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On the Convergence of Gromov–Witten Potentials and
Givental’s Formula

Tom Coates & Hiroshi Iritani

Abstract. Let X be a smooth projective variety. The Gromov–Witten
potentials of X are generating functions for the Gromov–Witten in-
variants of X: they are formal power series, sometimes in infinitely
many variables, with Taylor coefficients given by Gromov–Witten in-
variants of X. It is natural to ask whether these formal power series
converge. In this paper we describe and analyze various notions of
convergence for Gromov–Witten potentials. Using results of Givental
and Teleman, we show that if the quantum cohomology of X is an-
alytic and generically semisimple, then the genus-g Gromov–Witten
potential of X converges for all g. We deduce convergence results
for the all-genus Gromov–Witten potentials of compact toric varieties,
complete flag varieties, and certain noncompact toric varieties.

1. Introduction

Let X be a smooth projective variety. The total descendant potential of X is a gen-
erating function for the Gromov–Witten invariants of X. It is a formal power se-
ries ZX in h̄, h̄−1, and infinitely many variables tαk , 0 ≤ α ≤ N , 0 ≤ k < ∞, with
Taylor coefficients given by Gromov–Witten invariants of X. Here t0, t1, t2, . . . is
an infinite sequence of cohomology classes on X, tk = t0

k φ0 + · · · + tNk φN is the
expansion of tk in terms of a basis {φα} for H •(X), and

ZX = exp

(∑
g≥0

h̄g−1Fg
X

)
,

where Fg
X is a generating function for genus-g Gromov–Witten invariants. It is

known that ZX does not converge1 as a series in h̄ and h̄−1, but it is natural to
ask whether the formal power series Fg

X converge. This question is particularly
relevant in light of work by Ruan and his collaborators on Gromov–Witten theory
and birational geometry. If X ��� Y is a crepant birational map between smooth
projective varieties (or orbifolds), then, very roughly speaking, the total descen-
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1ZX should be regarded as an asymptotic expansion in h̄.
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dant potentials ZX and ZY are conjectured to be related by analytic continuation
in the parameters tαi . Implicit here, then, is the conjecture that the power series
defining Fg

X and Fg
Y converge.

There are several different notions of convergence for a power series in in-
finitely many variables. We say that the total descendant potential ZX is NF-
convergent (see Definition 7.5) if each genus-g descendant potential Fg

X con-
verges on an infinite-dimensional polydisc of the form shown in equation (30)
below. This implies that each Fg defines a holomorphic function on a neighbor-
hood of zero in an appropriate nuclear Fréchet space; see Remark 7.6. The main
result of this paper (Theorem 1.1) is that if X is a projective variety such that the
quantum cohomology of X is analytic and generically semisimple, then the total
descendant potential ZX is NF-convergent.

The quantum cohomology of X is a family of algebra structures on H •(X)

parameterized by a point t ∈ H •(X). The structure constants of the quantum
cohomology algebra are formal power series in tα , 0 ≤ α ≤ N , where t =
t0φ0 + · · · + tNφN is the expansion of t with respect to a basis {φα} for H •(X),
with Taylor coefficients given by genus-zero Gromov–Witten invariants of X; see
Section 2.3. We consider three conditions on the Gromov–Witten invariants of X:

Formal Semisimplicity: (see equation (24)) roughly speaking, it states that the
quantum cohomology algebra of X is semisimple at the generic point of a
formal neighborhood of the large-radius limit point;

Genus-Zero Convergence: (see equation (25)) roughly speaking, it states that
the power series defining the quantum cohomology algebra converge to give
analytic functions of t0, . . . , tN ; and

Analytic Semisimplicity: (see equation (26)) it asserts that the resulting analytic
family of algebras is semisimple for generic t ∈ H •(X).

Formal Semisimplicity and Genus-Zero Convergence together imply Analytic
Semisimplicity, and Genus-Zero Convergence and Analytic Semisimplicity to-
gether imply Formal Semisimplicity.

Theorem 1.1. Let X be a smooth projective variety that satisfies Formal Semisim-
plicity, Genus-Zero Convergence, and Analytic Semisimplicity. The total descen-
dant potential ZX is NF-convergent in the sense of Definition 7.5.

Theorem 1.1 is proved in Section 7. It has the following immediate consequences.

Corollary 1.2. Let X be a compact toric variety or a complete flag variety. The
total descendant potential ZX is NF-convergent in the sense of Definition 7.5.

Proof. By Theorem 1.1 it suffices to show that X satisfies Genus-Zero Conver-
gence and Analytic Semisimplicity. If X is a compact toric variety, then this fol-
lows from mirror symmetry [17; 24; 25]. If X is a complete flag variety, then this
follows from mirror symmetry [16; 28], reconstruction theorems for logarithmic
Frobenius manifolds [35] [25, Prop. 5.8], and the work of Kostant [31]. �
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Theorem 1.1 also implies the NF-convergence of the total descendant potential
ZX when X is the total space of a direct sum of negative line bundles over a
compact toric variety. This includes the case where X = KY is the total space of
the canonical line bundle over a compact Fano toric variety Y .

Corollary 1.3. Let Y be a compact toric variety, and let X be the total space
of a direct sum E = ⊕j=r

j=1 Ej of line bundles Ej over Y such that c1(Ej ) · d <

0 whenever d is the degree of a holomorphic curve in Y . The total descendant
potential ZX is NF-convergent in the sense of Definition 7.5.

Corollary 1.3 is proved in Section 9.
We deduce Theorem 1.1 from a more fundamental result, Theorem 1.4, con-

cerning the convergence of the total ancestor potential AX . The total ancestor po-
tential is a generating function for ancestor Gromov–Witten invariants (see equa-
tions (8)–(10)). We say that the total ancestor potential AX is NF-convergent if
it is convergent on an infinite-dimensional polydisc as before (see equation (29)).
We consider also a stronger notion of convergence for AX (see Definition 3.13),
requiring that in terms of the dilaton-shifted coordinates introduced in Section 2.6,
we have

AX = exp

( ∞∑
g=0

h̄g−1F̄g
t

)
,

where

F̄g
t =

∑
n:3g−3+n≥0

1

n!
∑

I :I=(i1,...,in)
ij �= 1 for all j

i1+···+in≤3g−3+n

∑
A=(α1,...,αn)

C
(g)
I,A(t, q1)q

α1
i1

· · ·qαn

in

for some analytic functions C
(g)
I,A(t, q1) of (t, q1) that are rational in q1 unless

(g,n) = (1,0) (see (16)). Convergence in this sense implies that the genus-g an-
cestor potential F̄g

t is a formal power series in qα
0 with coefficients that depend

polynomially on qα
i , i > 1, and holomorphically on t and qα

1 ; furthermore, Given-
tal’s tameness condition [20] holds.

