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Deforming an ε-Close to Hyperbolic
Metric to a Warped Product

Pedro Ontaneda

Abstract. We show how to deform a metric of the form g = gr +
dr2 to a warped product Wg = sinh2(r)g′ + dr2 (g′ does not depend
on r) for r less than some fixed r0. Our main result establishes to what
extent the warp forced metric Wg is close to being hyperbolic if we
assume g to be close to hyperbolic.

Introduction

We first introduce some notation. The canonical flat metric on R
k and the round

metric on S
k will be denoted by σRk and σSk , respectively. Let (Mn,g) be a

complete Riemannian manifold with center o ∈ M , that is, the exponential map
expo : ToM → M is a diffeomorphism. Using the exponential map expo, we
shall sometimes identify M with R

n, and thus we can write the metric g on
M −{o} = S

n−1 ×R
+ as g = gr +dr2, where r is the distance to o. The open ball

of radius r in M , centered at o, will be denoted by Br = Br(M), and the closed
ball by B̄r . We fix a function ρ : R → [0,1] with ρ(t) = 0 for t ≤ 0, ρ(t) = 1 for
t ≥ 1, and ρ constant near 0 and 1.

Let M have center o and metric g = gr +dr2. Fix r0 > 0. We define the metric
ḡr0 on M − {o} by

ḡr0 = sinh2(r)

(
1

sinh2(r0)

)
gr0 + dr2.

Note that this metric is a warped product (warped by sinh). Note also that to define
ḡr0 we are using the identification M − {o} = S

n−1 × R
+ given by the original

metric g. We now force the metric g to be equal to ḡr0 on B̄r0 = B̄r0(M) and stay
equal to g outside Br0+1/2. For this, we define the warp forced (on Br0 ) metric as

Wr0g = ρr0 ḡr0 + (1 − ρr0)g,

where ρr0(t) = ρ(2t − 2r0). Hence, we have

Wr0g =
{

ḡr0 on B̄r0,

g outside B
r0+ 1

2
.

(0.1)

We call the process g �→ Wr0g warp forcing. Note that if we choose g to be
the warped-by-sinh hyperbolic metric g = sinh2(t)σSn−1 + dt2, then Wr0g = g.
This suggests that if g is in some sense close to being hyperbolic, then Wr0g
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should also be close to hyperbolic. The purpose of this paper is to quantify this last
statement, that is, to answer the following question: if g is ε-close to a hyperbolic
metric, then to what extent is the warp forced metric Wr0g close to hyperbolic?
The answer is that Wr0g is η-close to hyperbolic where η depends on ε and r0.
The term “ε-close to a hyperbolic metric” refers to a chart-by-chart concept and
is introduced in the next paragraph.

Let B be the unit open (n − 1)-ball with the flat metric σRn−1 . Write Iξ =
(−1 − ξ,1 + ξ), ξ ≥ 0. Our basic models are Tξ = B× Iξ with hyperbolic metric
σ = e2t σRn−1 + dt2. The number ξ is called the excess of Tξ . (The reason for
introducing ξ will become clear in the main theorem below; see also the remark
after the theorem.) Let (M,g) be a Riemannian manifold, and let S ⊂ M . We
say that g is ε-close to hyperbolic on S if there is ξ ≥ 0 such that for every p ∈
S, there is an ε-close to hyperbolic chart with center p, that is, there is a chart
φ : Tξ → M , φ(0,0) = p, such that |φ∗g − σ |C2 < ε. The number ξ is called
the excess of the charts. We stress that ξ is independent of p. Here | · |C2 is the
C2-norm (see Section 1).

Let (M,g) have center o, and let S ⊂ M . We say that g is radially ε-close
to hyperbolic on S (with respect to o) if, for every p ∈ S, there is an ε-close to
hyperbolic chart φ with center p and, in addition, the chart φ respects the product
structure of Tξ and M −o = S

n−1 ×R
+, that is, φ(·, t) = (φ1(·), t +a), where the

constant a depends on φ, and φ1 is some function independent of t (equivalently,
φ1 is a chart on M). Here the “radial” directions are (−1 − ξ,1 + ξ) and R

+ in
Tξ and M − o, respectively.

