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Extremal Divisors on Moduli Spaces of
Rational Curves with Marked Points

Morgan Opie

Abstract. We study effective divisors on M0,n, focusing on hyper-
tree divisors introduced by Castravet and Tevelev and on the proper
transforms of divisors on M1,n−2 introduced by Chen and Coskun.
We relate these two types of divisors and exhibit divisors on M0,n for
n ≥ 7 that furnish counterexamples to a conjectural description of the
effective cone of M0,n given by Castravet and Tevelev.

1. Introduction

The moduli space M0,n parameterizes equivalence classes of n distinct marked
points on P1 under the action of PGL2. We will be primarily concerned with M0,n,
the Deligne–Mumford compactification of M0,n by stable rational curves with n

marked points. The Deligne–Mumford compactification parameterizes nodal trees
of P1s with n markings such that each component has at least three “special”
points (markings or nodes) modulo automorphisms (see Figure 1).

The locus M0,n \ M0,n is a union of boundary divisors, defined as follows: for
I ⊂ {1, . . . , n} with both I and {1, . . . , n} \ I of size at least two, the boundary
divisor δI consists of classes of stable rational curves in M0,n \ M0,n with a node
separating the markings corresponding to indices in I and {1, . . . , n} \ I .

Significantly, M0,n can be realized as an iterated blow-up of Pn−3 via a Kapra-
nov morphism. Any Kapranov morphism restricts to an isomorphism of M0,n with
its image, and any boundary divisor is contracted by some Kapranov morphism.
Hence, each boundary divisor generates an extremal ray of the effective cone of
M0,n, and select boundary divisors together with the pull-back of a hyperplane
class under a Kapranov morphism comprise free generators for the class group
Cl(M0,n) [K]. We will use these Kapranov generators throughout the paper.

In Section 2, we describe a method of specifying divisors on M0,n via polyno-
mials in n variables. We discuss how to compute the classes of these divisors and
include Macaulay2 code to compute classes. Although useful for checking results
on M0,n with n ≤ 10, the code is not practical for large n.

In Section 3, we recall the definitions of hypertrees and hypertree divisors from
[CT]. A major result of [CT] is that hypertree divisors corresponding to “irre-
ducible” hypertrees are exceptional divisors of some birational contraction and
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Figure 1 Examples of stable rational curves, n = 5

hence generate extremal rays of the effective cone of M0,n. In [CT], it is further
speculated that:

Conjecture 1.1. The effective cone of M0,n is generated by boundary divisors
and by divisors parameterized by irreducible hypertrees and the pull-backs of
these divisors under forgetful morphisms.

This motivates us to study hypertree divisors and their classes. We generalize a
result of [CT] to obtain polynomials specifying all hypertree divisors and use our
Macaulay2 program to compute all irreducible hypertree divisor classes on M0,n

for 6 ≤ n ≤ 10. We then turn our attention to other effective divisors.
Chen and Coskun [CC] construct divisors on M1,n using n-tuples (a1, . . . , an)

of integers such that
∑

ai = 0. They show that if gcd(a1, . . . , an) = 1, then the
divisor corresponding to the n-tuple is a rigid, extremal effective divisor. We
examine the proper transforms of these divisors on M0,n+2 with respect to the
clutching morphism that glues the two markings (we call these proper transforms
Chen–Coskun divisors). We first find formulas for the classes of Chen–Coskun
divisors and then prove results relating Chen and Coskun and hypertree divisors.
In particular, we show that the Chen–Coskun divisor associated to the n-tuple
(1,1, . . . ,−1,−1, . . . ) coincides with a particular hypertree divisor.

Next, we investigate the extremality of Chen–Coskun divisors. Such divisors
need not be extremal, as examples in Section 7 show. However, in Section 5, we
show that the Chen–Coskun divisor corresponding to (n,1,−1,−1,−1, . . . ) is
always nonboundary extremal. Moreover, these particular Chen–Coskun divisors
are neither hypertree divisors nor pull-backs of hypertree divisors. Hence, they
furnish counterexamples to Conjecture 1.1.

In Section 6, we give a proof of a well-known criterion for extremality used
in Section 5. In fact, we show that our criterion not only guarantees the extremal-
ity, but also that the effective cone is “not rounded” near the given divisor. No
reference for this fact was found.

In Section 7, we further investigate the extremality and rigidity of Chen and
Coskun classes. We give criteria for rigidity and nonextremality via conditions
on the n-tuple defining a Chen–Coskun divisor and discuss implications for con-
structing “large” families of extremal divisors on M0,n.
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2. Divisors on M0,n Specified by Polynomials

The following diagram is useful in studying divisors on M0,n:

An+1 φ←−−−− A1[n + 1] χ−−−−→ M0,n+1
ψr−−−−→ Pn−2

pr

⏐⏐� πr

⏐⏐�
A1[n] χ−−−−→ M0,n

(1)

Here ψr is the Kapranov morphism in index r . A Kapranov morphism
ψr : M0,k → Pk−3 for 1 ≤ i ≤ n is constructed by fixing k − 1 points in gen-
eral position in Pk−3 and labeling the points pt for t ∈ {1, . . . , k} \ {r} [K1]. The
relevant fact for our purposes is that given I ⊂ {1, . . . , k} \ {r}, the image of δI∪{r}
under ψr is the linear span 〈pt 〉t∈I . For |I | ≤ k−4, ψr contracts the divisor δI∪{r};
these are the only exceptional divisors of ψr . This gives the choice of free genera-
tors for Cl(M0,k) discussed in Section 1, namely the classes of boundary divisors
Er

I := δI∪{r} for 1 ≤ |I | ≤ k − 4 and of H = ψ−1
r (h) for h a hyperplane in Pn−3.

We refer to the free generating set 〈Er
I ,H 〉 obtained via the map ψr as the Kapra-

nov basis in index r , index r Kapranov basis, or r th Kapranov basis. When the
“special” index is clear, we omit the superscript.

The map πr is the forgetful morphism in index r : drop the r th marking on a
stable rational curve and stabilize if necessary.

The space A1[n+1] is Fulton–MacPherson configuration space over A1, a par-
tial compactification of the space parameterizing n + 1 distinct marked points on
A1. The map φ is an iterated blow-up of An+1 along partial diagonals that defines
A1[n + 1]. This gives a basis of Cl(A1[n + 1]) comprised of exceptional divisors
�I over partial diagonals DiagI := {xi = xj | i, j ∈ I } for 3 ≤ |I | ≤ n + 1 [FM].
A general element of an exceptional divisor �I consists of a copy of A1 contain-
ing marked points in {1, . . . , n}\I , with a nodal tree of P1s containing the marked
points in I attached.

As discussed in [FM, p. 195], we have a map pr : A1[n + 1] → A1[n] that
drops the r th marking on an element of A1[n+1] (analogous to the forgetful map
πr : M0,n+1 → M0,n). Moreover, we have a map from A1[n + 1] to P1[n + 1]:
choose an embedding of A1 into P1 as an affine chart, and this induces a map
taking an element of A1[n + 1] to a nodal tree of P1s. Moreover, we have a map
from P1[n+1] into M0,n+1, mapping a tree of P1s to its equivalence class modulo
automorphisms. A slight obstruction arises because a tree of P1s in P1[n+1] may
not be stable, but this is easily resolved by stabilization. Composition gives the
map χ on the diagram (1). The commutativity of the middle rectangle is evident
from definitions.

Our goal in this section is to relate divisor classes in the class group of the
Fulton–MacPherson space to those in the class group of the moduli space of sta-
ble rational curves with marked points. To this end, we compute the class of the
pull-backs of boundary divisors from M0,k under χ . Note that the only boundary
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divisors contained in χ−1(δI ) are �I and �Ic . Hence, we have that

χ−1(δI ) ∼ m1�I + m2�Ic . (2)

It is well known that m1 = m2 = 1, which is easy to prove by induction on n:

Lemma 2.1. With maps and definitions as before, χ−1(δI ) ∼ �I + �Ic .

We now return to the setup of (1). Given a prime, nonboundary divisor D ⊂
M0,n, the divisor χ−1(D) is irreducible: χ has irreducible fibers over M0,n, and
χ−1(D) = χ−1(D ∩ M0,n). Moreover, χ−1(D) is not an exceptional divisor of
φ since D is nonboundary. Hence, χ−1(D) is precisely φ−1∗ (φ(χ−1(D))), the
proper transform of φ(χ−1(D)) with respect to φ.

The fact that φ(χ−1(D)) is irreducible follows from irreducibility of χ−1(D),
so φ(χ−1(D)) = V (f ) for some irreducible polynomial f ∈ k[x1, . . . , xn]. In this
case, we say that the divisor D is specified by the polynomial f .

Using that A1[n] is a blow-up of An along partial diagonals, we have that
φ−1∗ (V (f )) ∼ −∑

kJ �J , where kJ is the multiplicity of f along the partial di-
agonal DiagJ := {xi = xj | i, j ∈ J } for |J | ≥ 3. The next results relate these
multiplicities, which are easily computed when f is known, to the class of D

with respect to Kapranov bases.

Theorem 2.2. Let πn+1 : M0,n+1 → M0,n denote the forgetful morphism in index
n + 1. Given an irreducible polynomial f ∈ k[x1, . . . , xn] specifying a divisor D

on M0,n as described before, we have that

π−1
n+1(D) ∼ dH −

∑
I⊂{1,...,n}
1≤|I |≤n−3

mIE
n+1
I ,

where d = deg(f ), and mI is the multiplicity of f along the complementary partial
diagonal DiagI c .

Remark 2.3. We compute the class of π−1
n+1(D) ⊂ M0,n+1 with respect to the

n + 1 Kapranov basis to preserve symmetry. Note that if f ∈ k[x1, . . . , xn] spec-
ifies D, then the same polynomial viewed as an element of k[x1, . . . , xn+1]
specifies π−1

n+1(D). In Proposition 2.4, we explain how to convert the class of

π−1
n+1(D) ⊂ M0,n+1 to the class of D ⊂ M0,n with respect to the index r Kapra-

nov basis.

Proof of Theorem 2.2. Define N = {1, . . . , n} and N2 = {1, . . . , n−2}. Take H as
the pull-back of the linear span 〈pi | i ∈ N2〉 under ψn+1. Throughout this proof,
we let EI = En+1

I . Using our free generators 〈EI ,H 〉 for Cl(M0,n+1) and 〈�I 〉
for A1[n + 1], Lemma 2.1 implies that

χ−1(EI ) ∼ �I∪{n+1} + �N−I . (3)
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By [KT, 3.4],

χ−1(H) ∼
∑

∅�=J⊂N2

χ−1(δJ∪{n+1})

∼
∑

∅�=J⊂N2

(�J∪{n+1} + �N−J )

=
∑

J⊂N2,|J |>1

�J∪{n+1} +
∑

J�N2,|J |≥1

�N−J

+
∑
i∈N2

�{i,n+1} + �{n−1,n}. (4)

In (4), the last terms are those involving divisor classes over partial diagonals
of codimension 1 in An+1. These classes must be expressed in terms of our free
generators. Using the relation

�{α,β} ∼ −
∑

{α,β}�I

�I , (5)

which follows from [FM, p. 184], we see that

�{a,n+1} ∼ −
∑

a�J⊂N

�J∪{n+1}

and
�{n−1,n} ∼ −

∑
{n−1,n}�I

�I .