Theorem 1.4. Let X be a smooth projective variety that satisfies Formal Semisim-
plicity, Genus-Zero Convergence, and Analytic Semisimplicity. The total ancestor
potential AX is NF-convergent in the sense of Definition 7.1 and is convergent in
the sense of Definition 3.13.

The rationality condition on AX and the definition of the ancestor Fock space in
which AX lies were developed as part of a joint project with Hsian-Hua Tseng.
We would like to thank him for allowing us to present the Fock space formulation
in this paper.
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We now discuss the work of Givental [18; 19] and Teleman [36] on higher-
genus potentials for target spaces with semisimple quantum cohomology. This is
an essential ingredient in the proof of Theorem 1.4. Motivated by an ingenious
localization computation in torus-equivariant Gromov–Witten theory, Givental
conjectured a formula that determines higher-genus Gromov–Witten potentials
in terms of genus-zero data alone. His formula makes sense for any semisimple
Frobenius manifold. In order to distinguish it from the geometric Gromov–Witten
potential, we call the potential associated to a Frobenius manifold via Givental’s
formula the abstract potential.

Teleman [36] has shown that for any semisimple cohomological field the-
ory (CohFT) satisfying a homogeneity condition and a flat vacuum condition,
the potential associated to the CohFT coincides with Givental’s abstract poten-
tial. Since Gromov–Witten theory defines a CohFT satisfying the homogeneity
and flat vacuum conditions, Teleman’s theorem applies to Gromov–Witten theory
whenever the genus-zero part (quantum cohomology) is semisimple. There is a
subtlety here. Quantum cohomology is a formal family of algebras parameterized
by Novikov variables Qi and cohomology parameters t0, . . . , tN as before, and
its convergence is not known in general. At the origin Qi = tj = 0, the quantum
cohomology coincides with the classical cohomology ring and so is semisimple
only when the target X is a point. At first sight, then, it appears that to apply Tele-
man’s theorem, we need to find a semisimple point in the parameter space where
all higher-genus Gromov–Witten potentials converge. (To prove this directly is
beyond the reach of current methods in all but the very simplest examples.) In
fact, this is not the case: as Teleman points out in [36, Example 1.6], his the-
orem applies whenever the quantum cohomology “at the generic point” in the
formal neighborhood of the origin is semisimple. Thus, Givental’s abstract po-
tential can be defined and coincides with the geometric Gromov–Witten potential
under our assumption of Formal Semisimplicity (24). If in addition Genus-Zero
Convergence holds, then it follows that the higher-genus Gromov–Witten poten-
tials, which a priori are only formal power series, in fact, converge to give analytic
functions.

We expand upon these points in the rest of the paper. In Section 2 we fix nota-
tion for Gromov–Witten invariants, generating functions, and quantum cohomol-
ogy. In Section 3 we describe Givental’s quantization formalism. We then discuss
Givental’s formula in the analytic setting (Section 4) and in the formal setting
(Section 5) and explain how Givental’s formula follows from Teleman’s classi-
fication theorem (Section 6). Results about the NF convergence of ancestor and
descendant potentials are stated in Section 7 and proved in Section 8. We conclude
with the proof of Corollary 1.3 in Section 9.

2. Preliminaries

Let X be a smooth projective variety, and let HX be the even part of H •(X;Q).
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2.1. Gromov–Witten Invariants

Let Xg,n,d denote the moduli space of n-pointed genus-g stable maps to X of
degree d ∈ H2(X;Z). Write

〈a1ψ
i1
1 , . . . , anψ

in
n 〉Xg,n,d =

∫
[Xg,n,d ]vir

k=n∏
k=1

ev�
k(ak) ∪ ψ

ik
k , (1)

where a1, . . . , an ∈ HX , evk : Xg,n,d → X is the evaluation map at the kth marked
point, ψ1, . . . ,ψn ∈ H 2(Xg,n,d ;Q) are the universal cotangent line classes,
i1, . . . , in are nonnegative integers, and the integral denotes cap product with the
virtual fundamental class [3; 32]. The right-hand side of (1) is a rational num-
ber, called a Gromov–Witten invariant of X (if ik = 0 for all k) or a gravitational
descendant (if any of the ik are nonzero).

2.2. Bases for Cohomology and Novikov Rings

Fix bases φ0, . . . , φN and φ0, . . . , φN for HX such that:

• φ0 is the identity element of HX ,
• φ1, . . . , φr is a nef Z-basis for H 2(X;Z) ⊂ HX ,
• each φi is homogeneous,
• (φi)

i=N
i=0 and (φj )

j=N

j=0 are dual with respect to the Poincaré pairing.

(2)

Note that r is the rank of H2(X). Define the Novikov ring � = Q[[Q1, . . . ,Qr ]]
and, for d ∈ H2(X;Z), write

Qd = Q
d1
1 · · ·Qdr

r ,

where di = d · φi .

2.3. Quantum Cohomology

Let t0, . . . , tN be the coordinates on HX defined by the basis φ0, . . . , φN , so that
t ∈ HX satisfies t = t0φ0 + · · · + tNφN . Define the genus-zero Gromov–Witten
potential F 0

X ∈ �[[t0, . . . , tN ]] by

F 0
X =

∑
d∈NE(X)

∞∑
n=0

Qd

n! 〈t, . . . , t〉X0,n,d ,

where the first sum is over the set NE(X) of degrees of effective curves in X. This
is a generating function for genus-zero Gromov–Witten invariants. The quantum
product ∗ is defined in terms of the third partial derivatives of F 0

X:

φα ∗ φβ =
γ=N∑
γ=0

∂3F 0
X

∂tα ∂tβ ∂tγ
φγ . (3)

The product ∗ is bilinear over � and defines a formal family of algebras on HX ⊗
� parameterized by t0, . . . , tN . This is the quantum cohomology or big quantum
cohomology of X.
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We have defined big quantum cohomology as a formal family of algebras, that
is, in terms of the ring of formal power series Q[[Q1, . . . ,Qr ]][[t0, . . . , tN ]]. In
many cases however, the genus-zero Gromov–Witten potential F 0

X converges to
an analytic function. By this we mean the following. The divisor equation [29,
Sect. 2.2.4] implies that

F 0
X ∈Q[[t0,Q1e

t1
, . . . ,Qre

tr , t r+1, t r+2, . . . , tN ]],
and it can be often shown, for example, by using mirror symmetry, that F 0

X is the
power series expansion of an analytic function:

F 0
X ∈Q{t0,Q1e

t1
, . . . ,Qre

tr , t r+1, t r+2, . . . , tN }.
We can then set Q1 = · · · = Qr = 1, obtaining an analytic function

F 0
X ∈Q{t0, et1

, . . . , etr , t r+1, t r+2, . . . , tN }
of the variables t0, . . . , tN defined in a region{

|t i | < εi, i = 0 or r < i ≤ N ,

�t i � 0, 1 ≤ i ≤ r,
(4)

where �t i means the real part of t i . We refer to the limit point{
t i = 0, i = 0 or r < i ≤ N ,

�t i → −∞, 1 ≤ i ≤ r,

as the large-radius limit point. When F 0
X converges to an analytic function in

the sense just described, the quantum product ∗ then defines a family of alge-
bra structures on HX that depends analytically on parameters t0, . . . , tN in the
neighborhood (4) of the large-radius limit point.

