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On Minimal Log Discrepancies on Varieties with Fixed
Gorenstein Index

Yusuke Nakamura

Abstract. We generalize the rationality theorem of the accumula-
tion points of log canonical thresholds, which was proved by Hacon,
McKernan, and Xu. Further, we apply the rationality to the ACC prob-
lem on the minimal log discrepancies. We study the set of log discrep-
ancies on varieties with fixed Gorenstein index. As a corollary, we
prove that the minimal log discrepancies of three-dimensional canon-
ical pairs with fixed coefficients satisfy the ACC.

1. Introduction

The minimal log discrepancy (mld for short) was introduced by Shokurov in order
to reduce the conjecture of terminations of flips to a local problem about singu-
larities. Recently, this has been a fundamental invariant in the minimal model
program. There are two conjectures on mlds, the ACC (ascending chain condi-
tion) conjecture and the LSC (lower semicontinuity) conjecture. Shokurov [22]
showed that these two conjectures imply the conjecture of terminations of flips.

In this paper, we consider the ACC conjecture. For an R-divisor D and a subset
I ⊂ R, we write D ∈ I when all the nonzero coefficients of D belong to I . Further,
for a subset I ⊂ R, we say that I satisfies the ascending chain condition (resp. the
descending chain condition) when there is no infinite increasing (resp. decreasing)
sequence ai ∈ I ; ACC (resp. DCC) stands for the ascending chain condition (resp.
the descending chain condition).

Conjecture 1.1 (ACC conjecture [21, Conj. 4.2]). Fix d ∈ Z>0 and a subset
I ⊂ [0,1] that satisfies the DCC. Then the set

A(d, I ) := {mldx(X,�) | (X,�) is a log pair, dimX = d , � ∈ I , x ∈ X}
satisfies the ACC, where x is a closed point of X.

We are mainly interested in the case where I is a finite set. This is because the
ACC conjecture for an arbitrary finite set I and the LSC conjecture imply the
termination of flips [22].

The ACC conjecture is known for d ≤ 2 by Alexeev [1] and Shokurov [20],
and for toric pairs by Ambro [3]. Kawakita [11] proved the ACC conjecture on
the interval [1,3] for three-dimensional smooth varieties. Further, Kawakita [10]
proved that the ACC conjecture is true for a fixed variety X and a finite set I .
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More generally, he proved the discreteness of the set of log discrepancies for log
triples (see Subsect. 2.1 for the definition)

{aE(X,�,a) | (X,�,a) is lc, a ∈ I , E ∈DX}
when the pair (X,�) is fixed and I is a finite set. Here, we denoted by DX the
set of all divisors over X. Further, a = ∏

a
ri
i is an R-ideal sheaf with coefficients

ri in I . The purpose of this paper is to generalize this result to the family of the
varieties with fixed Gorenstein index.

Theorem 1.2. Fix d ∈ Z>0, r ∈ Z>0, and a finite subset I ⊂ [0,+∞). Then the
set

B(d, r, I ) := {aE(X,a) | (X,a) ∈ P(d, r), a ∈ I , E ∈ DX} ⊂ [0,+∞)

is discrete in R. Here we denote by P(d, r) the set of all d-dimensional lc pairs
(X,a) such that rKX is a Cartier divisor.

Since mldx(X,a) = aE(X,a) holds for some E ∈DX , we get the following corol-
lary.

Corollary 1.3. Fix d ∈ Z>0, r ∈ Z>0 and a finite subset I ⊂ [0,+∞). Then the
following set

A′(d, r, I ) := {mldx(X,a) | X ∈ P(d, r), a ∈ I , x ∈ X} ⊂ [0,+∞)

is discrete in R. Here we denote by P(d, r) the set of all d-dimensional lc pairs
(X,a) such that rKX is a Cartier divisor.

Corollary 1.3 does not imply the finiteness of A′(d, r, I ) because we do not
know the boundedness of A′(d, r, I ). Hence, Corollary 1.3 shows the finiteness of
A′(d, r, I ) modulo the BDD (boundedness) conjecture, which states the bound-
edness of minimal log discrepancies.

Conjecture 1.4 (BDD conjecture). For fixed d ∈ Z>0, there exists a real number
a(d) such that mld(X) ≤ a(d) holds for any Q-Gorenstein d-dimensional normal
variety X.

The BDD conjecture is known only for d ≤ 3 [18]. In arbitrary dimension, the
conjecture is known for the set of varieties with bounded multiplicity [9].

As a corollary of Corollary 1.3, we can prove the ACC for three-dimensional
canonical pairs.

Corollary 1.5. If I ⊂ [0,1] is a finite subset, the set

{mldx(X,�) | (X,�) is a canonical pair, dimX = 3, � ∈ I , x ∈ X},
denoted by Acan(3, I ), satisfies the ACC. Further, 1 is the only accumulation point
of Acan(3, I ).
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Theorem 1.2 is proved by induction on dimQ SpanQ(I ∪{1}), the dimension of the
Q-vector space generated by I ∪ {1}. In the inductive step, we need the following
theorem about a perturbation of an irrational coefficient of log canonical pairs.

Theorem 1.6. Fix d ∈ Z>0. Let r1, . . . , rc′ be positive real numbers, and let
r0 = 1. Assume that r0, . . . , rc′ are Q-linearly independent. Let s1, . . . , sc :
Rc′+1 → R be Q-linear functions from Rc′+1 to R (that is, the extensions of
Q-linear functions from Qc′+1 to Q by taking the tensor product ⊗QR). As-
sume that si(r0, . . . , rc′) ∈ R≥0 for each i. Then there exists a positive real num-
ber ε > 0 such that the following holds: For any Q-Gorenstein normal vari-
ety X of dimension d and Q-Cartier effective Weil divisors D1, . . . ,Dc on X,
if (X,

∑
1≤i≤c si(r0, . . . , rc′)Di) is lc, then (X,

∑
1≤i≤c si(r0, . . . , rc′−1, t)Di) is

also lc for any t satisfying |t − rc′ | ≤ ε.

Remark 1.7. The positive real number ε in Theorem 1.6 does not depend on X,
but depends only on d , r1, . . . , rc′ , and s1, . . . , sc .

Kawakita [10] proved this theorem for a fixed variety X using a method of generic
limit and proves the discreteness of log discrepancies for fixed X. When c′ = 1
and each si satisfies si(R

2≥0) ⊂ R≥0, this theorem just states the rationality of
accumulation points of log canonical thresholds proved by Hacon, McKernan,
and Xu [8, Thm. 1.11]. Actually, the proof of Theorem 1.6 heavily depends on
their argument. We also note that the rationality of accumulation points of log
canonical thresholds on smooth varieties was proved by Kollár [14, Thm. 7] and
by de Fernex and Mustaţă [5, Cor. 1.4] using a method of generic limit.

The paper is organized as follows. In Section 2, we review some definitions and
facts from the minimal model theory. Further, we list some results on the ACC for
log canonical thresholds by Hacon, McKernan, and Xu [8]. In Section 3, we prove
the key proposition (Theorem 3.8), which is necessary to prove Theorem 1.6. The
essential idea of proof is due to the paper [8]. In Section 4, we prove Theorem 1.6.
In Section 5, we prove the main theorem (Theorem 1.2) and the corollaries.

1.1. Notation and Convention

Throughout this paper, we work over the field of complex numbers C.

• For an R-divisor D and a subset I ⊂ R, we write D ∈ I when all the nonzero
coefficients of D belong to I .

• For an R-ideal sheaf A = ∏
a
ri
i and a subset I ⊂ R, we write A ∈ I when all

the nonzero coefficients ri of A belong to I .

2. Preliminaries

2.1. Minimal Log Discrepancies

We recall some notation in the theory of singularities in the minimal model pro-
gram. For more details, we refer the reader to [15].
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A log pair (X,�) is a normal variety X and an effective R-divisor � such that
KX + � is R-Cartier. If X is Q-Gorenstein, we sometimes identify X with the
log pair (X,0).

