
Michigan Math. J. 65 (2016), 105–130

Pretzel Knots with L-Space Surgeries

Tye Lidman & Allison H. Moore

Abstract. A rational homology sphere whose Heegaard Floer homol-
ogy is the same in rank as that of a lens space is called an L-space. We
classify pretzel knots with any number of tangles that admit L-space
surgeries. This rests on Gabai’s classification of fibered pretzel links.

1. Introduction

The Heegaard Floer homology of three-manifolds and its refinement for knots,
knot Floer homology, have proved to be particularly useful for studying Dehn
surgery questions in three-manifold topology. Recall that the knot Floer homology
of a knot K in the three-sphere is a bigraded Abelian group,

ĤFK(K) =
⊕
m,s

ĤFKm(K, s),

introduced by Ozsváth and Szabó [OS04b] and independently by Rasmussen
[Ra03]. The graded Euler characteristic is the symmetrized Alexander polyno-
mial of K [OS04b],

�K(t) =
∑

s

χ(ĤFK(K, s)) · t s .

These theories have been especially useful for studying knots that admit lens
space surgeries, the classification of which has been an outstanding problem in
low-dimensional topology for decades. For example, if K ⊂ S3 admits a lens
space surgery, then for all s ∈ Z, we have ĤFK(K, s) ∼= 0 or Z [OS05, Thm. 1.2].
Knot Floer homology detects both the genus of K by

g(K) = max{s | ĤFK(K, s) �= 0}
[OS04a] and the fiberedness of K by whether ĤFK(K,g(K)) is isomorphic to
Z [Ghi08; Ni07]. Together, these facts imply that a knot in S3 with a lens space
surgery is fibered. Indeed, this result applies more generally to knots in S3 admit-
ting L-space surgeries. Recall that a rational homology sphere Y is an L-space if
|H1(Y ;Z)| = rank ĤF(Y ), where ĤF is the “hat” flavor of Heegaard Floer homol-
ogy. The class of L-spaces includes all lens spaces, and more generally, three-
manifolds with elliptic geometry [OS05, Prop. 2.3] (or equivalently, with finite
fundamental group by the Geometrization theorem; see [KL08]). A knot admit-
ting an L-space surgery is called an L-space knot.
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Figure 1 The pretzel knot (3,−5,3,−2)

The goal of this paper is to classify L-space pretzel knots.

Theorem 1. Let K be a pretzel knot. Then, K admits an L-space surgery if
and only if K is isotopic to the ±(−2,3, q)-pretzel knot for odd q ≥ 1 or the
(2,2n + 1)-torus knot for some n.

We establish the following notation and conventions for the paper. For notation,
we use (n1, . . . , nr) to denote the pretzel knot with r tangles, where the ith tangle
consists of ni ∈ Z half-twists. For examples of pretzel links, refer to Figures 1
and 2. We use T (a, b) to denote the (a, b)-torus knot, which is positive if a, b > 0.
It was proved by Krcatovich [Krc14] that L-space knots are prime, so we adopt
the convention that ni �= 0 for all i.

We first remark that the pretzel knots (−2,3,1), (−2,3,3), and (−2,3,5) are
isotopic to the torus knots T (2,5), T (3,4), and T (3,5), respectively. In general,
torus knots are well known to admit lens space surgeries [Mos71]; the hyperbolic
pretzel knot (−2,3,7) is also known to have two lens space surgeries [FS80]. The
knot (−2,3,9) has two finite, noncyclic surgeries [BH96]. Finally, the remaining
knots, (−2,3, q) for q ≥ 11, are known to have Seifert fibered L-space surgeries
with infinite fundamental group [OS05]. Therefore, in this paper we show that no
other pretzel knot admits an L-space surgery. This will be proved by appealing to
Gabai’s classification of fibered pretzel links [Gab86] and the state-sum formula
for the Alexander polynomial [Kau83; OS03].

Using Theorem 1, we are able to easily recover the classification of pretzel
knots that admit surgeries with finite fundamental group due to Ichihara and
Jong.

Corollary 2 (Ichihara–Jong [IJ09]). The only nontrivial pretzel knots that ad-
mit nontrivial finite surgeries are, up to mirroring, (−2,3,7), (−2,3,9), T (3,4),
T (3,5), and T (2,2n + 1) for n > 0.

Proof. As discussed before, the knots in the statement of the corollary are known
to admit finite surgeries. Therefore, it remains to rule out the case of (−2,3, q)

for odd q ≥ 11. Using the theory of character varieties, Mattman proved that the
only knots of the form K = (−2,3, q) with q �= 1,3,5 that admit a finite surgery
are (−2,3,7) and (−2,3,9) [Mat02]. This completes the proof. �
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Remark 3. In fact, Ichihara and Jong [IJ09] show that Corollary 2 holds more
generally for Montesinos knots. Like the approach of this paper, their proof stud-
ies the Alexander polynomials of pretzel knots. However, they first appeal to an
analysis of essential laminations on the exteriors of Montesinos knots by Delman.
This allows them to restrict their attention to a specific family of pretzel knots
before reducing to the case of the (−2,3, q)-pretzel knots. Because of this, they
do not need to make the graph-theoretic arguments we make here.

We observe that whereas many pretzel knots have essential Conway spheres, the
pretzel knots with L-space surgeries do not. We conjecture that this holds for L-
space knots in general. If true, this fact would imply that an L-space knot admits
no nontrivial mutations.

Conjecture 4. If K is an L-space knot, then there are no essential Conway
spheres in the complement of K .

Note that a Montesinos knot with an essential Conway sphere has at least four
tangles. Indeed, after writing this note, the second author and Baker extended
Theorem 1 to a classification of Montesinos knots admitting L-space surgeries
(using different techniques) and confirmed Conjecture 4 for Montesinos knots.
Moreover, work of Wu [Wu96] implies any surgery on an arborescent knot (a
class which generalizes Montesinos knots) that is not a Montesinos knot of length
at most three has infinite fundamental group. This means that amongst arbores-
cent knots, the existence of an essential Conway sphere obstructs the knot from
admitting a finite surgery. Thus, it is natural to wonder whether similar geometric
obstructions exist for L-space surgeries.

In fact, for many families of pretzel knots in the arguments that follow, we are
able to leverage the existence of essential Conway spheres to our advantage; we
perform mutations along these surfaces so that the Kauffman state sum descrip-
tions of the Alexander polynomials of the corresponding pretzel knots become
more predictable.

