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Characterizing Linear Groups in
Terms of Growth Properties

Khalid Bou-Rabee & D. B. McReynolds

Abstract. Residual finiteness growth measures how well approxi-
mated a group is by its finite quotients. We prove that some related
growth functions characterize linearity for a class of groups including
all hyperbolic groups.

1. Introduction

Given a finitely generated, residually finite group � and a nontrivial γ ∈ �, we
consider three functions that measure the difficulty of verifying that γ is non-
trivial through homomorphisms to finite groups. The first function D�(γ ) is the
minimum |Q|, over all finite groups Q, such that there exists a homomorphism
φ : � → Q with φ(γ ) �= 1. This function was introduced in [Bou10]. In this paper,
we consider two variations of D� obtained by restricting the class of groups Q.
We define L�(γ ) to be the minimum |GL(n,Fq)|, over all n ∈ N and finite fields
Fq , such that there exists a homomorphism φ : � → GL(n,Fq) with φ(γ ) �= 1.
We define S�(γ ) to be the minimal |G|, over all finite simple groups G, such that
there exists a homomorphism φ : � → G with φ(γ ) �= 1. Note that we do not in-
sist that any of the mentioned homomorphisms be surjective, though for D� , the
minimum |Q| for an element γ always comes from a surjective homomorphism.
Fixing a finite generating subset X for �, for each m ∈ N, we define

F�(m) = max
γ∈�−{1},
‖γ ‖X≤m

D�(γ ),

F�,L(m) = max
γ∈�−{1},
‖γ ‖X≤m

L�(γ ),

F�,S(m) = max
γ∈�−{1},
‖γ ‖X≤m

S�(γ ).

For two functions f,g : N → N, we write f � g if there exists a natural num-
ber C such that f (m) ≤ Cg(Cm) for all m and write f ∼ g when f � g and
g � f . The dependence of the above functions on the generating subset X is mild.
Specifically, if Y is another generating subset, the associated functions for X, Y

satisfy the equivalence relation ∼ (see [Bou10, Lem 1.1]). In [BM15], we proved
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that if � ≤ GL(n,K) for some n ∈ N and field K, then F�(m) � mD for D ∈ N
depending only on n and K. The main result of this article is the following char-
acterization of linearity (Item (c)) for hyperbolic groups � in terms of the growth
rates of F�,L, F�,S.

Theorem 1.1. Let � be a hyperbolic group. The following are equivalent:

(a) There exists D ∈ N such that F�,L(m) � mD .
(b) There exists D′ ∈ N such that F�,S(m) � mD′

.
(c) There exist n ∈ N, a field K, and an injective homomorphism φ : � →

GL(n,K).

The first purely group theoretic characterization of (c), for fields K with
char(K) = 0, was established by Lubotzky [Lub88] and is based on the exis-
tence of uniformly powerful p-filtrations. Larsen [Lar01] proved that the abscissa
of convergence of a certain subgroup ζ -function is the inverse of the minimal
possible dimension of the Zariski closure over all finite-dimensional representa-
tions with infinite image. Though the representation that Larsen produces need
not be faithful, his method is closely related to our approach, which is based on a
well-known elementary characterization of (c); see Lemma 2.1 below.

2. Finite Groups

In this section, we record some results about finite groups that we will need for
Theorem 1.1. Lemma 2.2 is the main technical result.

For a finite group G, set m1(G) = maxg∈G |〈g〉|. For each prime p ∈ N, set
rp(G) to be the minimal positive integer n such that there exist t ∈ N and an injec-
tive homomorphism φ : G → PGL(n,Fpt ). We define r(G) = minp prime rp(G).
We define rL

p (G), rL(G) identically but with GLn in place of PGLn and note that
if G is simple, then we have r(G) ≤ rL(G). Further, since PGLn(K) ≤ GLn2(K)

for any field K , we have rL(G) ≤ (r(G))2 for any group G.
Throughout, F = {Gj }j∈N will denote a set of finite groups. For our purposes,

we will assume that the groups Gj are pairwise nonisomorphic. We say that F
has bounded projective rank for some R ∈ N if r(Gj ) ≤ R for all j ∈ N and
has bounded rank for some R ∈ N if rL(Gj ) ≤ R for all j . For any nonprincipal
ultrafilter ω on N, Gω will denote the ultraproduct group

∏
ω Gj of F relative

to ω. The following is well known (see [Hal95] for instance).