An R-ideal sheaf on X is a formal product ar1
1 · · ·ars

s , where a1, . . . ,as are
ideal sheaves on X, and r1, . . . , rs are positive real numbers. For a log pair (X,�)

and an R-ideal sheaf a, we call (X,�,a) a log triple. When � = 0 (resp. A =
OX), we sometimes drop � (resp. A) and write (X,a) (resp. (X,�)).

For a proper birational morphism f : X′ → X from a normal variety X′ and a
prime divisor E on X′, the log discrepancy of (X,�,a) at E is defined as

aE(X,�,a) := 1 + coeffE(KX′ − f ∗(KX + �)) − ordE a,

where ordE a := ∑s
i=1 ri ordE ai . The image f (E) is called the center of E on

X, and we denote it by cX(E). For a closed subset Z of X, the minimal log
discrepancy (mld for short) over Z is defined as

mldZ(X,�,a) := inf
cX(E)⊂Z

aE(X,�,a).

In this definition, the infimum is taken over all prime divisors E on X′ with center
cX(E) ⊂ Z, where X′ is a higher birational model of X, that is, X′ is the source
of some proper birational morphism X′ → X.

Remark 2.1. It is known that mldZ(X,�,a) is in R≥0 ∪ {−∞} and that if
mldZ(X,�,a) ≥ 0, then the infimum on the right-hand side in the definition is,
in fact, the minimum.

Remark 2.2. Let Di be effective Weil divisors on X, and ai := OX(−Di) the
corresponding ideal sheaves. When X is Q-Gorenstein and Di are Cartier divi-
sors, we can identify (X,

∑
riDi) and (X,

∏
a
ri
i ). Indeed, for any divisor E over

X, we have aE(X,
∑

riDi) = aE(X,
∏

a
ri
i ).

For simplicity of notation, we write mldx(X,�,a) instead of mld{x}(X,�,a) for
a closed point x of X and write mld(X,�,a) instead of mldX(X,�,a).

We say that the pair (X,�,a) is log canonical (lc for short) if mld(X,�,a) ≥
0. Further, we say that the pair (X,�,a) is Kawamata log terminal (klt for short)
if mld(X,�,a) > 0. When E is a divisor over X such that aE(X,�,a) ≤ 0, the
center cX(E) is called a non-klt center.

We say that the pair (X,�,a) is canonical (resp. terminal) if aE(X,�,a) ≥ 1
(resp. > 1) for any exceptional divisor E over X.

2.2. Extraction of Divisors

In this subsection, we recall some known results on extractions of divisors.
We can extract a divisor whose log discrepancy is at most one.

Theorem 2.3. Let (X,�) be a klt pair, and let E be a divisor over X such that
aE(X,�) ≤ 1. Then there exists a projective birational morphism π : Y → X

such that Y is Q-factorial and the only exceptional divisor is E.
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Proof. This is a particular case of [4, Cor. 1.4.3]. �

When (X,�) is lc, we can find a modification which is dlt. We call a log pair
(X,�) divisorial log terminal (dlt for short) when there exists a log resolution
f : Y → X such that aE(X,�) > 0 for any f -exceptional divisor E on Y .

Theorem 2.4 (dlt modification). Let (X,�) be an lc pair. Then there exists a
projective birational morphism f : Y → X with the following properties:

• Y is Q-factorial.
• (Y,�Y ) is dlt, where we define �Y as KY + �Y = f ∗(KX + �).
• aE(X,�) = 0 for every f -exceptional divisor E.

Proof. See, for instance, [6, Thm. 10.4]. �

2.3. ACC for Log Canonical Thresholds

In Section 3, we need the following ACC properties proved by Hacon, McKernan,
and Xu [8].

Theorem 2.5 (Hacon, McKernan, Xu [8, Thm. 1.4]). Fix d ∈ Z>0 and a subset
I ⊂ [0,1] satisfying the DCC.

Then there is a finite subset I0 ⊂ I with the following property: If (X,�) is a
log pair such that:

• (X,�) is lc, dimX = d , � ∈ I , and
• there exists a non-klt center Z ⊂ X which is contained in every component

of �,

then � ∈ I0.

Theorem 2.6 (Hacon, McKernan, Xu [8, Thm. 1.5]). Fix d ∈ Z>0 and a subset
I ⊂ [0,1] satisfying the DCC.

Then there is a finite subset I0 ⊂ I with the following property: If (X,�) is a
projective log pair such that:

• (X,�) is lc, dimX = d , � ∈ I , and
• KX + � ≡ 0,

then � ∈ I0.

3. Accumulation Points of Log Canonical Thresholds

The goal of this section is to prove Corollary 3.9. It is a generalization of [8,
Thm. 1.11] and necessary for the proof of Theorem 1.6.

Usually, the log canonical threshold is defined as follows: for an lc pair (X,�)

and a Q-Cartier Z-Weil effective divisor M ,

LCT(�;M) := sup{c ∈R≥0 | (X,� + cM) is lc}.
However, for the proof of Theorem 1.6, we need to treat the case where M is not
effective. According to this reason, we introduce the new threshold set Ld(I ). It
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no longer satisfies the ACC, but we can prove the rationality of the accumulation
points (Cor. 3.9).

Corollary 3.9 easily follows from Theorem 3.6 and Theorem 3.8. They are
proved in essentially the same way of the proof of Proposition 11.5 and Propo-
sition 11.7 in [8]. For the reader’s convenience, we follow the proof of Proposi-
tion 11.5 and Proposition 11.7 in [8] and use as same notation as possible.

First, we introduce some notation. For a subset I ⊂ [0,+∞), we define

I+ := {0} ∪
{ ∑

1≤i≤l

ri

∣∣∣ l ∈ Z>0, r1, . . . , rl ∈ I

}
.

This becomes a discrete set if I is discrete. When Di are finitely many distinct
prime divisors and di(t) : R → R are affine functions, we call the formal finite
sum

∑
i di(t)Di an affine functional divisor.

Definition 3.1 (Dc(I )). Fix c ∈ R≥0 and a subset I ⊂ [0,+∞). For an affine
functional divisor �(t) = ∑

i di(t)Di , we write �(t) ∈ Dc(I ) when the following
conditions are satisfied:

• Each di(t) is equal to 1 or of the form m−1+f +kt
m

, where m ∈ Z>0, f ∈ I+, and
k ∈ Z.

• Further, f + kt above can be written as f + kt = ∑
j (fj + kj t), where fj ∈

I ∪ {0}, kj ∈ Z, and fj + kj c ≥ 0 for each j .

In such a case, by abuse of notation, we also write di(t) ∈ Dc(I ).

The form of the coefficient di(t) is preserved by adjunction.

Lemma 3.2. Fix c ∈ R≥0 and a subset I ⊂ [0,1]. Let X be a Q-factorial normal
variety, and �(t) = ∑

0≤i≤c di(t)Di be an affine functional divisor on X. Assume
the following conditions:

• �(t) ∈Dc(I ), and (X,�(c)) is lc.
• d0(t) is identically one, and di(c) > 0 for each i.

Let Sn be the normalization of S := D0. Define the affine functional divisor �Sn(t)

on Sn by adjunction:

(KX + �(t))|Sn = KSn + �Sn(t).

Then �Sn(t) ∈Dc(I ).

Proof. The statement follows from [16, Prop. 16.6]. We give a sketch of a proof.
Let p ∈ S be a codimension one point of S.
Suppose that (X,D0) is not plt at p. Then p /∈ SuppDi for any i ≥ 1, and

coeffp DiffSn(0) = 0 or 1 [16, Prop. 16.6.1–2]. Hence, we have coeffp �Sn(t) = 0
or 1 for any t .