Substituting these into (4) yields

β−1(H) ∼
∑

J�N2,|J |≥1

�N−J + �n−1,n + 
 (6)

∼
∑

J�N2,|J |≥1

�N−J −
∑

{n−1,n}�I⊂N

�I + 
, (7)

where 
 denotes a sum of free generators �I with n + 1 ∈ I . We subsequently
redefine 
 to absorb such terms, which turn out to be superfluous. Summing
over N \ J for J � N2 and |J | ≥ 1 is equivalent to summing over I � N with
{n − 1, n}� I . Returning to (7), we obtain

β−1(H) =
∑

{n−1,n}�I�N

�I −
∑

{n−1,n}�I⊂N

�I + 
 = −�N + 
.

We can now compute the class β−1(D):

β−1(D) ∼ β−1
(

dH −
∑
I⊂N

1≤|I |≤n−3

mIEI

)

∼ −d�N −
∑
I⊂N

1≤|I |≤n−3

mI (�I∪{n+1} + �N−I ) + 
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β−1(D) ∼ −d�N −
∑
I⊂N

1<|I |<n−2

mI�N−I + 
. (8)

For I ⊂ N satisfying 2 ≤ |I | ≤ n − 3, we have a single term in (8) involving
the free generator �N−I with coefficient mI . Hence, mI = kN−I .

It remains to determine the coefficient of H . The previous analysis shows that
we have a single summand d�N in the class of β−1(H), and the proper trans-
forms of boundaries contribute no multiples of �N to the sum. Hence, the multi-
plicity of f along the diagonal DiagN is d . We claim that if D ⊂ M0,n+1 is an irre-
ducible nonboundary divisor and f ∈ k[x1, . . . , xn] satisfies V (f ) = φ(χ−1(D)),
then f is a homogeneous polynomial. Furthermore, for some g ∈ k[x1, . . . , xn],
we have that

f (x1, . . . , xn) = g(x1 − x2, x2 − x3, . . . , xn−1 − xn).

This follows from the fact that V (f ) ∩ An+1 \ {diagonals} is stable under affine
transformations, in particular, rescaling and translation.

Consequently, substituting xi �→ (xi + t) for 1 ≤ i ≤ n to compute the multi-
plicity along DiagN leaves f invariant. Since the polynomial is homogeneous, we
have that the multiplicity of f along the partial diagonal DiagN is precisely the
degree of f , as was to be shown. �

We now introduce notation to facilitate comparison of the class of D ⊂ M0,n and
that of π−1

n+1(D) ⊂ M0,n+1. Let dI and δI denote the boundary divisors on M0,n

and M0,n+1, respectively. For r ∈ {1, . . . , n} and I ⊂ {1, . . . , n} \ {r} with 1 ≤
|I | ≤ n−4, let er

I = dI∪{r}, and let h ⊂ M0,n denote the pull-back of a hyperplane
under the Kapranov morphism in index r . Let En+1

I = δI∪{n+1}, and let H be the
pull-back of a hyperplane under ψn+1 : M0,n+1 → Pn−2.

Proposition 2.4. Let D ⊂ M0,n be an irreducible divisor. Suppose that

π−1
n+1(D) ∼ aH −

∑
1≤|I |≤n−3

mIEI

on M0,n+1, where πn+1 : M0,n+1 → M0,n is the forgetful morphism in index
n + 1. Then

D ∼ m{r}h −
∑

2≤|I |≤n−3
r∈I

mI e
r
I\{r}

as a divisor on M0,n, with notation as in the paragraph preceding the result.

Proof. For concreteness, assume that r = 1. The argument centers on computing
classes of pull-backs of free generators eI and h under πn+1. The proposition is a
straightforward calculation, which appeals to three basic facts:

(i) π−1
n+1(dJ ) ∼ δJ∪{n+1} + δJ .

(ii) h ∼ ∑
a,s∈F,1/∈F dF for any distinct a, s in {2, . . . , n}.

(iii) δ{i,j} ∼ H − ∑
i,j /∈F,2≤|F |≤n−3 EF for i < j ∈ {1, . . . , n}.
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As previously discussed, (i) follows from noting that πn+1 has reduced fibers;
(ii) is proved in [KT, §3.4]; (iii) is a reformulation of (ii) applied to divisors on
M0,n+1. Now consider eI = δI∪{1} for I ⊂ {2, . . . , n} with 1 ≤ |I | ≤ n − 4. In the
case that 2 ≤ |I | ≤ n − 4, we have

π−1
n+1(dI∪{1}) ∼ δI∪{1,n+1} + δI∪{1} ∼ En+1

I∪{1} + En+1
{2,...,n}\I , (9)

appealing to (i). If I = {i}, then

π−1
n+1(d{i,1}) ∼ δ{i,1,n+1} + δ{i,1} ∼ En+1

{1,i} + H −
∑

1,i /∈J
2≤|J |≤n−3

En+1
J , (10)

using (iii) for the last equivalence. Last, we compute

π−1
n+1(h) ∼

∑
a,s∈F
1/∈F

π−1
n+1(dF ).

Applying (i), we obtain

π−1
n+1(h) ∼

∑
a,s∈F
1/∈F

2≤|F |≤n−3

δF∪{n+1} +
∑

a,s∈F
1/∈F|F |=n−2

δF∪{n+1} +
∑

a,s∈F
1,n+1/∈F

2≤|F |≤n−2

δF (11)

∼
∑

a,s∈F
1/∈F

2≤|F |≤n−3

δF∪{n+1} +
∑

a,s∈F
1/∈F|F |=n−2

δF∪{n+1}

+
∑

a,s∈F
n+1/∈F

2≤|F |≤n−1

δF −
∑

a,s,1∈F
n+1/∈F

2≤|F |≤n−1

δF − δ{2,...,n}. (12)

Note that the term involving δ{2,...,n} = δ{1,n+1} = E{1} in (12) must be subtracted
because the last term in (11) includes only δF for |F | ≤ n − 2.

Using (ii), (12) can be rewritten as

∑
a,s∈F
|F |≥2
1/∈F

En+1
F +

∑
i /∈{a,s,1,n+1}

(
H −

∑
1,i /∈J

2≤|J |≤n−3

En+1
J

)
+ H

−
∑

2≤|F |≤n−3
a,s,1/∈F

En+1
F − En+1

{1}

= −En+1
{1} + 
, (13)

where 
 absorbs terms proportional to H or EJ for 1 /∈ J . Using (10), (9), and
(13), we see that

π−1
n+1

(
bh −

∑
1≤|I |≤n−4}

kI eI

)
∼ −bEn+1

{1} −
∑

I⊂{1,...,n}
2≤|I |≤n−4

kIE
n+1
I∪{1} + 
,
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where again terms in 
 are linearly independent of those explicitly written.
Hence, we have b = m{1} and kI = mI∪{1}, as was to be shown. �

Corollary 2.5. If D ⊂ M0,n is specified by f ∈ k[x1, . . . , xn] as in Theorem 2.2,
the class of D in the index r Kapranov basis for Cl(M0,n) is

m{r}H −
∑

1≤|I |≤n−3

mI∪{r}EI ,

where mJ is the multiplicity of V (f ) along the partial diagonal Diag{1,...,n}\J .

The following Macaulay2 code uses the formulae derived before to give the class
of a divisor specified by a polynomial equation with respect to the Kapranov basis
in index n+1. It is important to note that the result of this calculation is in fact the
divisor class modulo a large prime. For small n and low-degree polynomials, this
is unlikely to result in discrepancies with the actual class. Moreover, the code is
best suited for experimentation and motivation; in this context, sufficient certainty
about a given class can be obtained by varying the modulus.

To implement the code, first import the code into Macaulay2. Then define a
polynomial f = f (x1, . . . , xn). The command T (f ) outputs the class encoded as
a polynomial as follows: the class H is represented by a variable z, and the classes
EI are represented as monomials

∏
i∈I xi .

A brief explanation of the code: the first part creates an n × 2n binary matrix
V encoding partial diagonals. The diagonal {xi = xj | i, j ∈ I } corresponds to the
row with 1s in the column corresponding to indices in I and zeroes elsewhere.
The associated matrix W omits partial diagonals along which multiplicities need
not be calculated.

Using this matrix W , the second part of the code defines functions (taking as
input polynomials) that are composed to calculate the multiplicity along relevant
diagonals. More explicitly, the code first performs a change of variables and then
calculates the degree of the resulting polynomial, viewed as a polynomial in the
variable t .

--before running code, choose n between 6 and 10.
n=6;
R = ZZ/21977[x_0...x_9,b_0...b_9,z,
Degrees=>{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,
0,0,0,0}];

F = (i,j) -> if i==j then 1 else 0;
--code is for divisor in M_{0,n} specified by a
polynomial in n variables.

--output is class of pull-back in M_{0,n+1} with
respect to Kapranov in index n+1

--need multiplicities of polynomial along partial
diagonals.

--the following encodes diagonals in a matrix.
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u= matrix table(1,2^n,(i,j)-> if j<2^(n-1) then 1
else 0);

V = matrix table(n,2^n,(i,j)->u_(0,(2^i*j)%(2^n)) );
W = matrix table(n,2^n, (i,j)->
if sum(for i from 0 to n-1 list F(1,V_(i,j)))==n or
sum(for i from 0 to n-1 list F(1,V_(i,j)))<3
then 0 else V_(i,j));

--next make substitutions along the diagonals
--given a polynomial f, (Y(f)) is a matrix with each
column encoding

--a diagonal in the first n entries and multiplicity
in the n+1st.

