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Cut Limits on Hyperbolic Extensions

Pedro Ontaneda

Abstract. Hyperbolic extensions were defined and studied in [4]. Cut
limits of families of metrics were introduced in [5]. In this paper, we
show that if a family of metrics {hλ} has cut limits, then the family of
hyperbolic extensions {Ek(hλ)} also has cut limits.

The results in this paper are used in the problem of smoothing
Charney–Davis strict hyperbolizations [2; 3].

1. Introduction

This paper deals with the relationship between two concepts: “hyperbolic exten-
sions”, which were studied in [4], and “cut limits of families of metrics”, which
were defined in [5]. Before stating our main result, we first introduce these con-
cepts here.

1.1. Hyperbolic Extensions

Recall that the hyperbolic n-space Hn is isometric to Hk ×Hn−k with warp prod-
uct metric (cosh2 r)σHk + σHn−k , where σHl denotes the hyperbolic metric of Hl ,
and r : Hn−k → [0,∞) is the distance to a fixed point in Hn−k . For instance, in
the case n = 2, since H1 = R1, we have that H2 is isometric to R2 = {(u, v)} with
metric cosh2 v du2 + dv2. The concept of “hyperbolic extension” is a generaliza-
tion of this construction; we explain this in the next paragraph.

Let (Mn,h) be a complete Riemannian manifold with center o = oM ∈ M , that
is, the exponential map expo : ToM → M is a diffeomorphism. The warp product
metric

f = (cosh2 r)σHk + h

on Hk × M is the hyperbolic extension (of dimension k) of the metric h. Here
r is the distance-to-o function on M . We write Ek(M) = (Hk × M,f ) and f =
Ek(h). We also say that Ek(M) is the hyperbolic extension (of dimension k) of
(M,h) (or just of M). Hence, for instance, we have Ek(H

l ) = Hk+l . Also, write
Hk = Hk × {oM} ⊂ Ek(M), and we have that any p ∈ Hk is a center of Ek(M)

(see Remarks 2.3 (3)).

Remarks 1.1.

1. Let Mn have center o. Using a fixed orthonormal basis on ToM and the
exponential map, we can identify M with Rn, and M − {o} with Rn − {0} =
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Sn−1 × (0,∞). Hence, the spheres Sn−1 × {r} ⊂ Sn−1 × (0,∞) are geodesic
spheres, and the rays t �→ tv = (v, t) ∈ Sn−1 × (0,∞) = M − {o}, are distance-
minimizing geodesic rays emanating from the center.

2. Let g′ be another metric on M . Suppose we can write g′ = g′
r + dr2 on

Sn−1 × (0,∞) = M − {o} (this last identification is done using g). Then the geo-
desic spheres around o and the geodesics emanating from o for g and g′ coincide.

1.2. Cut Limits

Before we talk about “cut limits”, we need some preliminary definitions and facts.
Let (Mn,g) have center o. Then the metric g (outside the center) has the form
g = gr + dr2. Here we are identifying (see Remarks 1.1) the space M − {o} with
Sn−1 × (0,∞), and thus each gr is a metric on the sphere Sn−1.

Examples.

1. The Euclidean metric σRn on Rn can be written as σRn = gr + dr2 with
gr = r2σSn−1 , where σSn−1 is the round metric on the sphere Sn−1.

2. The hyperbolic metric σHn on Rn can be written as σHn = gr + dr2 with
gr = sinh2(r)σSn−1 .

Let (M,g) have center o and write g = gr + dr2. Let r0 > 0. We can think of the
metric gr0 as being obtained from g = gr + dr2 by “cutting” g along the sphere
of radius r0, so we call the metric gr0 on Sn−1 the spherical cut of g at r0. Let

ĝr0 =
(

1

sinh2(r0)

)
gr0 . (1.1)

We call the metric ĝr0 on Sn−1 given by (1.1) the normalized spherical cut of g

at r0. In the particular case that g = gr + dr2 is a warped-by-sinh metric, we have
gr = sinh2(r)g′ for some fixed g′ independent of r . In this case, the spherical cut
of g = sinh2(r)g′ + dt2 at r0 is sinh2(r0)g

′, and the normalized spherical cut at
r0 is ĝr0 = g′.