Another interesting phenomenon can be observed as a result of the proof of
Theorem 1. In all cases (exempting the two families of knots mentioned in The-
orem 1), for each fibered knot K , we will exhibit an Alexander grading s where
ĤFK(K, s) is neither trivial nor isomorphic to Z. As discussed, this implies that
these knots are not L-space knots. For most fibered pretzel knots, we will do this
by showing that there is a coefficient of the Alexander polynomial with |as | > 1.
Except for a few sporadic knots, we accomplish this by making repeated use of
two basic arguments: either studying a−g(K)+1 with the state-sum formula (see
Section 2.3) or by analyzing the determinant of K and applying Lemma 6 (see
Section 2.1). In fact, the Alexander polynomial serves as an obstruction for all
but one knot, and thus the following will result directly from the proof of Theo-
rem 1.
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Table 1 The knot Floer homology groups of the knot (3,−5,3,−2)

are displayed with Maslov grading on the vertical axis and Alexander
grading on the horizontal axis

ĤFK(K = (3,−5,3,−2))

−3 −2 −1 0 1 2 3

4 F

3 F3

2 F4 F2

1 F3 F4

0 F4 F4

−1 F3 F4

−2 F F2

Proposition 5. Up to mirroring, there is a unique fibered pretzel knot that has the
Alexander polynomial of an L-space knot but does not admit an L-space surgery.
This knot is (3,−5,3,−2).

The knot K = (3,−5,3,−2) is pictured in Figure 1. Its Alexander polyno-
mial,

�(3,−5,3,−2)(t) = t−3 − t−2 + 1 − t2 + t3,

does not obstruct it from admitting an L-space surgery. Therefore, we compute
the knot Floer homology of K = (3,−5,3,−2) in Table 1 using the Python pro-
gram for ĤFK with F2 coefficients by Droz [Dro] to observe directly that there
exist Alexander gradings s such that dim ĤFK(K, s;F2) ≥ 2. This implies that for
these Alexander gradings, ĤFK(K, s;Z) � 0 or Z. Therefore, K = (3,−5,3,−2)

is not an L-space knot. We remark that whereas the nontrivial Conway mutants
of K share its Alexander polynomial, these mutants are nonfibered (this will be
implied by Theorem 7 and made clear in Section 5.1). That the classical tools
succeed for all but a single knot is a testament to the stringency of the conditions
on L-space knots.

2. Background

Throughout, K (resp. L) is an oriented knot (resp. link) in S3. Let g(K) denote
the genus of K . Let L = (n1, . . . , nr ) be a pretzel link. We will sometimes use
the integer ni to refer to this specific tangle in the pretzel projection. To set the
sign conventions for tangles, we declare the first row of crossings in Figure 3
to be +1 and −1, respectively. The length of the tangle ni refers to |ni |. Notice
that tangles of length one can be permuted to any spot in a pretzel link by flype
moves. Furthermore, if there exist indices i and j such that ni = +1 and nj = −1
in L, then ni and nj can be pairwise removed by flyping followed by an isotopy.
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Similarly, if there exist indices i and j such that ni = ±1 and nj = ∓2, these
tangles may be made consecutive via flypes and then consolidated with the isotopy
(±1,∓2) � (±2). Unless otherwise stated, we assume that a diagram of a pretzel
link L is in pretzel form and that r is the minimal possible number of strands to
present L as a pretzel projection; in particular, we assume that there are no pairs
of indices i and j such that ni = ±1 and nj = ∓1 or ∓2. Throughout, we will
assume the classification of pretzel knots due to Kawauchi [Kaw85].

2.1. Determinants of Pretzel Knots

Since χ(ĤFK(K, s)) is equal to as , the coefficient of t s in the symmetrized
Alexander polynomial of K , this will give us an easy way to approach Theorem 1
in many cases; whenever there exists a coefficient as of �K(t) with |as | > 1, K

is not an L-space knot [OS05]. We therefore establish the following lemma.

Lemma 6. If det(K) > 2g(K) + 1, then �K(t) contains some coefficient as with
|as | > 1.

Proof. If the coefficients of �K(t) are at most one in absolute value, then

det(K) = |�K(−1)| ≤
∑

s

|as | ≤ 2g(K) + 1.
�

Suppose that Y is a Seifert fibered rational homology sphere with base orbifold
S2 and Seifert invariants (b; (a1, b1), . . . , (ar , br )). Then

|H1(Y ;Z)| =
∣∣∣∣a1 · · ·ar ·

(
b +

r∑
i=1

bi

ai

)∣∣∣∣
(see, e.g., [Sav02]). The branched double covers of Montesinos knots (and conse-
quently, pretzel knots) are such Seifert fibered spaces. If

K = (1, . . . ,1︸ ︷︷ ︸
d

, n1, . . . , nk),

where |ni | > 1 for 1 ≤ i ≤ k, then the branched double cover of K , denoted
�2(K), has Seifert invariants (d; (n1,1), . . . , (nk,1)). Therefore,

det(K) = |H1(�2(K))| =
∣∣∣∣n1 · · ·nk ·

(
d +

k∑
i=1

1

ni

)∣∣∣∣. (1)

As permuting tangles in a pretzel knot corresponds with doing a series of Con-
way mutations, �K(t), and consequently det(K), are unchanged. Invariance of
the determinant under permutations is also evident from equation (1). Since the
symmetrized Alexander polynomial of a fibered knot is monic of degree g(K),
when K is fibered and the mutation preserves fiberedness, the genus of K is also
unchanged.
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2.2. Fibered Pretzel Links

As mentioned earlier, if K is an L-space knot, then K is fibered. Theorem 1 is
therefore automatic for any nonfibered knot. Thus, for the proof of Theorem 1,
we will only be interested in fibered pretzel knots. In [Gab86, Thm. 6.7], Gabai
classified oriented fibered pretzel links together with their fibers; we recall this in
Theorem 7. An oriented pretzel link L may be written

L = (m1,m11,m12, . . . ,m1�1,m2,m21, . . . ,m2�2 , . . . ,mR,mR1, . . . ,mR�R
),

where mi denotes a tangle in which the two strands are oriented consistently (i.e.,
both up or both down), and mij denotes a tangle where the two strands are ori-
ented inconsistently (i.e., one up and one down). An oriented pretzel link falls
into one of three types, depending on the surface obtained by applying the Seifert
algorithm to the oriented pretzel presentation of L (see Gabai [Gab86]). More-
over, the type of surface associated to an oriented pretzel link can be ascertained
from its diagram; for ease of exposition, we restate the classification in [Gab86]
by defining the types in terms of link diagrams. A type 1 link contains no mi , a
type 2 link contains both an mi and an mij , and a type 3 link contains no mij .
With this, we call a surface resulting from performing the Seifert algorithm to an
oriented pretzel presentation type 1, 2, or 3 based on whether it arises from a type
1, 2, or 3 link diagram, respectively.

Associated with a type 2 or type 3 link L will be an auxiliary oriented pretzel
link L′,

L′ =
(−2m1

|m1| ,m11,m12, . . . ,m1�1 ,
−2m2

|m2| ,

m21, . . . ,m2�2 , . . . ,
−2mR

|mR| ,mR1, . . . ,mR�R

)
, (2)

where the term −2mi/|mi | is omitted if |mi | = 1. The link L′ is oriented so that
the surface obtained by applying the Seifert algorithm is of type 1. See Figure 2.
The auxiliary link L′ is derived from a procedure of Gabai in which a minimal
genus Seifert surface is desummed and its sutured manifold hierarchy is analyzed
to determine whether L fibers [Gab86].

Theorem 7 (Gabai, Thm. 6.7 in [Gab86]). The algorithm that follows determines
whether an oriented pretzel link fibers.