--BB(LL(Y(f))) encodes the class as a polynomial.
--E_I = monomial that is product of x_i’s for i in I.
g = (i,j) -> if i<n and sum(for l from 0 to n-1 list
W_(l,j)) != 0

then ( F(0,W_j_i)*b_i + F(1,W_j_i)*(z) + x_i )
else 0;

h = (l,P) -> sub(P,{x_0=>g(0,l), x_1=>g(1,l),
x_2=>g(2,l), x_3=>g(3,l), x_4=>g(4,l),
x_5=>g(5,l), x_6=>g(6,l),x_7=>g(7,l),
x_8=>g(8,l),x_9=>g(9,l)});

Y = P -> for i from 0 to 2^n-1 list matrix
table(n+1,1,(j,l) ->
if h(i,P)==0 or first degree(h(i,P))==0
then 0 else if j==n then (first degree(h(i,P)))
else F(0,W_(j,i) )*(x_(j)) );

a = v-> if v_(n,0) == 0 then 0 else
product(flatten(entries((compress transpose v))));

LL = Y -> apply(Y,a);
BB= LL -> sum LL;
T = P-> BB(LL(Y(P)))-first degree(P)*z;

3. Equations of Hypertree Divisors

The following definitions are from [CT]. A hypertree on a set N is a collection
� = {�1, . . . ,�d} of subsets of N satisfying:

(1) For any j ∈ {1, . . . , d}, |�j | ≥ 3.
(2) Each i ∈ N is contained in at least two distinct �j s.
(3) Convexity: |⋃j∈S �j | − 2 ≥ ∑

j∈S(|�j | − 2) for any S ⊂ {1, . . . , d}.
(4) Normalization: |N | − 2 = ∑

1≤j≤d(|�j | − 2).

A hypertree � is irreducible if the convexity condition (3) is strict for 1 < |S| < d .
A planar realization of a hypertree � = {�1, . . . ,�d} is a collection of points
p1, . . . , pn ∈ P2 such that pi , pj , pk are collinear if and only if there exists
α ∈ {1, . . . , d} such that i, j, k ∈ �α .
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Figure 2 Planar realization of the complete quadrilateral, defined by
� = {012,314,045,325}

Given planar realization, the images of p1, . . . , pn under projection from a
general point give n distinct marked points on P1. Given �, define the hypertree
divisor D� ⊂ M0,n as the closure of the locus

{[P1;q1, . . . , qn] | ∃ a realization {pi} and projection π with qi = π(pi)}.
For � irreducible, Castravet and Tevelev show that D� is a nonempty irreducible
divisor generating an extremal ray of Eff(M0,n).

Rather than defining D� as before, we might consider the closure of the lo-
cus of equivalence classes [P1;q1, . . . , qn] such that qis are projections of points
{p1, . . . , pn} ⊂ P2 where pi , pj , pk are collinear if i, j, k ⊂ �α and not all pi are
collinear. The distinction here is that we no longer require “only if”. It is nontriv-
ial that this weaker definition coincides with that of D� and is proved in [CT, §4].
We will use this characterization to obtain equations in k[x1, . . . , xn] specifying
irreducible hypertree divisors (where this specification in the precise sense is dis-
cussed in Section 2). Our proof is a direct generalization of results in [CT] for the
case where all subsets comprising the hypertree have three elements.

We first set up some notation. Given a subset �i = {ai1, . . . , aiki
}, let �ij =

{ai1, ai2, aij } for 3 ≤ j ≤ ki − 2. By normalization

d∑
i=1

|�i | =
d∑

i=1

(ki − 2) = n − 2

and from each �i we define precisely ki −2 sets �ij , so the total number of subsets
�ij for 1 ≤ i ≤ d , 3 ≤ j ≤ ki is n − 2. Let {Gα}1≤α≤n−2 to be an ordering of the
collection of �ij s. With this, we can state the following:

Theorem 3.1. Let � = {�1, . . . ,�d} be a hypertree. With notation as preceding
the theorem, define the (n − 2) × n matrix A by

Gα = {i, j, k}
�⇒ Aα,i = (xj − xk), Aα,j = (xk − xi), Aα,k = (xi − xj ).

If β /∈ Gα , then let Aα.β = 0. Define B as the (n − 3) × (n − 3) matrix obtained
from A by deleting a row and all columns in which the entries of that row are
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nonzero. The hypertree divisor D� is specified by

det B∏d
i=1(xai1 − xai2)

ki−3
.

Proof. The condition that points x1, . . . , xn ∈ A1 can be obtained from the pro-
jection of a hypertree curve is equivalent to the existence of y1, . . . , yn ∈ An so
that, defining pi = (xi, yi), the following is satisfied:

Not all pk are collinear, and i, j,w ∈ �k �⇒ pi,pj ,pw collinear. (14)

By construction, pi , pj , pw are collinear whenever i, j,w ∈ �k for some k

if and only if px , py , pz are collinear whenever x, y, z ∈ Gi for some i. We
apply the argument given in [CT, §8] to the subsets Gi to obtain A as defined
before so that a solution to A(y1, . . . , yn)

T = 0 with not all points pi collinear
implies that [P1;a1, . . . , an] ∈ D� if [P1 : a1, . . . , an] = χ(x1, . . . , xn), where
χA1[n] −→ M0,n is as defined in Section 1.

If a solution y = (y1, . . . , yn)
T to Ay = 0 exists, then we may choose coordi-

nates so that three points corresponding to the indices in some fixed Gi0 lie along
y = 0. We shall subsequently refer to this Gi0 as a pivot subset. Requiring that
not all pi are collinear and setting yi = 0 for i ∈ Gi0 , we seek a nontrivial solution
By = 0, where B is as defined in the theorem.

For points x1, . . . , xn, there exists a configuration of points p1, . . . , pn sat-
isfying (14) if and only if det B(x1, . . . , xn) = 0. Let A denote An minus the
partial diagonals of codimension greater than 1; what we have shown is that
φ−1∗ (V (det B) ∩ A) = χ−1(D� ∩ M0,n) with maps φ and χ as defined in Sec-
tion 2. Hence, det B is the correct equation for D� on M0,n, but det B may include
erroneous boundary factors corresponding to partial diagonals.

Claim 3.2. For each �i = {ai,1, ai,2, . . . , ai,kα }, max{m : (xai,1 − xai,2)
m |

det B} = kα − 3.

Given the claim, D� is specified by

g(x1, . . . , xn) := det B∏d
i=1(xai,1 − xai,2)

kα−3
. (15)

To see that φ−1∗ (V (g)) = χ−1(D�), note that deg(g) = n − 2 − ∑d
i=1(ki − 2) =

d −1, where the last equality invokes normalization of �. By [CT, §4.2] we know
that π−1

n+1(D�) ∼ (d − 1)H + · · · . By Theorem 2.2 a divisor D specified by a
polynomial F satisfies π−1

n+1(D) ∼ aH + · · · where a = deg(F ). Hence, degree
considerations show φ−1∗ (V (g)) = χ−1(D�).

We now prove the claim. Consider the rows of B corresponding to a given sub-
set �i = {ai1, . . . , aiki

}. Assume for simplicity that i = 1 and ai1, ai2, . . . , aiki
=
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1,2, . . . , k1; the argument generalizes. The first k1 − 2 rows of A are as follows:

⎛
⎜⎜⎜⎜⎜⎝

x2 − x3 x3 − x1 x1 − x2 0 0 · · · 0 · · ·
x2 − x4 x4 − x1 0 x1 − x2 0 · · · 0 · · ·
x2 − x5 x5 − x1 0 0 x1 − x2 · · · 0 · · ·

...
...

...
...

...
. . .

...
. . .

x2 − xki
xki

− x1 0 0 0 · · · x1 − x2 · · ·

⎞
⎟⎟⎟⎟⎟⎠

.

In passing from the matrix A to B, the rows of A shown can be altered in three
ways. Let Gi0 be the pivot subset used to obtain B.

(1) Gi0 ⊂ �1. Without loss of generality, we may assume that Gi0 corresponds to
the first row of A. The first k1 − 3 rows of B then appear as follows:

⎛
⎜⎜⎜⎝

x1 − x2 0 · · · 0 · · ·
0 x1 − x2 · · · 0 · · ·
...

...
...

...
. . .

0 0 · · · x1 − x2 · · ·

⎞
⎟⎟⎟⎠

Evidently, (x1 − x2)
k1−3 divides g.

(2) |Gi0 ∩�1| = 0. In this case, the first k1 −2 rows of B will be identical to those
of A. Adding column 2 to column 1 gives

⎛
⎜⎜⎜⎜⎜⎝

x2 − x1 x3 − x1 x1 − x2 0 0 · · · 0 · · ·
x2 − x1 x4 − x1 0 x1 − x2 0 · · · 0 · · ·
x2 − x1 x5 − x1 0 0 x1 − x2 · · · 0 · · ·

...
...

...
...

...
. . .

...
. . .

x2 − x1 xki
− x1 0 0 0 · · · x1 − x2 · · ·

⎞
⎟⎟⎟⎟⎟⎠

Expansion across rows shows that (x1 − x2)
k1−3 divides det(B).

(3) |Gi0 ∩ �1| = 1. This is the situation where precisely one column and no rows
of the submatrix of A corresponding to �1 are removed in passing to B. Let
{h} = Gi0 ∩ �1. We have two subcases to consider:

• 3 ≤ h. This results in a submatrix of the first k1 − 2 rows of B of the form
⎛
⎜⎜⎜⎜⎜⎝

x2 − x3 x3 − x1 0 0 · · · 0 · · ·
x2 − x4 x4 − x1 x1 − x2 0 · · · 0 · · ·
x2 − x5 x5 − x1 0 x1 − x2 · · · 0 · · ·

...
...

...
...

. . .
...

. . .

x2 − xki
xki

− x1 0 0 · · · x1 − x2 · · ·

⎞
⎟⎟⎟⎟⎟⎠

.

The argument from case 2 goes through (with minor adjustments) to show
that (x1 − x2)

k1−3 is a factor of det B.
• h = 1 or h = 2.
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This results in the first k1 − 2 rows of B of the form⎛
⎜⎜⎜⎜⎜⎝

x3 − x1 x1 − x2 0 0 · · · 0 · · ·
x4 − x1 0 x1 − x2 0 · · · 0 · · ·
x5 − x1 0 0 x1 − x2 · · · 0 · · ·

...
...

...
...

. . .
...

. . .

xki
− x1 0 0 0 · · · x1 − x2 · · ·

⎞
⎟⎟⎟⎟⎟⎠

.

Evidently, (x1 − x2)
k1−3 divides det B.

This proves the claim. �

All hypertrees up to permutation for at most 11 vertices were found in [Sch].
Enumeration of small irreducible hypertrees is as follows: 1 for 6 or 7 vertices; 3
for 8 vertices; 11 for 9 vertices; and 96 for 10 vertices.

Using our Macaulay2 program for computing classes specified by polynomial
equations (see Section 2) and the polynomial (15), we computed all divisor classes
corresponding to irreducible hypertrees for 6 ≤ n ≤ 10. We additionally wrote a
program to compute symmetry group sizes and computed symmetry groups of
irreducible hypertree classes for 6 ≤ n ≤ 8.