Remark 2.1. In this paper we only consider the even part of the cohomol-
ogy group, but this is not really a restriction. Hertling, Manin, and Teleman
[23] proved that if the quantum cohomology of a smooth projective variety
X is semisimple, then X has no odd cohomology and is of Hodge–Tate type:
Hp,q(X) = 0 for p �= q .

2.4. The Dubrovin Connection

Consider HX ⊗ � as a scheme over � and let M be a formal neighborhood of
the origin in M. The Euler vector field E on M is

E = t0 ∂

∂t0
+

r∑
i=1

ρi ∂

∂t i
+

N∑
i=r+1

(
1 − 1

2
degφi

)
t i

∂

∂t i
, (5)

where c1(X) = ρ1φ1 +· · ·+ρrφr . The grading operator μ : HX → HX is defined
by

μ(φi) =
(

1

2
degφi − 1

2
dimC X

)
φi.
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Let π : M×A1 → M denote projection to the first factor. The extended Dubrovin
connection is a meromorphic flat connection ∇ on π�TM ∼= HX × (M × A1),
defined by

∇∂/∂ti = ∂

∂ti
− 1

z
(φi∗), 0 ≤ i ≤ N,

∇z∂/∂z = z
∂

∂z
+ 1

z
(E∗) + μ, where z is the coordinate on A1.

Together with the pairing on TM induced by the Poincaré pairing, the Dubrovin
connection equips M with the structure of a formal Frobenius manifold with
extended structure connection [33].

If the genus-zero Gromov–Witten potential F 0
X converges to an analytic func-

tion, as discussed in Section 2.3, then the extended Dubrovin connection with
Q1 = · · · = Qr = 1 depends analytically on t in a neighborhood (4) of the large-
radius limit point and defines an analytic Frobenius manifold with extended struc-
ture connection.

2.5. Gromov–Witten Potentials

We begin by defining the formal power series ring to which the Gromov–Witten
potentials belong. The Novikov ring � is topologized by regarding it as the com-
pletion of the polynomial ring Q[Q1, . . . ,Qr ] with respect to the valuation v

such that v(Qd) = d · ω, where ω is a Kähler class on X. We will need also cer-
tain related formal power series rings, shown in Table 1. These are defined as the
completions of polynomial rings, shown in the second column of Table 1, with
respect to a valuation v such that

v(Qd) = d · ω, v(tα) = 1, v(tαi ) = i + 1, v(y
β
j ) = j + 1.

The valuation v yields a “maximal” completion of the polynomial rings; for ex-
ample, �[[t]] contains an arbitrary infinite sum

∑
m amtm with am ∈ �, where tm

stands for a (finite) monomial in the variables {tαi : 0 ≤ i < ∞,0 ≤ α ≤ N}. For a
ring R equipped with nonnegative valuation v, we define

R{h̄−1, h̄]] =
{ n=∞∑

n=−∞
anh̄

n : an ∈ R, lim
n→−∞v(an) = ∞

}
.

Table 1 Formal Power Series Rings

Completed Ring Underlying Polynomial Ring

� Q[Q1, . . . ,Qr ]
�[[t]] Q[Q1, . . . ,Qr ][tα : 0 ≤ α ≤ N ]
�[[t]] Q[Q1, . . . ,Qr ][tαi : 0 ≤ i < ∞,0 ≤ α ≤ N ]
�[[y]][[t]] Q[Q1, . . . ,Qr ][yβ

j : 0 ≤ j < ∞,0 ≤ β ≤ N ][tα : 0 ≤ α ≤ N ]
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Let t = (t0, t1, t2, . . .) be an infinite sequence of elements of HX and write
ti = t0

i φ0 + · · · + tNi φN . Define the genus-g descendant potential Fg
X ∈ �[[t]] by

Fg
X =

∑
d∈NE(X)

∞∑
n=0

∞∑
i1=0

· · ·
∞∑

in=0

Qd

n! 〈ti1ψi1
1 , . . . , tinψ

in
n 〉Xg,n,d . (6)

This is a generating function for genus-g gravitational descendants. The total de-
scendant potential ZX ∈ �[[t]]{h̄−1, h̄]] is

ZX = exp

( ∞∑
g=0

h̄g−1Fg
X

)
. (7)

This is a generating function for all gravitational descendants of X. Note that
F0

X|Q=t=0 = 0, and thus we have v(F0
X) > 0 with respect to the valuation v; this

implies that ZX belongs to �[[t]]{h̄−1, h̄]].
Consider now the map pm : Xg,m+n,d → Mg,m that forgets the map and the

last n marked points, and then stabilizes the resulting prestable curve. Write
ψm|i ∈ H 2(Xg,n+m,d ;Q) for the pullback along pm of the ith universal cotan-
gent line class on Mg,m, and

〈a1ψ̄
i1
1 , . . . , amψ̄im : b1, . . . , bn〉Xg,m+n,d

=
∫

[Xg,m+n,d ]vir

k=m∏
k=1

(ev�
k(ak) ∪ ψ

ik
m|k) ·

l=m+n∏
l=m+1

ev�
l (bl−m), (8)

where a1, . . . , am ∈ HX , b1, . . . , bn ∈ HX , and i1, . . . , im are nonnegative integers.
As before, consider t ∈ HX with t = t0φ0 + · · · + tNφN and an infinite se-

quence y = (y0, y1, y2, . . .) of elements in HX with yi = y0
i φ0 +· · ·+yN

i φN . The
genus-g ancestor potential F̄g

X ∈ �[[y]][[t]] is defined by

F̄g
X =

∑
d∈NE(X)

∞∑
n=0

∞∑
m=0

∞∑
j1=0

· · ·
∞∑

jm=0

Qd

n!m! 〈yj1ψ̄
j1
1 , . . . , yjmψ̄

jm
m :

n︷ ︸︸ ︷
t, . . . , t〉Xg,m+n,d ,

(9)

and the total ancestor potential AX ∈ �[[y]][[t]]{h̄−1, h̄]] is

AX = exp

( ∞∑
g=0

h̄g−1F̄g
X

)
. (10)

