G is bi-orderable if it admits a total order < on G that is compatible
with the group operation, that is,

a ≤ b and c ≤ d implies ac ≤ bd.

Perron and Rolfsen showed that if all the eigenvalues of the homological action
of a surface homeomorphism φ are real and positive, then the fundamental group
of its mapping torus is bi-orderable [20; 21]. Thus, Theorem 3 has this immediate
consequence.

Corollary 6. The mapping torus of an alternating-sign Coxeter mapping class
has bi-orderable fundamental group.
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1.3. Dilatations of Mapping Classes

A mapping class on an oriented compact surface S of finite type is a self-
homeomorphism up to isotopy relative to the boundary. The homological di-
latation λhom of a mapping class φ is the largest eigenvalue (in modulus) of the
characteristic polynomial of the action of φ on first homology. By the Nielsen–
Thurston classification theorem the mapping classes fall into three types: those
that are periodic, nonperiodic but preserving the isotopy class of a simple closed
multicurve, and pseudo-Anosov. The third type is the most general and has the
property that for some pair of transverse measured singular foliations (F±, ν±),
the mapping class stretches the measure ν− by λ and ν+ by λ−1 for some λ > 1.
The constant λgeo = λ is the (geometric) dilatation of the mapping class. The
homological and geometric dilatations are related as follows:

λhom(φ) ≤ λgeo(φ)

with equality if and only if φ is orientable, that is, its invariant foliations F± are
orientable (see, e.g., [3]).

The mapping torus of a mapping class (S,φ) is the three-dimensional manifold

M = M(S,φ) = S × [0,1]/(x,1) ∼ (φ(x),0).

By a theorem of Thurston [28], this manifold admits a hyperbolic structure if
and only if φ is pseudo-Anosov. The associated fibration M → S1 defines a sur-
jective homomorphism π1(M) → Z and a corresponding Alexander polynomial
�(S,φ)(t).

We show that the dilatation of alternating-sign Coxeter mapping classes is
monotonic with respect to graph inclusion. Thus, the minimum dilatation for
alternating-sign Coxeter mapping classes is achieved by the alternating-sign A2

graph, which in turn is geometrically realized by the figure eight knot.

Theorem 7. The minimum homological and geometric dilatation of alternating-

sign Coxeter mapping classes is the square of the golden ratio 3+√
5

2 and is geo-
metrically realized as the monodromy of the figure eight knot.

Remark 8. By a result of McMullen [17] the spectral radius of the classical Cox-
eter transformations is minimized by the E10 Coxeter graph, also known as the
(2,3,7) star-like graph [16]. The associated Coxeter link is the (−2,3,7)-pretzel
link [8], and the dilatation of its monodromy is the conjectural smallest Salem
number, known as Lehmer’s number [14], which is smaller than the square of the
golden ratio.

Remark 9. By contrast to Theorem 7, when dropping the assumption of alter-
nating signs, it is possible to find mixed-sign Coxeter graphs whose associated
mapping classes have dilatation arbitrarily close to 1 (see [9]).
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1.4. Organization

In Section 2 we recall some definitions and properties of classical Coxeter systems
and generalize them to mixed-sign Coxeter systems. The analog of Alexander
polynomials for Coxeter systems is the Coxeter polynomial, the characteristic
polynomial of the Coxeter transformation. For bipartite alternating-sign Coxeter
systems, we prove real stability for the Coxeter polynomial and the interlacing
property. Section 3 discusses geometric realizations of alternating-sign Coxeter
systems and contains proofs of Theorems 3 and 7.

2. Bipartite Coxeter Graphs

A mixed-sign Coxeter graph is a pair (�, s), where � is a finite connected graph
without self- or double edges, and s is an assignment of a sign + or − to every
vertex vi of �. Let RV� be the vector space of R-labelings of the vertices of �.
For v ∈ V� , let [v] be the corresponding element of RV� giving the label 1 on
v and 0 on all other vertices of �. The real vector space RV� is equipped with
a symmetric bilinear form B given by B([vi], [vi]) = −2 · s(vi) and otherwise
B([vi], [vj ]) = aij , where A = (aij ) is the adjacency matrix of �. With every
vertex vi , we associate a reflexion si about the hyperplane of RV� perpendicular
to [vi], given by the formula

si([vj ]) = [vj ] − 2
B([vi], [vj ])
B([vi], [vi]) [vi].