As mentioned before, our main result below shows that if g is radially ε-close
to hyperbolic, then the warp forced metric Wr0g is radially η-close to hyperbolic,
where η depends on ε and r0. In the next theorem, we assume that ξ > 1 and
r0 ≥ 3 + 2ξ .

Theorem. Let (M,g) have center o, and let S ⊂ M . If g is radially ε-close to hy-
perbolic on S, with charts of excess ξ , then Wr0g is radially η-close to hyperbolic
on S − B̄r0−1−ξ with charts of excess ξ −1, provided that η ≥ e27+12ξ (e−2r0 + ε).

Remark. Note that warp forcing reduces the excess of the charts by 1. This was
one of the motivations to introduce the excess ξ .

The results in this paper are used to construct negatively curved Riemannian
smoothings of Charney–Davis strict hyperbolizations of manifolds [1; 2]. In the
next paragraph, we give an idea how the theorem in this paper is used in [2].

In the same way a cubical complex is made of basic pieces (the cubes �k),
the hyperbolization h(K) of a cubical complex K is also made of basic pieces,
prefixed hyperbolization pieces Xk . Indeed, we begin with a cubical complex K

and replace each cube of dimension k by the hyperbolization piece of the same
dimension. Cube complexes have a piecewise flat metric induced from the flat ge-
ometry of the cubes. Likewise, the Charney–Davis hyperbolizations have a piece-
wise hyperbolic structure because the Charney–Davis hyperbolization pieces are
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hyperbolic manifolds (compact, with boundary and corners). To see how singular-
ities appear, we can first think about the manifold two-dimensional cube case. If
K2 is a two-dimensional manifold cube complex, then its piecewise flat metric is
Riemannian outside the vertices. A vertex is a singularity if and only if the vertex
does not meet exactly four cubes. The picture is exactly the same for h(K2). These
point singularities in h(K2) can be smoothed out easily using warping methods.
In higher dimensions, the singularities of Kn and h(K) appear in (possibly the
whole of) the codimension 2 skeletons K(n−2) and h(K(n−2)), respectively. In [2]
the idea of smoothing the piecewise hyperbolic metric on h(K) is to do it induc-
tively down the dimension of the skeleta. We begin with the (n − 2)-dimensional
pieces Xn−2. Transversally to each Xn−2 (that is, on the union of geodesic seg-
ments emanating perpendicularly to Xn−2, from a fixed point in Xn−2), we have
essentially the two-dimensional picture mentioned before. Once we solve this
transversal problem, we extend this transversal smoothing by taking a warp prod-
uct with Xn−2; we called this product method hyperbolic extension [3]. This gives
a smoothing on a (tubular) neighborhood of the piece Xn−2. Caveat: we do not
want to actually have a smoothing on a neighborhood of the whole of Xn−2 since
we will certainly have matching problems for different Xn−2 meeting on a com-
mon Xn−3; so we only want a smoothing on a neighborhood of the Zn−2, where
Zn−2 ⊂ Xn−2 is just a bit “smaller” than Xn−2, so that the neighborhoods of the
Zn−2 are all disjoint. Next step is to smooth around the Xn−3 (or, specifically,
the Zn−3). The metric is already smooth outside a neighborhood of the (n − 3)-
skeleton. Transversally to each Xn−3, we have a three-dimensional problem. (It
helps to have a three-dimensional picture in mind, like in dimension 2.) It happens
that if we did things with care in the first step (around the Zn−2), the metric in
the three-dimensional transversal problem would be radially ε-close to hyperbolic
outside some large ball B . If this metric was a warped product, we could use the
two-variable warping deformation given in [3] to extend the metric to a Riemann-
ian metric on the ball B , getting rid, in this way, of the transverse singularity. But
the metric in the three-dimensional transversal problem is not warped; hence, the
need for the theorem in this paper: we take a radially ε-close to hyperbolic metric
and deform it to a warped metric inside a ball, and the resulting metric is still ra-
dially η-close to hyperbolic, with an η that can be controlled. Once the transversal
three-dimensional problem is solved, we extend this smoothing to neighborhoods
of the Zn−3 using hyperbolic extension. Next, we do the same for the Zn−4, and
so on. About the excess: since warp forcing reduces the excess by 1, we begin
with a large excess at codimension 2, so that when we arrive at codimension n,
we still have a positive excess; therefore, in the theorem, we should think of the ξ

as fixed, whereas of the r0 as being as large as wanted, ε as small as desired, and
the set S as the complement of the ball of radius r0 − 1 − ξ .