We will often want to emphasize the dependence of the ancestor potentials on the
variable t , writing F̄g

t for F̄g
X and At for AX . Note that the ancestor potentials

(9) do not contain terms with g = 0 and m < 3 or with g = 1 and m = 0 since in
these cases the space Mg,m is empty and so the map pm : Xg,m+n,d → Mg,m is
not defined.
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2.6. Dilaton Shift

Consider now another sequence q = (q0, q1, q2, . . . ) with qi ∈ HX , and write qi =
q0
i φ0 + · · · + qN

i φN . We regard {qα
i : 0 ≤ i < ∞,0 ≤ α ≤ N} as a coordinate

system on HX[[z]] by writing a general point in HX[[z]] as q(z) =∑∞
i=0 qiz

i . The
dilaton shift is an identification between q = (q0, q1, q2, . . . ) and the arguments
t = (t0, t1, t2, . . . ), y = (y0, y1, y2, . . . ) of the descendant and ancestor potentials:

qα
i =

{
t0
1 − 1 if (i, α) = (1,0),

tαi otherwise,
qα
i =

{
y0

1 − 1 if (i, α) = (1,0),

yα
i otherwise.

Setting t(z) = ∑∞
i=0 tiz

i and y(z) = ∑∞
i=0 yiz

i , the dilaton shift becomes the
equalities:

q(z) = t(z) − φ0z, q(z) = y(z) − φ0z. (11)

In this way we regard the descendant potential Fg
X as a function on the formal

neighborhood of the point −φ0z ∈ HX[[z]]. The dilaton shift for the ancestor po-
tential is discussed in Example 3.7.

2.7. The Orbifold Case

The results in this paper are all valid in the more general setting where X is a
smooth orbifold (or Deligne–Mumford stack) rather than a smooth algebraic vari-
ety. The previous discussion goes through in this situation with minimal changes
as follows:

• We take HX to be the even part2 of the Chen–Ruan orbifold cohomology
H •

CR(X;Q) rather than the even part of the ordinary cohomology H •(X;Q).
• We replace:

– the usual grading on H •(X) by the age-shifted grading on H •
CR(X),

– the Poincaré pairing on H •(X) by the orbifold Poincaré pairing on H •
CR(X).

Note that H 2(X) ⊂ H 2
CR(X), and so definition (2) makes sense in the orbifold

context.
• We define correlators (1) and (8) using orbifold Gromov–Witten invariants [1]

rather than usual Gromov–Witten invariants. There are two small differences:
– a subtlety in the definition of ev�

k , discussed in [1], [8, Section 2.2.2],
– the degree d of an orbifold stable map f : � → X lies in H2(|X|;Z), where

|X| is the coarse moduli space of X.

Having made these changes, the discussion in Sections 2.1–2.6 applies to orb-
ifolds as well. In this context, the family of algebras (HX ⊗ �,∗) is called a
quantum orbifold cohomology.

2Here we mean the even part of the rational cohomology of the inertia stack IX with respect to the
usual grading on H •(IX), not the age-shifted grading.
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2.8. FJRW Theory

The discussion in this paper applies also to the so-called FJRW theory, which
has been developed recently by Fan, Jarvis, and Ruan [15] based on an old
idea of Witten [37]. FJRW theory is a Gromov–Witten-type theory with target
a Landau–Ginzburg orbifold: it defines a cohomological field theory (CohFT) on
a certain state space HFJRW that satisfies Teleman’s homogeneity and flat vac-
uum conditions. Thus, Teleman’s classification result applies to FJRW theory.
FJRW theory differs from Gromov–Witten theory in that it lacks Novikov vari-
ables Q1, . . . ,Qr ; most of the discussion in this paper, however, goes through just
by setting r = 0:

• The genus-zero part of FJRW theory defines a Frobenius manifold structure on
the formal neighborhood of the origin of HFJRW;

• Formal Semisimplicity (24), Genus-Zero Convegence (25), and Analytic
Semisimplicity (26) make sense for this Frobenius manifold;

• The descendant potential ZFJRW is a formal power series in t(z) ∈ HFJRW[[z]];
• The ancestor potential AFJRW,t is a formal power series in y(z) ∈ HFJRW[[z]]

and t ∈ HFJRW.

3. Givental’s Quantization Formalism

In this section, we work over an arbitrary commutative ring R that contains Q.
Let V be a finitely generated free R-module equipped with a symmetric perfect
pairing

〈·, ·〉V : V ⊗R V → R.

Let {φα}Nα=0 be an R-basis of V , and let φα be the dual basis with respect to the

pairing 〈·, ·〉V , so that 〈φα,φβ〉V = δ
β
α . We denote a general point of V [[z]] by

q(z) = q0 + q1z + q2z + q3z
3 + · · ·

and write qi = q0
i φ0 + · · · + qN

i φN . Then {qα
i : 0 ≤ i < ∞,0 ≤ α ≤ N} gives a

coordinate system on V [[z]].
Remark 3.1. In the case where R = Q, V = HX , and 〈·, ·〉V is the Poincaré
pairing, we recover the situation described in Section 2.6.

3.1. Ancestor Fock Space

Definition 3.2 (Ancestor Fock Space; see Givental [19, Sect. 8]). Choose a base
point −δ = −∑N

α=0 δαφα ∈ V , and consider the coordinate system {yα
i : 0 ≤ i <

∞,0 ≤ α ≤ N} on V [[z]] defined by

yα
i =

{
qα

1 + δα if i = 1,

qα
i otherwise.

Let R[[y]] denote the formal power series ring R[[yα
i : 0 ≤ i < ∞,0 ≤ α ≤ N ]]

equipped with the valuation v defined by v(yα
i ) = i + 1. The ancestor Fock space
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Fock(V , δ) is the set of elements

A ∈ R[[y]]{h̄−1, h̄]]
that admit an expansion of the form

A = exp

( ∞∑
g=0

h̄g−1Fg

)
(12)

such that Fg ∈ R[[y]] and

F0|y(z)=0 = ∂F0

∂yα
i

∣∣∣∣
y(z)=0

= ∂2F0

∂y
α1
i1

∂y
α2
i2

∣∣∣∣
y(z)=0

= 0,

F1|y(z)=0 = 0,

∂nFg

∂y
α1
i1

· · · ∂yαn

in

∣∣∣∣
y(z)=0

= 0 whenever i1 + · · · + in > 3g − 3 + n.