Example. If g = σHn = sinh2(r)σSn−1 + dr2, then the normalized spherical cut
at r0 is (σ̂Hn)r0 = σSn−1 , and the spherical cut at r0 is sinh2(r0)σSn−1 .

Let (Mn,g) have center o. We now consider families of metrics {gλ}λ>λ0 on M

of the form gλ = (gλ)r + dr2. Here λ0 > 0, and the identification M − {o} =
Sn−1 × (0,∞) is done using g; see Remarks 1.1. We call such a family an �-
family of metrics on (M,g). (We use the symbol � to evoke the idea that all
metrics gλ have a common center and spheres.) The reason we are interested in
these families is that they are key ingredients in Riemannian hyperbolization [3]
(also see [5]). Moreover, Main Theorem in this paper is used in [3].

Let b ∈ R. By cutting each gλ at b + λ we obtain a one-parameter family
{(̂gλ)λ+b}λ of metrics on the sphere Sn−1. (The metric (̂gλ)λ+b is the normal-
ized spherical cut of gλ at λ + b.) Here λ > max{λ0,−b}, so that the definition



Cut Limits on Hyperbolic Extensions 705

makes sense. We say that the {gλ} has cut limit at b if this family C2-converges
as λ → ∞. That is, there is a C2 metric ĝb∞ on Sn−1 such that

|(̂gλ)λ+b − ĝb∞|C2(Sn−1) −→ 0 as λ → ∞. (1.2)

Here the arrow means convergence in the C2-norm on the space of C2 metrics
on Sn−1.

Remark 1.2. The C2 norm is taken with respect to a fixed locally finite atlas with
extendable charts, that is, charts that can be extended to the (compact) closure of
their domains.

Let I ⊂ R be an interval (compact or noncompact). We say that the �-family {gλ}
has cut limits on I if the convergence in (1.2) is uniform with compact supports in
the variable in b ∈ I . Explicitly this means: for every ε > 0 and compact K ⊂ I ,
there is λ∗ such that |(̂gλ)λ+b′ − ĝ∞+b′ |C2(Sn−1) < ε for λ > λ∗ and b′ ∈ K .

Remark 1.3. Equivalently, the �-family {gλ} has cut limits on I if for every ε > 0
and b ∈ I , there are λ∗ and a neighborhood U of b in I such that |(̂gλ)λ+b′ −
ĝ∞+b′ |C2(Sn−1) < ε for λ > λ∗ and b′ ∈ U .

If {gλ} has cut limits on I , then it has a cut limit at every b ∈ I . Finally, we say
that {gλ} has cut limits if {gλ} has cut limits on R.

Remark 1.4. If {gλ}λ is a family of metrics, then {gλ(λ′)}λ′ is a reparameteri-
zation of {gλ}λ, where λ′ �→ λ(λ′) is a change of variables. For instance, if we
use translations, then the following holds: {gλ}λ has cut limits at b if and only if
{gλ′+a}λ′ has cut limits at b + a; here the change of variables is λ = λ′ + a.

1.3. Statement of Main Result

Here is a natural question:

Question. If {hλ}λ has cut limits, does {Ek(hλ)}λ have cut limits?

Remark. More generally, we can ask whether {Ek(hλ)}λ′ has cut limits, where
λ = λ(λ′). Of course, the answer would depend on the change of variables λ =
λ(λ′).

Our main result gives an affirmative answer to this question, provided that the
family {hλ} is, in some sense, nice near the origin. Explicitly, we say that {hλ}λ>λ0

is hyperbolic around the origin if there is B ∈ R such that

(̂hλ)λ+b = σSn−1

for every b ≤ B and every λ > max{λ0,−b}. Note that this implies that each hλ is
canonically hyperbolic on the ball of radius λ + B , that is, hλ = sinh2(r)σSn−1 +
dr2 on the ball of radius λ+B . Examples of �-families that are hyperbolic around
the origin are families obtained using hyperbolic forcing [5].
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As mentioned before, our main result answers affirmatively the question
posed. Moreover, it also says that some reparameterized families {Ek(hλ)}λ′
have cut limits as well for certain change of variables λ = λ(λ′). Write λ =
λ(λ′, θ) = sinh−1(sinh(λ′) sin θ) for a fixed θ . We say that {Ek(hλ)}λ′ is the θ -
reparameterization of {Ek(hλ)}λ. Note that if we consider a hyperbolic right tri-
angle with one angle equal to θ and side (opposite to θ ) of length λ, then λ′
is the length of the hypotenuse of the triangle. All θ -reparameterizations, in the
limit λ′ → ∞, differ just by translations; that is, a simple calculation shows that
limλ′→∞ λ(λ′) − λ′ = ln sin θ . We are now ready to state our main result.

