
Michigan Math. J. 65 (2016), 189–197

The Motive of the Classifying Stack
of the Orthogonal Group

Ajneet Dhillon & Matthew B. Young

Abstract. We compute the motive of the classifying stack of an or-
thogonal group in the Grothendieck ring of stacks over a field of char-
acteristic different from two.

1. Introduction

The Grothendieck ring of stacks over a field k has been introduced by a number
of authors [1; 6; 8; 13]. Denote this ring by K̂0(Vark). An algebraic group G

defined over k is called special if any G-torsor over a k-variety is locally trivial
in the Zariski topology. General linear, special linear, and symplectic groups are
special. Special orthogonal groups are not special in dimensions greater than two.
Serre [11] proved that special groups are linear and connected. Over algebraically
closed fields, the special groups were classified by Grothendieck [7].

For a special group G, the motive [G] is invertible in K̂0(Vark), and its in-
verse is equal to the motive of the classifying stack BG. This naturally raises
the problem of computing the motive of BG when the group G is not special.
For finite group schemes, a number of examples were computed in [5]. The
case of groups of positive dimension is more difficult. In [3] it was shown that
[BPGLn] = [PGLn]−1 for n = 2 or 3 with mild restrictions on the field k.

The main result of this paper, Theorem 3.7, computes the motive of the classi-
fying stack of an orthogonal group over a field whose characteristic is not two. In
odd dimensions the result is that the motive is equal to the inverse of the motive of
the split special orthogonal group in the same dimension. To prove Theorem 3.7,
we first compute the motive of the variety of nondegenerate quadratic forms of
fixed dimension. This motive was already computed in [2], using results of [9].
Our computation is different, relying on generating function techniques. Using
Theorem 3.7, we are able to compute the motives of classifying stacks of the
special orthogonal groups in odd dimensions.

1.1. Notation

We will work over a base field k with char(k) �= 2. If n is a nonnegative integer,
then we denote by [n]L the nth Gaussian polynomial in the Lefschetz motive L.
Explicitly,

[n]L = 1 +L+ · · · +L
n−1.
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The Gaussian polynomials [n]L! and
[
n
r

]
L

are defined in the usual way. The class

of the Grassmannian Gr(r, n) in the ring K̂0(Vark) is then
[
n
r

]
L

.

2. Preliminaries

2.1. The Grothendieck Ring of Stacks

Fix a ground field k. Let K0(Vark) be the Grothendieck ring of varieties over k.
Its underlying Abelian group is generated by symbols [X], with X a k-variety,
modulo the relations [X] = [Y ] if X and Y are isomorphic, and

[X] = [X\Z] + [Z]
if Z ⊂ X is a closed subvariety. Cartesian product of varieties gives K0(Vark) the
structure of a commutative ring with identity 1 = [Speck]. The Lefschetz motive
is defined to be L = [A1

k].
The Grothendieck ring of stacks, K̂0(Vark), is the dimensional completion of

K0(Vark) defined as follows [1]. Let Fm ⊂ K0(Vark)[L−1] be the additive sub-
group generated by those L−d [X] with dimX − d ≤ −m. This defines a descend-
ing filtration of K0(Vark)[L−1], and K̂0(Vark) is the completion with respect to
this filtration.

In this paper all stacks are assumed to be Artin stacks that are locally of finite
type, all of whose geometric stabilizers are linear algebraic groups. Following
[1], a stack X is called essentially of finite type if it admits a stratification X =⋃∞

i=1 Xi by finite type, locally closed substacks with limi→∞ dimXi = −∞. Any
stack that is essentially of finite type admits a stratification of the above type with
Xi a global quotient stack of a variety Xi by a general linear group GLni

. Given
such a stratification, put

[X] =
∞∑
i=1

[Xi]
[GLni

] .

This defines a motivic class [X] ∈ K̂0(Vark) that is independent of the choice of
stratification of X [1, Lemma 2.3].

Lemma 2.1 ([1, Lemma 2.5]). Let X be a stack that is essentially of finite type,
and let P → X be a torsor for a linear algebraic group G. Then P is essentially
of finite type. Moreover, if G is special, then [P ] = [X][G] in K̂0(Vark).

In particular, if G is special, then applying Lemma 2.1 to the universal G-torsor
Speck → BG shows that [BG] = [G]−1. This equality is called the universal
G-torsor relation.

More generally, if X is a variety acted on by a linear algebraic group G, then
the quotient stack X/G has a class in K̂0(Vark). For any closed embedding G ↪→
GLN , there is an isomorphism of stacks X/G � (X ×G GLN)/GLN . Since GLN



The Motive of the Classifying Stack of the Orthogonal Group 191

is special, Lemma 2.1 implies that

[X/G] = [X ×G GLN ]
[GLN ] (1)

in K̂0(Vark).