Lemma 2.1. If F = {Gj }j∈N is a set of finite groups with either bounded rank or
bounded projective rank for some R ∈ N, then for any (nonprincipal) ultrafilter ω

on N, there is an injective homomorphism φω : Gω → GL(n,K) for some n ∈ N
and field K.

The integer n can be taken to be R2 in both cases since rL(G) ≤ (r(G))2.
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2.1. A Criterion for Bounded Rank

The following lemma was suggested to us by the referee.

Lemma 2.2. Let F = {Gj }j∈N be a set of finite groups.

(a) If Gj = GL(nj ,Fqj
) for all j , then log |Gj |/ log(m1(Gj )) is unbounded if

and only if rL(Gj ) is unbounded.
(b) If Gj is simple for all j , then log |Gj |/ log(m1(Gj )) is unbounded if and only

if r(Gj ) is unbounded.

To prove this lemma, we have compiled the requisite information for certain fam-
ilies of finite groups. For a finite simple group of Lie type G(Fq) over Fq with
q = pt , we refer the reader to [Che55; Car72; KL90], or [Wil12]. The orders
of these groups are well known, and the bounds we provide are coarse; we will
use these bounds in the sequel without specific mention. The monograph [KL90,
Ch 5] contains a complete summary on bounds for r(G) for both alternating
groups and simple groups of Lie type; see Proposition 5.3.7, Table 5.4.C, and
Corollary 5.4.14 in [KL90]. Lower bounds for rp′(G(Fq)) for primes p′ �= p

have been extensively studied; see [TZ96] and the references therein. The rep-
resentation theory over fields with the defining characteristic p has also been ex-
tensively studied. In most cases, rp(G(Fq)) = r(G(Fq)). The values for r(G)

given further are from Table 5.4.C and Corollary 5.4.14 in [KL90]. We write
f ≈ g when limq

f (q)
g(q)

= C ∈ (0,∞). For computational ease, with regard to the
proof of Lemma 2.2, we have opted for simple, coarse inequalities over precise
values/asymptotics in most situations. That is especially true for the values m1
and |G|. Finally, our use of the classification of finite simple groups is at least that
Lemma 2.2 holds for the sporadic groups. That is weaker than the assertion that
there are only finitely many sporadic groups.

(1) Alt(n) and GL(n,Fq). For the alternating groups Alt(n) for n ≥ 5, we
have:

|Alt(n)| = n!/2,

log(m1(Alt(n))) ≈ √
n logn,

r(Alt(n)) ≤ n − 2, r(Alt(n)) = n − 2 for n ≥ 9.

The first estimate for m1 is due to Landau [Lan03] (see (1) in [Mil87] for the
above explicit asymptotics). We see that

C1
log(n!/2)√

n logn
≤ log |Alt(n)|

log(m1(Alt(n)))
< C2

log(n!/2)√
n logn

(1)

for fixed constants C1,C2 > 0. For the groups GL(n,Fq) for n ≥ 1 and q = pt ,
we have

qn2−1 < |GL(n,Fq)| < qn2
,

qn−1 < m1(GL(n,Fq)) < qn+1,

n − 2 ≤ rL(GL(n,Fq)) ≤ n.
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By Niven [Niv48] (see also [Dar05, Cor 2]), m1(GL(n,Fq)) = qn − 1. The lower
bound for rL is obtained by using derived/solvable lengths of solvable subgroups
of GL(n,Fq) (see Corollary on p. 152 of [Dix68]). We see that

n − 1 ≤ log |GL(n,Fq)|
log(m1(GL(n,Fq)))

<
n2

n − 1
. (2)

(2) Type An. The groups of type An(q) for n ≥ 1 and q = pt are PSL(n+1, q).
We have

qn2−3 < |PSL(n + 1, q)| < qn2+2n+1,

qn−2 < m1(PSL(n + 1, q)) < qn+2,

r(PSL(n + 1, q)) = rp(PSL(n + 1, q))

= n + 1 (for (n, q) �= (1,4), (1,5), (2,2)).