Suppose that (X,D0) is plt at p. Then coeffp DiffSn(0) = m−1
m

for some m ∈
Z>0, and mD becomes Cartier at p for any Weil divisor D [16, Prop. 16.6.3].
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Hence, coeffp �Sn(t) is of the form

m − 1

m
+ 1

m

∑
j

nj − 1 + fj + kj t

nj

,

where (nj − 1 +fj + kj t)/nj is of the form as in the definition of Dc(I ). We can
prove that such a form also satisfies the condition in the definition of Dc(I ) by
easy calculation (cf. [19, Lemma 4.4]). �
We define Ld(I ), the set of all log canonical thresholds derived from coeffi-
cients I .

Definition 3.3 (Ld(I )). Let d ∈ Z>0, and let I ⊂ [0,+∞) be a subset. We de-
fine Ld(I ) ⊂ R≥0 as follows: c ∈ Ld(I ) if and only if there exist a Q-Gorenstein
normal varieties X and an affine functional divisor �(t) with the following con-
ditions:

• dimX ≤ d , �(t) ∈Dc(I ),
• �(a) is R-Cartier for any a ∈R,
• (X,�(c)) is lc, and
• (X,�(c + ε)) is not lc for any ε > 0, or (X,�(c − ε)) is not lc for any ε > 0.

Remark 3.4. When we say that (X,�) is an lc pair, we assume that � is effective.
Therefore, we say that (X,�) is not lc when � is not effective.

Further, we define Gd(I ), the set of all numerically trivial thresholds derived from
coefficients I .

Definition 3.5 (Gd(I )). Let d ∈ Z>0, and let I ⊂ [0,+∞) be a subset. We de-
fine Gd(I ) ⊂ R≥0 as follows: c ∈ Gd(I ) if and only if there exist a Q-factorial
normal projective variety X and an affine functional divisor �(t) with the follow-
ing conditions:

• dimX ≤ d , �(t) ∈Dc(I ),
• (X,�(c)) is lc, and KX + �(c) ≡ 0.
• KX + �(c′) ≡ 0 for some c′ = c (equivalently, for all c′ = c).

By the following theorem, we can reduce a local problem to a global problem.

Theorem 3.6. Let d ≥ 2, and let I ⊂ [0,+∞) be a subset. Then Ld(I ) ⊂
Gd−1(I ).

Lemma 3.7. Let c ∈ R≥0, and let I ⊂ [0,+∞) be a subset. Suppose that there
exists an affine function d(t) : R →R with the following conditions:

• d(t) ∈Dc(I ), and d(t) is not a constant function.
• d(c) = 0 or 1.

Then c ∈Gd(I ) for any d ≥ 1. Especially, f
k

∈ Gd(I ) for any d ≥ 1, f ∈ I ∪ {0},
and k ∈ Z>0.

Proof. We can easily construct on a curve. �
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Proof of Theorem 3.6. Let c ∈ Ld(I ), and let (X,�(t)) be as in Definition 3.3.
Assume that (X,�(c + ε)) is not lc for any ε > 0 (the same proof works in the
other case). We may write �(t) = ∑

i di(t)Di with distinct prime divisors Di .
By Lemma 3.7 we may assume that di(c) > 0 for any i. Then �(c + ε) ≥ 0 for
sufficiently small ε > 0.

Let f : Y → X be a dlt modification (Theorem 2.4) of (X,�(c)). Then Y is
Q-factorial, and we can write

KY + T + �′(c) = f ∗(KX + �(c)),

where �′(t) is the strict transform of �(t), and T is the sum of the exceptional
divisors. Since the pair (Y,T + �′(c)) is dlt, there exists a divisor E on Y such
that

aE(X,�(c)) = 0 and aE(X,�(c + ε)) < 0

for any ε > 0. If E is not f -exceptional, then di(c) = 1 for some di(t) that is not
identically one. In this case, c ∈ Gd−1(I ) by Lemma 3.7.

In what follows, we assume that E is f -exceptional and so a component of
SuppT . By adjunction, we can define an affine functional divisor �E(t) on E

such that

(KY + T + �′(t))|E = KE + �E(t).

Here, �E(t) ∈Dc(I ) by Lemma 3.2.
Let F be a general fiber of E → f (E). Define �F (t) as

(KE + �E(t))|F = KF + �F (t).

Then (F,�F (t)) satisfies:

• dimF ≤ d − 1, F is projective,
• �F (t) ∈Dc(I ),
• KF + �F (c) = f ∗(KX + �(c))|F ≡ 0, and
• (F,�F (c)) is lc.

Hence, (F,�F (t)) satisfies all conditions in Definition 3.5 except for KF +
�F (c′) ≡ 0 for some c′.

We may write �(t) = � + tM with an R-divisor � and a Q-divisor M .
Write M = M+ − M−, where M+ ≥ 0 and M− ≥ 0 have no common com-
ponents. Since aE(X,� + (c + ε)M) < aE(X,� + cM) = 0, it follows that
ordE M+ > ordE M− ≥ 0. Possibly replacing E by other component of T , we
may assume that

ordE M− · ordEj
M+ ≤ ordEj

M− · ordE M+

for any component Ej ⊂ SuppT . We may take ε1 ≥ ε2 > 0 such that aE(X,� +
(c + ε1)M − ε2M+) = 0. Note that

ε1(ordE M+ − ordE M−) = ε2 ordE M+.
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Then we have

0 ≡ f ∗(KX + � + (c + ε1)M − ε2M+)|F
= (KY + T + U + �′ + (c + ε1)M

′ − ε2M
′+)|F

= KF + �F (c + ε1) + U |F − ε2M
′+|F ,

where we set

U =
∑
j

(ε1 ordEj
M − ε2 ordEj

M+)Ej .

Note that

ε1 ordEj
M − ε2 ordEj

M+

= ε1

ordE M+
(ordE M− · ordEj

M+ − ordEj
M− · ordE M+)

≤ 0.

Therefore, KF + �F (c + ε1) ≡ ε2M
′+|F − U |F ≥ ε2M

′+|F . Since ordE M+ > 0,
it follows that f (E) ⊂ SuppM+, and so M ′+|F > 0. Therefore, KF +�F (c + ε1)

is not numerically trivial. �

Theorem 3.8. Let d ≥ 2, and let I ⊂ [0,+∞) be a finite subset. The accumula-
tion points of Gd(I ) are contained in Gd−1(I ).

As a corollary, we can prove the rationality of the accumulation points of Ld(I ).

Corollary 3.9. Let d ∈ Z>0, and let I ⊂ [0,+∞) be a finite subset. The accu-
mulation points of Ld(I ) are contained in SpanQ(I ∪ {1}), where we denote by
SpanQ(I ∪ {1}) ⊂ R the Q-vector space spanned by the elements of I and 1.

We prove a stronger statement (cf. [8, Prop. 11.7]).

Proposition 3.10. Let d ≥ 2, and let I ⊂ [0,+∞) be a finite subset. Further, let
c ∈R≥0.

Suppose that for each i ∈ Z>0, there exist ci ∈R≥0, a Q-factorial normal pro-
jective variety Xi , and an affine functional divisor �i(t) on Xi with the following
conditions:

• The sequence ci is increasing or decreasing. Further, ci is accumulating to c.
• dimXi ≤ d for each i.
• �i(t) can be written as �i(t) = Ai + Bi(t), where the coefficients of Ai are

approaching one, and Bi(t) ∈ Dci
(I ).

• (Xi,�i(ci)) is lc, and KXi
+ �i(ci) ≡ 0.

• KXi
+ �i(c

′
i ) ≡ 0 for some c′

i = ci .

Then c ∈Gd−1(I ).

Remark 3.11. If ci ∈ Gd(I ), then ci satisfies the conditions of the proposition (in
this case, Ai = 0). Hence, Theorem 3.8 follows from Proposition 3.10.



174 Yusuke Nakamura

In the proof of Proposition 3.10, we reduce to the case where Xi has Picard num-
ber one and apply the following lemma from [8].

Lemma 3.12 ([8, Lemma 11.6]). Let (X,�) be a projective Q-factorial lc pair of
dimension d and of Picard number one. Assume that KX + � ≡ 0. If the coeffi-
cients of � are at least δ > 0, then � has at most d+1

δ
components.