The Coxeter transformation is the product C = s1 · · · sn of all these reflections.
For trees, this product does not depend, up to conjugation, on the order of mul-
tiplication [26], but in general it does. For bipartite Coxeter graphs �, however,
there is a distinguished conjugacy class, the bipartite Coxeter transformation C+−
given by C+− = C+C−, where C+ is any product of all the reflections corre-
sponding to vertices in one part of the partition, and C− is any product of all the
reflections corresponding to vertices in the other part. This is well defined since
all the reflections corresponding to vertices in one part of the partition commute
pairwise.

If all signs s of a bipartite Coxeter graph are positive, then theorems of
A’Campo and McMullen state that the eigenvalues of the bipartite Coxeter trans-
formation are on the unit circle or positive real and that the spectral radius is
monotonic with respect to graph inclusion [1; 17]. We now prove analogs of these
theorems for alternating-sign Coxeter graphs, the case where the bipartition of
the graph � is defined by the signs s.

Proposition 10. Let (�, s) be an alternating-sign Coxeter graph. Then the eigen-
values of the bipartite Coxeter transformation C+− are real and strictly negative.

Proof. Let (�, s) be an alternating-sign Coxeter graph. Number the vertices of �

starting with all the positive ones and then proceeding to the negative ones. With
this vertex numbering, the adjacency matrix A = A(�) of � becomes a 2 × 2-
block matrix with zero blocks on the diagonal and blocks X and X� in the upper



804 Eriko Hironaka & Livio Liechti

right and lower left, respectively. Using the formula for the si , we have that the
products C+ and C− corresponding to the partition are given by

C+ =
(−I X

0 I

)
, C− =

(
I 0

−X� −I

)
.

Multiplication of C+ and C− shows that the bipartite Coxeter transformation
C+− = C+C− is symmetric. Therefore, C+− has only real eigenvalues. It is left
to show that there are no positive eigenvalues. Note that (C+ + C−)2 = −A(�)2.
Furthermore, by expanding we obtain

(C+ + C−)2 = 2I + C+− + C−1+−,

and thus, for any eigenvalue λ ∈ R of C+−, we have

2 + λ + λ−1 = −α2,

where α is some eigenvalue of the adjacency matrix A(�). It follows that
2 + λ + λ−1 is a nonpositive real number since α is a real number. In partic-
ular, every eigenvalue λ of the alternating-sign Coxeter transformation C+− is
strictly negative. �

2.1. Interlacing Property

Let � and �′ be alternating-sign Coxeter graphs such that � is a subgraph of �′.
We say that �′ is obtained from � by a vertex extension if the vertex set of �′
contains one more element w than the vertex set of � and if the edges of � are
precisely the edges of �′ that do not have w as an endpoint.

Proposition 11. Let (�, s) and (�′, s′) be two alternating-sign Coxeter graphs.
If �′ is a vertex extension of �, then the eigenvalues of the bipartite Coxeter
transformations C+− and C′+− are interlaced, that is, if α1 ≤ · · · ≤ αs are the
eigenvalues of C+−(�), and β1 ≤ · · · ≤ βs+1 are the eigenvalues of C+−(�′),
then

β1 ≤ α1 ≤ β2 ≤ · · · ≤ αs ≤ βs+1.

Proof. Let (�, s) be an alternating-sign Coxeter graph with bipartite Coxeter
transformation C+−. From the proof of Proposition 10 we recall that the eigen-
values of C+− are in one-to-one correspondence with the eigenvalues of the ad-
jacency matrix A(�). More precisely, the correspondence is given by

−α2 = 2 + λ + λ−1,

where λ and α are eigenvalues of C+− and A(�), respectively. Since � is bi-
partite, the eigenvalues of A(�) are symmetric with respect to the origin [2].
Furthermore, since max(|λ|, |λ|−1) is monotonically increasing with respect to
α2, there exists a monotonic transformation of R taking the eigenvalues of A(�)

to the eigenvalues of C+−. Now let (�′, s′) be an alternating-sign Coxeter graph
with bipartite Coxeter transformation C′+− such that �′ is a vertex-extension of �.
Then the eigenvalues of A(�) and A(�′) are interlaced [2], and therefore so are
the eigenvalues of C+− and C′+−. �
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Figure 1

Proposition 12. The minimum spectral radius for an alternating-sign Coxeter
transformation is realized by the alternating-sign A2 Coxeter graph, and the spec-
tral radius is the square of the golden mean.