The numbers m1 are explicitly calculated in [KS09, Table A.1]. We see that

(n2 − 3)

(n + 2)
<

log |PSL(n + 1, q)|
log(m1(PSL(n + 1, q)))

<
n2 + 2n + 1

(n − 2)
. (3)

(3) Type 2An. The groups of type 2An(q
2) for n ≥ 2 and q = pt are

PSU(n + 1, q). We have

qn2+2n−1 < |PSU(n + 1, q)| < qn2+2n+1,

qn−4 < m1(PSU(n + 1, q)) < qn+1,

r(PSU(n + 1, q)) = rp(PSU(n + 1, q)) = n + 1 (for (n, q) �= (3,2)).

The numbers m1 are explicitly calculated in [KS09, Table A.2]. We see that

n2 + 2n − 1

n + 1
<

log |PSU(n + 1, q)|
log(m1(PSU(n + 1, q)))

<
n2 + 2n + 1

n − 4
. (4)

(4) Type Bn. The groups of type Bn(q) for n ≥ 2 and q = pt are given by
P�(2n + 1, q). We have

q2n2+n−2 < |P�(2n + 1, q)| < q2n2+n+1,

qn−2 < m1(P�(2n + 1, q)) < qn+2,

r(P�(2n + 1, q)) = rp(P�(2n + 1, q)) = 2n + 1 (for odd q and n �= 2),

r(P�(2n + 1, q)) = rp(P�(2n + 1, q)) = 2n (for n = 2 or even q).

The numbers m1 are explicitly calculated in [KS09, Table A.4] for odd q and
[But13, Cor 4] when q = 2t (see also [Spi15] since Bn(2t ) = Cn(2t )). We see that

2n2 + n − 2

n + 2
<

log |P�(2n + 1, q)|
log(m1(P�(2n + 1, q)))

<
2n2 + n + 1

n − 2
. (5)
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(5) Type Cn. The groups of type Cn(q) for n ≥ 3 and q = pt are given by
PSp(2n,q). We have

q2n2+n−2 < |PSp(2n,q)| < q2n2+n+1,

qn−2 < m1(PSp(2n,q)) < qn+2,

r(PSp(2n,q)) = rp(PSp(2n,q)) = 2n.

The numbers m1 are explicitly calculated in [KS09, Table A.3] for q odd and
[Spi15, Thm 1.1] (see also Lemma 2.3 in [Spi15]) when q is 2t . We see that

2n2 + n − 2

n + 2
<

log |PSp(2n,q)|
log(m1(PSp(2n,q)))

<
2n2 + n + 1

n − 2
. (6)

(6) Type Dn. The groups of type Dn(q) for n ≥ 4 and q = pt are given by
P�+(2n,q). We have

q2n2−n−2 < |P�+(2n,q)| < q2n2−n+1,

qn−2 < m1(P�+(2n,q)) < qn+2,

r(P�+(2n,q)) = rp(P�+(2n,q)) = 2n (for (n, q) �= (4,2)).

The numbers m1 are explicitly calculated in [KS09, Table A.5] for odd q and
[But13, Cor 4] when q = 2t . We see that

2n2 − n − 2

n + 2
<

log |P�+(2n,q)|
log(m1(P�+(2n,q)))

<
2n2 − n + 1

n − 2
. (7)

(7) Type 2Dn. The groups of type 2Dn(q
2) for n ≥ 4 and q = pt are given by

P�−(2n,q). We have

q2n2−n−2 < |P�−(2n,q)| < q2n2−n+1,

qn−2 < m1(P�−(2n,q)) < qn+2,

r(P�−(2n,q)) = rp(P�−(2n,q)) = 2n.

The numbers m1 are explicitly calculated in [KS09, Table A.6] for odd q and
[But13, Cor 4] when q = 2t . We see that

2n2 − n − 2

n + 2
<

log |P�−(2n,q)|
log(m1(P�−(2n,q)))

<
2n2 − n + 1

n − 2
. (8)

Excluding alternating groups, in all the above simple families, (log |G(n,q)|)/
(log(m1(G(n, q)))) ≈ r(G(n, q)) (in the parameter n).