Main Theorem. Let M have center o. Let {hλ}λ be an �-family of metrics on M .
If {hλ}λ is hyperbolic around the origin and has cut limits, then, for every θ ∈
(0,π/2], the θ -reparameterization {Ek(hλ)}λ′ has cut limits.

Note that θ = π/2 gives λ = λ′, answering the question posed. The paper is struc-
tured as follows. In Section 2, we review some facts about hyperbolic extensions.
In Section 3, we introduce useful coordinates on the spheres of a hyperbolic ex-
tension. In Section 4, we study normalized spherical cuts on hyperbolic exten-
sions. Finally, in Section 5, we deal with cut limits in a bit more detail and prove
Main Theorem.

2. Hyperbolic Extensions

Notational convention: we will denote all fixed centers on manifolds by the same
letter “o”. If the manifold M needs to be specified, then we will write o = oM ,
which means that o is a center in M .

Note that Hk is convex in Ek(M) (see [1, p. 23]). Let η be a complete geodesic
in M passing though o, and let η+ be one of its two geodesic rays (beginning
at o). Then η is a totally geodesic subspace of M , and η+ is convex (see [4]).
Also, let γ be a complete geodesic in Hk . The following two results are proved in
Section 3 of [4].

Lemma 2.1. The subspace γ × η+ is convex in Ek(M), and γ × η is totally geo-
desic in Ek(M).

Corollary 2.2. The subspaces Hk × η+ and γ × M are convex in Ek(M). Also,
Hk × η is totally geodesic in Ek(M).

Remarks 2.3.

1. By convexity we mean the following: a set A is convex if given two points
in A, any distance minimizing geodesic joining these points lies in A.

2. As pointed out in Section 3 of [4], the proof of Lemma 2.1 (which is
Lemma 3.1 in [4]) can easily be adapted to show that {y} × M are convex in
Ek(M). Alternatively, it is not hard to prove that {y} × M is convex in γ × M ;
this, together with Corollary 2.2, implies that {y} × M are convex in Ek(M).
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3. Note that Hk × η (with metric induced by Ek(M)) is isometric to Hk × R

with warp product metric cosh2 vσHk + dv2, which is just the hyperbolic (k + 1)-
space Hk+1. Also, γ × η is isometric to R × R with warp product metric
cosh2 v du2 + dv2, which is just the hyperbolic 2-space H2. In particular, every
point in Hk = Hk × {o} ⊂ Ek(M) is a center point.

As before, we use h to identify M − {o} with Sn−1 × R+. Sometimes, we will
denote a point v = (u, r) ∈ Sn−1 × R+ = M − {o} by v = ru. Fix a center
o ∈ Hk ∈ Ek(M). Then, for y ∈ Hk − {o}, we can also write y = tw, (w, t) ∈
Sk−1 × R+. Similarly, using the exponential map, we can identify Ek(M) − {o}
with Sk+n−1 × R+, and for p ∈ Ek(M) − {o}, we can write p = sx, (x, s) ∈
Sk+n−1 ×R+.

We denote the metric on Ek(M) by f , and we can write f = fs + ds2. Since
Hk is convex in Ek(M), we can write Hk −{o} = Sk−1 ×R+ ⊂ Sk+n−1 ×R+ and
Sk−1 ⊂ Sk+n−1.

A point p ∈ Ek(M) − Hk has two sets of coordinates: the polar coordinates
(x, s) = (x(p), s(p)) ∈ Sk+n−1 × R+ and the hyperbolic extension coordinates
(y, v) = (y(p), v(p)) ∈ Hk × M . Write Mo = {o} × M . Therefore, we have the
following functions:

the distance to o function:

s : Ek(M) → [0,∞), s(p) = dEk(M)(p, o);
the direction of p function:

x : Ek(M) − {o} → Sn+k−1, p = s(p)x(p);
the distance to Hk function:

r : Ek(M) → [0,∞), r(p) = dEk(M)(p,Hk);
the projection on Hk function:

y : Ek(M) → Hk;
the projection on M function:

v : Ek(M) → M;
the projection on Sn−1 function:

u : Ek(M) −Hk → Sn−1, v(p) = r(p)u(p);
the length of y function:

t : Ek(M) → [0,∞), t (p) = dHk (y(p), o);
the direction of y function:

w : Ek(M) − Mo → Sk−1, y(p) = t (p)w(p).