Proof of Proposition 3.10. Possibly replacing Ai and Bi(t), we may assume
that every coefficient of Bi(t) is not identically one. We may write Bi(t) =∑

l dil(t)Dil as in Definition 3.1.
By Lemma 3.7 we may assume that (I ∪{0})∩cZ>0 = ∅. Then we may assume

the following conditions on Bi(t).

Lemma 3.13. We may assume the following conditions:

(1) If dil(t) = m−1+f +kt
m

as in Definition 3.1, then f and k have only finitely
many possibilities.

(2) dil(ci) are bounded from zero, and dil(ci) < 1 for any i, l.
(3) dil(c) > 0.
(4) The set {dil(c) | i, l} satisfies the DCC.

Proof. Since (I ∪ {0}) ∩ cZ>0 = ∅, possibly passing to a tail of the sequence, we
may assume that there exist k′ ∈ Z>0 and ε ∈ R>0 such that for any fj ∈ I ∪ {0},
kj ∈ Z, and i,

• fj + kj ci ≥ 0 implies fj + kj ci ≥ ε and kj ≥ −k′ unless fj = kj = 0.

Here, we note that I is a finite set.
Let dil(t) = m−1+f +kt

m
be a coefficient of Bi(t). By assumption, f + kt can be

written as f + kt = ∑
j (fj + kj t), where fj ∈ I , kj ∈ Z, and fj + kj ci ≥ 0 for

each j .
Note that f + kci ≤ 1 by the log canonicity. Since fj + kj ci ≥ 0 implies fj +

kj ci ≥ ε and kj ≥ −k′, it follows that k is bounded from below. Since ci ≥ ε, it
follows that k is also bounded from above. Since the set I+ is discrete, f has also
only finitely many possibilities. Therefore, (1) follows.

By (1) it follows that dil(ci) ≥ min{ 1
2 , ε}. Hence, dil(ci) are bounded from

zero. Since ci are distinct, by (1), possibly passing to a subsequence, we may
assume that dil(ci) = 1 (and hence dil(ci) < 1) for any i, l. Thus, (2) follows.

(3) follows from (2), and (4) follows from (1). �

By Lemma 3.13(2), possibly passing to a tail of the sequence, we may assume
that Ai and Bi(t) have no common components and that �Ai� = �Ai + Bi(ci)�.

In our setting, the following claim is important and allows the same argument
as in [8] to work.

Claim 3.14. We may assume that (Xi, �Ai� + Bi(c)) is lc for any i.
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Proof. We may write �i(t) = Ai + Mi + t (N+
i − N−

i ), where N+
i ≥ 0 and

N−
i ≥ 0 have no common components; (Xi,Ai + Mi + ci(N

+
i − N−

i )) is lc by
the assumption.

First, suppose ci < c. Note that Ai +Mi +ciN
+
i −cN−

i ≥ 0 (Lemma 3.13(3)).
Hence, (Xi,Ai +Mi + ciN

+
i − cN−

i ) is also lc. Here, by Lemma 3.13(4), the co-
efficients of Mi − cN−

i satisfy the DCC (note that a coefficient of Mi − cN−
i

appears in the coefficients of Mi + cN+
i − cN−

i since N+
i and N−

i have no com-
mon components). Further, the coefficient of Ai and the sequence ci are increas-
ing. Hence, by Theorem 2.5, possibly passing to a tail of the sequence, we may
assume that (Xi, �Ai� + Mi + cN+

i − cN−
i ) is lc.

Suppose ci > c. Then (Xi,Ai +Mi +cN+
i −ciN

−
i ) is lc. Here, the coefficients

of Mi +cN+
i satisfy the DCC (Lemma 3.13(4)), and the coefficients of Ai and the

sequence −ci are increasing. Hence, by Theorem 2.5, possibly passing to a tail of
the sequence, we may assume that (Xi, �Ai� + Mi + cN+

i − cN−
i ) is lc. �

Set ai := mld(Xi,�i(ci)) ≥ 0. Possibly passing to a subsequence, it is sufficient
to treat the following two cases:

(A) ai is bounded away from zero.
(B) ai approaches zero.

Case B We treat the case where ai approaches zero from above.
Step B-1 We reduce to the case where Ai = 0 and (Xi,�i(ci)) is dlt.
We may assume that ai ≤ 1 for any i. Take an extraction πi : X′

i → Xi of a
divisor Ei computing mld(Xi,�i(ci)) = ai (Thms. 2.3 and 2.4). We remark that
Ei may be nonexceptional. Then we may write

KX′
i
+ (1 − ai)Ei + Ti + �′

i (ci) = π∗
i (KXi

+ �i(ci)),

where Ti is the sum of exceptional divisors (note that Ti = 0 when ai > 0), and
�′

i (t) is the strict transform of �i(t). Then (X′
i , (1−ai)Ei +Ti +�′

i (t)) satisfies
the following conditions:

• We may write (1 − ai)Ei + Ti + �′
i (t) = A′

i + B ′
i (t) with all the conditions in

Proposition 3.10.
• �A′

i� = �A′
i + B ′

i (ci)� and A′
i = 0.

• (X′
i , (1 − ai)Ei + Ti + �′

i (ci)) is dlt.

Hence, we may replace (Xi,�i(t)) by (X′
i , (1 − ai)Ei + Ti + �′

i (t)).
Step B-2 We are done if there exists a component Si ⊂ Supp�Ai� such that

(KXi
+ �i(c

′
i ))|Si

≡ 0.
Suppose that there exists a component Si ⊂ Supp�Ai� such that (KXi

+
�i(c

′
i ))|Si

≡ 0. By adjunction, we can define �Si
(t) as follows:

(KXi
+ �i(t))|Si

= KSi
+ �Si

(t).

Then (Si,�Si
(t)) satisfies the following conditions:

• dimSi ≤ d − 1.
• KSi

+ �Si
(c′

i ) ≡ 0 by the assumption.
• (Si,�Si

(t)) satisfies the other conditions in Proposition 3.10.
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Hence, we may replace (Xi,�i(t)) by (Si,�Si
(t)). By induction on d it follows

that c ∈Gd−2(I ) ⊂ Gd−1(I ).
Step B-3 We are done if fi : Xi → Zi is a Mori fiber space with dimZi > 0

and SuppAi dominates Zi .
Let Fi be the general fiber of fi . We may define �Fi

(t) as follows:

(KXi
+ �i(t))|Fi

= KFi
+ �Fi

(t).

Then (Fi,�Fi
(t)) satisfies all conditions in Proposition 3.10 except for KFi

+
�Fi

(c′
i ) ≡ 0. Hence, if KFi

+ �Fi
(c′

i ) ≡ 0 for some c′
i , then c ∈ Gd−2(I ) ⊂

Gd−1(I ) by induction on d .
Suppose that KFi

+ �Fi
(c′

i ) ≡ 0, and so KFi
+ �Fi

(c) ≡ 0. We may
write �Fi

(t) = A′
i + B ′

i (t) with the conditions in Proposition 3.10. Note that
(Fi,�Fi

(c)) is lc by the same reason as Claim 3.14. Since the coefficients of B ′
i (c)

satisfies the DCC (Lemma 3.13(4)), it follows that �A′
i� = A′

i by Theorem 2.6.
Therefore, there exists a component Si ⊂ Supp�Ai� such that f (Si) = Zi . Since
(KXi

+ �i(c))|Fi
≡ 0, KXi

+ �i(c) is linearly equivalent to the pulled back of
an R-divisor Di on Zi . Since KXi

+ �i(c) ≡ 0, it follows that Di ≡ 0, and so
(KXi

+ �i(c))|Si
≡ 0. Therefore, we are done by Step B-2.

Step B-4 We finish the case where (Xi,�i(ci)) is not klt (equivalently, �Ai� =
0 by Step B-1).