Figure 2 The pretzel knot (3,−3,1,3,2) and its associated auxiliary
link (−2,2,−2,2)
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(I) A type 1 link L fibers if and only if one of the following holds:
(a) Each ni = ±1 or ∓3 and some ni = ±1.
(b) (n1, . . . , nr ) = ±(2,−2,2,−2, . . . ,2,−2, n), n ∈ Z (here, r is odd).
(c) (n1, . . . , nr ) = ±(2,−2,2,−2, . . . ,−2,2,−4) (here, r is even).

(II) A fibered type 2 link falls into the following two subcases:
(a) The numbers of positive and negative mi differ by two. Then L fibers if

and only if |mij | = 2 for all indices ij .
(b) The numbers of positive and negative mi in L are equal, and L′ �=

±(2,−2, . . . ,2,−2). Then L fibers if and only if L′ fibers.
(III) For type 3 links, if either the numbers of positive and negative tangles are

unequal or if L′ �= ±(2,−2, . . . ,2,−2), then treat L as if it was type 2(a) or
2(b). Otherwise, L is fibered if and only if there is a unique mi of minimal
absolute value.

Finally, if L is a fibered pretzel link of type 1, type 2(a), or the type 2(a) subcase
of type 3, then the fiber surface is necessarily isotopic to the surface obtained by
applying the Seifert algorithm to the pretzel diagram of L.

The original formulation describes the fiber surfaces for all types; we include this
information only when it is relevant to our calculations. In our case analysis, we
denote the three subcases of type 3 by type 3-2(a), type 3-2(b), and type 3-min
accordingly.

Remark 8. In Gabai’s classification of oriented fibered pretzel links, there is
a third subcase of fibered type 2 links, called type 2(c). For these links, the
numbers of positive and negative mi are equal and L′ = ±(2,−2, . . . ,2,−2).
However, these links are not minimally presented and can be isotoped to be in
type 3.

Remark 9. If a pretzel knot K (as opposed to a link) is type 1, then there is an
odd number of tangles mij , all of which are odd. If K is type 2, there is exactly
one mij , which we denote by m̄, and this unique m̄ must also be the unique even
tangle. Moreover, there is an even number of mi . If K is type 3, there is an even
number of mi , exactly one of which is even. Finally, note that adjacent tangles of
type mi have alternating orientations.

2.3. A State Sum for the Alexander Polynomial

The Alexander polynomial of K admits a state sum expression in terms of the set
of Kauffman states S of a decorated projection of the knot [Kau83]. We will use a
reformulation of the Kauffman state sum that appears in [OS03]. By a decorated
knot projection we mean a knot projection with a distinguished edge. When using
decorated knot projections, we will always choose the bottom-most edge in a
standard projection of a pretzel knot to be the distinguished edge. Each state x
is equipped with a bigrading (A(x),M(x)) ∈ Z ⊕ Z such that the symmetrized
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Figure 3 The labels η(e) and η(e∗) for the edges e ∈ GB and e∗ ∈
GW . The edge orientations pictured are those induced by K on GB

or GW

Alexander polynomial of K is given by the state sum

�K(t) =
∑
x∈S

(−1)M(x)tA(x). (3)

Let GB and GW denote the black and white graphs associated with a checker-
board coloring of a decorated knot projection, colored so that the unbounded re-
gion is always white. The decorated edge of K determines a decorated vertex,
the root, in each of GB and GW . For a pretzel diagram, there is also clearly a
top-most vertex of GB , referred to as the top vertex. The set of states S is in a
one-to-one correspondence with the set of maximal trees of GB . Each maximal
tree T ⊂ GB uniquely determines a maximal tree T ∗ ⊂ GW . Fix a state x ∈ S
and let Tx = Tx ∪ T ∗

x denote the black and white maximal trees that correspond
to x. By an abuse of notation, we will not always distinguish between the state x
and the trees Tx. We now describe A(x) and M(x) in this framework, following
[OS03]. Label each edge e of GB and GW with η(e) ∈ {−1,0,1} according to
Figure 3. We describe two partial orientations on the edges of Tx and T ∗

x . The
first orientation is a total orientation that flows away from the root. The second
partial orientation is induced by the orientation on the knot as in Figure 3; note
that at each crossing exactly one of the edges of Tx or T ∗

x is oriented. Then, A(x)

is defined by

A(x) = 1

2

∑
e∈Tx

σ(e)η(e), (4)

where

σ(e) =

⎧⎪⎨⎪⎩
0 if e is not oriented by K ,

+1 if the two induced orientations on e agree,

−1 if the two induced orientations on e disagree.

Note that though it is not indicated in the notation, σ(e) depends on x; which x
will be clear from the context. The label η(e) does not depend on x. Next, M(x)
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Figure 4 An example of the type 2(a) pretzel knot K = (3,−3,

1,3,2) together with its corresponding graphs GB and GW , with ori-
entations induced by K and black and white roots indicated

Figure 5 A state x of the knot K = (3,−3,1,3,2) in bigrading
(A(x),M(x)) = (−4,−5). White arrows indicate the orientations that
point away from roots, and black arrows indicate the orientations in-
duced by K . Edges are labeled by η. The trunk is in bold

is defined by summing only over edges on which the two orientations agree,

M(x) =
∑
e∈Tx

σ(e)=+1

η(e). (5)

An example of a state and its bigrading is given in Figures 4 and 5.

2.4. Counting Lemmas

The state-sum formula, equation (3), provides an elementary way to determine
the coefficients of the Alexander polynomial. Suppose that the state-sum decom-
position of a diagram of a fibered knot K admits a unique state x̃ with minimal
A-grading A(x̃). Since the symmetrized Alexander polynomial is monic of degree
g(K), then A(x̃) = −g(K) by equation (3). When such a unique minimal element
x̃ exists, it is convenient to use x̃ to count the states in A-grading −g(K) + 1. We
will often exploit this to show that |a−g(K)+1| > 1, demonstrating that many pret-
zel knots are not L-space knots.

Definition 10. Let K be a pretzel knot with a decorated diagram, and let Tx be
the trees corresponding to some state x. The trunk of Tx is the unique path in Tx



114 Tye Lidman & Allison H. Moore

that connects the root of GB to the top vertex of GB (see in Figure 5). We may
also refer to the trunk of Tx as the trunk of x.

Each tangle ni determines a path in GB from the root to the top vertex; let T (ni)

denote this path. We collect the following facts to use freely throughout without
reference.

Fact 11. Let x be any state, and let x̃ be the unique minimally A-graded state if
it exists.

• The trunk of Tx is necessarily T (nk) for some k. If i �= k, then T (ni) ∩ Tx �=
T (ni).

• If |ni | = 1 and T (ni) is not the trunk of Tx, then T (ni) ∩ Tx = ∅.
• For any i, η is constant along the edges in T (ni).
• Suppose ni is either mij = ±2 or an mi . When T (ni) is not the trunk of the

unique minimally A-graded state x̃, there is only one terminal edge in T (ni) ∩
Tx̃. In particular, T (ni) ∩ Tx̃ is connected and cannot have edges incident to
both the top vertex and the root.