Note that r = dM(v, o). Note also that, by Lemma 2.1, the functions w and u

are constant on geodesics emanating from o ∈ Ek(M), that is, w(sx) = w(x) and
u(sx) = u(x).

Let ∂r and ∂s be the gradient vector fields of r and s, respectively. Since the
M-fibers My = {y} × M are convex, the vectors ∂r are the velocity vectors of the
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speed one geodesics of the form a �→ (y, au), u ∈ Sn−1 ⊂ M . These geodesics
emanate from (and orthogonally to) Hk ⊂ Ek(M). Also, the vectors ∂s are the
velocity vectors of the speed one geodesics emanating from o ∈ Ek(M). For p ∈
Ek(M), denote by � = �(p) the right triangle with vertices o, y = y(p), p and
sides the geodesic segments [o,p] ∈ Ek(M), [o, y] ∈ Hk , [p,y] ∈ {y} × M ⊂
Ek(M). (These geodesic segments are unique and well defined because: (1) Hk

is convex in Ek(M), (2) (y, o) = o{y}×M and o are centers in {y} × M and Hk ⊂
Ek(M), respectively.)

Let α : Ek(M) −Hk → R be the angle between ∂s and ∂r (in that order); thus,
cosα = f (∂r , ∂s), α ∈ [0,π]. Then α = α(p) is the interior angle at p = (y, v) of
the right triangle � = �(p). We call β(p) the interior angle of this triangle at o,
that is, β(p) = β(x) is the spherical distance between x ∈ Sk+n−1 and the totally
geodesic subsphere Sk−1. Alternatively, β is the angle between the geodesic seg-
ment [o,p] ⊂ Ek(M) and the convex submanifold Hk . Therefore, β is constant on
each geodesic emanating from o ∈ Ek(M), that is, β(sx) = β(x). The following
corollary follows from Lemma 2.1 (see 3.1 in [4]).

Corollary 2.4. Let η+ (or η) be a geodesic ray (line) in M through o containing
v = v(p), and γ a geodesic line in Hk through o containing y = y(p). Then
�(p) ⊂ γ × η+ ⊂ γ × η.

Remark 2.5. Note that the right geodesic triangle �(p) has sides of lengths r =
r(p), t = t (p), and s = s(p). By Lemma 2.1 and Remarks 2.3 (3) we can consider
� as contained in a totally geodesic copy of the hyperbolic 2-space H2(p). The
plane H2(p) is well defined for p outside Hk ∪ ({o}×M). We will write H2(p) =
γw × ηu, where p = (y, v) ∈ Hk × M , y = tw, v = ru.

Hence, by Remark 2.5, using hyperbolic trigonometric identities, we can find re-
lations between r , t , s, α, and β . For instance, using the hyperbolic law of sines,
we get

sinh(r) = sin(β) sinh(s). (2.1)

In Section 4, we will need the following result.

Proposition 2.6. The following identity holds outside Hk ∪ ({o} × M):

(sinh2(s)) dβ2 + ds2 = cosh2(r) dt2 + dr2.

Proof. First, a particular case. Take M = R and k = 1; hence, Ek(M) = E1(R) =
H2. In this case, the left-hand side of the identity is the expression of the metric of
H2 in polar coordinates (β, s), and right-hand side of the equation is the expres-
sion of the same metric in the hyperbolic extension coordinates (r, t) = (v, y).
(Here r and t are “signed” distances.) Hence, the equation holds in this particular
case. This particular case, together with the fact that H2(p) is isometric to H2,
and the following claim prove the proposition.

Claim. The functionals dβ , ds, dt , dr , at p ∈Hk ∪({o}×M), are zero on vectors
perpendicular to H2(p).
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Proof. To prove the claim, let u be a vector perpendicular to H2(p) at p. Since
the ray s �→ sx(p) is contained in H2(p), we have that u is tangent to the sphere
of radius s(p) centered at o. Therefore, ds(u) = 0.