(8) Exceptional groups Lie type. For the remaining exceptional finite sim-
ple groups of Lie type and cyclic groups of prime order, both r(G) and
log |G|/ log(m1(G)) are uniformly bounded above by 248; for the sporadic
groups, 196,883 is an upper bound for both r(G) and log |G|/ log(m1(G)). We
have included a table summarizing the information for the exceptional and cyclic
families. We refer the reader to Table 5.4.C and Corollary 5.4.14. in [KL90] for
the values of r and to Table A.7 in [KS09] for the values of m1.
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Table 1

Family |G| ≈ m1(G) ≈ r(G)

Z/pZ, p prime p p 1
E6(q) q78 q6 27
E7(q) q133 q7 56
E8(q) q248 q8 248
F4(q) q52 q4 25 ≤ r(G) ≤ 26
G2(q) q14 q2 6 ≤ r(G) ≤ 7
2E6(q

2) q78 q6 27
3D4(q

3) q28 q4 8
2B2(22j+1) q5, where q = 22j+1 q2 4
2G2(32j+1) q2, where q = 32j+1 q2 7 (for j �= 1)
2F4(22j+1) q26, where q = 22j+1 q2 26 (for j �= 1)

Proof of Lemma 2.2. In the case Gj = GL(nj ,Fqj
), we see from (2) that

log |Gj |/ log(m1(Gj )) is unbounded if and only if rL(Gj ) is unbounded. In
the case Gj is simple for all j , if either r(Gj ) or log |Gj |/ log(m1(Gj )) is un-
bounded, we know that there is a subsequence {Gji

} of {Gj } where none of the
terms are sporadic or in Table 1. Passing to another subsequence, we can assume
that for all i ∈ N, either Gji

= Alt(nji
) or Gji

is of Lie type and in precisely one
of the families Anji

(qji
), 2Anji

(q2
ji
), Bnji

(qji
), Cnji

(qji
), Dnji

(qji
), 2Dnji

(q2
ji
). In

the alternating case, we see from (1) and the simple inequality n! ≥ (n/e)n that
log |Gji

|/(m1(Gji
)) is unbounded if and only if r(Gji

) is unbounded. We see that
the same holds for each of those families of Lie type by (3), (4), (5), (6), (7), (8),
and the listed r-values. �

The following immediate consequence of Lemma 2.2 will be used later.

Lemma 2.3. For every C > 0, there exists R(C) ∈ N such that if G = GL(n,Fq)

for some n ∈ N and finite field Fq , and log |G|/ log(m1(G)) ≤ C, then rL(G) ≤ R.
Similarly, for every C > 0, there exists R(C) ∈ N such that if G is a finite simple
group and log |G|/ log(m1(G)) ≤ C, then r(G) ≤ R.

We require one additional result on finite simple groups.

Lemma 2.4. If F = {Gj }j∈N is a set of finite simple groups that has bounded
projective rank for some R ∈ N, then there is a D(R) ∈ N such that for each
j ∈ N, there are a finite field Fqj

and an injective homomorphism ψGj
: Gj →

PSL(R,Fqj
) with |PSL(R,Fqj

)| ≤ |Gj |D .

Proof. From (1) we see that only finitely many alternating groups can be in F and
set F0 to be the finite subset of sporadic and alternating groups in F . There exists
D1(F0) ∈ N such that for each G ∈ F0, there exist a finite field Fq and an injective
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homomorphism ψG : G → PSL(R,Fq) such that |PSL(R,Fq)| ≤ |G|D1 . For any
G ∈ F − F0, either G is cyclic of prime order or of Lie type. If G is cyclic of
prime order p, we have an injective homomorphism ψG : G → PSL(2,Fp), and
so |PSL(2,Fp)| < |G|4. If G is of Lie type with associated finite field Fq , since
r(G) ≤ R, we see from the data in Subsection 2.1 that there exist D2(R) ∈ N
and an injective homomorphism ψG : G → PSL(R,Fq) such that |PSL(R,Fq)| ≤
|G|D2 ; D2 = R2 works. Finally, set D = max{D1,D2,4}. �

3. Infinite Groups

In this section, we establish the main technical result Proposition 3.6. From Propo-
sition 3.6 we obtain Corollary 3.9, which we will use in the proof of Theorem 1.1.
We also introduce malabelian and uniformly malabelian groups.