2.2. Orthogonal Groups

Assume that the ground field k is not of characteristic two. Let V be a finite-
dimensional vector space over k, and let Q : V → k be a quadratic form. The
radical of Q is the subspace of V defined by

radQ = {v ∈ V |Q(v + w) = Q(v) + Q(w) ∀w ∈ V }.
The rank of Q is dimV −dim radQ. The quadratic form Q is called nondegenerate
if radQ = {0}.

Given a nondegenerate quadratic form Q, denote by O(Q) its group of isome-
tries. If the field k is algebraically closed, then there is a unique nondegenerate
quadratic form on kn up to equivalence. The corresponding orthogonal group is
unique up to isomorphism. If k is not algebraically closed, then there will in gen-
eral exist inequivalent nondegenerate quadratic forms on kn, leading to different
forms of orthogonal groups.

For each n ≥ 1, there is a canonical nondegenerate split quadratic form on kn.
Explicitly,

Q2r = x1x2 + · · · + x2r−1x2r

and
Q2r+1 = x2

0 + x1x2 + · · · + x2r−1x2r .

Define On = O(Qn) and SOn = SO(Qn).

3. The Motive of BO(Q)

3.1. Filtration of the Space of Quadratic Forms

Recall that char(k) �= 2. Denote by Quadn � A
(n+1

2 )
k the affine space of quadratic

forms on kn. The group GLn acts on Quadn by change of basis. For each 0 ≤
r ≤ n, let Quadn,≤r ⊂ Quadn denote the closed subvariety of quadratic forms
whose rank is at most r . This gives an increasing filtration of Quadn by closed
subvarieties. Interpreted in K0(Vark), this implies the identity

L(n+1
2 ) =

n∑
r=0

[Quadn,r ] (2)

with Quadn,r the subvariety of quadratic forms of rank r . Denote by Gr(m,n) the
Grassmannian of m-planes in kn.

Proposition 3.1. For each 0 ≤ r ≤ n, the map

π : Quadn,r → Gr(n − r, n), Q �→ radQ

is a Zariski locally trivial fibration with fibers isomorphic to Quadr,r .
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Proof. Identify Gr(n − r, n) with the quotient of the variety of (n − r) × n ma-
trices of rank n − r by the left action of GLn−r . Fix coordinates x1, . . . , xn on kn.
Consider the (n − r)-plane kn−r ⊂ kn with coordinates x1, . . . , xn−r . A Zariski
open set U ⊂ Gr(n − r, n) containing kn−r is given by the (n − r) × n matrices
of the form (

1n−r B
)

with 1n−r the (n − r) × (n − r) identity matrix and B an arbitrary (n − r) × r

matrix. The plane kn−r corresponds to the matrix B = 0. Note that(
1n−r B

) = (
1n−r 0

) ·
(

1n−r B

0 1r

)
.

Let gB =
(

1n−r B
0 1r

)
∈ GLn, viewed as an automorphism of kn.

Suppose that Q ∈ π−1(U). Then there exists a unique matrix B(Q) such that
radQ = gB(Q)(k

n−r ) ⊂ kn. The quadratic form gB(Q) ·Q is the pullback of a non-
degenerate quadratic form ϕQ in the variables xn−r+1, . . . , xn. A trivialization of
π over U is then given by

π−1(U) → U × Quadr,r , Q �→ (radQ,ϕQ).

This argument can be repeated, replacing kn−r with the (n − r)-plane with coor-
dinates labeled by an (n − r)-element subset I ⊂ {1, . . . , n}. This gives a Zariski
open cover of Gr(n − r, n) over which π trivializes. �

Corollary 3.2. The identity

L(n+1
2 ) =

n∑
r=0

[
n

n − r

]
L

[Quadr,r ]L

holds in the ring K0(Vark).

Proof. It follows from Proposition 3.1 that [Quadn,r ] = [Gr(n − r, n)][Quadr,r ].
Since [Gr(n− r, n)] = [

n
n−r

]
L

, the desired identity is implied by equation (2). �

3.2. Solving the Recurrence

In this section we will solve the recurrence relation for [Quadn,n] given in Corol-
lary 3.2. In fact, the motives [Quadn,r ] were already computed in [2, Theo-
rem 13.5], where it was shown that [Quadn,r ] satisfies a certain three-step recur-
rence relation with coefficients in Z[L]. This recurrence relation, with L replaced
by q , was previously solved in [9] to find the number of Fq -rational points of
Quadn,r . Hence, [Quadn,r ] is given by the same formula, with q replaced with L.
We present here an alternative computation of [Quadn,n] and, therefore, also
[Quadn,r ] by Proposition 3.1, using generating functions.