Next, we prove that dr(u) = 0 and dt (u) = 0. Note that u is a linear combi-
nation of vectors perpendicular to H2(p) that are either tangent to {y} × M or
Hk × {v}, where y = y(p) and v = v(p). Therefore, it is enough to assume that u

is tangent to {y} × M or Hk × {v}.
First, assume that u is perpendicular to H2(p) and tangent to {y}×M . Since u

is tangent to {y} × M , we get that dt (u). Since u is perpendicular to the ray r �→
rv in {y} × M (because this ray is contained in H2(p)), we get that dr(u) = 0.

Next, assume that u is perpendicular to H2(p) and tangent to Hk × {v}. Then
dr(u) = 0, and since u is perpendicular to the ray t �→ ty in Hk × {v} (because
this ray is contained in H2(p)), we get that dt (u) = 0.

Finally, the equation dβ(u) = 0 follows from ds(u) = 0, dt (u) = 0, dr(u) = 0,
the fact that β is a function of s, t , r , and the chain rule. This proves the claim
and concludes the proof of Proposition 2.6. �

�

3. Coordinates on the Spheres Ss(Ek(M))

Let Nn have center o. The geodesic sphere of radius r centered at o will be de-
noted by Sr = Sr (N), and we can identify Sr with Sn−1 × {r}.

Let M have center o and metric h. Consider the hyperbolic extension Ek(M) of
M with center o ∈ Hk = Hk × {o} ⊂ Ek(M) and metric f . Since Hk ⊂ Ek(M) is
convex, we can write Ss(Ek(M)) ∩Hk = Ss(H

k). Equivalently, (Sk+n−1 × {s}) ∩
Hk = Sk−1 × {s}. Write Mo = {o} × M . Also write

Ek(M) = Ek(M) − (Hk � Mo)

and

Ss(Ek(M)) = Ss(Ek(M)) ∩ Ek(M) = Ss(Ek(M)) − (Hk � Mo).

Note that the functions α and β are well defined and smooth on Ek(M) and that
0 < β(p) < π/2. Moreover, by Remark 2.5 the plane H2(p) = γw × ηu is well
defined for p ∈ Ek(M). As in Remark 2.5, here p = (y, v) ∈ Hk × M , y = tw,
v = ru. Recall that �(p) ⊂ H2(p) (see Corollary 2.4 and Remark 2.5).

By the identification between Sn+k−1 × {s} with Ss(Ek(M)) and Lemma 2.1
we have that H2(p) ∩ Ss(Ek(M)) gets identified with a geodesic circle S1(p) ⊂
Sn+k−1. Moreover, since H2(p) and Hk intersect orthogonally on γw , we have
that the spherical geodesic segment [x(p),w(p)]Sn+k−1 intersects Sk−1 ⊂ Sn+k−1

orthogonally at w. This, together with the fact that β < π/2, implies that
[x(p),w(p)]Sn+k−1 is a length-minimizing spherical geodesic in Sk+n−1 joining
x to w. Consequently, β = β(p) is the length of [x(p),w(p)]Sn+k−1 .

We now give a set of coordinates on Ss(Ek(M)). For p ∈ Ss(Ek(M)), define

�(p) = �s(p) = (w,u,β) ∈ Sk−1 × Sn−1 × (0,π/2),
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where w = w(p), u = u(p), β = β(p). Note that � is constant on geodesics
emanating from o ∈ Ek(M), that is, �(sx) = �(x).

Using hyperbolic trigonometric identities (e.g., identity (2.1)) we can find well-
defined and smooth functions r = r(s, β) and t = t (s, β) such that r , s, t are the
lengths of the sides of a right geodesic triangle on H2 with angle β opposite the
side with length r . With these functions, we can construct explicitly a smooth
inverse to �.

Remarks 3.1.

1. For (w,u) ∈ Sk−1 × Sn−1, we have

�((γw × ηu) ∩ Ss(Ek(M))) = {±w} × {±u} × (0,π/2).

By Lemma 2.1 the paths a �→ (±w,±u,a) are four spherical (open) geodesic
segments emanating orthogonally from Sk−1.

2. For w ∈ Sk−1, we have

�((γw × M) ∩ Ss(Ek(M))) = {±w} × Sn−1 × (0,π/2).