Particularly nice hypertrees are obtained via even triangulations of a two-
sphere: given a bicolored (say black and white) triangulation of the two-sphere
with n vertices, we can consider unordered triplets {i, j, k} corresponding to the
vertices of black triangles. The collection of all such triplets gives a set of sub-
sets of {1, . . . , n}; Castravet and Tevelev show that, for any bicolored triangula-
tion, this collection of subsets yields a hypertree. They call hypertrees obtained
in this way spherical hypertrees. These spherical hypertrees are irreducible un-
less the triangulation is a connected sum [CT, 1.6]. For 6 ≤ n ≤ 10, we classify
spherical hypertrees in our database. Spherical hypertrees are further discussed
in Theorem 4.9: certain spherical hypertree divisors are seen to arise as certain
Chen–Coskun divisors.

For the complete database and Macaulay2 code specific to hypertree divisors,
see [Op]. We hope that these data will prove useful in further investigations of
hypertrees and other divisors. In addition to the production of the database, the
code from the previous section was applied to explore properties of divisors, mo-
tivating the discovery of our counterexamples to Conjecture 1.1. We provide the
counterexample in Section 5 but must first describe the family of divisors used in
the construction.

4. Chen–Coskun Divisors

Chen and Coskun [CC] define divisors on the moduli space M1,n of genus 1
curves with n ordered markings as follows. Given an n-tuple of integers

a = (a1, . . . , an)

with
∑

i ai = 0, define Da ⊂ M1,n to be the closure of the locus of smooth genus
1 curves [E;p1, . . . , pn] so that

∑
aipi = 0 in the Jacobian of the curve. Results
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Figure 3 The clutching morphism ϕ : M0,7 → M1,5

on these divisors include that, for gcd(a1, . . . , an) = 1 and n ≥ 3, the divisor Da
is an irreducible, rigid effective divisor generating an extremal ray of the effective
cone of M1,n. Moreover, there are infinitely many of distinct divisors of this form
on M1,n for each n ≥ 4, showing that Eff(M1,n) is not finitely generated [CC].

The natural clutching morphism ϕ : M0,n+2 −→ M1,n identifies marked points
pn+1 and pn+2 on a rational curve in M0,n+2 (see Figure 3). We might ask what
can be said about the proper transforms under ϕ of the divisors defined in [CC].
However, the definition given by Chen and Coskun does not lend itself to study
of these proper transforms: the image ϕ(M0,n+2) lies entirely in the complement
of the smooth locus, and their definition is in terms of the closure of a collection
of smooth curves. Hence, we give an alternate definition entirely within the locus
of nodal genus 1 curves.

For a = (a1, . . . , an) ∈ Zn satisfying
∑n

i=1 ai = 0 and gcd(a1, . . . , an) = 1,
define Da as the closure in ϕ(M0,n+2) of the locus of irreducible nodal curves
[C;p1, . . . , pn] with n distinct smooth markings such that

∑n
i=1 aipi = 0 in

Pic0(C) � Gm. It is clear that our subset Da ⊂ ϕ(M0,n+2) is the intersection of
the divisor Da defined in [CC] with ϕ(M0,n+2), but we will not use this fact.
Henceforth, Da will refer to our divisor defined on ϕ(M0,n+2) unless otherwise
noted.

Lemma 4.1. The locus Da ⊂ ϕ(M0,n+2) is an irreducible divisor.

Proof. Let Y = Gn
m \ {diagonals}. Consider the following commutative diagram:

Y
(λ1,...,λi )�→∏n

i=1 λ
ai
i−−−−−−−−−−−−→ Gm

γ

⏐⏐� ⏐⏐�w

ϕ(M0,n+2)
[C : p1,...,pn]�→∑n

i=1 aipi−−−−−−−−−−−−−−−→ Pic0(C)

Here γ is induced by an isomorphism of the smooth locus of an irreducible nodal
cubic with Gm and maps an n-tuple of distinct points to their isomorphism class
in ϕ(M0,n+2) ⊂ M1,n. The map w is the canonical identification of Pic0(C) with
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Gm. Note that γ is surjective onto ϕ(M0,n+2). Define

S =
{
(p1, . . . , pn) ∈ Y

∣∣∣
n∏

i=1

p
ai

i = 1

}

and γ −1(Da ∩ ϕ(M0,n+2)) = S. Hence, it suffices to show irreducibility of S.
Recall that endomorphisms of Gn

m are given by

pi �→
n∏

j=1

p
rij
j

for rij ∈ Z; so we represent an endomorphism via an integral matrix acting on
exponents:

R =

⎛
⎜⎜⎜⎜⎜⎝

r11 r12 · · · r1n

r21 r22 · · · r2n

r31 r32 · · · r3n

...
...

...
...

rn1 rn2 · · · rnn

⎞
⎟⎟⎟⎟⎟⎠

.

The corresponding map is an automorphism if and only if |detR| = 1.
Suppose that there is an automorphism h such that

p1
h�−→

n∏
i=1

p
ai

i .

Then
{(p1, . . . , pn) | pa1

1 · · ·pan
n = 1} � {(q1, . . . , qn) | q1 = 1},

where the isomorphism is induced by the given endomorphism. This is the graph
of a morphism from Gn−1

m to Gm and hence an irreducible divisor. So it suffices to
show that there exists an automorphism with matrix R such that ri1 = ai for 1 ≤
i ≤ n. We show this by induction on n. For n = 2, the condition that gcd(a1, a2) =
1 gives that there exist c1, c2 such that a1c1 − a2c2 = 1. A matrix with the desired
property is then given by

R =
(

a1 c2
a2 c1

)
.

Now consider the case for S ⊂ Gk+1
m with gcd(a1, . . . , ak+1) = 1. Let s :=

gcd(a1, . . . , ak). Factoring out the gcd, inductively there is an automorphism of
θ of Gk

m taking p
a1
1 · · ·pak

k

θ�−→ qs
1, where qi := θ(pi). The map θ extends to an

automorphism of Gk+1
m with pk+1

θ�−→ pk+1, and we have

S � {(q1, . . . , qk+1) | qs
1q

ak+1
k+1 = 1}.

The assumption that gcd(a1, . . . , ak+1) = 1 forces gcd(s, ak+1) = 1. Hence,
the induction is completed by applying the k = 2 case to obtain an appropriate
automorphism of 〈q1, qk+1〉 � G2

m. �

We now give explicit formulas for the class of the proper transform of Da with
respect to the clutching morphism ϕ.
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Theorem 4.2. Given a = (a1, . . . , an) with
∑

i ai = 0, the proper transform �a

of Da under the map ϕ : M0,n+2 → M1,n identifying marked points n + 1 and
n + 2 is an is an irreducible divisor. Furthermore, �a is specified in the sense of
Section 2 by the polynomial

1

xn+1 − xn+2
·
( ∏

ai≥0

(xn+1 − xi)
|ai | ∏

ai≤0

(xn+2 − xi)
|ai |

−
∏
ai≤0

(xn+1 − xi)
|ai | ∏

ai≥0

(xn+2 − xi)
|ai |

)
, (16)

and
π−1

n+3(�a) ∼ dH −
∑

mIE
n+3
I ,

with coefficients as follows:

• If n + 1, n + 2 /∈ I and {i | ai �= 0} ⊂ I , then mI = 0.
• If n + 1, n + 2 /∈ I and {i | ai �= 0} �⊂ I , then mI = (

∑
i /∈I |ai |) − 1.

• If n + 1, n + 2 ∈ I and {i | ai �= 0} ⊂ {1, . . . , n} \ I , then mI = 1.
• If n + 1, n + 2 ∈ I and {i | ai �= 0} �⊂ {1, . . . , n} \ I , then mI = 0.
• If |{n + 1, n + 2} ∩ I | = 1, then mI = min{∑0≤ai /∈I |ai |,∑0≥ai /∈I |ai |}.
• d = (

∑
i |ai |) − 1.

This theorem immediately yields a number of useful formulae, which we record
prior to proving the theorem.

Corollary 4.3. If a = (a1, . . . , an) with ai �= 0 for all i, then π−1
n+3(�a) ∼ dH −∑

i mIE
n+3
I , with coefficients as follows:

• If n + 1, n + 2 /∈ I , then mI = (
∑

i /∈I |ai |) − 1.
• If n + 1, n + 2 ∈ I , then mI = 0 except when I = {n + 1, n + 2}, in which case

mI = 1.
• If |{n + 1, n + 2} ∩ I | = 1, then mI = min{∑0≤ai /∈I |ai |,∑0≥ai /∈I |ai |}.
• d = (

∑
i |ai |) − 1.

Proof. A special case of Theorem 4.2. �

Corollary 4.4. Given a = (a1, . . . , an) with
∑

i ai = 0, the class of �a with
respect to the Kapranov basis in index r is( ∑

1≤i≤n
i �=r

|ai | − 1

)
H −

∑
n+1,n+2/∈I
{i|ai �=0}�⊂I

( ∑
i /∈I∪{r}

|ai | − 1

)
EI

−
∑

|{n+1,n+2}∩I |=1

min

{ ∑
0≤ai

i /∈I∪{r}

|ai |,
∑
0≥ai

i /∈I∪{r}

|ai |
}
EI

−
∑

n+1,n+2∈I
I∩N⊂{i|ai=0}

r /∈I

EI . (17)
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Proof. Apply Proposition 2.4 to Theorem 4.2. Note that the last terms in (17),
that is, those involving EI for {n + 1, n + 2} ∈ I , vanish if ar �= 0. �

Corollary 4.5. Suppose that a = (a1, . . . , an) with ai �= 0 for all i. Then the
class of �(a1,...,an) ⊂ M0,n+2 with respect to the Kapranov basis in index r for
r ∈ {1, . . . , n} is( ∑

1≤i≤n
i �=r

|ai | − 1

)
H −

∑
n+1,n+2/∈I

( ∑
i /∈I∪{r}

|ai | − 1

)
EI

−
∑

|{n+1,n+2}∩I |=1

min

{ ∑
0≤ai

i /∈I∪{r}

|ai |,
∑
0≥ai

i /∈I∪{r}

|ai |
}
EI . (18)

Proof. Apply Proposition 2.4 to Theorem 4.3. �

We now prove the main result.

Proof of Theorem 4.2. We can describe the interior of �a as follows:

[P1;p1, . . . , pn+2] ∈ �a ∩ M0,n+2

⇐⇒ ϕ([P1;p1, . . . , pn+2]) = [C;q1, . . . , qn] ∈ Da

⇐⇒ ∃g ∈ k(C) : div(g) =
n∑

i=1

aiqi, (19)

for g regular and invertible at the node

⇐⇒ ∃h ∈ k(P1) : div(h) =
n∑

i=1

aipi and h(pn+1) = h(pn+2).