Given a group � and a set F = {Gj }j∈N of finite groups, we say that � is
residually F if for each nontrivial γ ∈ �, there exist G ∈ F and a homomor-
phism φ : � → G such that φ(γ ) �= 1. We say that � is fully residually F if for
each finite set T ⊂ � − {1}, there exist G ∈ F and a homomorphism φ : � → G

such that kerφ ∩ T = ∅. If F = {GL(n,Fq)} or {PGL(n,Fq)} for n ∈ N fixed
and varying finite fields Fq , we will simply say � is (fully) residually GLn or
PGLn; these families have bounded rank and bounded projective rank, respec-
tively. The following result is also well known (see Theorem 3.11 in [Hal95] for
instance).

Lemma 3.1. Let � be a countable group and F = {Gj }j∈N be a set of finite groups
that has bounded rank or bounded projective rank. If � is fully residually F , then
there exist n ∈ N, a field K, and an injective homomorphism φ : � → GL(n,K).

Proof. We begin by enumerating � = {γ0, γ1, . . . } with γ0 = 1 and set Ti =
{γk}ik=1. By assumption, for each i ∈ N, there are a ji ∈ N and a homomor-
phism φji

: � → Gji
such that φji

(γ ) �= 1 for all γ ∈ Ti . Setting F0 = {Gji
}i∈N,

for any non-principal ultrafilter ω on N, we have an injective homomorphism
φω : � → ∏

ω Gji
. The proof is completed with an application of Lemma 2.1. �

3.1. Malabelian Groups

Given a finite subset T ⊂ � − {1}, we have an associated normal subgroup 	T =⋂
γ∈T 〈γ 〉, where 〈γ 〉 denotes the normal closure of the cyclic subgroup 〈γ 〉. We

call any nontrivial element in 	T a common multiple for T in �. The following
lemma can be found in [BM11, Lemma 3.1].

Lemma 3.2. Let � be a group, T ⊂ � − {1} a finite subset, and η a common
multiple for T in �. If G is a group and φ : � → G is a homomorphism with
φ(η) �= 1, then φ(γ ) �= 1 for all γ ∈ T .

We say that a group � is malabelian if for any pair of (not necessarily distinct)
nontrivial elements γ,η ∈ �, there exists μ ∈ � such that [μ−1γμ,η] �= 1. In
other words, every nontrivial conjugacy class in � has a trivial centralizer.
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Lemma 3.3. If � is a malabelian group and T ⊂ � − {1} a finite subset, then
	T �= 1, and T has a common multiple.

Proof. Without loss of generality, we can assume that |T | = 2j for some integer
j since we can enlarge T by adding nontrivial elements from �. We proceed
via induction on j . Enumerating T = {γ1, . . . , γ2j }, for each 1 ≤ i ≤ 2j−1, we
select μi ∈ � such that γi,1 = [μ−1

i γ2i−1μi, γ2i] �= 1. We obtain a new subset

T1 = {γi,1}2j−1

i=1 . By induction, T1 has a common multiple in �, and it follows
from our selection of γi,1 that this common multiple is also a common multiple
for T . �

Lemma 3.4. If � is a countable, malabelian group that is residually F for some
set F of finite groups, then � is fully residually F .