In Section 1, we give some definitions and a useful lemma. In Section 2, we
give some estimates on changing warping functions. In Section 3, we do warp
forcing locally. In Section 4, we prove the theorem.

We are grateful to the referee for the many comments and suggestions.
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1. Preliminaries

Let A ⊂ R
n be an open set. Let | · |C2(A) denote the uniform C2-norm of R

l-
valued functions on A, that is, if f = (f1, . . . , fl) : A → R

l , then |f |C2(A) =
supz∈A,1≤i≤l,1≤j,k≤n{|fi(z)|, |∂jfi(z)|, |∂j,kfi(z)|}. Sometimes, we will write
| · |C2 = | · |C2(A) when the context is clear. Given a Riemannian metric g

on A, the number |g|C2(A) is computed considering g as the R
n2

-valued function
z �→ (gij (z)) where, as usual, gij = g(ei, ej ), and ei are the canonical vectors
in R

n.
The C2-norm | · |C2 mentioned in the definition of an ε-close to hyperbolic

Riemannian manifold in the Introduction is | · |C2 = | · |C2(Tξ ). If (M,g) is ε-close
to hyperbolic (or radially ε-close to hyperbolic), then we will also say that the
metric g is ε-close to hyperbolic (or radially ε-close to hyperbolic).

Note that for the metric σ = e2t σRn−1 + dt2 on our model Tξ , we have
|σ |C2(Tξ ) = 4e2+2ξ .

Remarks. 1. The definition of radially ε-close to hyperbolic metrics is well
suited to studying metrics of the form gt + dt2 for t large, but for small t ,
this definition has some drawbacks: (1) we need some space to fit the charts
and (2) the form of our specific fixed model Tξ . An undesired consequence
is that the punctured hyperbolic space H

n − {o} = S
n−1 × R

+ (with warped
product sinh2(t)σSn−1 + dt2) is not radially ε-close to hyperbolic for t small.

2. In [2], we actually need warped metrics with warping functions that are multi-
ples of hyperbolic functions. All these functions are close to the exponential et

(for t large), so instead of introducing one model for each hyperbolic function,
we introduced only the exponential model. In the next section, we show the
effect of changing warping functions.

We will need the following lemma.

Lemma 1.1. Let gi be metrics on Tξ such that |gi − σ |C2(Tξ ) < εi for i = 1,2.
Let λ : Tξ → [0,1] be smooth with |λ|C2(Tξ ) finite. Then

|λg1 + (1 − λ)g2 − σ |C2(Tξ ) < 4(1 + |λ|C2(Tξ ))(ε1 + ε2).

Proof. The proof follows from the triangle inequality, Leibniz rule, and the equal-
ity (λg1 + (1 − λ)g2) − σ = λ(g1 − σ) + (1 − λ)(g2 − σ). This proves the
lemma. �

2. Warping with sinh t

The metric of our basic hyperbolic model Tξ is an exponentially warped metric.
Here we show that we can change the exponential by multiples of sinh(t) for t

large.
In what follows, we will often consider metrics h on Tξ of the form h =

ht + dt2. Recall that Iξ = (−1 − ξ,1 + ξ).
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Lemma 2.1. For r ≥ 2 + ξ , we have |e−2t (
sinh(t+r)

sinh(r) )2 − 1|C2(Iξ ) < 43e2+2ξ e−2r.

