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Multiple Realizations of Varieties as
Ball Quotient Compactifications

Luca F. Di Cerbo & Matthew Stover

Abstract. We study the number of distinct ways in which a smooth
projective surface X can be realized as a smooth toroidal compact-
ification of a ball quotient. It follows from work of Hirzebruch that
there are infinitely many distinct ball quotients with birational smooth
toroidal compactifications. We take this to its natural extreme by con-
structing arbitrarily large families of distinct ball quotients with bi-
holomorphic smooth toroidal compactifications.

1. Introduction

Let B2 be the unit ball in C2 with its Bergman metric, and � ⊂ PU(2,1) a nonuni-
form lattice. Then Y = B2/� is a complex orbifold with a finite number of cusps,
and it admits a number of compactifications by a normal projective variety, which
may or may not be smooth. When � is neat (see Section 2.1), then Y has a partic-
ularly nice toroidal compactification, which is a smooth projective surface [1; 7].
It is an important and open question to decide which projective surfaces are com-
pactifications of ball quotients and, more specifically, which smooth projective
surfaces are smooth toroidal compactifications.

In this paper, we study the number of ways in which a fixed projective surface
can arise as a compactification of a ball quotient. A byproduct of Hirzebruch’s
construction of smooth projective surfaces with c2

1/c2 arbitrarily close to 3 [3] is
an infinite family of ball quotients with birational smooth toroidal compactifica-
tions (cf. [4], and see [5] for more birational examples). The purpose of this paper
is to exhibit arbitrarily large families of distinct ball quotients with biholomorphic
smooth toroidal compactifications.

Theorem 1.1. For any natural number n, there exists a smooth projective surface
X = X(n) and pairwise nonisomorphic quotients Y1, . . . , Yn of B2 by neat lattices
�1, . . . ,�n in PU(2,1) such that X is a smooth toroidal compactification of Yi for
each 1 ≤ i ≤ n.

We note that finiteness is necessary, that is, a fixed smooth projective surface can
only arise as a smooth toroidal compactification in finitely many ways. Indeed, if
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Y = B2/� is a ball quotient with smooth toroidal compactification X, then Y and
X have the same topological Euler number. Since the volume of Y in the metric
descending from B2 is proportional to its Euler number [8], all ball quotients
with smooth toroidal compactification X have the same volume. However, Wang
[10] showed that there are only finitely many isomorphism classes of lattices in
PU(2,1) of bounded covolume, and the claim follows.

Another interpretation of Theorem 1.1 is the following. Recall that if X is a
smooth toroidal compactification of Yi , then there exists a divisor Di on X, where
Di is a disjoint union of elliptic curves with negative self-intersection, such that
Yi = X \Di . Equivalently, if a pair (X,Di) saturates (i.e., realizes equality in) the
logarithmic Bogomolov–Miyaoka–Yau inequality

c2
1(X,Di) ≤ 3c2(X,Di),

then Yi = X \ Di is a ball quotient (see Section 2.1). Recall that c2
1 denotes the

self-intersection of the log canonical divisor KX + Di and c2 is the topological
Euler number of X \ Di . In Theorem 1.1 we then produce, for any given positive
integer n, a smooth surface X = X(n) and divisors D1, . . . ,Dn on X such that
each X \ Di is a distinct quotient of the ball by a neat lattice.

The paper is organized as follows. Section 2 collects preliminary facts about
the ball and its Bergman metric, smooth toroidal compactifications, and a ball
quotient of Euler number 1 constructed by Hirzebruch [3]. This particular exam-
ple plays a fundamental role in our construction. Finally, in Section 3, we prove
Theorem 1.1.

2. Preliminaries

2.1. Ball Quotients and Their Compactifications

Let B2 be the unit ball in C2 with its Bergman metric. See [2] for more on its ge-
ometry. The group of biholomorphic isometries of B2 is isomorphic to PU(2,1),
and a discrete subgroup � ⊂ PU(2,1) is a lattice if Y = B2/� has finite volume
in the metric descending from B2. Then Y is a manifold if and only if � is torsion
free. When Y is not compact, it is well known that it is a quasiprojective variety
and has a finite number of topological ends, or cusps.

Suppose further that � is neat, that is, that the subgroup of C generated by
the eigenvalues of � is torsion free. In particular, � is torsion free. This implies
that Y admits a smooth toroidal compactification Y ∗ by adding a certain ellip-
tic curve at each cusp. (Actually, one only needs that the subgroup of C gener-
ated by the eigenvalues of parabolic elements of � is torsion free, which means
that the parabolic elements have no rotational part.) See [1] and [7] for more de-
tails.