The first three items are straightforward. For the last, note that if the subgraph
T (ni) ∩ Tx̃ is disconnected (i.e., there are two terminal edges in T (ni) ∩ Tx̃), then
it is possible to replace x̃ with a state x′ that agrees with Tx̃ outside of T (ni) and
has T (ni) ∩ Tx′ connected. But then A(x′) < A(x̃), and so A(x̃) is not minimal.

Definition 12. Let K be a pretzel knot with a decorated diagram and suppose
that there exists a unique state x̃ with minimal A-grading. Fix a tangle ni �= ±1
that does not correspond to the trunk. A trade is a state y (or Ty) whose corre-
sponding black tree is obtained by replacing the terminal edge of Tx̃ contained in
T (ni) with the unique edge in T (ni)� Tx̃. See Figure 6.

In a trade, Ty (resp. T ∗
y ) along with its orientations and labels differs from Tx̃

(resp. T ∗
x̃ ) in exactly one edge, and furthermore, Ty and Tx̃ share the same trunk.

Lemma 13. Suppose that K = (n1, . . . , nr) and x̃ are as in Definition 12 and
that T (nk) is the trunk of x̃. Let � be the number of tangles with ni = ±1 and
i �= k. Then, there are r − � − 1 trades, all of which are supported in bigrading
(A(x̃) + 1,M(x̃) + 1).

Proof. Let y be a trade. By definition there is exactly one trade corresponding
with each tangle of length greater than one that is not the trunk (see Figure 6), and
so there are r − � − 1 trades.

Let ex̃ ∈ Tx̃ and ey ∈ Ty (e∗
x̃ and e∗

y , respectively) be the edges along which
Tx̃ and Ty (T ∗

x̃ and T ∗
y respectively) differ. The edges ex̃ and ey are contained in

T (ni) for some i �= k and therefore share the same value for η. Assume first that
η(ex̃) = η(ey) = ±1 and η(e∗

x̃) = η(e∗
y) = 0. Because A(x̃) is minimal and x̃ is

unique, σ(ex̃)η(ex̃) = −1, or else A(y) ≤ A(x̃). This implies σ(ex̃) = −η(ex̃). In
the trade, ex̃ is replaced with ey, and the orientations induced by the root on Tx̃
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Figure 6 Three states for the pretzel knot (5,−3,3,3,2). If the knot
is oriented so that the strands of the first tangle point downward, then
the first state is the unique state with minimal A-grading, the middle
state is a trade, and the last state is neither

and Ty switch from pointing down on ex̃ to pointing up on ey (or vice versa).
Hence, σ(ey) = −σ(ex̃). This implies σ(ey)η(ey) = +1, and therefore both
M(y) = M(x̃) + 1 and A(y) = A(x̃) + 1. Assume next that η(e∗

x̃) = η(e∗
y) = ±1

and η(ex̃) = η(ey) = 0. The trade induces a change in T ∗
x̃ wherein the edge e∗

x̃ is
replaced with an edge e∗

y that is vertically adjacent in GW (see Figure 6). Sim-
ilarly, since A(x̃) is minimal, σ(e∗

x̃)η(e∗
x̃) = −1. The same argument as for GB

applies, and we obtain M(y) = M(x̃) + 1 and A(y) = A(x̃) + 1. �

For the remainder of the paper, we proceed through the cases of Theorem 7 to
prove Theorem 1. Before proceeding, we point out that pretzel knots with one
strand are unknotted and that the two stranded pretzel (a, b) � T (2, a + b). In all
of the cases that follow, K is a minimally presented fibered pretzel knot with three
or more tangles, unless otherwise stated.

3. Type 1 Knots

We will only need Lemma 6 to determine which type 1 pretzel knots are L-space
knots.

Lemma 14. The only L-space pretzel knots of type 1 are those isotopic to the
T (2,2n + 1) torus knots. Any other fibered pretzel knot K of type 1 satisfies
det(K) > 2g(K) + 1.

Proof. In our case analysis, we disregard the subcases (b) and (c) of type 1 be-
cause these are links with at least two components. Thus up to mirroring,

K = (1, . . . ,1︸ ︷︷ ︸
c

,−3, . . . ,−3︸ ︷︷ ︸
d

),

where c > 0 and d ≥ 0. When d = 0, K is the torus knot T (2, c). Thus, assume
that d > 0. If K has three strands, then K is isotopic to either (1,−3,−3) or
(1,1,−3), which are T (2,3) and the figure eight knot, respectively. The figure
eight knot has det(K) = 5 > 2g(K) + 1. Therefore, we may assume that K has
at least four strands (in fact, five since if K is a type 1 knot, then it must have an
odd number of strands).
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The genus of the pretzel spanning surface, and in this case, the genus of K by
Theorem 7 is given by

g(K) = 1

2
(d + c − 1).

By equation (1),

det(K) =
∣∣∣∣3d

(
−c +

d∑
i=1

1

3

)∣∣∣∣ = |3d−1(d − 3c)|.

We will verify the inequality in two cases, d > 3c and d < 3c, where c, d > 0 and
d + c ≥ 5. (When d = 3c, d + c is even, and so K is not a knot.) If d > 3c, then

det(K) = |3d−1(d − 3c)| ≥ |3d−1| > 4d

3
> d + c = 2g(K) + 1.

Consider d < 3c. If d < 3, the inequality is easily checked by hand. If 3 ≤ d < 3c,
then we have

3d−1 − 1 > 2d ⇒ (3d−1 − 1)(3c − d) > 2d − 2c

⇒ (3d−1 − 1)(3c − d) + (3c − d) > d + c

⇒ det(K) = 3d−1(3c − d) > d + c = 2g(K) + 1. �

4. Type 2 Knots

We remind the reader that a type 2 knot has an odd number of tangles and contains
exactly one mij , which is even and denoted m̄.

4.1. Type 2(a)

After mirroring, we may assume that a type 2(a) fibered knot has p + 2 positive
odd tangles, p negative odd tangles, and m̄ = ±2. The proof of Theorem 1 for
type 2(a) knots is addressed via Lemmas 15, 16, and 19.

Lemma 15. Up to mirroring, the only L-space pretzel knots of type 2(a) with three
tangles are those isotopic to (−2,3, q) for q ≥ 1 odd. Otherwise, there exists a
coefficient as of �K(t) such that |as | ≥ 2.

Proof. Here p = 0, and thus let K = (±2, r, q) be minimally presented, where
r and q are positive odd integers. For K = (+2, r, q), K is alternating and hy-
perbolic, hence not an L-space knot [OS05]. Therefore, we may assume that
K = (−2, r, q) with r > 1. When r = 3 and q is any positive odd integer, this
is the family of L-space knots exempted in the assumptions of the lemma.