(13)

Write yi = y0
i φ0 + · · · + yN

i φN and y(z) = ∑∞
i=0 yiz

i . The coordinate system
y = (y0, y1, y2, . . .) from Definition 3.2 is related to the coordinate system q =
(q0, q1, q2, . . .) defined before Remark 3.1 by

qα
i =

{
yα

1 − δα if i = 1,

yα
i otherwise,

(14)

or in other words by q(z) = y(z) − δz; cf. the dilaton shift (11). Elements of
Fock(V , δ) can thus be regarded as functions on a formal neighborhood of the
point −δz ∈ V [[z]].
Remark 3.3. Any expression of the form (12) such that Fg ∈ R[[y]] and condition
(13) holds is automatically an element of R[[y]]{h̄−1, h̄]].
Remark 3.4. Condition (13) implies that any element A of Fock(V , δ) is tame
in the sense of Givental [20]. Note in particular that Fg is a formal power series
in the variables y0

0 , . . . , yN
0 , y0

1 , . . . , yN
1 with coefficients in the polynomial ring

R[yα
i : 2 ≤ i < ∞,0 ≤ α ≤ N ].

Definition 3.5 (Rationality). An element A of Fock(V , δ) is called rational if
there exists a polynomial P(q1) ∈ R[V ∨] with P(−δ) = 1 such that the potentials
Fg from (12) satisfy

∂nFg

∂y
α1
i1

· · · ∂yαn

in

∣∣∣∣
y(z)=y1z

= fg,I,A(q1)P (q1)
−(5g−5+2n−(i1+···+in)) (15)

for some polynomials fg,I,A(q1) ∈ R[V ∨] if 2g −2+n > 0; here I = (i1, . . . , in)

and A = (α1, . . . , αn). We call P a discriminant of A.
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Remark 3.6. Tameness (13) and rationality (15) for a potential can be summa-
rized in the following expansion:

Fg = δg,1C
(1)(q1)

+
∑

n:2g−2+n>0

1

n!
∑

I :I=(i1,...,in)
ij �= 1 for all j

i1+···+in≤3g−3+n

∑
A=(α1,...,αn)

C
(g)
I,A(q1)q

α1
i1

· · ·qαn

in

with

C
(g)
I,A(q1) = fg,I,A(q1)P (q1)

−(5g−5+2n−(i1+···+in)) and

∂C(1)(q1)

∂qα
1

= f1,1,α(q1)P (q1)
−1

(16)

for some polynomials fg,I,A(q1) ∈ R[V ∨]. Note that 5g − 5 + 2n − (i1 + · · · +
in) = 3g − 3 + n − (i1 + · · ·+ in) + 2g − 2 + n is always positive unless (g,n) =
(1,0). The genus-one term C(1)(q1) is in general not a rational function. See
Remark 3.8 in the case of Gromov–Witten theory.

Example 3.7. The total ancestor potential AX of X defines an element of the
Fock space Fock(HX ⊗�[[t]], φ0). Here the ground ring R is �[[t]], the R-module
V is HX ⊗ �[[t]], and the pairing 〈·, ·〉V is the Poincaré pairing, extended by R-
linearity to take values in R. The dilaton shift discussed in Section 2.6 coincides
with the identification (14). Tameness (13) follows from the dimension formula
dimMg,m = 3g − 3 + m.

Remark 3.8. The genus-one ancestor potential of a smooth projective variety X

satisfies [11]

F̄1
t |y(z)=y1z = − 1

24
log sdet(−q1∗t ),

where sdet(−q1∗t ) denotes the superdeterminant of the quantum product on the
total cohomology group H •(X) = H even(X)⊕H odd(X) (including the odd part).
This follows from the localization of the integral to the locus of cycles of ratio-
nal curves and

∫
M1,1

ψ = 1/24. Therefore, the genus-one potential itself is not
rational in q1, but its derivatives are rational.

Example 3.9. The ancestor potential Apt = At of a point does not depend on
t ∈ Hpt and coincides with the descendant potential Zpt. This is called the Witten–
Kontsevich tau-function and denoted by τ(q). It defines a rational element of the
Fock space with V = R = C and δ = 1. In fact, applying the dilaton equation, we
find that

∂nFg
pt

∂yi1 · · · ∂yin

∣∣∣∣
y(z)=y1z

=
{

− 1
24 log(−q1) if g = 1 and n = 0,

(−q1)
−(2g−2+n)〈ψi1

1 , . . . ,ψ
in
n 〉pt

g,n,0 otherwise.
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Hence, we can take P(q1) = −q1. Note that i1 + · · · + in = 3g − 3 + n implies
2g − 2 + n ≤ 5g − 5 + 2n − (i1 + · · · + in).

Remark 3.10. In view of Givental’s formula (see Sections 4–5), we may specu-
late that in general the total ancestor potential of X is rational with discriminant
det(−q1∗) (determinant on the even part HX with even parameter t ∈ HX and
even q1 ∈ HX). We will prove that this is the case whenever the quantum coho-
mology of X is semisimple; see Theorem 6.4.

Remark 3.11. Givental’s Lagrangian cone LX (see [21]) has a singularity along
a “divisor” that contains the vertex of the cone. Thus, it is natural to conjecture
that the higher-genus descendant potentials of X has poles only along that divisor.
This is the rationality condition.

Remark 3.12. Recall the definition of the genus-g ancestor potential F̄g
X in (9).

Consider the completion ϒ of the polynomial ring Q[t0,Q1e
t1

, . . . ,Qre
tr , t r+1,

t r+2, . . . , tN ] with respect to the valuation v defined by

v(ti) = 1, i = 0 or r < i ≤ N ,

v(Qie
ti ) = 1, 1 ≤ i ≤ r.

The divisor equation implies that F̄g
X , which a priori is a formal power series in

the variables y
β
j with coefficients in

Q[[Q1, . . . ,Qr ]][[t0, . . . , tN ]]
is in fact a formal power series in the variables y

β
j with coefficients in ϒ . Thus,

the total ancestor potential AX defines an element of the Fock space Fock(HX ⊗
ϒ,φ0).

Definition 3.13. For ε > 0, define ϒε to be the subring of ϒ consisting of ele-
ments in ϒ that converge on the region

{|t0| < ε, |Q1e
t1 | < ε, . . . , |Qre

tr | < ε, |t r+1| < ε, . . . , |tN | < ε}. (17)

The ancestor Gromov–Witten potential AX is said to be convergent if it is a ratio-
nal element of Fock(HX ⊗ ϒε,φ0) for some ε > 0.