Let Y be the quotient of B2 by a neat lattice, and Y ∗ its smooth toroidal com-
pactification. Then Y ∗ \ Y consists of a finite union of disjoint elliptic curves Ti ,
each having negative self-intersection. Let D = ∑

Ti . The Hirzebruch–Mumford
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proportionality [8] implies that

c2
1(Y

∗,D) = 3c2(Y
∗,D). (1)

Moreover, the logarithmic version of Yau’s solution to the Calabi conjecture im-
plies the converse [9]. More precisely, if X is a smooth projective variety and
D a normal crossings divisor on X satisfying (1), then X is the smooth toroidal
compactification of

Y = X \ D = B2/�

for some torsion free lattice � ⊂ PU(2,1).

2.2. Hirzebruch’s Example

We now describe an example from [3], which is critical in our construction. Let
ζ = eπi/3 and ρ = ζ 2. Then Z[ρ] is a lattice in C, and E = C/Z[ρ] is the elliptic
curve of j -invariant 0. Set A = E×E, let [z,w] be coordinates on A, and consider
the curves

T0 = {w = 0},
T∞ = {z = 0},
T1 = {w = z},
Tζ = {w = ζz}.

It is easy to check that each Tα is isomorphic to E, has self-intersection 0,
and that Tα ∩ Tβ = {[0,0]} for each α �= β . Let A∗ be the blowup of A at [0,0],
and D the proper transform of

∑
Tα in A∗. It is easy to check that c2

1(A
∗,D) =

3c2(A
∗,D). In particular, Y = A∗ \ D is the quotient of the ball by a torsion-free

lattice, and A∗ is the smooth toroidal compactification of Y .

3. Proof of Theorem 1.1

Let E and A = E × E be as in Section 2.2. The first step in our construction is to
exploit certain self-isogenies of A. Translation by a generator for the Q-rational
3-torsion subgroup E(Q)[3] ∼= Z/3 of E determines a degree 3 self-isogeny r :
E → E. We recast this in the language of covering space theory. Let v1 = 1 and
v2 = ρ be the usual generators for Z[ρ] = π1(E). We can realize rn via the 3n-
fold covering of E → E associated with the kernel of the homomorphism

Rj : π1(E) → Z/3n, Rj (v1) = Rj (v2) = δ,

where δ is a chosen generator for Z/3n. Notice that this kernel is the subgroup
(1 − ρ)nZ[ρ], which is the unique ideal of norm 3n in the ring Z[ρ].

Now, let A = E × E and

v1 =
(

1
0

)
, v3 =

(
0
1

)
,

v2 =
(

ρ

0

)
, v4 =

(
0
ρ

)
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be generators for π1(A). Fix n and let δ be a generator for Z/3n. For any 0 ≤ j <

3n, we obtain a homomorphism σn,j : π1(A) → Z/3n by

σn,j (v1) = σn,j (v2) = δ,

σn,j (v3) = σn,j (v4) = δj .

This induces a self-isogeny sn,j : A → A that restricts to an isogeny of degree 3n

on the first factor and of degree |δj | = 3n/gcd(j,3n) on the second. Note that the
kernel Kn,j of σn,j is generated by 3nv1, v1 − v2, v3 − v4, and jv1 − v3.

Let A∗ be the blowup of A at the origin [0,0]. Then σn,j induces an étale
covering s∗

n,j : A∗
n,j → A∗, where A∗

n,j is the blowup of A at s−1
n,j ([0,0]). Let

Y ⊂ A∗ be Hirzebruch’s ball quotient. We now need to know that s∗
n,j induces a

connected covering of Y .

Lemma 3.1. Let π : B → A be a finite étale cover with group G. Then there exist
a connected ball quotient Y ′ and a finite regular covering Y ′ → Y induced by π

with Galois group G.

Proof. Since π1(A
∗) ∼= π1(A), we also obtain an étale covering π∗ : B∗ → A∗,

where B∗ is the blowup of B above each of the deg(π) points in π−1([0,0]). Let
Y ′ be the inverse image in B∗ of Y under π∗. Then Y ′ → Y is an étale cover. We
must show that Y ′ is connected and that the Galois group of this covering is G.
However, it is well known that the map

π1(Y ) → π1(A
∗) ∼= π1(A)

induced by the inclusion is onto [6, Prop. 2.10]. In particular, the induced homo-
morphism π1(Y ) → G associated with the covering B∗ → A∗ is onto. The lemma
follows from elementary covering space theory. �

It follows immediately from Lemma 3.1 that the self-isogenies sn,j induce étale
covers Yn,j → Y with degree 3n. Moreover, it is clear from the construction that
Yn,j is a quotient of the ball by a neat lattice and that the smooth toroidal com-
pactification is the blowup A at 3n distinct points. We now count the number of
cusps of Yn,j .