Without loss of generality, we may further assume that 5 ≤ r ≤ q . The genus of
the surface F obtained by applying the Seifert algorithm to the pretzel presenta-
tion for K = (−2, r, q) is g(F ) = 1

2 (r +q), which is equal to g(K) by Theorem 7.
Thus, whenever r > 5 and q > 5 or whenever r = 5 and q > 7,

det(K) =
∣∣∣∣2rq

(
1

r
+ 1

q
− 1

2

)∣∣∣∣ = |2(r + q) − rq| > r + q + 1 = 2g(K) + 1.
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Figure 7 The trees Tx̃ corresponding with the unique minimal state
x̃ of the type 2(a) fibered knot K = (3,−3,1,3,2). Edges in the dia-
gram are labeled by η, and ẽ∗ is indicated

It remains to check that r = 5 and q = 5 or 7. We obtain the desired result by
computing the Alexander polynomials. All Alexander polynomials in this paper
are computed using the Mathematica package KnotTheory [BNM+].

�P(−2,5,5)(t) = t−5 − t−4 + t−2 − 2t−1 + 3 − 2t + t2 − t4 + t5,

�P(−2,5,7)(t) = t−6 − t−5 + t−3 − 2t−2 + 3t−1

− 3 + 3t − 2t2 + t3 − t5 + t6. �

Lemma 16. Let K = (n1, . . . , n2p+3) be a fibered pretzel knot of type 2(a)
with p ≥ 1. Further, suppose there exists some tangle with ni < −2. Then
|a−g(K)+1| ≥ 2.

Proof. The condition of being a type 2(a) fibered knot is preserved under permu-
tation of tangles. As mentioned in Section 2.1, the genus and �K(t) are also pre-
served. Therefore, we may apply mutations to assume that ni is positive when i is
odd and ni is negative when i is even, except for n2p+2 > 0 and n2p+3 = m̄ = ±2.
Thus, for all edges e ∈ T (ni) ⊂ GB ,

η(e) =

⎧⎪⎨⎪⎩
0 if i = 2p + 3,

−1 if i < 2p + 3 is odd or i = 2p + 2,

+1 if i �= 2p + 2 is even.

Claim 17. Orient K so that the strands of the first tangle point downward. Then
K admits a unique state x̃ with minimal A-grading.

Proof. Let x̃ be the state defined as follows and illustrated by the example in
Figure 7. The trunk of x̃ is T (n2p+2). The intersections Tx̃ with T (ni) for i =
1, . . . ,2p + 1 are incident to the top vertex and therefore are not incident to the
black root. There is a single edge in Tx̃ ∩ T (n2p+3) that is incident to the root if
m̄ = 2 or incident to the top vertex if m̄ = −2.

By choice of the orientation on K , T (ni) is oriented downward for i odd and
upward for i even, except for T (n2p+3), where instead the corresponding edges
of T ∗

x̃ are oriented. In Tx̃, the orientation induced by the root points downward
along all T (ni), i < 2p + 2, and points upward along the trunk.
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Hence, for all e ∈ Tx̃,

σ(e) =

⎧⎪⎨⎪⎩
0 if e ∈ T (n2p+3),

+1 if e ∈ T (ni)for i odd and i �= 2p + 3 or i = 2p + 2,

−1 if e ∈ T (ni)for i even and i �= 2p + 2.

As for edges in the white tree T ∗
x̃ , all are labeled η(e) = σ(e) = 0 except for the

one edge ẽ∗ corresponding with n2p+3 = m̄, which is labeled η(ẽ∗) = ±1 when
m̄ = ±2. In particular, the maximal tree with minimal A-grading is constructed so
that σ(ẽ∗)η(ẽ∗) = −1 regardless of the sign of m̄. See Figure 7. Thus, every edge
of Tx̃ with η(e) �= 0 contributes σ(e)η(e) = −1 to the sum for A(x̃), so clearly
A(x̃) is minimal.

To see that x̃ is unique, fix an arbitrary state x. Because there is exactly one
edge e∗ ∈ T ∗

x labeled η(e∗) �= 0, we have

A(x) = 1

2

(
σ(e∗)η(e∗) +

∑
e∈Tx

σ(e)η(e)

)
.

In particular, for x̃,

A(x̃) = 1

2

(
−1 +

∑
e∈Tx̃

σ(e)η(e)

)
.

Suppose that x is a state with the same trunk T (n2p+2) as x̃ but for which Tx
differs from Tx̃ along any set of edges of T (ni), i = 1, . . . , n2p+1. Then there
exists some edge of Tx that is incident to the root and this edge will contribute
σ(e)η(e) = +1 to the sum for A(x). Since the contribution of the white tree T ∗

x is
not impacted, A(x) > A(x̃). If, instead, x shares the same trunk as x̃ but Tx differs
from Tx̃ along T (n2p+3), then the edge e∗ ∈ T ∗

x will contribute σ(e∗)η(e∗) = +1
to the sum for A(x), and again A(x) > A(x̃). Now, suppose that x has a different
trunk from x̃. If the trunk of x is T (n2p+3) and T (ni)∩Tx agrees with T (ni)∩Tx̃
for i = 1, . . . ,2p + 1, then A(x) = A(x̃) + 1. Note that we exclude i = 2p + 2
since if T (n2p+2) ∩ Tx = T (n2p+2) ∩ Tx̃ = T (n2p+2), then Tx would contain a
cycle. If the trunk of x is T (n2p+3) and T (ni)∩Tx does not agree with T (ni)∩Tx̃
for some i = 1, . . . ,2p + 1, then A(x) > A(x̃) + 1. If, instead, the trunk of x is
T (ni) for some i = 1, . . . ,2p + 1, then certainly A(x) ≥ A(x̃) + 1. Hence, x̃ is
unique. �

Let � be the number of length one tangles excluding the trunk. By Lemma 13
there are 2p + 2 − � trades, all supported in bigradings (−g(K) + 1,M(x̃) + 1).
To determine that |a−g(K)+1| ≥ 2, we need to count the other states in A-grading
−g(K) + 1 and compute their M-gradings.

Because m̄ = ±2, all of the trees that share the same trunk as Tx̃ that are not
trades represent states that have an A-grading greater than −g(K) + 1. Thus,
the states in A-grading −g(K) + 1 that are not trades are states with different
trunks. One of these states is denoted x′, where Tx′ differs from Tx̃ only as follows.
The trunk of x′ is T (n2p+3), and Tx′ ∩ T (n2p+2) is connected and incident to
the root. If m̄ = −2, then x′ is supported in bigrading (−g(K) + 1,M(x̃) + 2),
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and if m̄ = +2, then x′ is supported in bigrading (−g(K) + 1,M(x̃) + 1). Each
remaining state in A-grading −g(K)+1 corresponds to a state denoted xj , where
Txj

differs from Tx̃ only as follows. The trunk of xj is T (nj ) for some nj = ±1,
j �= 2p + 2, and T (xj ) ∩ T (n2p+2) is connected and incident to the root. The
trunk of Txj

is necessarily of length one because otherwise A(xj ) > −g(K) + 1
due to the contribution of at least two edges in T (nj ) with σ(e)η(e) = +1.

Claim 18. Let xj be as before. Then,

M(xj ) =
{

M(x̃) + 1 j odd and j �= 2p + 3,

M(x̃) + 2 j even and j �= 2p + 2.