Evidently, h(x) = ∏n
i=1(x − pi)

ai on an appropriate affine chart for a repre-
sentative of [P1;p1, . . . , pn+2]. Thus, the condition that

x = [P;p1, . . . , pn+2] ∈ �a

is equivalent to requiring that any (A1;q1, . . . , qn+2) mapping to x under the map
χ from the Fulton–MacPherson configuration space satisfies h(qn+1) = h(qn+2).
This gives an equation F specifying �a ∩ M0,n+2:

∏
ai≥0

(xn+1 − xi)
|ai | ∏

ai≤0

(xn+2 − xi)
|ai |

−
∏
ai≤0

(xn+1 − xi)
|ai | ∏

ai≥0

(xn+2 − xi)
|ai |. (20)

Note that Lemma 4.1 implies that �a = ϕ−1∗ (Da) is irreducible. Since F is the
correct equation for �a on M0,n+2, only boundary terms of the form xi − xj for
i �= j can divide F .
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Claim 4.6. For m ∈ N, (xi − xj )
m divides F if and only if

{i, j} = {n + 1, n + 2}
and m = 1.

We obtain Claim 4.6 in the course of proving the formula for classes: the claim is
equivalent to the assertion that the multiplicity of F along Diag{i,j} is zero unless
{i, j} = {n + 1, n + 2}, in which case it is 1. Given the claim, we recover the
equation of the theorem.

With notation as from Theorem 2.2, recall that given f ∈ k[x1, . . . , xn+2] such
that φ−1∗ (V (f )) = χ−1(D), the class of the pull-back π−1

n+3(D) ⊂ M0,n+3 is

dH −
∑

1≤|I |≤n−1
I⊂{1,...,n+2}

mIEI ,

where d is the degree of f , and mI is the multiplicity of f along the partial
diagonal DiagJ = {xi = xj | i, j ∈ J } for J = {1, . . . , n + 3} \ I . Hence, we must
compute the multiplicity of F from (20) along partial diagonals DiagJ with 4 ≤
|J | ≤ n+ 2. The multiplicity along a diagonal will be the multiplicity at a general
point. To compute the multiplicity at an arbitrary point b = (−b1, . . . ,−bn+2), we
make the substitution xi �→ xi + bi and determine the degree of the initial term of
the resulting equation as a polynomial in xi . To get the multiplicity at a general
point b ∈ DiagJ , we set bi = t for i ∈ J and then compute the minimum degree
among nonzero monomials as a polynomial in xi .

There are several cases to consider. Throughout, we define kJ to be the multi-
plicity of F along a partial diagonal DiagJ and let N := {1, . . . , n}. To simplify
the notation, define s(x) = n + 1 if x ≥ 0 and s(x) = n + 2 if x < 0.

(1) n + 1, n + 2 ∈ J .

• For α ∈ {n+ 1, n+ 2} and i ∈ J ∩N , we substitute (xα − xi) �→ (xα − xi).
• For i /∈ J ∩ N , we substitute (xα − xi) �→ (xα − xi − bi + t).

The initial term as a polynomial in xis is then∏
i∈J∩N

(xs(ai ) − xi)
|ai | ∏

i∈J c∩N

(t − bi)
|ai |

−
∏

i∈J∩N

(xs(−ai ) − xi)
|ai | ∏

i∈J c∩N

(t − bi)
|ai |. (21)

If |J | ≥ 3 and J ∩ N is not contained in the set

A0 := {i | ai = 0},
then the summed terms have distinct prime factors, so (21) is nonzero. Hence,

kJ =
∑
i∈J

|ai |

for J containing some i ∈ N with ai �= 0.
If J ∩ N ⊂ A0, then (21) is indeed zero, but the entire polynomial will be

the same as that obtained via the requisite substitution for computation of the
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multiplicity of F along Diag{n+1,n+2}. This particular substitution results in
a coefficient of xn+1 given by∑

ai>0

|ai |(t − bi)
|ai |−1

∏
j �=i

(t − bj )
|aj |

−
∑
ai<0

|ai |(t − bi)
|ai |−1

∏
j �=i

(t − bj )
|aj |,

which is nonzero since the summands have pairwise distinct prime factors.
This shows that kJ = 1 for J ∩ N ⊂ A0.

In particular, the multiplicity of our equation along V (xn+1 − xn+2) is 1.
This proves part of Claim 4.6:

max{m | (xn+1 − xn+2)
m divides F } = 1.

(2) n + 1, n + 2 /∈ J .

• For i ∈ J , we substitute (xα − xi) �→ (xα − xi − t + bα).
• For i ∈ N \ J , we substitute (xα − xi) �→ (xα − xi − bi + bα).

The constant term of the resulting polynomial in xi is∏
i∈J

(t − bs(ai ))
|ai | ∏

i /∈J

(bi − bs(ai ))
|ai |

−
∏
i∈J

(t − bs(−ai ))
|ai | ∏

i /∈J

(bi − bs(−ai ))
|ai |. (22)

If there is an i ∈ N \ J with ai �= 0, then we necessarily have a monomial
(bi −bs(ai )) dividing one term but not the other, and the difference is nonzero.
Hence, N \ J �⊂ A0 implies that kJ = 0. Now suppose that ai = 0 for all
i ∈ N \ J . In this case, (22) is zero. Let r = ∑

ai>0 |ai | = ∑
ai<0 |ai |. The

next lowest term as a polynomial in xi includes the summand

[(t − bn+1)
r−1(t − bn+2)

r − (t − bn+1)
r (t − bn+2)

r−1]
(∑

i≤n
ai>0

xi

)
. (23)

There are other degree 1 contributions, but these do not involve xi for i ≤ n

and ai > 0, so to conclude that k{1,...,n} = 1, it suffices to note that (23) is
nonzero. This shows that

kJ = 1 if N \ J ⊂ {i | ai = 0} and
(24)

kJ = 0 otherwise.

In particular, if all ai are nonzero, then kJ �= 0 if and only if J = {1, . . . , n},
in which case kJ = 1.

(3) |{n + 1, n + 2} ∩ J | = 1. Without loss of generality, assume that n + 1 ∈ J

and n + 2 /∈ J ; the argument is symmetric.

• For i ∈ N ∩J , we substitute (xn+1 −xi) �→ (xn+1 −xi) and (xn+2 −xi) �→
(xn+2 − xi − t + bn+2).

• For i ∈ N \J , we substitute (xn+1 −xi) �→ (xn+1 −xi −bi + t) and (xn+2 −
xi) �→ (xn+2 − xi − bi + bn+2).
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Define hj,i = (xn+j − xi) for j ∈ {1,2} and 1 ≤ i ≤ n. With this notation,
substituting gives F =∏

i∈J
ai>0

(h1,i )
|ai | ∏

i /∈J
ai>0

(h1,i − bi + t)|ai | ∏
i∈J
ai<0

(h2,i − t + bn+2)
|ai |

×
∏
i /∈J
ai<0

(h2,i − bi + bn+2)
|ai |

−
∏
i∈J
ai<0

(h1,i )
|ai | ∏

i /∈J
ai<0

(h1,i − bi + t)|ai | ∏
i∈J
ai>0

(h2,i − t + bn+2)
|ai |

×
∏
i /∈J
ai>0

(h2,i − bi + bn+2)
|ai |.

The initial term of the expanded expression is∏
i∈J
ai>0

(xn+1 − xi)
|ai | ∏

i /∈J
ai>0

(t − bi)
|ai | ∏

i∈J
ai<0

(bn+2 − t)|ai | ∏
i /∈J
ai<0

(bn+2 − bi)
|ai |

−
∏
i∈J
ai<0

(xn+1 − xi)
|ai | ∏

i /∈J
ai<0

(t − bi)
|ai | ∏

i∈J
ai>0

(bn+2 − t)|ai |

×
∏
i /∈J
ai>0

(bn+2 − bi)
|ai |. (25)

The two terms comprising (25) necessarily have distinct factors regardless of
the relationship between A0 and J , so that the difference is nonzero. Hence,

kJ = min

{∑
ai≥0
i∈J

|ai |,
∑
ai≤0
i∈J

|ai |
}
.

These formulae do not quite give the class of the divisor �a. Assuming
Claim 4.6, the actual equation specifying �a is F/(xn+1 − xn+2). Hence, the
relevant multiplicities giving class coefficients are computed by subtracting the
multiplicity of (xn+1 − xn+2) along DiagJ from each computed kJ . Our formulae
will therefore be as follows:

(1) If n+1, n+2 ∈ J , substituting to compute the multiplicity along DiagJ gives
(xn+1 − xn+2) �→ (xn+1 − xn+2), so the multiplicity is 1. Hence, defining
M = {1, . . . , n + 2},

mM\J = kJ − 1 =
(∑

i∈J

|ai |
)

− 1

for J ∩ N �⊂ {i | ai = 0}, and

mM\J = 0

for J ∩ N ⊂ {i | ai = 0}.
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(2) If n + 1, n + 2 /∈ J , then we substitute (xn+1 − xn+2) �→ (xn+1 − xn+2 +
bn+1 − bn+2), which shows that the multiplicity of xn+1 − xn+2 is zero along
DiagJ . Hence,

mM\J = 0

unless M \ J ⊂ A0, in which case

mM\J = kJ = 1.

(3) |{n + 1, n + 2} ∩ J | = 1. Evidently, the multiplicity of (xn+1 − xn+2) here is
also zero, and

mN\J = kJ = min

{ ∑
i∈J
ai≥0

|ai |,
∑
i∈J
ai≤0

|ai |
}
.

Reformulating (1)–(3) gives the theorem.
It remains to complete the proof of Claim 4.6. We have already noted that

(xn+1 − xn+2)
k divides F if and only if k = 1. To see that no other (xi − xj )

divides F for i �= j and i, j ≤ n, recall that F has multiplicity zero along each
partial diagonal V (xi −xj ) by (24). By inspection of (20) it is evident that neither
(xn+1 − xj ) nor (xn+2 − xj ) can divide F for j ≤ n. �

Example 4.7. Let Dk := �(k,1,−1,−1,...,−1) ⊂ M0,k+5. Let K = {k+4, k+5}. We
apply the formulas from Corollary 4.5 to compute the class of Dk with respect to
the Kapranov basis for M0,k+5 using index 1. Note that, in our case,

∑
1≤i≤k+3

i �=1

|ai | − 1 =
( ∑

2≤i≤k+3

(1)

)
− 1 = k + 1,

and for K ∩ I = ∅,∑
i /∈I∪{1}

|ai | − 1 = |{2, . . . , k + 3} − I | − 1 = k + 2 − |I | − 1 = k + 1 − |I |.

For |K ∩ I | = 1, the coefficient is

min

{ ∑
0≤ai

i /∈I∪{1}

|ai |,
∑
0≥ai

i /∈I∪{1}

|ai |
}
.

If 2 ∈ I , then the minimum is zero; if not, the minimum is always one since
cardinality considerations show that

{i | ai ≤ 0} �⊂ I.