Proposition 3.2. For and n ≥ 0 and 0 ≤ j < 3n, the ball quotient Yn,j has
⎧⎪⎨
⎪⎩

6 j ≡ 1 (mod 3),

3 + gcd(j + 1,3n) j ≡ 2 (mod 3),

3 + gcd(j,3n) j ≡ 0 (mod 3)

cusps.

Proof. We need to count the number of lifts of each Tα , α ∈ {0,∞,1, ζ }, under
sn,j . Equivalently, we need to calculate the index of π1(Tα) in Z/3n under σn,j .
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As subgroups of π1(A), we have:

π1(T0) = 〈v1, v2〉, π1(T∞) = 〈v3, v4〉,
π1(T1) = 〈v1 + v3, v2 + v4〉, π1(Tζ ) = 〈v1 + v3 + v4, v2 − v3〉.

Therefore:

σn,j (π1(T0)) = Z/3n, σn,j (π1(T∞)) = 〈δj 〉,
σn,j (π1(T1)) = 〈δj+1〉, Z/3n−1 ⊆ σn,j (π1(Tζ )) ⊆ Z/3n.

The only nontrivial point is the last one. The image certainly contains δ1+2j and
δ1−j , the images of the two generators. If j is congruent to 0 or 2 modulo 3, then
either of these generates all of Z/3n. However, it always contains

δ = δ1+2j δ2(1−j) = δ3,

which generates Z/3n−1. When j is congruent to 1 modulo 3, it follows that the
image is Z/3n−1.

There is always exactly one cusp above T0. There are exactly three cusps above
Tζ when j ≡ 1 (mod 3), and there is exactly one cusp otherwise. For T∞ and T1,
we must calculate the index of 〈δj 〉 and 〈δj+1〉 in Z/3n, respectively. Note that at
least one of j and j + 1 is not divisible by 3; hence, one of δj or δj+1 generates
all of Z/3n. Since δk has order 3n/gcd(3n, k) for any 0 ≤ k < 3n, the proposition
follows. �

Now we prove that the spaces Yn,j all have isomorphic smooth toroidal compact-
ifications.

Proposition 3.3. For any fixed n and 0 ≤ j , k < 3n, the spaces A∗
n,j and A∗

n,k

are isomorphic.

Proof. Let r be an integer and consider the linear map f :C2 → C2 with matrix(
1 r

0 1

)
.

Then, in terms of the Z-module generators {vi} of π1(A), we have:

f (v1) = v1,

f (v2) = v2,

f (v3) = rv1 + v3,

f (v4) = rv2 + v4.

Now, we consider what f does to the kernel Kn,j of σn,j . Since

f (3nv1) = 3nv1,

f (v1 − v2) = v1 − v2,

f (v3 − v4) = r(v1 − v2) + (v3 − v4),

f (jv1 − v3) = (j − r)v1 − v3,
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we see that the image of Kn,j also contains

v3 − v4 = f (v3 − v4) − rf (v1 − v2).

If 0 ≤ k < 3n is the representative for j − r modulo 3n, then it follows that f con-
tains generators for the kernel Kn,k of σn,k . Since the matrix of f has determinant
one, it follows that f (Kn,j ) = Kn,k .

However, f induces an isomorphism of Z[ρ] × Z[ρ] onto itself. Thus, f in-
duces a commutative diagram of isomorphisms and coverings

A A

An,j An,k

taking [0,0] to itself in A. In particular, the map An,j → An,k takes s−1
n,j ([0,0])

to s−1
n,k([0,0]). This proves that f induces an isomorphism A∗

n,j → A∗
n,k . �

Now, we have the tools necessary to prove Theorem 1.1.

Proof of Theorem 1.1. Fix n. Then we can find 0 ≤ j1, . . . , jn < 3n for which
Proposition 3.2 implies that the ball quotients Yn,j


all have different numbers of
cusps. Then they are clearly not biholomorphic, but their smooth toroidal com-
pactifications A∗

n,j and A∗
n,k are biholomorphic by Proposition 3.3. This com-

pletes the proof. �
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