Suppose that (Xi,�i(ci)) is not klt. Then �Ai� = 0. We run a (KXi
+�i(ci)−

�Ai�)-MMP. Since KXi
+ �i(ci) − �Ai� ≡ −�Ai� is not pseudo-effective, a

(KXi
+ �i(ci) − �Ai�)-MMP terminates and ends with a Mori fiber space by

[4, Cor. 1.3.3].
Let fi : Xi ��� X′

i be a step of the MMP. First, suppose that fi is birational.
We write

A′
i := fi∗Ai, B ′

i (t) := fi∗Bi(t), �′
i (t) = A′

i + B ′
i (t).

Then, (X′
i ,�

′
i (t)) satisfies all conditions in Proposition 3.10 except for KX′

i
+

�′
i (c

′
i ) ≡ 0.

Assume that KX′
i
+ �′

i (c
′
i ) ≡ 0 (hence, fi is a divisorial contraction). Set

Di := KXi
+ �i(c

′
i ) ≡ 0. We may write Di − f ∗

i fi∗Di = aE, where E is the
fi -exceptional divisor, and a ∈R. Since Di ≡ 0 and fi∗Di ≡ 0, we have aE ≡ 0.
Since fi is �Ai�-positive, there exists a component Ti ⊂ Supp�Ai� such that
E|Ti

≡ 0. Therefore, we are done by Step B-2.
Hence, we may assume that KX′

i
+ �′

i (c
′
i ) ≡ 0, replace (Xi,�i(t)) by

(X′
i ,�

′
i (t)), and continue the MMP. The MMP must terminate with a Mori fiber

space fi : Xi → Zi . If dimZi = 0, then the Picard number of Xi is one. There-
fore, (KXi

+ �i(c
′
i ))|Ti

≡ 0 for any component Ti ⊂ Supp�Ai�, and we are done
by Step B-2. Suppose dimZi > 0. Since fi is �Ai�-positive, �Ai� dominates Zi ,
and we are done by Step B-3.

Step B-5 In what follows, we assume that (Xi,�(ci)) is klt. We reduce to the
case where Xi has the Picard number one.
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We run a (KXi
+ Bi(ci))-MMP. Since (KXi

+ Bi(ci)) ≡ −Ai is not pseudo-
effective, a (KXi

+ Bi(ci))-MMP terminates and ends with a Mori fiber space by
[4, Cor. 1.3.3].

Let fi : Xi ��� X′
i be a step of the MMP. First, suppose that fi is birational.

We write

A′
i := fi∗Ai, B ′

i (t) := fi∗Bi(t), �′
i (t) = A′

i + B ′
i (t).

Then, (X′
i ,�

′
i (t)) satisfies all conditions in Proposition 3.10 except for KX′

i
+

�′
i (c

′
i ) ≡ 0. We prove KX′

i
+ �′

i (c
′
i ) ≡ 0.

Suppose KX′
i
+ �′

i (c
′
i ) ≡ 0. It implies that KX′

i
+ �′

i (c) ≡ 0. Note that
(X′

i ,�
′
i (c)) is lc by Claim 3.14. Further, the coefficients of B ′

i (c) satisfy the DCC
(Lemma 3.13(4)), the coefficients of Ai are approaching 1, and �Ai� = 0. This
contradicts Theorem 2.6.

Since KX′
i
+ �′

i (c
′
i ) ≡ 0, we may replace (Xi,�i(t)) by (X′

i ,�
′
i (t)) and con-

tinue the MMP. Then the MMP must terminate and ends with a Mori fiber space
Xi → Zi . If dimZi = 0, the Picard number of Xi is one. Suppose dimZi > 0.
Since fi is Ai -positive, SuppAi dominates Zi , and we are done by Step B-3.

Step B-6 We finish case B.

Claim 3.15. We may assume that KXi
+ Ai + Bi(c) is not ample for any i.

Proof. Assume that KXi
+ Ai + Bi(c) is ample. We may write

Ai + Bi(t) = Mi + t (N+
i − N−

i ),

where N+
i ≥ 0 and N−

i ≥ 0 have no common components. Further, we may write

N+
i ≡ n+

i Hi, N−
i ≡ n−

i Hi

with some ample divisor Hi and n+
i , n−

i ∈ Q≥0.
First, suppose ci > c. Then KXi

+ Ai + Bi(c) ≡ (c − ci)(N
+
i − N−

i ) is ample,
and so n+

i < n−
i . Then we have

KXi
+ Mi + cN+

i −
(

ci − (ci − c)
n+

i

n−
i

)
N−

i ≡ KXi
+ Mi + ci(N

+
i − N−

i ) ≡ 0.

Here, we have c < ci − (ci − c)(n+
i /n−

i ) < ci , and so

0 ≤ Mi + cN+
i −

(
ci − (ci − c)

n+
i

n−
i

)
N−

i ≤ Mi + c(N+
i − N−

i ).

Since (Xi,Mi +c(N+
i −N−

i )) is lc by Claim 3.14, the new pair (Xi,Mi +cN+
i −

(ci − (ci − c)(n+
i /n−

i ))N−
i ) is also lc, but this contradicts Lemma 3.13(4) and

Theorem 2.6.
Suppose ci < c. Then we have n+

i > n−
i and

KXi
+ Mi +

(
ci + (c − ci)

n−
i

n+
i

)
N+

i − cN−
i ≡ KXi

+ Mi + ci(N
+
i − N−

i ) ≡ 0.
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Here, we have ci < ci + (c − ci)(n
−
i /n+

i ) < c and

0 ≤ Mi +
(

ci + (c − ci)
n−

i

n+
i

)
N+

i − cN−
i ≤ Mi + c(N+

i − N−
i ).

Note that the first inequality follows from Lemma 3.13(3). Since (Xi,Mi +
c(N+

i − N−
i )) is lc by Claim 3.14, the new pair (Xi,Mi + (ci + (c − ci)(n

−
i /

n+
i ))N+

i − cN−
i ) is also lc, but this contradicts Lemma 3.13(4) and Theo-

rem 2.6. �

First, suppose that (Xi, �Ai� + Bi(ci)) is not lc. Note that (Xi, �Ai� + Bi(c)) is
lc by Claim 3.14. Set

di :=
{

sup{t ∈ [c, ci) | (Xi, �Ai� + Bi(t)) is lc} when c < ci ,

inf{t ∈ (ci, c] | (Xi, �Ai� + Bi(t)) is lc} when ci < c.

Then di ∈ Ld(I ) ⊂ Gd−1(I ), and limdi = lim ci = c. Therefore, we are done by
induction on d .

Thus, we may assume that (Xi, �Ai� + Bi(ci)) is lc. Set ei, fi ∈ R as

KXi
+ �Ai� + Bi(ei) ≡ 0, KXi

+ fi�Ai� + Bi(c) ≡ 0.

Since Bi(ci) − Bi(c) is ample (Claim 3.15) and KXi
+ Ai + Bi(ci) ≡ 0, there are

only two cases:

• ei ≥ c > ci or ei ≤ c < ci , or
• c ≥ ei ≥ ci or c ≤ ei ≤ ci .

First, suppose that ei ≥ c > ci or ei ≤ c < ci . Then KXi
+ �Ai� + Bi(c) is

ample, and so fi < 1. Further, since KXi
+ Ai + Bi(c) is not ample and the co-

efficients of Ai are approaching one, it follows that limfi = 1. Therefore, the
set of coefficients of fi�Ai� + Bi(c) satisfies the DCC (Lemma 3.13(4)), which
contradicts Theorem 2.6.