Remark 3.14. When AX is convergent in the sense of Definition 3.13, each
genus-g ancestor potential F̄g

X (see equation (9)) is a power series in the vari-

ables y
β
j with coefficients in ϒε . Furthermore, in this case, F̄g

X|Q1=···=Qr=1 is a

formal power series in y
β
j with coefficients in analytic functions on M, where M

is a neighborhood (4) of the large-radius limit point.

3.2. Propagator

Let (V , 〈·, ·〉V ) and (W, 〈·, ·〉W) be free R-modules with symmetric perfect pair-
ings.
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Definition 3.15. The Givental symplectic form �V is the antisymmetric bilinear
form on V ((z)) defined by

�V (f1, f2) = Resz=0〈f1(−z), f2(z)〉V dz. (18)

Notation 3.16. An R[[z]]-linear isomorphism A : V [[z]] → W [[z]] can be ex-
pressed uniquely in the form A = A0 + A1z + A2z

2 + · · · where Ak ∈ HomR(V,

W). We write the coefficients of this expansion as Ak , k ≥ 0, and write A as A(z)

when we wish to emphasize the dependence on z.

Definition 3.17. An isomorphism A : V [[z]] → W [[z]] is said to be unitary if it
is R[[z]]-linear and satisfies

〈A(−z)v1,A(z)v2〉W = 〈v1, v2〉V
for all v1, v2 ∈ V .

Remark 3.18. An R[[z]]-linear isomorphism A : V [[z]] → W [[z]] is unitary if and
only if the map V ((z)) → W((z)) induced by A intertwines the Givental symplectic
forms.

Definition 3.19 (Propagator; cf. Givental [19]). Let A : V [[z]] → W [[z]] be a
unitary isomorphism. The propagator for A is a bivector field � on V [[z]] defined
by

� =
∞∑

i,j=0

N∑
α,β=0

�(i,α),(j,β) ∂

∂qα
i

∂

∂q
β
j

,

where
∞∑

i,j=0

�(i,α),(j,β)(−1)i+jwizj =
〈
φα,

A(w)†A(z) − Id

z + w
φβ

〉
V

.

Here the coordinates qα
i and the basis {φα} are defined before Remark 3.1; �

is in fact independent of choice of basis. Also, A(z)† : W [[z]] → V [[z]] denotes
the adjoint of A(z) with respect to the pairings 〈·, ·〉V and 〈·, ·〉W (since A(z) is
unitary, we have A(z)† = A(−z)−1).

3.3. Quantized Operator

Let A : V [[z]] → W [[z]] be a unitary isomorphism. Recall the definition of A0 in
Notation 3.16. We define the quantized operator

Â : Fock(V , δ) → Fock(W,A0(δ))

as follows. For a given element A ∈ Fock(V , δ), we set

Ã = exp

(
h̄

2
�

)
A ∈ Fock(V , δ)

and then push Ã forward along the identification A(z) : V [[z]] ∼= W [[z]]:
(ÂA)(q) := Ã(A(z)−1q(z)).
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Proposition 3.20. The quantized operator Â is well defined. Moreover, if A is a
rational element of Fock(V , δ) with discriminant P(q1) ∈ R[V ∨], then ÂA is a
rational element of Fock(W,A0(δ)) with discriminant P(A−1

0 q1) ∈ R[W∨].
Proof. The first claim was proved by Givental using a Feynman diagram ar-
gument [20, Prop. 5]. It remains to show that the quantized operator Â pre-
serves rationality and to calculate its effect on the discriminant. Recall that
Ã = exp( h̄

2 �)A, and define F̃g by

Ã = exp

( ∞∑
g=0

h̄g−1F̃g

)
.

Following Givental’s proof, we express

∂nF̃g

∂y
α1
i1

· · · ∂yαn

in

∣∣∣∣
y(z)=y1z

(19)

as a sum over decorated Feynman graphs. These decorated Feynman graphs are
connected multigraphs, in which loops are allowed, such that

• each vertex v is labeled by an integer gv ≥ 0;
• a label (j,β) ∈ Z≥0 × {0, . . . ,N} is assigned to each pair of a vertex and an

edge incident to it (for an edge-loop, we distinguish the two ends of the edge);
• the graph has n external edges, called legs, labeled by (i1, α1), . . . , (in, αn);
• the Euler number χ of the graph satisfies g = 1 − χ +∑

v:vertex gv ;

and such that the following stability condition holds: for each vertex v, if
(j1, β1), . . . , (jm,βm) are all the labels attached to the edges or legs incident to v,
then

j1 + · · · + jm ≤ 3gv − 3 + m.

Givental’s original argument shows that the number of such decorated Feynman
graphs is finite. Let � be a decorated Feynman graph as above, and let V (�), E(�)

be respectively the set of vertices and the set of edges of �. The contribution of �

to (19) is

1

|Aut(�)|
∏

e∈E(�)

(edge term for e)
∏

v∈V (�)

(vertex term for v), (20)

where the edge term for an edge with labels (i, α), (j,β) is �(i,α),(j,β), and the
vertex term for a vertex v with labels (j1, β1), . . . , (jm,βm) is

∂nFgv

∂y
β1
j1

· · · ∂yβm

jm

∣∣∣∣
y(z)=y1z

. (21)

We write nv = m and dv = j1 +· · ·+ jm. Suppose that A is rational with discrim-
inant P(q1). The partial derivative (19) is a finite sum of terms (20), and each
vertex term (21) takes the form

fv(q1)

P (q1)5gv−5+2nv−dv
, (22)
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where fv is a polynomial. Using the (in)equalities∑
v∈V (�)

(gv − 1) = g − 1 − |E(�)|,
∑

v∈V (�)

nv = 2|E(�)| + n,

∑
v∈V (�)

dv ≥ i1 + · · · + in

we have ∑
v∈V (�)

(5gv − 5 + 2nv − dv) ≤ 5g − 5 + 2n − (i1 + · · · + in).

Hence, each term (20) is a rational function with denominator

P(q1)
5g−5+2n−(i1+···+in).

It follows that Ã is rational with discriminant P(q1) ∈ R[V ∨]. The change of
variables q(z) → A(z)−1q(z) preserves tameness and rationality: we can easily
check that the expansion in Remark 3.6 is preserved. Thus, ÂA is rational, with
discriminant P(A−1

0 q1) ∈ R[W∨]. �

Example 3.21. Figure 1 shows an example of a decorated Feyman diagram �.
This graph � has one leg, labeled by (p, ξ); it occurs in the Feynman sum for

∂F̃g

∂y
ξ
p

∣∣∣∣
y(z)=y1z

where g = g1 + g2 + g3 + 1.