Hence, we have that

Dk ∼ (k + 1)H −
k∑

i=1

( ∑
K∩I=∅|I |=i

(k + 1 − i)EI

)
−

∑
|K∩I |=1

2/∈I

EI . (26)
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Example 4.8. Consider the (k + 1)-tuple (k,−1,−1,−1, . . . ,−1), which gives
a divisor on M0,k+3. Note that, by Theorem 4.10, this divisor can be obtained by
intersecting Dk from Example 4.7 with the boundary where the first two markings
“collide”. Using Corollary 4.5, we compute the class of Lk := �(k,−1,...,−1) with
respect to the index 1 Kapranov basis:

Lk ∼ (k − 1)H −
k−1∑
i=1

∑
|I |=i

I⊆{2,...,k+1}

(k − 1 − i)EI .

Note that all EI with k + 2 ∈ I or k + 3 ∈ I do not contribute to the class of Lk .

We return to general results on Chen–Coskun divisors. The next theorem relates
certain Chen–Coskun divisors to spherical hypertree divisors (defined in Sec-
tion 3).

Theorem 4.9. If a = (1,1, . . . ,−1,−1, . . . ) is a 2k-tuple with
∑

ai = 0, then
�a = D� where � is the spherical hypertree divisor associated to a bipyramidal
bicolored spherical triangulation with 2k triangles.

Proof. Since D� and �a are irreducible, it suffices to show that D� ∩M0,n ⊂ �a.
For this, we appeal to a characterization of spherical bipyramid hypertree divisors
given in [CT, 9.5].

Let � be the spherical bipyramid divisor on n = 2k + 2 vertices. Then there is
a partition of 1, . . . , n into subsets X, Y , Z with |X| = |Y | = k and |Z| = 2, where
the indices in Z correspond to “poles” of the bipyramid, and those in X and Y are
alternating points on the “equator” (see Figure 4).

Assume that X = {1, . . . , k}, Y = {k + 1, . . . ,2k}, Z = {2k + 1,2k + 2}. Con-
sider the embedding η of [P1;p1, . . . , pn] into Pk as a rational normal curve de-
gree k; let qi = η(pi), and

L = 〈qi〉i∈Z,

X̃ = 〈qi〉i∈X,

Ỹ = 〈qi〉i∈Y .

Castravet and Tevelev show that D� consists of [P1;p1, . . . , pn] such that

L ∩ X̃ ∩ Ỹ �= ∅. (27)

Fix a representative of marked points pi for an arbitrary element in D� ∩M0,n.
The function with zeros of order one at pi for i ∈ X and poles of order one at pi

for i ∈ Y is given by h = η∗(h1/h2), where h1 is a linear equation of X̃, and h2

one of Ỹ . Let qn+i = [a1i : · · · : aki] for i = 1,2. Then (27) implies that, for some
elements s and t in the base field,

hj ([sa11 + ta12 : · · · : sak1 + tak2]) = 0

for j = 1 or j = 2. This, together with linearity, implies that

h1

h2
(qn+1) = h1

h2
(qn+2),
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Figure 4 Spherical pyramidal triangulation with subsets X, Y , and Z indicated

so that

η∗ h1

h2
(xn+1) = η∗ h1

h2
(qn+2).

Hence, div(h) = p1 + · · · + pk − pk+1 − · · · − p2k and h(p2k+1) = h(p2k+2),
so h witnesses that [P;p1, . . . , pn] ∈ �(1,...,1,−1,...,−1). �

The next theorem describes how any Chen–Coskun divisor arises from intersec-
tions of a “universal divisor” of the form �(1,1,...,−1,−1,... ) with boundary divisors.
Together with the previous result, this gives a relationship between Chen–Coskun
divisors and hypertree divisors: all Chen–Coskun divisors are obtained by a se-
quence of restrictions of a bipyramidal spherical hypertree divisor.

Note that, in an attempt to clarify the proof of the theorem, we use labels
0, . . . , n + 2 for markings on M0,n+3 and markings 1, . . . , n + 2 on M0,n+2.

Theorem 4.10. Let a = (a0, . . . , an) ∈ Zn+1 be such that
∑

i ai = 0 and
gcd(a0, . . . , an) = gcd(a0 + a1, a2, . . . , an−1, an) = 1. Define b = (a0 + a1, . . . ,

an−1, an) ∈ Zn. Then �a ∩ δ{0,1} = �b as a divisor on δ{0,1} � M0,n+2.

Proof. Consider the following diagram:

An+3 φ←−−−− A1[n + 3] χ−−−−→ M0,n+3⋃ | ⋃ | ⋃ |
Diag{0,1}

φ̄←−−−− �{0,1}
χ̄−−−−→ δ{0,1}

ν

�⏐⏐ p0

⏐⏐��⏐⏐τ0 π0

⏐⏐��⏐⏐σ0

An+2 φ←−−−− A1[n + 2] χ−−−−→ M0,n+2

(28)

The maps φ and χ are as in (1). The maps φ̄ and χ̄ are restrictions of these
to the indicated subsets. The isomorphisms of δ{0,1} with M0,n+2 and �{0,1} with
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A1[n + 2] are restrictions of the index 0 forgetful morphisms; the inverse maps
are given by index 0 sections, σ0 and τ0. The isomorphism ν is defined by

(x1, . . . , xn, xn+1, xn+2) �→ (x1, x1, . . . , xn, xn+1, xn+2).

(That is, the map “repeats the first index”.)
The commutativity of the lower left rectangle follows from the fact that the

iterated blow-up defining A1[n+3] restricts to an iterated blow-up of the subspace
Diag{0,1}; this coincides with the Fulton–MacPherson construction when Diag{0,1}
is naturally identified with An+2. The commutativity of the lower right rectangle
is immediate from that of (1).

Define

∂ =
⋃

|I |≥2
I �={0,1}

δI ,

V =
⋃

{i,j}�={0,1}
Diag{i,j},

δ0
{0,1} = δ{0,1} \ ∂,

A = An+3 \ V,

M = M0,n+3 ∪ δ0
{0,1},

B = An+2 \ {diagonals}.
Let �0

a = �a ∩ M and �0
b = �b ∩ M0,n+2. We will show that �0

a ∩ δ{0,1} = �0
b,

so �a ∩ δ{0,1} and �b can differ only by boundary divisors of δ{0,1} � M0,n+2.
Given this, for the equality of the divisors, it will suffice to show that they have
the same classes.

Let F be the polynomial in k[x0, . . . , xn+2] specifying �a; the form of F is
given in (16). Since �0

a ∩ δ{0,1} = σ−1
0 (�a ∩ M) and the diagram commutes, we

have that

χ−1(�0
a ∩ δ{0,1}) = χ−1(σ−1

0 (�a ∩ M))

= τ−1
0 (χ−1(�a ∩ M))

= τ−1
0 (φ−1∗ (V (F ) ∩ A))

= φ−1∗ (ν−1(V (F )) ∩ B) = φ−1(V (ν∗F) ∩ B).

But h∗F is simply F(x0, . . . , xn, xn+1, xn+2) with x1 substituted for x0. If both a1
and a0 are nonnegative, we quite literally add exponents and obtain the equation
G(x1, . . . , xn+2) that specifies �b on M0,n+2. If a0 ≥ 0 and a1 < 0, then the
substitution yields

h∗F = ((xn+1 − x1)(xn+2 − x1))
min{|a0|,|a1|}G.

Since the factors (xn+1 − x1) and (xn+2 − x1) contribute boundaries, the divisor
specified by h∗F coincides with that specified by G on M0,n+2. Hence, �a ∩
δ{0,1} and �b are specified by the same polynomial on the interior of M0,n+2, as
claimed.



Extremal Divisors on Moduli Spaces of Rational Curves 275

We now show that the classes of �a ∩ δ{0,1} and �b are the same. Note that
H and δI for |I ∩ {0,1}| = 1 restrict to the zero class on δ{0,1}. For {0,1} � I ,
we have that δI ∩ �a = δI\{0} on δ{0,1} naturally identified with M0,n+2 with
markings 1, . . . , n + 2. The divisor δ{0,1} restricts to −H on δ{0,1}, the negative of
a Kapranov hyperplane class with respect to the index 1 Kapranov basis. Applying
this to the class of �a, we see that if

�a ∼ dH −
∑

mIEI ,

then
�a ∩ δ{1} ∼ m{1}H −

∑
{1}�I

mI δI .

Note that 1 ≤ |I | ≤ n − 1, so that 1 ≤ |I \ {1}| ≤ n − 2 for {1} � I and δI =
EI\{1} on M0,n+2 using the Kapranov basis in index 1. Hence, to show that �a ∩
δ{0,1} has the same class as �b, we must verify that if �b = gH − ∑

nIEI , then
m{1} = g and nI\{1} = mI .

By Corollary 4.4 we see that g = ∑
i �=1 |bi | − 1 = ∑

i �=0,1 |ai | − 1 = m{0,1}, as
desired. Moreover,

|{n + 1, n + 2} ∩ I | = |{n + 1, n + 2} ∩ I \ {1}|,
{i | ai �= 0} ⊂ I ⇐⇒ {i | bi �= 0} ⊂ I \ {1},

and

{i | bi �= 0} ⊂ {2, . . . , n} \ I ⇐⇒ {i | ai �= 0} ⊂ {1, . . . , n} \ I.

This implies that the coefficient of EI in the class of �a and of EI\{1} in the
class of �b are computed using the same formula from Corollary 4.4. Noting
that the formulas depend only on sums over the complements of I ∪ {0} and I ,
respectively, so that mI = nI\{1}, as desired. �

5. Counterexample to the Castravet–Tevelev Conjecture

In Example 4.7, we computed the class of Dk = �(k,1,−1,... ) on M0,k+5 with
respect to the index 1 Kapranov basis:

Dk ∼ (k + 1)H −
∑

K∩I=∅|I |=1

kEI −
∑

K∩I=∅|I |=2

(k − 1)EI − · · ·

−
∑

K∩I=∅|I |=k

EI −
∑

|K∩I |=1
2/∈I

EI , (29)

where we define K = {k + 4, k + 5}.
The divisor Dk is evidently effective. For extremality, we appeal to the criterion

given by Corollary 6.4: we construct an irreducible covering family of curves with
C · Dk < 0. Define a Kapranov map ψ1 from M0,k+5 to Pk+2. Let p2, . . . , pk+5

be the points in Pk+2 such that EI �→ 〈pi〉i∈I . Inspection of (29) shows that the
image S = ψ1(Dk) is a hypersurface of degree k +1 with a point of multiplicity k

at each pi for 2 ≤ i ≤ k + 3. Moreover, we have 2k + 2 codimension 2 subspaces
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Figure 5 Schematic of the construction of an element C in the cov-
ering family of curves G for S ⊂ Pk+2

〈pi〉i∈J for |J | = k + 1, |K ∩ J | = 1, and 2 /∈ J which are contained with multi-
plicity 1. To see this last fact, note that there are k + 1 subsets of {3, . . . , k + 3} of
size k, obtained by omitting a single index. Augmenting these subsets with either
index k + 4 or index k + 5 gives 2k + 2 codimension 2 spans as claimed.