Proof. Given a finite subset T ⊂ � − {1}, since � is malabelian, by Lemma 3.3
there exists a common multiple γT for T in �. By assumption, there exist G ∈
F and a homomorphism φT : � → G such that φT (γT ) �= 1. By Lemma 3.2,
φT (γ ) �= 1 for all γ ∈ T , and thus � is fully residually F . �

3.2. Uniformly Malabelian Groups

For a finitely generated group �, a fixed finite generating subset X, and K ∈ N,
we say that � is K-malabelian with respect to X if for every pair of nontrivial
γ,η ∈ �, there exists μ ∈ � with ‖μ‖X ≤ K such that [μ−1γμ,η] �= 1. If �

is K-malabelian with respect to a finite generating subset X and Y is another
finite generating subset for �, then � is K ′-malabelian with respect to Y for some
K ′ ∈ N. We say that � is uniformly malabelian if � is K-malabelian with respect
to X for some finite generating subset X and K ∈ N. For a finite subset T ⊂
� − {1}, if T has a common multiple in �, we define the least common multiple
length of T relative to X to be LCMX(T ) = minη∈	T −{1} ‖η‖X . We refer to any
element η ∈ 	T with ‖η‖X = LCMX(T ) as a least common multiple for the
subset T .

Lemma 3.5. If � is a finitely generated, uniformly malabelian group and X a
finite generating subset, then there exists C(X) ∈ N such that if T ⊂ � − {1} with
|T | = t and ‖γ ‖X ≤ d for all γ ∈ T , then LCMX(T ) ≤ Cdt2.

As the proof of Lemma 3.5 is similar to the proof of Proposition 4.1 in [BM11],
we have omitted it.

Proposition 3.6. Let � be a finitely generated, uniformly malabelian group with
an element of infinite order.

(a) If there exists D ∈ N such that F�,L(m) � mD , then there exists n(D) ∈ N
such that � is residually GLn.
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(b) If there exists D′ ∈ N such that F�,S(m) � mD , then there exists R(D′) ∈ N
such that � is residually F for a set of finite simple groups that has bounded
projective rank for R.

Proof. Before proving (a) and (b), we require some common setup for both.
We first fix an infinite-order element γ0 and a finite generating subset X. Since
� is uniformly malabelian, there exists K ∈ N such that � is K-malabelian
with respect to X. Given a nontrivial γ ∈ �, there exists μ0 ∈ � such that
[μ−1

0 γμ0, γ0] �= 1 and ‖μ0‖X ≤ K . Set Tj = {[μ−1
0 γμ0, γ0], γ 2

0 , . . . , γ
j

0 } and
note that |Tj | = j . Moreover, there exists j (γ ) ∈ N such that if j ≥ j (γ ), then
‖τ‖X ≤ j‖γ0‖X for all τ ∈ Tj . By Lemma 3.5 there exists C1(X) ∈ N such that
if ηj is a least common multiple of Tj and j ≥ j (γ ), then

‖ηj‖X ≤ C1‖γ0‖Xj3 = C2j
3, (9)

where C2 = C1‖γ0‖X .
Part (a). We must show that there exists n ∈ N such that for every nontrivial

γ ∈ �, there exist a finite field Fq and a homomorphism φ : � → GL(n,Fq) such
that φ(γ ) �= 1. By assumption, there exists C3 ∈ N such that for each j ∈ N, there
exist nj ∈ N, a finite field Fqj

, and a homomorphism φj : � → GL(nj ,Fqj
) with

φj (ηj ) �= 1 and
|GL(nj ,Fqj

)| ≤ C3‖ηj‖D
X. (10)

Combining (9) and (10), for C4 = CD
2 C3 and j ≥ j (γ ), we see that

|GL(nj ,Fqj
)| ≤ C4j

3D . By construction, m1(GL(nj ,Fqj
)) ≥ j , and so

log |GL(nj ,Fqj
)|

log(m1(GL(nj ,Fqj
)))

≤ 3D + log(C4)

log j
. (11)

Since the right-hand side of (11) is uniformly bounded above, by Lemma 2.3 there
exists R(D,C4) ∈ N such that rL(GL(nj ,Fqj

)) ≤ R for all j ≥ j (γ ). Note that
since the right-hand side of (11) is independent of �, the constant R(D,C4) is
independent of �. Setting n = R(D,C4), we see that � is residually GLn since
R(D,C4) is independent of γ .