The stability condition asserts that i ≤ 3g1 − 2, j + k +p ≤ 3g2, and l +m+n ≤
3g3. The automorphism group of � is trivial if (m,ρ) �= (n,μ) and is equal to
Z/2Z if (m,ρ) = (n,μ). Thus, the contribution of � to the Feynman sum is equal
to

�(i,α),(j,β)�(k,γ ),(l,ε)�(m,ρ),(n,μ)

(
∂Fg1

∂yα
i

∂3Fg2

∂y
β
j ∂y

γ

k ∂y
ξ
p

∂3Fg3

∂yε
l ∂y

ρ
m ∂y

μ
n

)∣∣∣∣
y(z)=y1z

if (m,ρ) �= (n,μ) and is equal to half of this if (m,ρ) = (n,μ).

Remark 3.22. Let (U, 〈·, ·〉U) be another free R-module with a perfect pairing.
Let A : V [[z]] → W [[z]] and B : W [[z]] → U [[z]] be unitary isomorphisms. Then
we can define three propagators �A, �B , �BA corresponding to the maps A, B ,
BA, respectively. The bivector fields �A on V [[z]], �B on W [[z]], and �BA on
V [[z]] satisfy

�BA = �A + A(z)∗�B,

�

g1 g2 g3

(i, α) (j,β) (k, γ ) (l, ε)

(m,ρ)

(n,μ)

(p, ξ)

Figure 1 A decorated graph with one leg
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where A(z)∗�B means the pull-back of the bivector field �B on W [[z]] by the
isomorphism A(z) : V [[z]] ∼= W [[z]]. Therefore,

(BA)ˆ = B̂Â

as a map from Fock(V , δ) to Fock(U,B0A0(δ)).

4. Givental’s Formula in the Analytic Setting

Let M be an analytic Frobenius manifold over C. This comprises the follow-
ing data: a smooth complex analytic space M; a flat metric3 g on M; a product
∗t on each tangent space TtM, varying analytically with t ; a flat identity vector
field 1; a vector field E on M called the Euler vector field; and an integer D

called the conformal dimension. These structures are required to satisfy a num-
ber of conditions: see [13, Def. 1.2]. In particular, (TtM,∗t , g) forms a family
of commutative associative Frobenius algebras, varying analytically with t , and
∇LC(∇LCE) = 0 where ∇LC is the Levi–Civita connection defined by g. The op-
erator μ : TM → TM defined by μ = (1 − D

2 ) Id−∇LCE is called the grading
operator. One example of an analytic Frobenius manifold over C is given by the
quantum cohomology of a smooth variety X such that the genus-zero Gromov–
Witten potential converges in the sense of Section 2.3; in this case, M is the
neighborhood (4) of the large-radius limit point.

Suppose further that M is generically semisimple, that is, that (TtM,∗t ) is a
semisimple algebra for generic t ∈M, and fix a semisimple point t . The eigenval-
ues of multiplication (E∗) by the Euler vector field form canonical coordinates
u0, . . . , uN on a neighborhood of t . The vector fields ∂/∂ui ∈ TM are then the
idempotents in the semisimple algebra (TM,∗) in a neighborhood of t . Let

�i(t) =
(

g

(
∂

∂ui

∣∣∣∣
t

,
∂

∂ui

∣∣∣∣
t

))−1

.

Proposition 4.1 (Dubrovin [14, Lecture 4], Teleman [36, Thm. 8.15]). At the
semisimple point t ∈M, the equation(

z
∂

∂z
+ 1

z
(E∗t ) + μ

)
S = 0

has a unique solution of the form S = �tRt exp(U/z) such that:

(1) �t ∈ Hom(CN+1, TtM) is the isomorphism CN+1 ∼= TtM that sends
the ith standard basis vector in CN+1 to the ith normalized idempotent√

�i(t) ∂/∂ui ∈ TtM;
(2) Rt ∈ End(CN+1) ⊗C[[z]] with Rt ≡ Id mod z;
(3) U = diag(u0, . . . , uN) where u0, . . . , uN are the eigenvalues of E∗t .

The transformation Rt satisfies

Rt(−z)TRt(z) = Id,

3Metric here means C-bilinear quadratic form on each tangent space TtM , varying analytically with t .
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where Rt(−z)T means the transpose of Rt(−z) (regarded as an (N +1)×(N +1)

matrix).

The transformations � and R in Proposition 4.1 coincide with those defined by
Givental [18, Sect. 1.3], although his definitions are different as he is working
in a setting where there may be no Euler vector field. As Dubrovin observed,
�tRt exp(U/z) is automatically flat with respect to the Dubrovin connection as t

varies, and, as t varies, Rt is automatically homogeneous with respect to the Euler
vector field E =∑N

i=0 ui ∂/∂ui :(
z

∂

∂z
+
∑

i

ui ∂

∂ui

)
Rt = 0.

We regard the composite map �tRt as giving a unitary isomorphism
CN+1[[z]] → TtM[[z]] where CN+1 is endowed with the standard inner prod-
uct (see Definition 3.17). In view of Example 3.9, we know that the product of
Witten–Kontsevich τ -functions

T =
N∏

α=0

τ(qα) where (q0, . . . ,qN) ∈ CN+1[[z]]

lies in the Fock space Fock(CN+1, (1, . . . ,1)). It is rational with the discriminant
P(q0

1 , . . . , qN
1 ) =∏N

α=0(−qα
1 ).

Definition 4.2 (Givental [19, Sect. 6.8]). The abstract ancestor potential Aabs
t

is
Aabs

t = e−(1/48)
∑

i log�i(t)�̂t R̂t (T ). (23)

When the semisimple point t ∈ M is clear from context, we will write Aabs in-
stead of Aabs

t .

Proposition 4.3. The abstract ancestor potential Aabs
t is a well-defined rational

element of Fock(TtM,1) with discriminant det(−q1∗t ).

Proof. We first observe that the right-hand side of (23) is unambiguous. The ma-
trices �t and Rt depend on

• a choice of ordering of the canonical co-ordinates u0, . . . , uN at t , and
• the choice of square roots

√
�i(t).

Thus, any two different choices of �tRt are related by right multiplication by
a signed permutation matrix. Now T is almost invariant under a signed permu-
tation (q0, . . . ,qN) �→ (±qσ(0), . . . ,±qσ(N)): the only noninvariant part is the
genus-one log-term − 1

24

∑
α log(−qα

1 ). The constant ambiguity in this genus-one
term cancels with the ambiguity of − 1

48

∑
i log�i(t); the genus-one term F1

abs in
logAabs

t is normalized by the condition

F1
abs|y(z)=0 = 0.