Proof. Write e−t sinh(t+r)
sinh(r) −1 = ((1− e−2t )/(1− e−2r))e−2r. Since r ≥ 2, we have

1/(1 − e−2r) ≤ 1/(1 − e−4) < 1.02. Differentiating (1/(1 − e−2r))(1 − e−2t )e−2r

twice, together with the previous two facts, gives the following estimate:∣∣∣∣e−t

(
sinh(t + r)

sinh(r)

)
− 1

∣∣∣∣
C2(Iξ )

< (1.02)(4e2+2ξ )e−2r

= 4.08e2+2ξ e−2r.

This estimate, together with the triangle inequality and the hypothesis r ≥
2 + ξ , gives the following estimate:∣∣∣∣e−t

(
sinh(t + r)

sinh(r)

)
+ 1

∣∣∣∣
C2(Iξ )

≤ 2 + 4.08e2+2ξ e−2r

= 2 + 4.08e2+2ξ−2r

≤ 2 + 4.08e−2 < 2.6.

To prove the lemma, write

e−2t

(
sinh(t + r)

sinh(r)

)2

− 1 =
(

e−t

(
sinh(t + r)

sinh(r)

)
− 1

)(
e−t

(
sinh(t + r)

sinh(r)

)
+ 1

)
.

This, together with the previous two estimates and the Leibniz rule, gives∣∣∣∣e−2t

(
sinh(t + r)

sinh(r)

)2

− 1

∣∣∣∣
C2(Iξ )

≤ 4(4.08e2+2ξ e−2r)2.6 < 43e2+2ξ e−2r.

This proves the lemma. �

Let ν : Iξ → R
+ be smooth. For a metric f = ft + dt2 on Tξ , we write f ν =

νft + dt2.

Lemma 2.2. We have |f ν − f |C2(Tξ ) ≤ 4|ν − 1|C2(Iξ )|f |C2(Tξ ).

Proof. Just note that f ν − f = (ν − 1)ft and differentiate twice. This proves the
lemma. �

Recall that the metric on our model Tξ is σ = e2t σRn−1 + dt2.

Lemma 2.3. Let f = ft + dt2 be a metric on Tξ such that |f − σ |C2(Tξ ) < ε. Let

ν = e−2t (
sinh(t+r)

sinh(r) )2. Assume that r ≥ 2 + ξ . Then

(1) |f ν − f |C2(Tξ ) < 172e2+2ξ (ε + 4e2+2ξ )e−2r;

(2) |f ν − σ |C2(Tξ ) < 688e4+4ξ (ε + e−2r).

Proof. Item 1 follows from Lemmas 2.1, 2.2, and the fact that |f |C2(Tξ ) ≤ |f −
σ |C2(Tξ ) + |σ |C2(Tξ ) < ε + 4e2+2ξ . To prove item 2, note that from item 1 and the
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hypothesis |f − σ |C2(Tξ ) < ε it follows that

|f ν − σ |C2(Tξ ) ≤ |f − σ |C2(Tξ ) + |f ν − f |C2(Tξ )

< ε + 172e2+2ξ (ε + 4e2+2ξ )e−2r

= (1 + 172e2+2ξ−2r)ε + 172e2+2ξ 4e2+2ξ e−2r

< 172e2+2ξ 4e2+2ξ (ε + e−2r)

= 688e4+4ξ (ε + e−2r).

This proves the lemma. �

As in Lemma 2.3, let ν = e−2t (
sinh(t+r)

sinh(r) )2. Lemma 2.1 says that |ν − 1|C2(Iξ ) <

43e2+2ξ e−2r.
Let s ∈ Iξ . Write νs(t) = ν(t − s) with ν as before.

Lemma 2.4. For r ≥ 2 + ξ and s ∈ Iξ , we have |νs − 1|C2(Iξ ) < 43e4+4ξ e−2r.

Proof. For t ∈ Iξ , we have t − s ∈ I1+2ξ . This, together with Lemma 2.1, implies
|νs − 1|C2(Iξ ) < 43e2+2(2ξ+1)e−2r. This proves the lemma. �

The next lemma is similar to Lemma 2.3, with νs replacing ν in the conclusion.