We form the exponential generating function for the motives [Quadn,n],

G(x) =
∑
n≥0

[Quadn,n]xn

[n]L! .
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Consider also the auxiliary generating functions

Peven(x) =
∑
k≥0

x2k

[2k]L!
k∏

i=1

(L2k+1 −L
2i )

and

Podd(x) =
∑
k≥0

x2k+1

[2k + 1]L!
k∏

i=0

(L2k+1 −L
2i ).

We will show that

G(x) = Peven(x) + Podd(x),

thereby solving the recurrence relation.

Proposition 3.3. Denote by expL(x) the L-deformed exponential series:

expL(x) =
∑
n≥0

xn

[n]L! .

The following equality holds:

G(x) =
∏

i≥1(1 + (1 −L)xLi )

expL(x)
.

Proof. To ease notation, set Qn = [Quadn,n]. Using Corollary 3.2, we find that

G(x) =
∑
n≥0

Qn

[n]L!x
n

=
∑
n≥0

(
L(n+1

2 ) −
n−1∑
r=0

[
n

n − r

]
L

Qr

)
xn

[n]L!

=
∑
n≥0

(
L(n+1

2 ) −
n−1∑
r=0

[n]L!
[n − r]L![r]L!Qr

)
xn

[n]L!

=
∑
n≥0

(
L(n+1

2 ) xn

[n]L! −
n−1∑
r=0

Qrx
r

[r]L!
xn−r

[n − r]L!
)

=
∑
n≥0

L(n+1
2 ) xn

[n]L! −
∑
n≥0

n∑
r=0

Qrx
n−r

[r]L![n − r]L! +
∑
n≥0

Qnx
n

[n]L!

=
∑
n≥0

L(n+1
2 ) xn

[n]L! − expL(x)G(x) + G(x).

Hence,

G(x) =
∑

n≥0 L
(n+1

2 )xn/[n]L!
expL(x)

.
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Since

[n]L! = (1 −L)(1 −L
2) · · · (1 −L

n)

(1 −L)n
,

we have

∑
n≥0

L(n+1
2 ) xn

[n]L! =
∑
n≥0

L(n+1
2 )(1 −L)nxn

(1 −L)(1 −L2) · · · (1 −Ln)

=
∏
i≥1

(1 + (1 −L)xLi ),

where the second equality follows from [12, Prop. 1.8.6]. This completes the
proof. �

It will be convenient to make the change of variables g(x) = G( x
1−L

).

Proposition 3.4. We have

g(x) = (1 − x)
∏
i≥1

(1 − x2
L

2i )

= (1 − x)
∑
k≥0

(−1)kx2k
L

k(k+1)

(1 −L2)(1 −L4) · · · (1 −L2k)
.

Proof. We compute

expL(x) =
∑
n≥0

xn

[n]L!

=
∑
n≥0

xn(1 −L)n

(1 −L)(1 −L2) · · · (1 −Ln)

= 1∏
i≥0(1 − (1 −L)xLi )

,

where the last equality is via [12, p. 74]. The first assertion now follows from
Proposition 3.3. The second follows from the first by [12, Prop. 1.8.6]. �

Similarly, make the change of variables peven(x) = Peven(
x

1−L
) and podd(x) =

Podd(
x

1−L
).

Proposition 3.5. We have

peven(x) =
∑
k≥0

(−1)kx2k
L

k(k+1)

(1 −L2)(1 −L4) · · · (1 −L2k)

and

podd(x) =
∑
k≥0

(−1)k+1x2k
L

k(k+1)

(1 −L2)(1 −L4) · · · (1 −L2k)
.
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Proof. The generating function Peven can be rewritten as

Peven(x) =
∑
k≥0

(1 −L)2kx2k

(1 −L)(1 −L2) · · · (1 −L2k)

k∏
i=1

(L2k+1 −L
2i ).

Then we have

peven(x) =
∑
k≥0

x2k

(1 −L)(1 −L2) · · · (1 −L2k)

k∏
i=1

(L2k+1 −L
2i )

=
∑
k≥0

x2k
L

k(k+1)

(1 −L)(1 −L2) · · · (1 −L2k)

k∏
i=1

(L2(k−i)+1 − 1)

=
∑
k≥0

(−1)kx2kLk(k+1)

(1 −L2)(1 −L4) · · · (1 −L2k)
.