Next, suppose that c ≥ ei ≥ ci or c ≤ ei ≤ ci . Thus, we have lim ei =
lim ci = c. Suppose c ≥ ei ≥ ci (the other case can be proved in the same way).
We may assume that ei < ei+1 for all i or ei = c for some i. In the former
case, since the sequence ei is accumulating to c, we may replace (Xi,�i(t))

by (Xi, �Ai� + Bi(t)). Remark that (Xi, �Ai� + Bi(ei)) is lc because both
(Xi, �Ai�+Bi(ci)) and (Xi, �Ai�+Bi(c)) are lc. Note that the Picard number of
Xi is one. Hence, for any component of Si ⊂ Supp�Ai�, we have (KXi

+ �Ai� +
Bi(c

′
i ))|Si

≡ 0 for some c′
i . Therefore, we are done by Step B-2. In the latter case,

c = ei ∈ Gd−1(I ) by adjunction.
Case A We treat the case where ai is bounded away from zero.
In this case, it follows that Ai = 0 and (Xi,Bi(ci)) is klt.
Step A-1 We reduce to the case where Xi has the Picard number one.
Since KXi

+ Bi(ci) ≡ 0 and KXi
+ Bi(c

′
i ) ≡ 0 for some c′

i , we can take ε ∈ R

such that KXi
+ Bi(ci + ε) is klt (Lemma 3.13(2)) and not pseudo-effective. We

run a (KXi
+ Bi(ci + ε))-MMP. Since KXi

+ Bi(ci + ε) is not pseudo-effective,
a (KXi

+ Bi(ci + ε))-MMP terminates and ends with a Mori fiber space [4,
Cor. 1.3.3].
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Let fi : Xi ��� X′
i be a step of the MMP. First, suppose that fi is birational.

We write
B ′

i (t) := fi∗Bi(t), �′
i (t) := B ′

i (t).

Then, (X′
i ,�

′
i (t)) satisfies all conditions in Proposition 3.10 except for KX′

i
+

�′
i (c

′
i ) ≡ 0. We prove KX′

i
+ �′

i (c
′
i ) ≡ 0.

Suppose KX′
i
+ �′

i (ci + ε) ≡ 0 (hence, fi is a divisorial contraction). We de-
note D := KXi

+ �i(ci + ε). Then we may write

D ≡ D − f ∗
i fi∗D = aE,

where E is the exceptional divisor, and a ∈ R. Since D is not pseudo-effective, it
follows that a < 0. This contradicts the fact that fi is D-negative.

Since KX′
i
+ �′

i (c
′
i ) ≡ 0, we may replace (Xi,�i(t)) by (X′

i ,�
′
i (t)) and con-

tinue the MMP. The MMP must terminate with a Mori fiber space fi : Xi → Zi .
If dimZi = 0, then the Picard number of Xi is one. Suppose dimZi > 0. Let Fi

be the general fiber of fi . Set �Fi
(t) by adjunction:

(KXi
+ �i(t))|Fi

= KFi
+ �Fi

(t).

Since fi is (KXi
+ �i(ci + ε))-negative, (KXi

+ �i(ci + ε))|Fi
≡ 0. Then

(Fi,�Fi
(t)) satisfies the conditions in Proposition 3.10. Since dimFi ≤ d − 1,

we are done by induction on d .
Step A-1′ Since Xi has the Picard number one, by Lemmas 3.12 and 3.13(2)

the numbers of components of Bi(t) are bounded. Hence, possibly passing to
a subsequence, we may assume that the numbers of components of Bi(t) are
fixed. Since ai are bounded away from zero, the coefficients of Bi(t) have only
finitely many possibilities (Lemma 3.13(1)). Therefore, possibly passing to a sub-
sequence, we may assume that the coefficients of Bi(t) are fixed and of the form

m − 1 + f + kt

m
,

where m ∈ Z>0, f ∈ I+, and k ∈ Z. Here, m, f , and k depend on the component
but not on i.

Set

h+
i := sup{t ≥ ci | (Xi,Bi(t)) is lc} ≥ ci,

h−
i := inf{t ≤ ci | (Xi,Bi(t)) is lc} ≤ ci .

Since h+
i and h−

i are bounded, possibly passing to a subsequence, we may assume
that the limits h+ = limh+

i and h− = limh−
i exist.

Step A-2 We finish the case where c ≥ h+ or c ≤ h−.

In this case, we have h+ = limh+
i = c or h− = limh−

i = c. Since h+
i , h−

i ∈
Ld(I ) ⊂ Gd−1(I ), we are done by induction on d .

Step A-3 In what follows, we assume that c < h+ and c > h−. Let

d+
i = ci + h+

i

2
, d−

i = ci + h−
i

2
, d+ = c + h+

2
, d− = c + h−

2
.
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Then d+ > c and d− < c. Further, we may assume that d+ > ci and d− < ci ,
possibly passing to a tail of the sequence. Note that the following hold:

• If ci > c, then KXi
+ Bi(d

+) is ample.
• If ci < c, then KXi

+ Bi(d
−) is ample.

This is because KXi
+ Bi(c) is not ample by the same reason as Claim 3.15.

In this step, we prove that the following hold:

• If ci > c, then vol(Xi,KXi
+ Bi(d

+)) is unbounded.
• If ci < c, then vol(Xi,KXi

+ Bi(d
−)) is unbounded.

Suppose that ci > c and vol(Xi,KXi
+ Bi(d

+)) is bounded from above (the
other case can be proved in the same way). Since the coefficients of (Xi,Bi(d

+))

are fixed, there exists m ∈ Z>0 such that φm(KXi
+Bi(d

+)) is birational for all i

by [8, Thm. 1.3]. But then, by [7, Lemma 2.4.2] {(Xi,Bi(d
+)) | i ∈ Z>0} is

log birationally bounded since vol(Xi,KXi
+ Bi(d

+)) is bounded by the as-
sumption. Note that the coefficients of Bi(d

+
i ) are bounded from below and

mld(Xi,Bi(d
+
i )) is also bounded from below:

mld(Xi,Bi(d
+
i )) ≥ mld(Xi,Bi(h

+
i )) + mld(Xi,Bi(ci))

2
= ai

2
.

Hence, by [8, Thm. 1.6], {(Xi,Bi(d
+)) | i ∈ Z>0} turns out to be a bounded fam-

ily.
Thus, we may take an ample Cartier divisor Hi on Xi such that

Ti · H dimXi−1
i , KXi

· H dimXi−1
i

are bounded, where Ti is any component of Bi(t). Hence, we may assume that
these intersection numbers are independent of i, possibly passing to a subse-
quence. We may write Bi(t) = Mi + tNi . Since the coefficients of Bi are inde-
pendent of i, it follows that Mi · H dimXi−1

i and Ni · H dimXi−1
i are also constant.

Since

0 = (KXi
+ Bi(ci)) · H dimXi−1

i = (KXi
+ Mi + ciNi) · H dimXi−1

i ,

it follows that ci is also constant, a contradiction. Remark that Ni · H dimXi−1
i = 0

since Ni ≡ 0.
Step A-4 By Step A-3 the following hold:

• If ci > c, then KXi
+ Bi(d

+) is ample, and vol(Xi,KXi
+ Bi(d

+)) is un-
bounded.

• If ci < c, then KXi
+ Bi(d

−) is ample, and vol(Xi,KXi
+ Bi(d

−)) is un-
bounded.

Suppose ci > c (the other case can be proved in the same way). Note that
KXi

+ Bi(d
+) ≡ Bi(d

+) − Bi(ci). Then, by Lemmas 3.2.2 and 3.2.3 in [8], pos-
sibly passing to a tail of the sequence, we may find gi < ci and an R-divisor �i

with the following conditions:

• 0 ≤ �i ∼R Bi(ci) − Bi(gi).
• Bi(gi) ≥ 0 (cf. Lemma 3.13(3)).
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• limgi = c.
• (Xi,Bi(gi) + �i) has a unique non-klt place.

Let φ : Yi → Xi be a dlt modification of (Xi,Bi(gi) + �i). Then we may write

KYi
+ B ′

i (gi) + �′
i + Si = φ∗(KXi

+ Bi(gi) + �i),

where Si is the unique exceptional divisor, and B ′
i (t) and �′

i are the strict trans-
forms of Bi(t) and �i . We may also write

KYi
+ B ′

i (ci) + siSi = φ∗(KXi
+ Bi(ci))

with si < 1 since (Xi,Bi(ci)) is klt.

Claim 3.16. We may assume that Si is ample and KYi
+B ′

i (li )+Si ≡ 0 for some
li ∈ [gi, ci).