In Pk+2, consider the family of curves G obtained by intersecting a 2-plane
through p2 with S (see Figure 5). Let F denote the covering family of Dk obtained
by taking proper transforms of curves in G with respect to ψ1.

Lemma 5.1. A general curve C in the covering family F of Dk has intersection
pairing −1 with Dk .

Proof. By construction, the image ψ1(C) in Pk+2 intersects a hyperplane in
k + 1 points, passes through p2 with multiplicity k, and transversally inter-
sects the 2k + 2 codimension 2 linear spans 〈pi〉i∈I for |I | = n + 1, 2 /∈ I , and
|I ∩ {k + 4, k + 5}| = 1 that contribute to the class of Dk . Hence, C · Dk =
(k + 1)(k + 1) − (k)(k) − (1)(2k + 2) = k2 + 2k + 1 − k2 − 2k − 2 = −1. �

Lemma 5.2. A general curve C in the covering family F of Dk is irreducible.

Proof. Note that it suffices to prove that ψ1(C) is irreducible, that is, that a general
curve in G is irreducible. Let T be the union of all lines through p2 that are
contained in S. Note that T must have codimension at least 2 since otherwise S

contains a codimension 1 cone over p2 and by irreducibility S itself is a cone
over p2. However, p2 is a point of multiplicity one less than the degree of S, so
this is a contradiction.
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If we consider the map π : Pn+2 \{p2} → Pn+1 that projects from the point p2,
then the image of T is a subvariety of codimension at least 2, and the image of
a 2-plane through p2 is a line. Hence, for a general 2-plane h containing p2,
π(h) ∩ π(T ) = ∅. We can reformulate this statement as follows: for a general
2-plane h ⊂ Pk+2 containing p2, the curve S ∩ h contains no line through p2.

Now, for a contradiction, suppose that the intersection of a general 2-plane
with S is reducible. Then the plane curve obtained via intersection is the union
of a curve g1 of degree m1 and a curve g2 of degree m2 for m1,m2 ≥ 1. Without
loss of generality, p2 is a point of multiplicity m1 on g1. But then g1 is a union of
lines through p2. �

It is shown in the next section that the preceding two lemmas imply the following:

Corollary 5.3. For each k, Dk generates an extremal ray of the effective cone
of M0,k+5.

We now verify that Dk is not linearly equivalent to a hypertree divisor or hypertree
divisor pull-back for k ≥ 2. To this end, consider the class of π−1

k+6(Dk) ⊂ M0,k+6

with respect to the index k + 6 Kapranov basis. By Theorem 4.2,

π−1
k+6(Dk) ∼ (2k + 1)H − · · · .

From the proof of Theorem 3.1, a hypertree divisor on less than or equal to t

vertices is specified by a polynomial of degree at most t − 3. Hence, given a
hypertree divisor or hypertree divisor pull-back D� ⊂ M0,k+5, we have that

π−1
k+6(D�) ∼ sH − · · · ,

where s ≤ k + 2. Evidently, s = 2k + 1 is impossible unless k = 1.

6. Covering Families of Curves and Conditions for Extremality

Results of this section will imply Corollary 5.3. In fact, a sufficient result for
Corollary 5.3 is proved in [CC, 4.1]: Chen and Coskun show that if D is an irre-
ducible divisor and there exists an irreducible curve C so that C · D < 0 and D is
covered by irreducible curves numerically equivalent to C, then D generates an
extremal ray of the pseudoeffective cone.

We prove a slightly stronger result: under the same hypotheses, D generates
an “edge” of the pseudoeffective cone. Roughly, this means that D is extremal
and additionally the boundary of the pseudoeffective cone is not rounded near
the ray generated by D. The proof, completed in Corollary 6.4, follows from two
lemmas of convex geometry. We first set up some notation; throughout we use
standard Euclidean notions of distance, boundedness, et cetera on RN with usual
coordinates.
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Given a convex cone X ⊂ RN , we say that v ∈ X is an edge for X if there exist
linear functions h1, . . . , hN−1 such that

N−1⋂
i=1

{hi = 0} = 〈v〉 (30)

and

X ⊂
N−1⋂
i=1

{hi ≥ 0}. (31)

We say that v ∈ X is extremal if v = a1w1 + a2w2 for a1, a2 ≥ 0 and w1,w2 ∈ X

implies that w1 and w2 are proportional to v.

Lemma 6.1. If X is a convex cone in RN and v ∈ X is an edge, then v is extremal.

Proof. If v = a1w1 + a2w2, then 0 = hi(x) = a1hi(w1) + a2hi(w2) for each 1 ≤
i ≤ N −1. Since wi ∈ X, hi(wi) ≥ 0 for each i by (31) and since aj ≥ 0, we must
have hi(w1) = hi(w2) = 0 for all i. Hence, by (30), wj ∈ 〈v〉, as desired. �

Given a collection of points V ⊂ RN , let C(V ) denote the closure of the convex
hull of all nonnegative multiples of elements in V . This is, in particular, a closed
convex cone in RN .

Lemma 6.2. Given V ⊂ RN and v ∈ V , suppose that

(a) There exists a linear function σ such that σ(x) < 0 for x ∈ V if and only if
x = v;

(b) There exists an affine hyperplane 0 /∈ H ⊂ RN with H ∩ C(V ) nonempty and
bounded.

Then v is an edge of C(V ). Moreover, v is extremal.

Proof. We assume throughout that generating set V contains two points that are
not multiples of each other, since the lemma is immediate when V = {v}.

For any x ∈ V , some positive multiple of x lies in H . To see this, note that
without loss of generality H = {z | g(z) = 1} for some linear function g. If λx /∈
H for all λ ≥ 0, we must have g(x) = b ≤ 0. Choose any y ∈ H ∩ C(V ) not a
scalar multiple of x. Such a y exists by the assumption that V contains a pair
of linearly independent points. If b = 0, then y + λx ∈ C(V ) ∩ H for all λ > 0,
which contradicts the boundedness of H ∩ C(V ).

If b < 0, let λ1 > 1 and λ2 = λ1−1
|b| > 0. Then λ1y + λ2x ∈ H ∩ C(V ) since

λ1, λ2 > 0 and g(λ1y + λ2x) = 1. Since x and y are linearly independent and
λ2 → ∞ as λ1 → ∞, this gives an unbounded sequence in H ∩ C(V ), again
contradicting (b). Let K := C(V )∩H . We have shown that K is closed, bounded,
and convex and that

C(V ) = {λx | x ∈ K,λ ≥ 0}.
These observations will be used later.

Now let T denote the subspace {y | σ(y) = 0} ⊂ RN , where σ is supplied
by (a).



Extremal Divisors on Moduli Spaces of Rational Curves 279

Claim 6.3. There exists a basis {v, x1, . . . , xN−1} for RN such that if we denote
by hi the coordinate function naturally associated to the element xi of the basis
{v, xi}, then:

• xi ∈ T for 1 ≤ i ≤ N − 1.
• K ∩ T ⊂ ⋂N−1

i=1 {hi ≥ 0}.
Given the claim, since C(V )∩T consists of nonnegative multiples of elements of
K ∩ T , it follows that C(V ) ∩ T also lies in this intersection of half-spaces. With
notation as in the claim, we have that

V ⊂
N−1⋂
i=1

{hi ≥ 0}.

Indeed, let y ∈ V \ {v}. Then

y = −αv +
∑

i

aixi

for some uniquely determined coefficients α, ai . Moreover,

σ(y) = −ασ(v) ≥ 0

by assumption (a). Since σ(v) < 0, we must have α ≥ 0. Then αv+y = ∑
i aixi ∈

C(V ) ∩ T , so that ai ≥ 0 by choice of the basis xi .
This shows that

C(V ) ⊂
N−1⋂
i=1

{hi ≥ 0}

and
N−1⋂
i=1

{hi = 0} = 〈v〉,

so that v is an edge for C(V ), as desired.
To prove Claim 6.3, let K0 := K ∩ T . Since K = C(V ) ∩ H , we have that

K0 ⊂ H ∩ T = {x ∈ T | g(x) = 1},
where, as before, g is a linear function on RN , so that H = {x ∈ RN | g(x) = 1}.
This subset is nonempty since σ(v) < 0 but σ(x) ≥ 0 for some x ∈ V , so that we
can find x′ ∈ C(V ) with σ(x′) = 0. As argued previously, some positive multiple
of x′ lies in H and therefore in K0.

If we take T0 to be the (N − 2)-dimensional subspace of T where g van-
ishes, we have T0 ∩ K0 = ∅. Let x′

1 be a normal vector to T0 with g(x) > 0. Let
x′

2, . . . , x
′
N−1 be a basis for T0. Then let h′

i denote the coordinate functions as-
sociated to this basis, and by the boundedness of K0 we have that for each i,
h′

i (K0) ⊂ [ai, bi] for some finite ai , bi . Note that by assumption a1 > 0. Now
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define new coordinates by xi = x′
i for i ≥ 2 and

x1 = x′
1 +

N−1∑
i=2
ai<0

ai

a1
x′
i .

If y ∈ K0, then y = λ1x
′
1 +∑N−1

i=2 λix
′
i for λi ≥ ai . Substituting to express y with

respect to the basis {xi}, we obtain

y = λ1x1 +
N−1∑
i=2
ai<0

(
−λ1

a1
ai + λi

)
xi +

N−1∑
i=2
ai≥0

λixi .

All coordinates of vectors in K0 are positive with respect to the new basis since
−λ1

a1
ai + λi > −λ1

a1
ai + ai > 0 for ai < 0.

The second assertion of the lemma is immediate from Lemma 6.1. �

Corollary 6.4. Given an irreducible effective divisor D on a smooth projective
variety X and an irreducible covering family of curves C such that C · D < 0, the
divisor D generates an edge of the effective cone and is therefore extremal.

Proof. If we let H denote the class group of X modulo numerical equivalence
and identify NS(X) = H ⊗R with RN for suitable N , then Eff(X) = C(S) where
S ⊂ NS(X) is the set of irreducible effective divisor classes.

For any irreducible divisor D′, we may choose an irreducible curve C′ in the
family that does not lie in the intersection of the D′ and D. Then C′ · D′ ≥ 0.
This shows that (a) from Lemma 6.2 is satisfied. It is a well-known fact that the
pseudoeffective cone has nonempty, bounded intersection with an appropriately
chosen affine hyperplane, so (b) is also satisfied. �

7. Rigid Examples and Nonextremal Examples

We say that a divisor D is rigid if h0(kD) = dimH 0(OX(kD)) = 1 for all k ≥ 1.
Before commencing with examples, we record the following:

Lemma 7.1. Suppose that X is a smooth projective variety and D ⊂ X is an
irreducible effective divisor with a covering family F of irreducible curves such
that C · D < 0 for C ∈ F . Then D is rigid.