Proof. Noting that every nontrivial alternating-sign Coxeter graph is a (perhaps
multiple) vertex extension of the alternating-sign A2 graph, the statement follows
from Proposition 11. �

Remark 13. If a bipartite graph � is a subgraph of another bipartite graph �′
with one more vertex but �′ is not a vertex-extension of �, then the eigenval-
ues of the corresponding adjacency matrices need not be interlaced. Choosing �

and �′ as in Figure 1, the eigenvalues of the adjacency matrix of � are given by
{−√

3,−1,0,1,
√

3}, and the eigenvalues of the adjacency matrix of �′ are given
by {−3,0,0,0,0,3}. In particular, these eigenvalues are not interlaced. However,
focusing on the largest eigenvalue, it is still true that the spectral radius is mono-
tonic under graph inclusion.

Proposition 14. Let (�, s) and (�′, s′) be two alternating-sign Coxeter graphs.
If � is a subgraph of �′, then the spectral radius of C+− is less than or equal to
the spectral radius of C′+−.

Proof. The proof is basically the same as that of Proposition 11. However, instead
of interlacing (which does not necessarily apply in the case of noninduced sub-
graphs), we use Perron–Frobenius theory and the fact that A(�) is dominated by
a submatrix of A(�′). �

Remark 15. General Coxeter graphs are defined with arbitrary edge weights
mij ≥ 3. The corresponding entries aij of the adjacency matrix are then defined
to be aij = 2 · cos(2π/mij ). Although we formulated Propositions 10 and 14 for
constant edge-weights mij = 3, they also hold in this generalized context. Propo-
sition 10 holds without change of wording. For Proposition 14, we must add the
assumption that when � is a subgraph of �′, every edge-weight of � is less than
or equal to the edge-weight of �′.

3. Geometric Realization

In this section, we associate fibered alternating links and more general mapping
tori to alternating-sign Coxeter graphs (�, s).
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3.1. Mapping Classes from Mixed-Sign Coxeter Systems

Mixed-sign Coxeter systems, defined by Coxeter graphs with ordered signed ver-
tices, are useful for building examples of mapping classes.

As in the classical (or positive-sign) case, a mixed-sign Coxeter graph with
n vertices defines a subgroup of the general linear group GL(n,R) generated by
reflections. In the classical case the reflections preserve an associated symmetric
bilinear form 2I − A, where A is the adjacency matrix of the Coxeter graph. For
a mixed-sign Coxeter system, the bilinear form is given by 2Is − A, where Is
is a diagonal matrix with ±1 entries on the diagonal depending on the signs s

assigned to vertices of the Coxeter graph. For mixed-sign Coxeter graphs, just as
for classical ones, we can explicitly construct mapping classes whose homological
monodromy is conjugate to the Coxeter transformation up to sign [8; 9; 14; 28].

Classical bipartite Coxeter systems have been shown to have many useful prop-
erties. A’Campo showed that all eigenvalues of the Coxeter transformation are
real or lie on the unit circle. This condition is sometimes called bistability [7].
Since the traces of the eigenvalues over the reals are related to the eigenvalues
of the adjacency matrix of the Coxeter graph, the eigenvalues satisfy an inter-
lacing theorem. McMullen [17] used this to prove monotonicity of the spectral
radius of Coxeter transformations with respect to graph inclusion and found a
sharp lower bound for the gap between 1 and the next smallest spectral radius of
Coxeter transformations. It follows, in particular, that the classical Coxeter map-
ping classes associated to bipartite classical Coxeter graphs that are not spherical
or affine have dilatation bounded from below by Lehmer’s number, which is ap-
proximately 1.17628 [14].