By Corollary 2.2 we have that this set is a spherical geodesic ball of radius π/2
and of dimension n (with its center deleted) intersecting Sk−1 orthogonally at w.
Note that the geodesic segments on this ball emanating from w are the spherical
geodesic segments of item 1 for all u ∈ Sn−1.

3. For w ∈ Sk−1 and r with 0 < r < s, we have

�((γw × Sr (M)) ∩ Ss(Ek(M))) = {w} × Sn−1 × β(r),

where β(r) is the angle of the right geodesic hyperbolic triangle with sides of
length s (opposite to the right angle) and r , opposite to β . By identity (2.1) we
have β = sin−1(sinh(r)/ sinh(s)).

4. Since the M-fibers {y}×M are orthogonal in Ek(M) to the Hk-fibers Hk ×
{v}, items 1, 2, and 3 imply that the Sk−1-fibers, the Sn−1-fibers, and (0,π/2)-
fibers are mutually orthogonal in Sk−1 × Sn−1 × (0,π/2) with the metric �∗f .

5. The map

�′ = (�, s) : Ek(M) → Sk−1 × Sn−1 × (0,π/2) ×R+

gives coordinates on Ek(M).

4. Spherical Cuts on Hyperbolic Extensions

Let (Nm,g) have center o. Recall from Introduction that the metric gr on Sr is
called the spherical cut of g at r and that the metric ĝr = (1/ sinh2(r))gr is the
normalized spherical cut of g at r .

Now let (Mn,h) have center o. Thus, we can write h = hr + dr2, where each
hr is a metric on Sn−1. As before, we denote by f = Ek(h) the hyperbolic ex-
tension of h, and we write f = fs + ds2 on Ek(M) − {o}; each fs is a metric
on Sn+k−1. We use the map � = �s of Section 3, which gives coordinates on
Ss(Ek(M)). Note that the metric �∗fs is a metric on Sk−1 ×Sn−1 × (0,π/2), and
it is the expression of fs in the �-coordinates.
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Proposition 4.1. The expression of fs in the �-coordinates is given by

�∗fs = (sinh2(s) cos2(β))σSk−1 + hr + (sinh2(s)) dβ2,

where r = sinh−1(sinh(s) sin(β)) (see identity (2.1)).

Remark 4.2. Note that the function r = r(s, β) is the same function used in
Introduction for the θ -reparameterizations λ = λ(λ′, θ).

Proof of Proposition 4.1. By Remarks 3.1 (4) we have that �∗fs has the form
A + B + C, where A(u,β) is a metric on Sk−1 × {u} × {β}, B(w,β) is a metric
on {w} × Sn−1 × {β}, and C(u,β) is a metric on {w} × {u} × (0,π/2), that is,
C = f (w,u,β)dβ2 for some positive function f .

Now, by definition we have

f = cosh2(r)σHk + hr + dr2 = cosh2(r)(sinh2(t)σSk−1 + dt2) + hr + dr2.

By Proposition 2.6 and the identity cosh(r) sinh(t) = sinh(s) cos(β) (which fol-
lows from the law of sines and the second law of cosines; also see identity (2.1))
we can write

fs + ds2 = f = (sinh2(s) cos2(β))σSk−1 + hr + (sinh2(s)) dβ2 + ds2.

This proves the proposition. �

Hence, Proposition 4.1 gives the expression of the spherical cut at s of the metric
f = Ek(h) in the �-coordinates. The next corollary does the same for the normal-
ized spherical cut f̂ of f at s.

Corollary 4.3. The expression of f̂s in the �-coordinates is given by

�∗(f̂s) = cos2(β)σSk−1 + sin2(β)ĥr + dβ2,

where r is as in Proposition 4.1.

Proof. Since sinh2(r)ĥr = hr and sinh2(s)f̂s = fs , the corollary follows from
Proposition 4.1 and identity (2.1). �

5. Cut Limits and Proof of Main Theorem

First, a bit of notation. Let (Nm,g) have center o. Recall that we can write the
metric on N −{o} = Sm−1 ×R+ as g = gr +dr2, where r is the distance to o. Let
A ⊂ Sm−1 be open and denote by CA the open cone A×R+ ⊂ Sm−1 ×R+ ⊂ M .
We write Ar = CA ∩ Sr (M) = A × {r}. We say that {gλ}λ is an �-family of
metrics over A if each gλ is a metric defined on CA and gλ and if it can be
written in the form gλ = (gλ)r + dr2 on CA. We say that the {gλ} has a cut limit
over A at b if there is a C2 metric ĝb∞ on A such that (1.2) holds, where the
arrow in (1.2) now means uniform convergence in the C2(A)-norm on the space
of C2 metrics on A ⊂ Sm−1. Also, cut limits over A on I and cut limits over A

are defined similarly.
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Let Mn have metric h and center o. As always, we identify M − {o} with
Sn−1 × R+ and M with Rn. Choose a center o ∈ Hk ⊂ Ek(M). Let {hλ}λ be an
�-family of metrics on M ; thus, o is a center for all hλ. Denote by fλ = Ek(hλ)

the hyperbolic extension of hλ. We have that {fλ}λ is an �-family on Ek(M).
From now on we assume θ ∈ (0,π/2] fixed. Next θ -reparameterize {fλ}λ, that is,
we use the change of variables λ = λ(λ′) = sinh−1(sinh(λ′) sin θ). (Note that λ′
plays the role of the variable s in identity (2.1), and λ plays the role of r .) We
obtain in this way the �-family {fλ(λ′)}λ′ . Write S = Sn+k−1 − {Sk−1 � Sn−1},
where Sk−1 ⊂ Hk × {o} and Sn−1 ⊂ {o} × M .

Proposition 5.1. Assume that {hλ} has cut limits on the interval Jc = (−∞, c]
and that it is hyperbolic around the origin. Then, for each c′ < c + ln sin(θ), the
family {fλ(λ′)}λ′ has cut limits on Jc′ over S.

Proof. By hypothesis {hλ} is hyperbolic around the origin. Hence, there is B such
that

(̂hλ)λ+b = σSn−1 for all b ≤ B. (5.1)

Hence, the metrics hλ are canonically hyperbolic on the ball of radius λ + B .
Also, since we are assuming that {hλ} has cut limits on Jc, we have that

b ∈ Jc �⇒ (̂hλ)λ+b
C2−→ ĥb∞ as λ → ∞ (5.2)

uniformly on Sn−1 and uniformly with compact supports in the variable b ∈ Jc.
As mentioned before, we can write fλ = (fλ)s + ds2. We have to compute

the limit of (̂fλ(λ′))λ′+b
as λ′ → ∞. Let the �-coordinates be as defined in Sec-

tion 3 for the space (Ek(M),f ). From Corollary 4.3 we can express (f̂λ)s in
�-coordinates:

�∗((̂fλ(λ′))λ′+b
) = cos2(β)σSk−1 + sin2(β)(̂hλ(λ′))r(λ′+b,β)

+ dβ2,

where r = r(s, β) is given by identity (2.1) (see also Proposition 4.1 and Re-
mark 4.2). Therefore, we want to find the limit of (̂hλ(λ′))r(λ′+b,β)

as λ′ → ∞.
To do this, taking the inverse of λ = λ(λ′), we get λ′ = λ′(λ) =
sinh−1(sinh(λ)/ sin(θ)). Hence,

lim
λ′→∞

(̂hλ(λ′))r(λ′+b,β)
= lim

λ→∞ (̂hλ)ϑ(λ,β,b), (5.3)

where

ϑ(λ,β, b) = r(λ′(λ) + b,β) = sinh−1
(

sinh

{
b + sinh−1

(
sinh(λ)

sin(θ)

)}
sin(β)

)
,

and a straightforward calculation shows

lim
λ→∞(ϑ(λ,β, b) − λ) = b + ln

(
sin(β)

sin(θ)

)
. (5.4)

This convergence is uniform with compact supports in the C2(S)-topology (see
caveat below). Choose c′ ∈ R such that c′ < c − ln(sin(π/2)/ sin(θ)) = c +
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ln sin(θ). Since β ∈ (0,π/2), we get

b ∈ Jc′ �⇒
(

b + ln

(
sin(β)

sin(θ)

))
∈ Jc. (5.5)

Hence, from (5.2), (5.3), (5.4), and (5.5) we get

lim
λ′→∞

(̂hλ(λ′))r(λ′+b,β)
= ĥ

b+ln(sinβ/ sin θ)∞ . (5.6)

Caveat. The limit (5.3) (hence also in (5.6)) is uniform with compact supports
in the β direction, but not uniform in the β direction. The problem occurs when
β → 0.