First, we assume this claim and finish the proof.
Suppose that (Yi,B

′
i (ci) + Si) is not lc. Note that (Yi,B

′
i (gi) + Si) is lc. Set

ki := sup{t ∈ [gi, ci) | (Yi,B
′
i (t) + Si) is lc}.

Then ki ∈ Ld(I ) ⊂ Gd−1(I ), and limki = c. Therefore, we are done by induction
on d .

Thus, we may assume that (Yi,B
′
i (ci)+Si) is lc. By adjunction, we can define

B ′′
i (t) as follows:

(KYi
+ B ′

i (t) + Si)|Si
= KSi

+ B ′′
i (t).

Since (Yi,B
′
i (ci)+Si) is lc, it follows that B ′′

i (t) ∈ Dci
(I ) by Lemma 3.2. Further,

(Si,B
′′
i (ci)) and (Si,B

′′
i (gi)) are lc. By Claim 3.16 it follows that KSi

+B ′′
i (li ) ≡

0 and KSi
+ B ′′

i (ci) ≡ 0. Therefore, li ∈ Gd−1(I ). Since lim li = c, we are done
by induction on d .

Proof of Claim 3.16. We run a (KYi
+ B ′

i (gi) + �′
i )-MMP. Since (Yi,B

′
i (gi) +

�′
i ) is klt and KYi

+B ′
i (gi)+�′

i ≡ −Si is not pseudo-effective, a (KYi
+B ′

i (gi)+
�′

i )-MMP fi : Yi ��� Wi terminates and ends with a Mori fiber space πi : Wi →
Zi by [4, Cor. 1.3.3].

Let Fi be the general fiber of πi , and let B ′′′
i (t), �′′′

i , and S′′′
i be the restrictions

of fi∗B ′
i (t), fi∗�′

i , and fi∗Si to Fi . Note that S′′′
i = 0 since every step of this

MMP is Si -positive. Further, B ′′′
i (t), �′′′

i , and S′′′
i are multiples of the same ample

divisor. Therefore, S′′′
i is ample. Since

KFi
+ B ′′′

i (gi) + �′′′
i + S′′′

i ≡ 0, and KFi
+ B ′′′

i (ci) + siS
′′′
i ≡ 0,

we may find
KFi

+ B ′′′
i (li ) + S′′′

i ≡ 0

for some li ∈ [gi, ci). Therefore, we can apply the same argument before after
replacing (Yi,B

′
i (t) + Si) by (Fi,B

′′′
i (t) + S′′′

i ). �

�
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Proof of Corollary 3.9. By Theorems 3.6 and 3.8, it is sufficient to show that
Gd(I ) ⊂ SpanQ(I ∪ {1}) for any d .

Let c ∈ Gd(I ). Then, by the definition of Gd(I ) (Def. 3.5) there exist a Q-
factorial normal projective variety X and an affine functional divisor �(t) ∈
Dc(I ) such that KX + �(c) ≡ 0 and KX + �(c′) ≡ 0 for some c′ = c. Here,
we can take a curve C satisfying (KX + �(c′)) · C = 0. Since �(t) ∈ Dc(I ),
we may write (KX + �(t)) · C = αt + β with α ∈ Q and β ∈ SpanQ(I ∪ {1}).
Since αc + β = 0, we have c = −βα−1 ∈ SpanQ(I ∪ {1}) (note that α = 0 since
αc′ + β = 0). �

4. Perturbation of Irrational Coefficients of LC Pairs

The goal of this section is to prove Theorem 1.6. The ideal setting is treated as
Theorem 4.1.

Proof of Theorem 1.6. We may write the Q-linear functions si as

si(x0, . . . , xc′) =
∑

0≤j≤c′
qij xj

with qij ∈ Q. Since si(r0, . . . , rc′) ∈ R≥0 and r0, . . . , rc′ are Q-linearly indepen-
dent, we can take t−, t+ ∈Q with the following conditions:

• t− < rc′ < t+, and
• si(r0, . . . , rc′−1, t) ∈R≥0 for any t satisfying t− ≤ t ≤ t+.

Suppose that the statement does not hold. Then there exist Q-Gorenstein
varieties X(l) (l ∈ Z>0) of dimension d and Q-Cartier effective Weil divisors
D

(l)
0 , . . . ,D

(l)
c on X(l) such that the following hold:

• (X(l),
∑

1≤i≤c si(r0, . . . , rc′)D(l)
i ) is lc, and

• limh+
l = rc′ or limh−

l = rc′ ,

where we set

h+
l := sup

{
t ≥ rc′

∣∣∣(X(l),
∑

1≤i≤c

si(r0, . . . , rc′−1, t)D
(l)
i

)
is lc

}
,

h−
l := inf

{
t ≤ rc′

∣∣∣(X(l),
∑

1≤i≤c

si(r0, . . . , rc′−1, t)D
(l)
i

)
is lc

}
.

Suppose that limh−
l = rc′ (the other case can be proved in the same way). We

may assume that t− ≤ h−
l ≤ rc′ . Note that∑

1≤i≤c

si(r0, . . . , rc′−1, t)D
(l)
i =

∑
1≤i≤c

si(r0, . . . , rc′−1, t
−)D

(l)
i

+ (t − t−)
∑

1≤i≤c

qic′D(l)
i .

Let
I := {si(r0, . . . , rc′−1, t

−) | 1 ≤ i ≤ c}.
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This becomes a finite set. Take m ∈ Z>0 such that mqic′ ∈ Z for any i. Then
(h−

l − t−)/m ∈ Ld(I ). Hence, by Corollary 3.9 it follows that

rc′ − t−

m
∈ SpanQ(I ∪ {1}) ⊂ SpanQ(r0, . . . , rc′−1).

This contradicts the Q-linear independence of r0, . . . , rc′ . �
The case of the pair with ideal sheaves can be also proved.

Theorem 4.1. Fix d ∈ Z>0. Let r1, . . . , rc′ be positive real numbers, and
let r0 = 1. Assume that r0, . . . , rc′ are Q-linearly independent. Let s1, . . . , sc :
Rc′+1 → R be Q-linear functions from Rc′+1 to R. Assume that si(r0, . . . , rc′) ∈
R≥0 for each i. Then there exists a positive real number ε > 0 with the following
conditions:

• si(r0, . . . , rc′−1, t) ≥ 0 for any t satisfying |t − rc′ | ≤ ε.
• For any Q-Gorenstein normal variety X of dimension d and any ideal sheaves

a1, . . . ,ac on X, if the pair (X,
∏

1≤i≤c a
si (r0,...,rc′ )
i ) is lc, then the pair

(X,
∏

1≤i≤c a
si (r0,...,rc′−1,t)

i ) is also lc for any t satisfying |t − rc′ | ≤ ε.

This theorem follows from Theorem 1.6 by the following lemma (cf. [17, Prop.
9.2.28]).

Lemma 4.2. Fix l ∈ Z>0. Let X be a Q-Gorenstein normal affine variety, and
let a1, . . . ,ac be ideal sheaves on X. Fix general elements fi1, . . . , fil ∈ ai for
each i, and let Dij = div(fij ) ≥ 0 be the corresponding Cartier divisors. Set
Di := ∑

1≤j≤l Dij .
Then the following holds for any positive real numbers r1, . . . , rc ≤ l at most l:

the pair (X,
∏

1≤i≤c a
ri
i ) is lc if and only if the pair (X, 1

l

∑
1≤i≤c riDi) is lc.

Definition 4.3. Let X be an affine variety, and a an ideal sheaf. Fix generators
g1, . . . , gc ∈ a. Then, a general element of a is a general C-linear combination
of gi .

Proof of Lemma 4.2. Let bi be an ideal sheaf generated by
∏

1≤j≤l fij . Then the

pair (X, 1
l

∑
1≤i≤c riDi) is corresponding to the pair (X,

∏
1≤i≤c b

ri/ l
i ).

Since bi ⊂ al
i , it easily follows that the log canonicity of (X,

∏
1≤i≤c b

ri/ l
i )

implies the log canonicity of (X,
∏

1≤i≤c a
ri
i ).