Remark 16. By contrast to Theorem 3, A’Campo [1] showed that for any classical
bipartite Coxeter graph that is not spherical or affine, the roots of the correspond-
ing Coxeter polynomials are either on the unit circle or positive real, with at least
one root greater than 1. If Hoste’s conjecture is true, then this gives a homologi-
cal proof of the fact that the knots associated to classical bipartite Coxeter graphs
that are not spherical or affine can never be alternating. This can also be proved
independently: such a knot is positive, that is, it has a diagram with only positive
crossings. For the signature |σ | and genus g, we have |σ | < 2g since 2g equals the
number of vertices and |σ | equals the signature of the bilinear form 2I − A. But
for knots that are both positive and alternating, we have |σ | = 2g, for example, by
properties of Rasmussen’s s-invariant [23].

Let L be an arrangement of line segments in the plane whose intersection graph
equals �. That is, with each vertex v of �, there is an associated line segment
�v in L, and two line segments in L intersect if the corresponding vertices are
connected by an edge of �. A planar realization of � is an embedding of L in R2

with coordinate axes x and y, so that if s(v) = 1, then �v is parallel to the y-axis,
and if s(v) = −1, then �v is parallel to the x-axis.

If � has a planar realization, then we thicken the �v into rectangular strips �v ×
[−1,1] (resp., [−1,1] × �v), so that each segment �v is identified with �v × {0}
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Figure 2

Figure 3

Figure 4

(resp., {0} × �v). If v and w are adjacent on �, then the rectangular strips �v and
�w are glued together at right angles as in Figure 2. The thickenings and gluings
can be made so that all rectangular strips in each bipartite partition are parallel
to one another. A planar realization is fillable if it is possible to attach (possibly
nonconvex) polygons to the planar graph along closed cycles, so that the interior
of the polygon does not include any endpoint of a line segment. Figure 3 gives
an example of a fillable planar realization, and Figure 4 gives an example of a
nonfillable planar realization.

Think of the planar realization as being embedded in S3. Let S be the filled
planar realization after gluing together each end of the horizontal strips to its
opposite with a single positive full twist, and the end of each vertical strip to its
opposite by a single negative full twist. The boundary of S is a link K ⊂ S3 with
distinguished Seifert surface S. We call (K,S) a Coxeter link associated to �.
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Figure 5

Proposition 17. If � is an alternating-sign Coxeter graph with a fillable planar
realization, then any associated Coxeter link is alternating.

Proof. The link K has an alternating planar diagram coming from drawing each
vertical and horizontal Hopf band as in Figure 5. Here the shaded rectangle is the
original neighborhood of the line segment associated with a vertex of �. The signs
indicate over (+) and under (−) crossings. Thus, we can see that for each vertex
v ∈ V� , when proceeding along �v , there is always a − sign on the right and a
+ sign on the left, where − indicates an upcoming underpass, and + indicates
an upcoming overpass. Since the signs are consistent on vertical and horizontal
segments (− appears on the right, and + appears on the left, no matter from which
direction you approach an endpoint of a segment), the link K is alternating. �

Proposition 18. The Coxeter link of an alternating-sign Coxeter graph is fibered,
and the homological monodromy is conjugate to −C+−.

Proof. Since the surface S can be obtained from a disk by Hopf plumbings, the
boundary of S is a fibered link K with fiber S. All the strips become annuli on S.
The monodromy of the fibration is the product of right or left Dehn twists around
core curves of the annuli, right or left being determined by whether the twist is
positive or negative [5; 18; 25].

Let V� be the set of vertices of �. For v ∈ V� , let γv be the closed curve
defined by �v . Then the homology classes [γv] form a basis for H1(S;R), and the
monodromy φ of S is the product of positive Dehn twists on γv for v such that
s(v) = 1 composed with the product of negative Dehn twists on γv for v such that
s(v) = −1. Let RV� be the vector space of R-labelings of the vertices. For v ∈ V� ,
let [v] be the corresponding element of RV� giving the label 1 on v and 0 on all
other vertices of �. There is a commutative diagram

RV�

−C+−

H1(S;R)

φ∗

RV� H1(S;R)

where the horizontal arrows taking [v] to [γv] are isomorphisms.
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Figure 6

The Coxeter transformation decomposes as

C+− = C+C− = −M(MT )−1,

where M = −C+; see [10]. By construction, M is also the Seifert matrix for S in
S3 \ K with respect to the generators for homology given by the core curves of
the attached Hopf bands. Thus,

φ∗ = (MT )−1M

(see, e.g., [24]) and is conjugate to −C+−. �

Corollary 19. The Alexander polynomial �(t) satisfies

�(t) = c(−t),

where c(t) is the characteristic polynomial of the Coxeter transformation C+−
of �.