Part (b). By assumption, there exists C5 ∈ N such that for each j ∈ N, there
exist a finite simple group Gj and homomorphism φj : � → Gj with φj (ηj ) �= 1
and

|Gj | ≤ C5‖ηj‖D
X. (12)

Combining (9) and (12), for C6 = CD
2 C5 and j ≥ j (γ ), we have |Gj | ≤ C6j

3D .
As before, m1(Gj ) ≥ j , and so

log |Gj |
log(m1(Gj ))

≤ 3D + log(C6)

log j
. (13)

Since the right-hand of (13) is uniformly bounded above, by Lemma 2.3 there
exists R(D,C6) ∈ N such that r(Gj ) ≤ R for all j ≥ j (γ ). Note that since the
right-hand side of (13) is independent of �, the constant R(D,C6) is independent
of �. Consequently, � is residually F for some set of finite simple groups that has
bounded projective rank. �
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Corollary 3.7. Let � be a finitely generated, uniformly malabelian group with
an element of infinite order.

(a) If there exists D ∈ N such that F�,L(m) � mD , then there exist n(D) ∈ N,
a field K, and an injective homomorphism φ : � → GL(n,K). Moreover,
φ(�) ∩ (K× · In) = In.

(b) If there exists D′ ∈ N such that F�,S(m) � mD′
, then there exist n(D′) ∈ N,

a field K, and an injective homomorphism φ : � → GL(n,K). Moreover,
φ(�) ∩ (K× · In) = In.

Proof. The first parts of (a) and (b) follow from Lemma 3.1, Lemma 3.4, and
Proposition 3.6. In either case, we have an injective homomorphism φ : � →
GL(n,K) for some n ∈ N and field K. Moreover, it follows from the construc-
tion of φ that φ(γ ) /∈ K× · In for any nontrivial γ ∈ � since φj (γ ) /∈ Z(φj (�)),
where Z(φj (�)) is the center of φj (�). �

The converse of Corollary 3.7 follows from the proof of Theorem 1.1 in [BM15]
and does not require that � be malabelian. Since GL(n,K) < SL(n + 1,K), we
will assume that � < SL(n,K) in (b).

Proposition 3.8. Let � be a finitely generated group.

(a) If � ≤ GL(n,K) for some n ∈ N and field K, then there exists D(n,K) ∈ N
such that F�,L(m) � mD .

(b) If � ≤ SL(n,K) for some n ∈ N and field K with � ∩ (K× · In) = In, then
there exists D(n,K) ∈ N such that F�,S(m) � mD .

Proof. Part (a) follows immediately from the proof Theorem 1.1 of [BM15].
For (b), given a nontrivial element γ ∈ �, by [BM15] there exist C0,D0 ∈ N
(independent of γ ), a finite field Fq with q ≤ C0‖γ ‖D0

X , and a homomorphism
φq : � → SL(n,Fq) with φq(γ ) �= 1. Moreover, since γ /∈ K× · In, we can ar-
range for φq(γ ) /∈ F×

q · In. Composing φq with the homomorphism SL(n,Fq) →
PSL(n,Fq), we obtain Pφq : � → PSL(n,Fq) with Pφq(γ ) �= 1. By selection of

q we have |PSL(n,Fq)| ≤ qn2 ≤ Cn2

0 ‖γ ‖D0n
2

X . Since γ was arbitrary, we have

F�,S(m) � mD0n
2
. �

Combining Corollary 3.7 and Proposition 3.8, we obtain the following corollary.

Corollary 3.9. If � is a finitely generated, uniformly malabelian group with an
element of infinite order, then the following are equivalent:

(a) There exists D ∈ N such that F�,L(m) � mD .
(b) There exists D′ ∈ N such that F�,S(m) � mD′

.
(c) There exist n ∈ N, a field K, and an injective homomorphism φ : � →

GL(n,K).

We note that the equivalence of (a) and (c) is independent of the classification of
finite simple groups whereas the equivalence of (b) and (c) is not.
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4. Proof of Theorem 1.1

In the proof of Theorem 1.1, we will need to relate the functions F�,L, F�0,L, and
F�,S, F�0,S for a finitely generated group � and a finite index subgroup �0.

Proposition 4.1. Let � be a finitely generated group, and �0 ≤ � a finite index
subgroup.