The calculation for podd is similar. �

Corollary 3.6. The following identity holds in K̂0(Vark):

G(x) = Peven(x) + Podd(x).

Proof. Since (1 −L) is a unit in K̂0(Vark), it suffices to show that

g(x) = peven(x) + podd(x).

This follows from Propositions 3.4 and 3.5. �

3.3. The Main Theorem

We now state the main result.

Theorem 3.7. Let k be a field whose characteristic is not 2, and let n ≥ 1. For any
nondegenerate quadratic form Q on kn, the following equality holds in K̂0(Vark):

[BO(Q)] =
{
L

−r
∏r−1

i=0 (L2r −L
2i )−1 if n = 2r + 1,

L
r
∏r−1

i=0 (L2r −L
2i )−1 if n = 2r.

Proof. The subvariety Quadn,n ⊂ Quadn is stable under the action of GLn on
Quadn. Pick Q ∈ Quadn,n. This gives rise to an orbit morphism GLn → Quadn,n.
Since π : GLn → GLn/O(Q) is a uniform categorical quotient [10, Thm. 1.1], the
orbit morphism factors through a unique morphism ψ : GLn/O(Q) → Quadn,n.
We claim that ψ is an isomorphism.

Let k be an algebraic closure of k. Base change gives a morphism

π : GLn,k → GLn/O(Q) ×k k,

which is a categorical quotient for the action of O(Q)k on GLn,k . Here GLn,k de-

notes the general linear group over k, whereas O(Q)k denotes orthogonal group
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of the quadratic form Q ×k k on k
n
. The universal property of categorical quo-

tients implies
GLn/O(Q) ×k k � GLn,k/O(Q)k.

Using this isomorphism and applying base change to ψ give

ψ : GLn,k/O(Q)k → Quadn,n ×k k.

Since Quadn,n ×k k is homogeneous under the action of GLn,k with stabilizer

O(Q)k , the map ψ is an isomorphism. By faithfully flat descent it follows that ψ

itself is an isomorphism.
Identifying BO(Q) with the quotient stack Speck/O(Q), equation (1) gives

[BO(Q)] =
[

GLn/O(Q)

GLn

]
= [GLn/O(Q)]

[GLn] = [Quadn,n]
[GLn] .

Using Corollary 3.6, we read off from Peven and Podd the equality

[Quadn,n] =
{∏r

i=0(L
2r+1 −L

2i ) if n = 2r + 1,∏r
i=1(L

2r+1 −L
2i ) if n = 2r.

If n = 2r + 1, then we have

[Quad2r+1,2r+1]
[GL2r+1] =

∏r
i=0(L

2r+1 −L2i )∏2r
i=0(L

2r+1 −Li )

=
r−1∏
i=0

(L2r+1 −L
2i+1)−1

= L
−r

r−1∏
i=0

(L2r −L
2i )−1,

which is the desired result. The calculation for n even is analogous. �

Corollary 3.8. Suppose that n ≥ 3 is odd and let Q be a nondegenerate qua-
dratic form on kn. Then [BO(Q)] = [SOn]−1. Moreover, [BSO(Q)] = [SOn]−1.

Proof. Since n ≥ 3, the split group SOn is semisimple. According to [1,
Lemma 2.1],

[SO2r+1] = L
r

r−1∏
i=0

(L2r −L
2i ).

Comparing this expression with Theorem 3.7 gives the first statement. Continu-
ing, if Q is a nondegenerate quadratic form in odd dimensions, then there is an
isomorphism O(Q) � μ2 × SO(Q). It is shown in [5, Prop. 3.2] that [Bμ2] = 1.
Hence,

[BO(Q)] = [Bμ2 × BSO(Q)] = [Bμ2][BSO(Q)] = [BSO(Q)].
The second statement now follows from the first. �
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Since PGL2 � SO3 over any field, Corollary 3.8 recovers the first part of [3,
Thm. A] as a special case.

It follows from Corollary 3.8 that the universal torsor relations are satisfied
for split special orthogonal groups in odd dimensions. In particular, the universal
SO2n+1(C)-torsor relation holds. In [4, Thm. 2.2] it is shown that for any non-
special connected reductive complex algebraic group G, there exists a G-torsor
P → X over a variety such that [P ] is not equal to [G][X]. Therefore, the uni-
versal G-torsor relation does not imply the general G-torsor relation, answering a
question posed in [1, Rem. 3.3]. In the recent paper [3] the groups PGL2(C) and
PGL3(C) were also shown to answer this question.
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