Lemma 2.5. Let f = ft + dt2 be a metric on Tξ such that |f − σ |C2(Tξ ) < ε. Let

ν = e−2t (
sinh(t+r)

sinh(r) )2. Assume that r ≥ 2 + ξ . Then

(1) |f νs − f |C2(Tξ ) < 172e4+4ξ (ε + 4e2+2ξ )e−2r;

(2) |f νs − σ |C2(Tξ ) < 688e6+6ξ (ε + e−2r).

The proof is the same as that of Lemma 2.3 but uses Lemma 2.4 instead of
Lemma 2.1.

3. Local Warp Forcing

Here we give a kind of a local version to warp forcing.
Let a be a metric on B

n−1. For a fixed s ∈ Iξ , we denote by as the warped
metric e2(t−s)a + dt2 on Tξ = B

n−1 × Iξ .

Lemma 3.1. Let s ∈ Iξ , and let a, b be metrics on B
n−1 with |a − b|C2(Bn−1) < ε.

Then |as − bs |C2(Tξ ) < 16e4+4ξ ε.

Proof. Just compute the derivatives of as − bs = e2(t−s)(a − b). This proves the
lemma. �

The next lemma gives local estimates (that is, on the model Tξ ) needed for global
warp forcing estimates.
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Lemma 3.2. Let h = ht +dt2 be a metric on Tξ with |h−σ |C2(Tξ ) < ε. Fix s ∈ Iξ

and consider the warped-by-exponential metric hss
= e2(t−s)hs +dt2 on Tξ . Then

|hss
− σ |C2(Tξ ) < 16e4+4ξ ε.

Proof. By hypothesis we have |(ht + dt2) − (e2t σRn−1 + dt2)|C2(Tξ ) < ε. There-

fore, taking t = s, we get |hs − e2sσRn−1 |C2(Bn−1) < ε. Note that e2sσRn−1
s

=
e2t σRn−1 + dt2 = σ . This, together with Lemma 3.1, implies that |hss

−
σ |C2(Tξ ) < 16e4+4ξ ε. This completes the proof of Lemma 3.2. �

4. Proof of the Theorem

Let (Mn,g) be a complete Riemannian manifold with center o ∈ M . Recall that
we can write the metric on M −{o} = S

n−1 ×R
+ as g = gr +dr2. Also, Br is the

closed ball on M of radius r centered at the center o. Let r0 ≥ 3 + 2ξ . We assume
that g is radially ε-close to hyperbolic on some S ⊂ M , with charts of excess ξ .
We have to prove that Wr0g is radially η-close to hyperbolic on S −Br0−1−ξ , with
charts of excess ξ − 1, where η = e27+12ξ (e−2r0 + ε).

Assume that p = (x, r) ∈ S ⊂ S
n−1 × R+ = M − {o} and p /∈ B̄r0−(1+ξ)

(equivalently, r > r0 − (1 + ξ)). Since the metric g is radially ε-close to hy-
perbolic on S, with charts of excess ξ , there is a radially ε-close to hyperbolic
chart φ : Tξ → M centered at p. This means that φ(0,0) = p, φ is radial, and
|φ∗g − σ |C2(Tξ ) < ε. Here by radial we mean that φ respects product structures
(see the definition of a radially ε-close to hyperbolic chart in the Introduction).
To prove the theorem, we will prove that the restriction φ|Tξ−1 : Tξ−1 → M is a
radially η-close to hyperbolic chart for Wr0 centered at p. That is, we will show
that |φ∗(Wr0g) − σ |C2(Tξ−1)

< η. We have three cases.
First case. p /∈ Br0+1/2+(1+ξ).
Then the image of φ lies outside Br0+1/2. By (0.1) we have that Wr0 = g

outside Br0+1/2. Hence, the chart φ is also a radially ε-close to hyperbolic chart
for Wr0g centered at p with excess ξ . This shows that the metric Wr0g is radially
ε-close to hyperbolic outside Br0+1/2+(1+ξ), with charts of excess ξ .