We next deal with the problem mentioned in the caveat, that is, we have to show
that the limit in (5.6) is uniform in the variable β ∈ (0,π/2) (not just uniform
with compact supports). The convergence in (5.4) (hence in (5.6)) is uniform for
β near π/2, but the convergence in (5.4) is certainly not uniform near 0. Here is
where we will need the extra condition of the family being hyperbolic near the
origin. We will need the following claim.

Claim. Let c,B, θ ∈ R. Choose c′ with c′ < c + ln sin θ . Then there is β1 > 0
such that r(λ′ + c′, β1) ≤ λ(λ′) + B for every λ′ sufficiently large.

Proof. A calculation shows that taking β1 = sin−1(e2(B−c−1) works. (Find the
limit λ′ → ∞ of both terms in the inequality and use the fact that c′ < c+ ln sin θ .)
This proves the claim. �

Since the function r = r(s, β) is increasing in both variables, the claim implies
that r(λ′ + b,β) ≤ λ(λ′)+B for all b ≤ c′, β ≤ β1, and λ′ sufficiently large (how
large not depending on b, nor on β). This, together with (5.1), implies that for all
b ≤ c′, β ≤ β1, and λ′ sufficiently large, we have

(̂hλ(λ′))r(λ′+b,β)
= σSn−1 .

Hence, for all b ∈ Jc′ and β ≤ β1, we have

lim
λ′→∞

(̂hλ(λ′))r(λ′+b,β)
= σSn−1 .

Since β1 > 0, the problem mentioned in the caveat (i.e., when β → 0) has been
removed. This proves the proposition. �

Taking c → ∞ in Proposition 5.1 gives the following corollary.

Corollary 5.2. Assume that {hλ} has cut limits and that it is hyperbolic around
the origin. Then {fλ(λ′)}λ′ has cut limits over S.

Proof of Main Theorem. Note that the only difference between Corollary 5.2 and
Main Theorem is that in the corollary the cut limits exist over S ⊂ Sn+k−1. Hence,
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we have to show that the existence of cut limits over S implies the existence of
cut limits on the whole of Sn+k−1. Corollary 5.2 and (1.2) in Introduction imply

| ̂((fλ)|S)λ′+b − f̂ b∞|C2(S) −→ 0 as λ′ → ∞,

where f̂ b∞ is a metric on S. In particular, for every b, the one-parameter family
̂((fλ)|S)λ′+b is Cauchy, that is,

| ̂((fλ(λ′
1)

)|S)
λ′

1+b
− ̂((fλ(λ′

2)
)|S)

λ′
2+b

|C2(S) −→ 0 (5.7)

uniformly on S as λ′
1, λ′

2 → ∞. But since S is dense in Sn+k−1, we get that
|g|S |C2(S) = |g|C2(Sn+k−1) for any C2 (pointwise) bilinear form g on Sn+k−1.
Therefore, we can drop the restriction “|S” in (5.7) to get

| ̂(fλ(λ′
1)

)
λ′

1+b
− ̂(fλ(λ′

2)
)
λ′

2+b
|C2(Sn+k−1) −→ 0 as λ′ → 0.

This implies that the family (̂fλ)λ′+b is Cauchy. Since the space of C2 metrics
on Sn+k−1 with the C2 norm is a complete metric space, this Cauchy sequence
converges to some f̂ b∞. Note that f̂ b∞ is a symmetric bilinear form on Sn+k−1,
and it is positive definite on S. It remains to prove that f̂ b∞ is also positive definite
outside S. Recall that S = Sn+k−1 − (Sk−1 � Sn−1). It is straightforward to verify
that we have f̂ b∞|Sk−1 = σSk−1 + σHn . On the other hand, on Sn−1 we have β =
π/2, and hence λ = λ′. Also, by definition we have fλ = cosh2(r)σHk + hλ. But
on Mo we get r = s. Therefore,

̂((fλ)|Sn−1)λ′+b = ̂((fλ)|Sn−1)λ+b = cotanh2(λ + b)σHk + (̂hλ)λ+b

−→ cotanh2(λ + b)σHk + ĥb∞.

Consequently, f̂b+∞ is positive definite on Sn−1. Thus, it is positive definite out-
side S. This proves Main Theorem. �
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