Proof. In T (n2p+2), all edges are labeled η(e) = −1. For all e ∈ Tx̃ ∩ T (n2p+2),
σ(e) = +1. Because nj = ±1, Tx̃ ∩ T (nj ) = ∅. Now Txj

∩ T (n2p+2) contains
n2p+2 −1 edges, all with σ(e) = +1. For the single edge e ∈ T (nj )∩Txj

, σ(e) =
η(e) = −1 if j is odd and σ(e) = η(e) = +1 if j is even. All other edges and
labels of Txj

and Tx̃ agree, and the changes in the white graphs do not affect
the M-grading. The net change to the M-grading from x̃ to xj is +1 or +2,
respectively. �

By equation (3) the coefficient |a−g(K)+1| is given by the absolute value of the dif-
ference in the numbers of states in M-gradings M(x̃) + 1 and M(x̃) + 2. Suppose
first that m̄ = 2. Since K is minimally presented, there are no j with nj = −1.
Thus, we may assume that any tangle of length one is positive, and therefore
all states in A-grading −g(K) + 1 are supported in M-grading M(x̃) + 1 by
Lemma 13 and Claim 18. This implies |a−g(K)+1| > 1 since clearly there is more
than one such state. Suppose now that m̄ = −2. We may similarly assume that
each length one tangle is negative. Since n2p+2 > 0, the trunk is not of length
one, and therefore � is the number of length one tangles. Again by Lemma 13 and
Claim 18,

|a−g(K)+1| = (2p + 2 − �) − (� + 1) = 2p − 2� + 1,

and so |a−g(K)+1| > 1 whenever p > �. When p = �, every negative tangle other
than m̄ is of length one. In other words, if there exists some tangle with ni < −2,
then |a−g(K)+1| ≥ 2. This verifies the statement of the lemma. �

In light of Lemmas 15 and 16, after isotopy and our assumptions on mirroring,

K = (−2,−1, . . . ,−1︸ ︷︷ ︸
p

,w1,w2, . . . ,wp+2), (6)

where wi ≥ 3 is odd for 1 ≤ i ≤ p + 2 and p ≥ 1.

Lemma 19. Let K be as in equation (6). Then det(K) > 2g(K) + 1.

Proof. Since K is a type 2(a) fibered knot, then by Theorem 7 the minimal genus
Seifert surface that is the fiber for K is obtained by applying the Seifert algorithm
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to the standard projection. This gives

g(K) = 1

2

(p+2∑
i=1

(wi − 1) + 2

)
.

Let W = w1 · · ·wp+2. By equation (1) and the fact that wi ≥ 3 is odd for 1 ≤ i ≤
p + 2,

det(K) =
∣∣∣∣−2W

(
−p − 1

2
+

p+2∑
i=1

1

wi

)∣∣∣∣
=

∣∣∣∣W + 2W

(
p −

p+2∑
i=1

1

wi

)∣∣∣∣
≥

∣∣∣∣W + 2W

(
2p − 2

3

)∣∣∣∣.
Since p ≥ 1, ∣∣∣∣W + 2W

(
2p − 2

3

)∣∣∣∣ ≥ W

>

(p+2∑
i=1

wi

)
+ 1

≥
p+2∑
i=1

(wi − 1) + 3

= 2g(K) + 1. �

4.2. Type 2(b)

A type 2(b) fibered pretzel knot K has exactly one even tangle m̄, which is the
unique mij , p positive odd tangles, and p negative odd tangles, where p ≥ 1. The
auxiliary link L′ �= ±(2,−2, . . . ,2,−2), and K fibers if and only if L′ fibers (see
equation (2) for the construction of L′).

Lemma 20. For all minimally presented fibered pretzel knots of type 2(b),
|a−g(K)+1| ≥ 2.

Proof. Suppose first that K has c > 0 length one tangles. Recall that length one
tangles do not factor into L′. If c ≥ 3, then L′ is not a type 1 fibered link (see
Theorem 7). If c = 2, then the fiberedness of L′ implies m̄ = ±2 when the length
one tangles are ∓1, and this is not allowed because K is then not minimally
presented.

Suppose c = 1. Since L′ has an even number of tangles, L′ = ±(2,−2, . . . ,2,

−4). Thus, up to mirroring,

K = (1,m1, . . . ,m2p−1,−4),
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Figure 8 The isotopy performed on the type 2(b) knot K = (1,m1, . . . ,m2p−1,−4)

Figure 9 The black graph after isotoping the type 2(b) knot (1,m1,

. . . ,m2p−1,−4) with Tx̃ in bold

where mi < −2 for 1 ≤ i ≤ 2p − 1, i odd, and mi > 2 for 1 < i < 2p − 1, i even.
Isotope K according to Figure 8. After this isotopy, the knot diagram admits a
black graph whose edges are all labeled η(e) = ±1 and a white graph where all
of the edges are labeled 0. Thus, we only need to consider maximal trees of the
black graph to compute �K(t). This is no longer a pretzel presentation, but as can
be seen in Figure 9, we can make sense of the terms trunk, top vertex, trade, and
so on and may apply the content of Section 2.4 in an analogous manner.

Claim 21. After the isotopy specified in Figure 8, orient K so that the strands
of the first tangle point upward. Then there is a unique state x̃ with minimal A-
grading.

Proof. Refer to Figures 8 and 9. Since mi < −2 for i odd and mi > 2 for i even,
we have that for all edges e ∈ T (mi) ⊂ GB , i = 1, . . . ,2p − 1,

η(e) =
{

+1 e ∈ T (mi), i odd,

−1 e ∈ T (mi), i even.
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There are four additional edges in GB , and each is labeled η(e) = −1. Let x̃ be
the state with trunk e1 ∪ e2 and with no other edges incident to the black root.
For all e ∈ Tx̃ with e �= e1, σ(e)η(e) = −1, and for e1, σ(e1)η(e1) = +1. Because
|mi | > 2 for i = 1, . . . ,2p −1, we have that for any other state, the corresponding
A-grading is strictly greater than A(x̃). Hence, x̃ is the unique state with minimal
A-grading. �

It is easy to verify that there are exactly 2p + 1 states in A-grading −g(K) + 1,
all of which are obtained by trades along any of m1, . . . ,m2p−1 or by replacing
e2 with e3 or e4. Each of these 2p + 1 states is supported in the same M-grading
by an argument similar to Lemma 13. Hence, |a−g(K)+1| = 2p + 1 whenever K

contains any tangle of length one, thus completing the proof of Lemma 20 in this
case (i.e., when c > 0).

Suppose now that there are no tangles of length one in K . In particular, we
are no longer working with the isotopy of Figure 8. Since L′ is a fibered type 1
link, L′ is isotopic to ±(2,−2,2,−2, . . . ,2,−2, n) for some n ∈ Z. Since K is
type 2(b), up to mirroring, there exists a permutation of the tangles such that the
resulting knot, denoted Kτ , is of the form

Kτ = (m1, . . . ,m2p, m̄),

where mi > 0 when i is odd, mi < 0 is negative when i is even, and m̄ is even.
Since Kτ has no tangles of length one, the auxiliary link for Kτ is isotopic to
±(2,−2,2,−2, . . . ,2,−2, nτ ) for some nτ ∈ Z, and therefore Kτ is a type 2(b)
fibered pretzel knot. Because Kτ is a fibered mutant of the fibered knot K , it
shares the same Alexander polynomial and genus. Therefore, it suffices to work
with Kτ .