Second case. p ∈ Br0+1/2+(1+ξ) − Br0+1/2+ξ .
Then the image of the restriction φ|Tξ−1 of φ to Tξ−1 does not intersect

Br0+1/2. Hence, as in the first case, by (0.1) the chart φ|Tξ−1 is an ε-close to
hyperbolic chart for Wr0g, centered at p, but with excess ξ − 1. Clearly, φ|Tξ−1 is
also radial. This shows that the metric Wr0g is radially ε-close to hyperbolic on
Br0+1/2+(1+ξ) − Br0+1/2+ξ , with charts of excess ξ − 1.

Third case. p ∈ Br0+1/2+ξ .
The condition p ∈ Br0+1/2+ξ is equivalent to r < r0 + 1

2 + ξ . Since by hypoth-
esis p /∈ Br0−1−ξ , we get r0 − (1+ ξ) < r < r0 + 1

2 + ξ . Recall that φ : Tξ → M is
a radially ε-close to hyperbolic chart of g centered at p = (x, r). Write h = φ∗g.
Since φ is radial, we have that h has the form h = ht + dt2 with ht = φ∗gt+r.



700 Pedro Ontaneda

Moreover,
|h − σ |C2(Tξ ) < ε. (1)

Write s = r0 − r. Then − 1
2 − ξ < s < 1 + ξ . In particular, we have s ∈ Iξ .

Also, hs = φ∗gr0 . Recall that in the Introduction we defined the warped product
ḡr0 as ḡr0 = sinh2(r)(1/ sinh2(r0))gr0 +dr2. Since φ is radial, we have φ∗(ḡr0) =
sinh2(t + r)(1/ sinh2(r0))φ

∗gr0 + dt2. Therefore,

φ∗(ḡr0) = sinh2((t − s) + r0)

(
1

sinh2(r0)

)
hs + dt2. (2)

Note that e2(t−s)νs(t) = sinh2((t − s) + r0)/ sinh2(r0), where ν(t) =
e−2t sinh2(t + r0)/ sinh2(r0) and νs(t) = ν(t − s), as in Section 2. Using this
and the notation in Sections 2 and 3, equation (2) can be rewritten as

φ∗(ḡr0) = f νs , (3)

where f = hss
. Equation (1) and Lemma 3.2 imply that |f − σ |C2(Tξ ) <

16e4+4ξ ε. This, together with the second item of Lemma 2.5, implies

|f νs − σ |C2(Tξ ) < 688e6+6ξ (e−2r + 16e4+4ξ ε). (4)

(To apply Lemma 2.5, we need the condition r ≥ 2 + ξ . This follows from r >

r0 − (1 + ξ) and the hypothesis r0 ≥ 3 + 2ξ .)
From the definition of Wr0g given in the Introduction and the fact that φ is

radial we have

φ∗(Wr0g) = ρsφ
∗(ḡr0) + (1 − ρs)φ

∗g = ρsf
νs + (1 − ρs)h, (5)

where ρs(t) = ρ(2t − 2s) with ρ as in the Introduction. From (5), (4), (1), and
Lemma 1.1 we get that |φ∗(Wr0g) − σ |C2(Tξ ) < ε′ with

ε′ = 4(1 + |ρs |C2(Iξ ))(ε + 688e6+6ξ (e−2r + 16e4+4ξ ε)).

Note that

ε′ < 4(1 + |ρs |C2(Iξ ))[1 + 688e6+6ξ 16e4+4ξ ](e−2r + ε)

< 44,033(1 + |ρs |C2(Iξ ))e
10+10ξ (e−2r + ε).

A calculation shows that we can take |ρs(∗)|C2(Iξ ) = |ρ(2∗)|C2(R) < 48. This im-

plies that we can take ε′ < (44,033)(49)e10+10ξ (e−2r + ε). This, together with
r > r0 − (1 + ξ), implies that we can take ε′ < (44,033)(49)e12+12ξ (e−2r0 + ε) =
2,157,617e12+12ξ (e−2r0 + ε) < e27+12ξ (e−2r0 + ε). Note that the excess of the
charts in this third case is also ξ . This proves the theorem.
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