Proof. See [CC, 4.1]. �

Theorem 7.2. Given a = (a1,1, . . . ,1,−1, . . . ,−1) with a1 > 1, the divisor �a
on M0,N+2 is rigid. Here, N = a1 + 2m+ 1, and m equals the number of positive
1s appearing in the entries of a.

Proof. We proceed by induction on m. If m = 1, then �a is one of the coun-
terexamples provided in Section 5, and hence there exists an irreducible covering
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family of curves for the divisor with negative intersection pairing; Lemma 7.1
implies that �a is rigid.

Now suppose that m > 1. If b := (a1 + 1,1, . . . ,1,1,−1,−1, . . . ,−1), then
by Theorem 4.10 we have that �a ∩ δ{1,2} � �b when δ{1,2} is naturally identified
with M0,N+1. By induction �b is rigid. We have an exact sequence

0 −→OM0,N+2
(k�a − δ{1,2}) −→ OM0,N+2

(k�a) −→ Oδ{1,2}(k�b) −→ 0,

which gives a long exact sequence in cohomology

0 −→ H 0(OM0,N+2
(k�a − δ{1,2})) −→ H 0(OM0,N+2

(k�a))

−→ H 0(Oδ{1,2}(k�b)) −→ · · · .

Since dimH 0(Oδ{1,2}(k�b)) = h0(k�b) = 1, it suffices to show that k�a −
δ{0,1} is not effective, so that H 0(OM0,N+2

(k�a − δ{0,1})) = 0. To do this, we
exhibit a family of irreducible curves such that

(i) For C in the family, C · (k�a − δ{1,2}) = −1.
(ii) For a general point of M0,N+2, some curve in the family passes through the

point.

Then the divisor k�a − δ{1,2} cannot be effective: a codimension one subvariety
with class k�a −δ{1,2} must contain each curve C in the family, an absurdity since
the curves cover an open subset of M0,N+2.

We now construct a family of curves satisfying (i) and (ii). Using formulas for
classes with respect to the Kapranov basis in index 1, given in Theorem 4.2, we
have that

�a ∼ AH − (A − 1)E2 − (A − 1)EN − EJ 0 − EJ 1 + · · · ,

where J i := {2, . . . ,N} \ {2,N,N + 1 + i} for i = 0 or i = 1, and A := a1 +
2m−1. Other terms contribute to the class, but these are linearly independent and
irrelevant.

The significance of the terms EJi is that under ψ1, EJi is mapped to a codi-
mension 2 span not containing p2 and not containing pN (these points correspond
to E2 and EN under the index 1 Kapranov map). Given a point y ∈ PN−1 not ly-
ing on the lined spanned by p2 and pN , consider the two-plane Ty = 〈y,p2,pN 〉.
If y /∈ ψ1(EJ i ), i = 1,2, then there exist a unique xi ∈ ψ1(EJ i ) ∩ Ty .

Claim 7.3. For a general point y ∈ PN−1, the points xi , pj , and y as constructed
before lie in general position in Ty � P2.

Given this, for general y, we have a unique irreducible conic Cy ⊂ Ty passing
through all five points, and Cy has class 2h + e2 + eN + eJ 1 + eJ 0 with respect to
the dual of the index 1 Kapranov basis. Pairing with �a, we see that

Cy · �a = 2A − 2(A − 1) − 2 = 0.

Since Cy · δ{1,2} = 1, it follows that

Cy · (k�a − δ{1,2}) = −1.
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Since Cy can be defined for a general point y in PN−1, taking the proper trans-
forms of Cy under the ψ1 gives a family of curves in M0,N satisfying (i) and (ii).

To prove Claim 7.3, we first show that x0, x1, and pi are noncollinear for
general y and i ∈ {2,N}. Consider projection from p2 to PN−2. Let L be the
image of Ty , and Mi be the image of the linear span 〈pj 〉j∈J i . Each Mi is of
codimension 1, and L is of dimension 1. Hence, L∩ Mi consists of a single point
for each i. If x0, x1, and p2 are collinear, then L ∩ M0 = L ∩ M1. Composing our
first projection with a second projection from pN to obtain a map π : PN−1 →
PN−3, we see that M0 ∩ L = M1 ∩ L occurs if and only if π(y) lies in the image
of 〈pj 〉j∈J 0∩J 1 under π , which is of codimension 1 in PN−3.

Note that p2, pN , y and p2, pN , xi are noncollinear for general y. So, to
conclude that the points are in general position, it suffices to verify that y, xi ,
pj are noncollinear for each i ∈ {2,N} and j ∈ {0,1}. By symmetry we may
check only for i = 2, j = 0. Note that x0, y, and p2 are collinear if and only
if the image of y under projection from p2 lies in the image of ψ1(EJ 0) under
projection. Since 2 /∈ J 0, this image is of codimension 1, and a general point y is
not contained. �

Remark 7.4. While rigidity is not known to imply the extremality on M0,n, we
are unaware of any examples of rigid, nonextremal divisors on the space in ques-
tion. Rigidity of a divisor class D implies that D cannot be written as a non-
negative linear combination of effective divisors with rational coefficients; for
extremality, we must have that D cannot be written as a nonnegative linear com-
bination of pseudo-effective divisors.

We now turn our attention to a class of Chen–Coskun divisors that can be written
as linear combinations of other effective divisors and so are nonrigid and nonex-
tremal. Consider an n-tuple of nonzero integers a = (a1, . . . , an) with

∑
i ai = 0;

assume that a1 > 0 and an < 0. Define ã = (a1 + 1, a2, . . . , an−1, an − 1). �a
and �ã both defined Chen–Coskun divisors on M0,n+2. We compare their classes
with respect to the Kapranov basis in index 1. From class formulas we see that

�ã =
( n∑

i=2

|ai |
)

H + · · ·

and

�a =
(( n∑

i=2

|ai |
)

− 1

)
H + · · · .

Furthermore, we claim that the coefficient of EJ in the class of �a and �ã will
be the same whenever n ∈ J : given an n-tuple b = (bi) satisfying the appropriate
conditions, the coefficient of EJ in the class of �b is a function of bi for i /∈ J

and i �= 1. Since ai and ãi agree for i �= 1 and i �= n, the claim follows.
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With these preliminary observations, we can conclude that if �a = dH −∑
I mIEI and �ã = eH − ∑

I nIEI , then

�ã − �a = H −
∑
n/∈I

(nI − mI )EI .

Applying Theorem 4.10, we see that, for n,n + 1, n + 2 /∈ J ,

nI − mI = |an − 1| − |an| = 1, (32)

and for n /∈ J , |{n + 1, n + 2 ∩ J }| = 1, we have that

nI − mI

= min

{ ∑
i /∈J∪{n}

ai≤0

|ai | + |an| + 1,
∑
i /∈J
ai≥0

|ai |
}

− min

{∑
i /∈J
ai≤0

|ai |,
∑
i /∈J
ai≥0

|ai |
}
. (33)

If |an| ≥ ∑
ai≥0 |ai |, then both minima are equal to the positive sum, and the

coefficient of EJ is zero. From this we easily obtain the following:

Theorem 7.5. For a = (a1, . . . , an) with nonzero ai ,
∑

i ai = 0, a1 > 0, and
an < 0, define ã = (a1 + 1, a2, . . . , an−1, an − 1). If

|an| ≥
∑
ai≥0
i≥2

|ai |,

then �ã = �a + D, where D is an effective sum of boundary divisor classes. In
particular, �ã is not extremal.

Proof. By the previous discussion,

�ã = �a + H −
∑
n/∈J

n+1,n+2/∈J

EJ .

However,

H −
∑
n/∈J

n+1,n+2/∈J

EJ = δn+1,n+2 +
∑

n+1,n+2∈J
n∈J

EJ ,

which is effective. �

Example 7.6. If k ≥ dm for k, d , m positive integers with gcd(k,m) = 1, then
let a(k, d,m) be the 2d + 2-tuple (k,m,m,m, . . . ,−m,−m,−m, . . . ,−k). Then
�a(k,d,m) ⊂ M0,2d+4 is not extremal. Indeed, this follows immediately from The-
orem 7.5 since the hypothesis that |a2d+2| > 1 and

|a2d+2| ≥
∑
i≥2
ai>0

|ai |

is satisfied.
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Remark 7.7. The hypothesis of Theorem 7.5 are not necessary for nonextremal-
ity. The divisors Lk from Example 4.8 give another class of nonextremal Chen–
Coskun divisors, but these do not satisfy the hypotheses of Theorem 7.5. A proof
of this is roughly as follows: it was observed in Example 4.8 that for appropri-
ate choice of Kapranov basis, there exist indices i and j such that EI has zero
coefficient in the class of Lk whenever i ∈ I or j ∈ I . Hence, these divisors can
be realized as pull-backs of nonboundary (and hence nonextremal) divisors from
appropriate Losev–Manin spaces [LM]. The argument generalizes to any Chen–
Coskun divisor corresponding to an n-tuple with only one positive entry.

We now return to the implications of Theorem 7.5. For fixed d , all but finitely
many divisors �a on M0,2d+2 for a of the form (k,m,m,m, . . . ,−k,−m,−m,

−m, . . . ) are nonextremal. This is in contrast with the results of [CC], where divi-
sors on M1,4 arising from 4-tuples of the form (k,m,−k,−m) were shown to be
extremal and yielded the result that Eff(M1,n) is not finitely generated. These par-
ticular n-tuples cannot yield distinct extremal divisors on M0,6 since Eff(M0,6)

is generated by the spherical bipyramid divisor together with boundary classes.
In particular, the divisors on M0,6 corresponding to (k,m,−k,−m) are extremal
if and only if k = m = 1. However, a natural question is whether many extremal
rays might arise from “analogous” n-tuples with n sufficiently large. The above
discussion rules out certain generalizations.

Moreover, Theorem 7.5 provides an obstruction to the construction of “large
families” of extremal Chen–Coskun divisors on M0,n for n fixed. More precisely,
obvious schemes for constructing infinite families of Chen–Coskun divisors can
provide only finitely many extremal examples. For instance, fixing all but two
indices of a given n-tuple and varying these can yield an extremal divisor for
only finitely many choices since, after some point, one of the variable entries will
become large enough in absolute value so that Theorem 7.5 guarantees that the
divisor is nonextremal. However, more innovative approaches to varying n-tuples
coupled with finer analysis of combinatorial constraints might yield interesting
results.
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