(a) There exists D ∈ N such that F�,L(m) � mD if and only if there exists D′ ∈ N
such that F�0,L(m) � mD′

.
(b) If �0 is uniformly malabelian with an element of infinite order, then there

exists D ∈ N such that F�,S(m) � mD if and only if there exists D′ ∈ N such
that F�0,S(m) � mD′

.

Proof. The direct implications for (a) and (b) are straightforward. For the reverse
implications in (a) and (b), we assume that �0 is normal since we can replace �0
with a finite index subgroup �1 ≤ �0 with �1 � �.

For (a), given a nontrivial γ ∈ �, we split into two cases. First, if γ ∈ � − �0,
then we have φ0 : � → Q0 = �/�0 with φ0(γ ) �= 1. Fixing n0 ∈ N and a finite
field Fq0 with Q0 ≤ GL(n0,Fq0), we see that L�(γ ) ≤ |GL(n0,Fq0)|. If γ ∈ �0,
then by assumption there exist n ∈ N, a finite field Fq , and a homomorphism
φ : �0 → GL(n,Fq) with φ(γ ) �= 1 and |GL(n,Fq)| ≤ C0‖γ ‖D′

for C0 ∈ N that
is independent of γ . Setting φ′ = Ind�

�0
(φ), we have φ′ : � → GL(n�0,Fq) with

φ′(γ ) �= 1, where �0 = [� : �0]. Since |GL(n�0,Fq)| ≤ qn2�2
0 ≤ |GL(n,Fq)|2�2

0 ,

we see that L�(γ ) ≤ C‖γ ‖2�2
0D

′
for some C ∈ N that is independent of γ .

For (b), if γ ∈ � − �0, hen we argue as in (a). When γ ∈ �0, additional
work is required. By Proposition 3.6 there exists a set of finite simple groups
F such that �0 is residually F and F has bounded projective rank for some
R ∈ N. By Lemma 2.4 there exists D′′(R) ∈ N such that for each G ∈ F , there
are a finite field Fq and an injective homomorphism ψG : G → PSL(R,Fq)

with |PSL(R,Fq)| ≤ |G|D′′
. For γ ∈ �0, by assumption there exist a finite sim-

ple group G ∈ F and a homomorphism φ1 : �0 → G such that φ1(γ ) �= 1 and
|G| ≤ C′′‖γ ‖D′

for some C′′ ∈ N that is independent of γ . Composing φ1 and
ψG, we have φ2 : �0 → PSL(R,Fq) with φ2(γ ) �= 1. Setting φ = Ind�

�0
(φ2), we

obtain φ : � → PSL(R�0,Fq). Since G is simple and φ1(γ ) �= 1, we see that
φ(γ ) �= 1. Since

|PSL(R�0,Fq)| ≤ qR2�2
0 ≤ |PSL(R,Fq)|R2�2

0

≤ |G|D′′R2�2
0 ≤ (C′′)D′′R2�2

0‖γ ‖D′D′′R2�2
0,

we see that S�(γ ) ≤ C′‖γ ‖D for D = D′D′′R2�2
0 and C′ = (C′′)D/D′

. �

The malabelian assumption in (b) seems like overkill but gives the needed control
on r(G) to use induction. We could instead take a wreath product with �/�0 and
G, but from that we still need to find a reasonably small finite simple group that
contains it; the left regular representation is too large.
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Proof of Theorem 1.1. The theorem is straightforward for elementary hyperbolic
groups, and so we assume that � is nonelementary. If � is not residually fi-
nite, then by Mal’cev [Mal40], � does not satisfy (c). Moreover, both functions
F�,L(m) and F�,S(m) are not defined for sufficiently large m.

If � is residually finite, then there exists a torsion-free, finite index subgroup
�0 ≤ �, and it is straightforward to see that �0 is uniformly malabelian (see
[BH99, p. 459–462]). By Corollary 3.9 properties (a), (b), and (c) are equiva-
lent for �0. By Proposition 4.1, �0 satisfies (a) and (b) if and only � satisfies
(a) and (b). That � satisfies (c) if and only if �0 satisfies (c) follows from induc-
tion/restriction. �
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