Suppose that (X,
∏

1≤i≤c a
ri
i ) is lc. Let Y → X be a log resolution of

(X,
∏

1≤i≤c a
ri
i ). Then we may write aiOY = OY (−Ei) with some Cartier di-

visor Ei . Since bi ⊂ al
i , we may write biOY = ciOY (−lEi) with some ideal

sheaf ci ⊂ OY . Let ei be a local generator of OY (−Ei). Then ci is generated by∏
1≤j≤l gij , where we set gij := fij e

−1
i ∈ OY . Since fi1, . . . , fil are general ele-

ments of ai , the elements gi1, . . . , gil become general elements of OY . Therefore,
Y → X is also a log resolution of (X,

∏
1≤i≤c b

ri/ l
i ). Since ordgij

b
ri/ l
i = ri/ l ≤ 1,

it follows that (X,
∏

1≤i≤c b
ri/ l
i ) is also lc. �
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5. Proof of Main Theorem and Corollaries

Theorem 1.2 can be proved by the induction on dimQ SpanQ(I ∪ {1}). The same
argument essentially appears in [10].

Proof of Theorem 1.2. It is sufficient to prove the case where 1 ∈ I . Let r0 = 1,
r1, . . . , rc be all the elements of I . Set c′ + 1 := dimQ SpanQ(1, r1, . . . , rc). Pos-
sibly rearranging the indices, we may assume that r0, . . . , rc′ are Q-linearly inde-
pendent. We may write ri = ∑

0≤j≤c′ qij rj with qij ∈Q.
We prove by induction on c′. If c′ = 0, then we can take n ∈ Z>0 such that

I ⊂ 1
n
Z and 1

r
∈ 1

n
Z. Then B(d, r, I ) ⊂ 1

n
Z, and B(d, r, I ) turns out to be discrete.

Set Q-linear functions s0, . . . , sc as follows:

si :Rc′+1 →R; si(x0, . . . , xc′) =
∑

0≤j≤c′
qij xj .

Take ε > 0 as in Theorem 4.1. We fix t+, t− ∈Q such that

t+ ∈ (rc′ , rc′ + ε] ∩Q, t− ∈ [rc′ − ε, rc′) ∩Q.

We define r+
0 , . . . , r+

c and r−
0 , . . . , r−

c as

r+
i = si(r0, . . . , rc′−1, t

+), r−
i = si(r0, . . . , rc′−1, t

−).

Further, we set I ′ := {r+
0 , . . . , r+

c , r−
0 , . . . , r−

c }. Then dimQ SpanQ(I ′) = c′, and
so B(d, r, I ′) is discrete by induction.

Let (X,
∏

0≤i≤c a
ri
i ) ∈ P(d, r), and let E be a divisor over X. Since (X,∏

0≤i≤c a
ri
i ) is lc, (X,

∏
0≤i≤c a

r∗
i

i ) is also lc for each ∗ ∈ {+,−}. Hence, we have

0 ≤ aE

(
X,

∏
0≤i≤c

a
r∗
i

i

)

= aE

(
X,

∏
0≤i≤c

a
ri
i

)
− (r∗

c′ − rc′)
∑

0≤i≤c

qic′ ordE ai .

Therefore, either of the following holds:

• 0 ≤ ∑
0≤i≤c qic′ ordE ai ≤ ε−1+ aE(X,

∏
0≤i≤c a

ri
i ), or

• −ε−1− aE(X,
∏

0≤i≤c a
ri
i ) ≤ ∑

0≤i≤c qic′ ordE ai ≤ 0,

where we set ε+ := r+
c′ − rc′ and ε− := rc′ − r−

c′ .
It is sufficient to show the discreteness of B(d, r, I ) ∩ [0, a] for any a ∈ R>0.

Take n ∈ Z>0 such that qic′ ∈ 1
n
Z for any i. Then, it is sufficient to prove that

B(d, r, I ) ∩ [0, a] is contained in{
b + ε+e

∣∣∣ b ∈ B(d, r, I ′), e ∈ 1

n
Z∩ [0, ε−1+ a]

}

∪
{
b − ε−e

∣∣∣ b ∈ B(d, r, I ′), e ∈ 1

n
Z∩ [−ε−1− a,0]

}
.

In fact, this set becomes discrete because B(d, r, I ′) is discrete, and both 1
n
Z ∩

[0, ε−1+ a] and 1
n
Z∩ [−ε−1− a,0] are finite.
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Let (X,
∏

0≤i≤c a
ri
i ) ∈ P(d, t), and E a divisor over X. Assume that aE(X,∏

0≤i≤c a
ri
i ) ∈ [0, a]. Further, suppose

∑
0≤i≤c qic′ ordE ai ≥ 0 (the other case can

be proved in the same way). Then, we have

aE

(
X,

∏
0≤i≤c

a
ri
i

)
= aE

(
X,

∏
0≤i≤c

a
r+
i

i

)
+ (r+

c′ − rc′)
∑

0≤i≤c

qic′ ordE ai .

Here, we have

• aE(X,
∏

0≤i≤c a
r+
i

i ) ∈ B(d, r, I ′),
• r+

c′ − rc′ = ε+, and

• ∑
0≤i≤c qic′ ordE ai ∈ 1

n
Z∩ [0, ε−1+ a].

We complete the proof. �
Proof of Corollary 1.5. Note that Acan(3, I ) ⊂ [1,3] (cf. [13; 18]). We prove that
for any a > 1, the set

Acan(3, I ) ∩ [a,+∞)

is a finite set.
By the classification of three-dimensional Q-factorial terminal singularities

(see [13; 18]) the minimal log discrepancy of a three-dimensional terminal sin-
gularity is equal to 1 + 1/r (r ∈ Z>0) or 3. In the case where mldx(X) = 3, the
Gorenstein index of X at x is 1. If mldx(X) = 1 + 1/r , then the Gorenstein index
of X at x is r . Further, by [12, Cor. 5.2], if X has Gorenstein index r at x ∈ X,
then rD is Cartier at x for any Weil divisor D.

Let (X,�) be a three-dimensional canonical pair satisfying � ∈ I and
mldx(X,�) ≥ a. By [4, Cor. 1.4.3], there exists a projective morphism f : Y → X

with the following properties:

• Y is a Q-factorial terminal variety.
• f ∗(KX + �) = KY + �Y , where �Y is the strict transform on Y of � (note

that (X,�) is canonical).

Take a divisor E over X such that mldx(X,�) = aE(X,�) and cX(E) = {x}.
Suppose dim cY (E) = 0. Then mldx(X,�) = mldy(Y,�Y ), where {y} :=

cY (E). Since mldy(Y ) ≥ mldy(Y,�Y ) ≥ a, the Gorenstein index of Y at y is
at most � 1

a−1�. Let l be the Gorenstein index of Y at y. Since lD is Cartier at

y for any Weil divisor D on Y , it follows that mldy(Y,�Y ) ∈ A′(3, l, 1
l
I ) (see

Remark 2.2), where we set
1

l
I := {f l−1 | f ∈ I }.

Therefore, we have

mldx(X,�) ∈
⋃

l≤�1/(a−1)�
A′

(
3, l,

1

l
I

)
,

and the right-hand side is a finite set by Corollary 1.3.
Suppose dim cY (E) = 1. Then, by [2, Prop. 2.1],

mldy(Y,�Y ) = 1 + mldx(X,�)
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for some y ∈ cY (E). Since mldy(Y ) ≥ 1 + a > 2, it follows that Y has Gorenstein
index 1. Hence,

mldy(Y,�Y ) ∈ A′(3,1, I ).

Therefore, we have
mldx(X,�) ∈ −1 + A′(3,1, I ),

and the right-hand side is a finite set by Corollary 1.3.
Suppose dim cY (E) = 2. Then E is a divisor on Y , and we have

mldx(X,�) = 1 − coeffE �Y .

Therefore, we have
mldx(X,�) ∈ 1 − I,

and the right-hand side is a finite set. �
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