When the pretzel diagram for Kτ is oriented so that the strands of m1 point
downward, Kτ admits a unique state x̃ with minimal A-grading −g(Kτ ). This
state has trunk T (m̄), and no other edges of Tx̃ are incident to the root. See
Figure 10. Because the tangles alternate sign, every edge of Tx̃ contributes
σ(e)η(e) = −1 or 0 to the sum for A(x̃). Because there are no tangles of length
one, any other state will have a strictly greater A-grading. Hence, x̃ is unique and
minimally A-graded. Moreover, every state supported in A-grading −g(Kτ ) + 1
is a trade because there is a unique m̄ and there are no tangles of length one. By
Lemma 13, there are 2p trades, each supported in M-grading M(x̃) + 1. Hence,
|a−g(Kτ )+1| = 2p ≥ 2, and this implies |a−g(K)+1| = 2p ≥ 2. �

5. Type 3 Knots

Each tangle in a type 3 knot is an mi , and therefore all edges e ∈ GB and e∗ ∈ GW

are labeled η(e) = ±1 and η(e∗) = 0, respectively (see Figure 3). In particular, the
Alexander polynomials of type 3 knots can be computed solely using the black
graph GB . Moreover, in this case, K is a pretzel knot of even length, so we will
assume that K has at least four tangles.
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Figure 10 The unique minimal state for a type 2(b) knot Kτ with no
tangles of length one. Labels η(e) are indicated in the diagram

5.1. Type 3-Min

A type 3-min knot K has p positive tangles and p negative tangles. Of these there
is a unique tangle of minimal length and an even tangle, which are possibly the
same tangle. By assumption, since K is fibered, L′ = ±(2,−2, . . . ,2,−2) also
has an even number of tangles, and thus by uniqueness of the minimal tangle,
there are no tangles of length one.

Lemma 22. For all fibered pretzel knots of type 3-min not isotopic to ±(3,−5,3,

−2), there exists a coefficient of the Alexander polynomial such that |as | ≥ 2.

Proof. By the conditions on L′, the tangles of K alternate sign. After mirroring
and cyclic permutation, we may assume that ni is positive when i is odd, ni is
negative when i is even, and |n2p| is minimal. For all e ∈ T (ni), η(e) = −1 when
i is odd and η(e) = +1 when i is even. Orient the pretzel diagram so that the first
tangle points downward. Let x̃ be the state with trunk T (n2p) and no other edges
incident to the root (see the example in Figure 11). Because the tangles alternate
sign, η(e)σ (e) = −1 for all e ∈ T (ni) for i = 1, . . . ,2p − 1, and for e ∈ T (n2p),
η(e)σ (e) = +1. Since n2p is the unique minimal length tangle, A(x̃) is minimal,
and x̃ is the unique state with minimal A-grading.

By Lemma 13 there are 2p − 1 trades in bigrading (−g(K) + 1,M(x̃) + 1).
Since there is no mij , all states in A-grading −g(K) + 1 that are not trades have
a corresponding black tree with trunk T (nj ) such that |nj | = |n2p| + 1 by an
argument similar to that in Lemma 16. Denote such a state by xj . First, suppose
n2p is odd. Since there is exactly one even tangle, there is at most one state xj . If
no such xj exists, then |a−g(K)+1| = 2p −1. Otherwise, |a−g(K)+1| = (2p −1)±
1, depending on M(xj ). Since 2p ≥ 4, we have |a−g(K)+1| ≥ 2. Now suppose
n2p is even.
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Figure 11 An example of the unique minimal state for the type 3-min
knot (5,−7,5,−4) with trunk along the unique tangle of minimum
length

Claim 23. Let nj be a tangle of length |n2p| + 1. Then,

M(xj ) =
{

M(x̃) j odd,

M(x̃) + 1 j even.

Proof. Fix j such that |nj | = |n2p| + 1. Recall that the trunk of Tx̃ is T (n2p),
the trunk of Txj

is T (nj ), and for all e ∈ T (ni), η(e) = −1 when i is odd and
η(e) = +1 when i is even. Additionally, outside of T (n2p) and T (nj ), Tx̃ and Txj

agree. For x̃, the values of σ are given by

σ(e) =

⎧⎪⎨⎪⎩
+1 e ∈ Tx̃ ∩ T (n2p),

+1 e ∈ Tx̃ ∩ T (nj ), j odd,

−1 e ∈ Tx̃ ∩ T (nj ), j even,

and for xj , the values of σ are given by

σ(e) =

⎧⎪⎨⎪⎩
−1 e ∈ Txj

∩ T (n2p), j odd or even,

−1 e ∈ Txj
∩ T (nj ), j odd,

+1 e ∈ Txj
∩ T (nj ), j even.

Suppose j is odd. Then because |nj | = |n2p| + 1,

M(xj ) − M(x̃) =
∑

e∈Txj

σ (e)=1

η(e) −
∑
e∈Tx̃

σ(e)=1

η(e) = −(|n2p| − (|nj | − 1)) = 0.
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Figure 12 The isotopy performed on (2n + 1,−q,2n + 1,−2n) to
obtain a Seifert surface with reduced genus

Suppose j is even. Then

M(xj ) − M(x̃) =
∑

e∈Txj

σ (e)=1

η(e) −
∑
e∈Tx̃

σ(e)=1

η(e) = |nj | − |n2p| = 1.

�

Let E and O be the numbers of states xj with j even and odd, respectively. Since
there are no tangles of length one, there are 2p −1 trades supported in M-grading
M(x̃) + 1. By Claim 23,

|a−g(K)+1| = |(2p − 1) + E − O|.
Therefore, |a−g(K)+1| ≥ p − 1, so whenever p > 2, we are done.

The case p = 2 remains. In particular, |a−g(K)+1| = |(2p − 1) + E − O| ≤ 1
only when E = 0 and O = 2. Thus, it suffices to consider

K = (2n + 1,−q,2n + 1,−2n),

where n ≥ 1 and q ≥ 2n + 3 is odd.
We will reduce the genus of the surface obtained by the Seifert algorithm by

performing a particular isotopy of K , which is described in [Gab86] and pictured
in Figure 12. Applying the Seifert algorithm to the new diagram gives a lower
genus Seifert surface F for K , suitable to apply Lemma 6, but not necessarily a
genus minimizing Seifert surface. We obtain

g(F ) = 1

2
(6n + q − 3).