Proof. The Alexander polynomial �S(t) is the characteristic polynomial of
M(MT )−1 = −C+−. �

Example 20. Figure 6 gives an example of an alternating-sign Coxeter graph and
fillable planar realization.

Then

C+ =

⎡
⎢⎢⎢⎢⎣

−1 0 0 1 1
0 −1 0 1 1
0 0 −1 0 1
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , C− =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

−1 −1 0 −1 0
−1 −1 −1 0 −1

⎤
⎥⎥⎥⎥⎦ .

Setting the orientation on the Seifert surface S so that the shaded area is oriented
positively toward the viewer, we see that −C+ is the Seifert matrix and

C− = −(CT+)−1.
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Figure 7

The Coxeter transformation is given by

C+− = C+C− = −

⎡
⎢⎢⎢⎢⎣

3 2 1 1 1
2 3 1 1 1
1 1 2 0 1
1 1 0 1 0
1 1 1 0 1

⎤
⎥⎥⎥⎥⎦ .

The associated Alexander and Coxeter polynomials are:

�(t) = t5 − 10t4 + 27t3 − 27t2 + 10t − 1,

c(t) = t5 + 10t4 + 27t3 + 27t2 + 10t + 1.

Remark 21. The link associated to a Coxeter graph is not uniquely determined by
the combinatorics of the graph. Figure 7 shows two different planar embeddings
of a Coxeter graph. The two links realizing these embeddings are distinct: one
of them has an unknotted component, whereas the other does not. Although for
a large class of classical Coxeter trees, two different planar embeddings always
yield distinct but mutant links by a theorem of Gerber [6], we do not know whether
the same holds in the alternating-sign case.

In general, even if � does not have a planar realization, it is possible to find a
surface S and a system of simple closed curves {γv} in one-to-one correspondence
with V� such that:

(1) the intersection matrix of the γv equals the adjacency matrix for V� ; and
(2) the complementary components of the union of γv are either disks or bound-

ary parallel annuli

(see, e.g., [9]). Since � is bipartite, the system of curves partitions into two multi-
curves γ+ and γ− that intersect transversally. Let τ+ and τ− be the positive Dehn
twist along γ+ and the negative Dehn twist along γ−, respectively. Let φ = τ+τ−.
We call (S,φ) a geometric realization of (�, s).
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Lemma 22. Let E be the set of eigenvalues of −C+−, and let F be the set of
eigenvalues of the homological action of φ. Then

F \ {1} ⊂ E \ {1}.
Proof. The proof follows along the same lines as the proof of Proposition 18, the
only difference being that the horizontal arrows in the commutative diagram need
not be one-to-one or onto. The cokernel is generated by boundary parallel curves
whose homology classes are fixed by φ∗, and hence their homology classes are
contained in the eigenspace for 1. �

Let (S,φ) be a geometric realization of an alternating-sign Coxeter graph (�, s).
Then the eigenvalues of the homological action of φ are real and strictly positive
by Proposition 10 and Lemma 22. This implies Theorem 3. Similarly, Theorem 7
follows directly from Proposition 12 and Lemma 22.

Combining Proposition 11 with Corollary 19, we also have the following in-
terlacing result.

Theorem 23. If K ′ and K are alternating-sign Coxeter links associated with
�′ and �, respectively, where �′ is a vertex extension of �, then the roots of the
Alexander polynomial of K ′ and that of K are interlacing.

Acknowledgments. The authors are grateful to N. A’Campo, S. Baader, K.
Murasugi, and to the anonymous referee for their helpful comments and sugges-
tions.
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