By equation (1),

det(K) = |4n(2n + 1)q − (2n + 1)2q − 2n(2n + 1)2|.
In general, det(K) > 2g(F ) + 1 ≥ 2g(K) + 1 is satisfied whenever

(4n(2n + 1) − (2n + 1)2 − 1)q > 2n(2n + 1)2 + 6n − 2, (7)

and since q ≥ 2n + 3, this inequality holds for all n > 3. Moreover, if n = 1,
n = 2, or n = 3, then det(K) > 2g(F ) + 1 ≥ 2g(K) + 1 whenever q ≥ 13, q ≥ 9,
or q ≥ 11, respectively. The only pairs (n, q) not satisfying inequality (7) are:
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(1,5), (1,7), (1,9), (1,11), (2,7), and (3,9). The Alexander polynomials for the
knots corresponding to the last five pairs are:

�(3,−7,3,−2) = t−4 − t−3 + 2t−1 − 3 + 2t − t3 + t4,

�(3,−9,3,−2) = t−5 − t−4 + 2t−2 − 3t−1 + 3 − 3t + 2t2 − t4 + t5,

�(3,−11,3,−2) = t−6 − t−5 + 2t−3 − 3t−2 + 3t−1

− 3 + 3t − 3t2 + 2t3 − t5 + t6,

�(5,−7,5,−4) = t−5 − t−4 + t−2 − 2t−1 + 3 − 2t + t2 − t4 + t5,

�(7,−9,7,−6) = t−7 − t−6 + t−4 − 2t−3 + 3t−2 − 4t−1

+ 5 − 4t + 3t2 − 2t3 + t4 − t6 + t7.

Clearly, each polynomial has some coefficient with |as | > 1. The first pair of
integers corresponds to (3,−5,3,−2), the knot exempted in the statement of the
lemma. �

As discussed in the introduction, the Alexander polynomial of the knot (3,−5,3,

−2) does not obstruct it from admitting an L-space surgery. However, its knot
Floer homology (see Table 1) readily provides an obstruction. This completes the
proof of Theorem 1 for type 3-min pretzel knots.

5.2. Type 3-2(a)

After mirroring, we may assume that for pretzel knots of Type 3-2(a), there are
p + 2 positive tangles and p negative tangles, and that of these 2p + 2 tangles,
there is exactly one even tangle. Note that the property of being a type 3-2(a)
fibered pretzel knot does not change under mutation.

Lemma 24. Let K be as before. If K does not have exactly p negative tangles of
length one, then |a−g(K)+1| ≥ 2.

Proof. Up to mutation, we may assume that ni is positive when i is odd and that
ni is negative when i is even, except n2p+2, which is positive. In GB , e ∈ T (ni) is
labeled η(e) = −1 for i odd or i = 2p + 2 and η(e) = +1 for i even, i �= 2p + 2.
Orient K so that the strands of the first tangle point downward. Then there is a
unique state x̃ with minimal A-grading represented by a black tree with trunk
T (n2p+2) as in Lemma 16. In particular, for all e ∈ Tx̃, σ(e) = +1 if e ∈ T (ni)

for i odd or i = 2p + 2 and σ(e) = −1 if i even, i �= 2p + 2. Every edge in
Tx̃ contributes η(e)σ (e) = −1 to the sum for A(x̃), so x̃ is clearly minimally
graded. It is unique because in any other tree there will be an edge contributing
σ(e)η(e) = +1 to the A-grading.

There are 2p−�+1 trades in bigrading (−g(K)+1,M(x̃)+1) by Lemma 13,
where � is the number of tangles of length one not counting the trunk. There are
precisely � other states in A-grading −g(K) + 1. Each of these additional states,
denoted xj , corresponds to a tangle nj of length one, as obtained in Lemma 16.
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Then,

M(xj ) =
{

M(x̃) + 1 j is odd,

M(x̃) + 2 j �= 2p + 2 is even,

as in Claim 18. If the length one tangles are positive (i.e., each j is odd), then

|a−g(K)+1| = (2p − � + 1) + � = 2p + 1 > 2,

and we are done. If the length one tangles are negative, then

|a−g(K)+1| = (2p − � + 1) − � > 1 ⇐⇒ � < p.

This verifies the statement of Lemma 24. �

The next lemma will complete the proof of Theorem 1 for type 3-2(a) pretzel
knots.

Lemma 25. Let K be a type 3-2(a) knot with exactly p negative length one tangles
and p + 2 positive tangles. Then there exists some coefficient as of �K(t) with
|as | > 1.

Proof. After reindexing the tangles,

K = (−1, . . . ,−1︸ ︷︷ ︸
p

,w1, . . . ,wp+2),

where there exists some i such that wi ≥ 4 is even (since K is minimally pre-
sented, wi �= 2 for any i) and for all other i, wi ≥ 3 is odd. By Theorem 7 the
genus of K is obtained by applying the Seifert algorithm to the standard projec-
tion,

g(K) = 1

2

(p+2∑
i=1

(wi − 1) + 1

)
.

Let W = w1 · · ·wp+2. Using equation (1), we have

det(K) =
∣∣∣∣W(

−p +
p+2∑
i=1

1

wi

)∣∣∣∣
≥

∣∣∣∣W(
p − 1

4
−

p+1∑
i=1

1

3

)∣∣∣∣
≥ W · 8p − 7

12
.

Whenever p ≥ 2, we have

det(K) ≥ W · 8p − 7

12
>

(p+2∑
i=1

wi

)
− p = 2g(K) + 1.

Now apply Lemma 6.
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If p = 1, then K = (−1,w1,w2,w3). Now suppose that one of the wi is at
least five. Then,

det(K) =
∣∣∣∣W(

1 −
3∑

i=1

1

wi

)∣∣∣∣
≥ W · 13

60

>

( 3∑
i=1

wi

)
− 1

= 2g(K) + 1.

The only type 3-2(a) fibered pretzel knot with four or more strands that has not
been addressed is K = (−1,3,3,4), which has the Alexander polynomial

�(−1,3,3,4) = t−4 − t−3 + 2t−1 − 3 + 2t − t3 + t4.

Clearly, there exist coefficients with |as | > 1. �

5.3. Type 3-2(b)

Let K be a fibered type 3-2(b) pretzel knot. There are p positive tangles
and p negative tangles. By assumption the auxiliary link L′ is not isotopic to
±(2,−2, . . . ,2,−2), and K is fibered if and only if L′ is fibered. There are no
tangles of L′ equal to ±1, and therefore L′ cannot be of type 1(a). Since there is
no mij , there are no tangles equal to ±4, and so we may also rule out type 1(c).
Therefore, L′ must fall into the type 1(b) subcase of type 1 knots, which are of
the form ±(2,−2, . . . ,2,−2, n), where n ∈ Z. This can only happen if n = ±2
and K contains a unique tangle of length one.

Up to mirroring and isotopy, K = (n1, . . . , n2p), where ni is positive for i odd,
negative for i even, and n2p = −1. Orient K so that the strands of the first tan-
gle point downward. Then η(e) = −1 when e ∈ T (ni) for i odd and η(e) = +1
when e ∈ T (ni) for i even. As in the proof of Lemma 22, there exists a unique
state x̃ with minimal A-grading with trunk T (n2p) and with the property that
σ(e) = +1 when e ∈ T (ni) for i odd and σ(e) = −1 when e ∈ T (ni) for i even.
The only possible states that are not trades must occur along tangles of length
two. Since there is a single even tangle, there is at most one such state. By equa-
tion (3) and Lemma 13 this implies that |a−g(K)+1| is at least 2p − 2, and hence
|a−g(K)+1| ≥ 2.

This completes the case analysis required to prove Theorem 1.
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