Thus, Aabs
t is independent of all choices.
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Proposition 3.20 implies that �̂t R̂t (T ) is a rational element of Fock(TtM,∑N
i=0

√
�i(t) ∂/∂ui)) with discriminant

N∏
i=0

(−[�−1
t q1]i )

where q1 ∈ TtM. Because �̂t R̂t (T ) is rational, Aabs
t = e−(1/48)

∑
i log�i(t) ×

�̂t R̂t (T ) can naturally be regarded, via analytic continuation, as an element
of Fock(TtM,1). We can normalize the discriminant by the nonzero factor
e(1/2)

∑
i log�i(t):

P(q1) = e(1/2)
∑

i log�i(t)
N∏

i=0

(−[�−1
t q1]i )

= det(−q1∗t ),

so that P(−1) = 1. �

Remark 4.4. When t varies, Aabs
t defines a rational element of Fock(TM(U),1)

with U a neighborhood of t . Here TM(U) is regarded as a free O(U)-module.

Remark 4.5. The transformation Rt = I + R1(t)z + R2(t)z
2 + · · · in Proposi-

tion 4.1 can be determined by solving the equations(
z

∂

∂z
+ 1

z
(E∗t ) + μ

)
�tRt exp

(
U

z

)
= 0

order by order in z. It follows, and this will be important below, that if the canon-
ical co-ordinates ui and the matrix entries of �t all lie in some field of functions
k, then the entries of each matrix Ri(t) lie in k too.

5. Givental’s Formula in the Formal Setting

Note that the discussion in Section 4 makes sense, and the analog of Proposi-
tion 4.1 holds, in the setting where M is a formal Frobenius manifold over an
algebraically closed field k of characteristic zero. In this case, M is the formal
neighborhood of zero in a vector space H , so M = Spfk[[s0, . . . , sN ]] where
φ0, . . . , φN is a basis for H and s = s0φ0 +· · ·+sNφN is a point of H . The family
of products on the tangent spaces to M give (and are given by) a k[[s0, . . . , sN ]]-
bilinear product ∗ on H [[s0, . . . , sN ]]. We choose φ0 to be the identity of the
product ∗. A formal Frobenius manifold is said to be semisimple at the origin
if the algebra (H,∗|s=0) is semisimple. (The origin is in any case the only k-
valued point of M.) Then, since k is algebraically closed, distinct eigenvalues
u0, . . . , uN for (E∗) exist in k[[s0, . . . , sN ]]; these form canonical coordinates on
a formal neighborhood of s = 0 in M. The vectors ∂/∂ui are idempotents in the
algebra (H [[s0, . . . , sN ]],∗), and we define �i ∈ k[[s0, . . . , sN ]] by

�i =
(

g

(
∂

∂ui
,

∂

∂ui

))−1

.
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For Proposition 4.1 we replace:

�u ∈ Hom(CN+1, TuM) by � ∈ Hom(kN+1,H)[[s0, . . . , sN ]],
Ru ∈ End(CN+1) ⊗C[[z]] by R ∈ End(kN+1)[[z]][[s0, . . . , sN ]],

with the rest of the conditions unchanged. In other words: the canonical coordi-
nates ui , the normalizations �i , and the transformations � and R are all defined
in a formal neighborhood of s = 0 in M.

Proposition 5.1 (Formal version of Proposition 4.1). The equation(
z

∂

∂z
+ 1

z
(E∗) + μ

)
S = 0

has a unique solution of the form S = �R exp(U/z) such that:

(1) � ∈ Hom(kN+1,H)[[s0, . . . , sN ]] sends the ith standard basis vector in kN+1

to the ith normalized idempotent
√

�i ∂/∂ui ∈ H [[s0, . . . , sN ]];
(2) R ∈ End(kN+1)[[z]][[s0, . . . , sN ]] with R ≡ Id mod z;
(3) U = diag(u0, . . . , uN).

The transformation R satisfies4

R(−z)TR(z) = Id .

The composition �R : kN+1[[s0, . . . , sN ]][[z]] → H [[s0, . . . , sN ]][[z]] is a unitary
isomorphism (see Definition 3.17) over the ground ring k[[s0, . . . , sN ]]; thus, the
following definition makes sense.

Definition 5.2 (Formal version of Definition 4.2). The abstract ancestor poten-
tial Aabs

s is

Aabs
s =

(i=N∏
i=0

�i

)−1/48

�̂R̂(T ).

Just as in Proposition 4.3, Aabs
s is a well-defined rational element of Fock(H [[s0,

. . . , sN ]], φ0) with discriminant P(q1) = det(−q1∗) ∈ k[[s0, . . . , sN ]][q0
1 , . . . ,

qN
1 ].

6. Teleman Implies Givental

Let X be a smooth projective toric variety. Recall the definition of the total ances-
tor potential AX in equation (10). The genus-zero Gromov–Witten potential F 0

X

converges [25] in the sense of Section 2.3, and so the quantum cohomology of X

defines an analytic Frobenius manifold (see Sect. 4). This Frobenius manifold is
semisimple [25]. When X is a Fano toric variety, Givental proves that

AX|Q1=···=Qr=1 = Aabs

4As in the analytic case, the transformation R here is in addition automatically flat with respect to the
Dubrovin connection and homogeneous with respect to the Euler vector field.
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by establishing a similar formula in the equivariant Gromov–Witten theory of X

and then taking a nonequivariant limit. His argument simultaneously proves:

(A) The convergence of AX|Q1=···=Qr=1 in the sense of Definition 3.13;
(B) The equality AX|Q1=···=Qr=1 = Aabs, where the right-hand side is defined as

in Section 4.

Givental conjectured that (A) and (B) hold in general. His calculation in equivari-
ant Gromov–Witten theory in fact applies to any smooth projective toric variety
X, and Iritani [25] has proven that we can take the nonequivariant limit of this
calculation even if X is not Fano, so that (A) and (B) are known to hold whenever
X is a smooth projective toric variety.

In this section we explain how Givental’s statements (A) and (B) can be
deduced in much greater generality from Teleman’s classification of Deligne–
Mumford field theories (DMTs) [36]. Teleman proves [36, Thm. 1] that if a DMT
satisfies

• a Cohomological Field Theory condition,
• a homogeneity condition (involving an Euler vector field),
• a flat vacuum condition (involving the identity element of the Frobenius alge-

bra),

and if its genus-zero part defines a semisimple Frobenius algebra, then:

• the DMT can be uniquely reconstructed from its genus-zero part, and
• the ancestor potential of the DMT coincides with Givental’s abstract potential
Aabs.

Teleman’s argument works over an arbitrary field of characteristic zero.
We now consider three conditions on the Gromov–Witten invariants of a pro-

jective variety X. Let k denote the algebraic closure of the fraction field of �[[t]].
The first condition, which we call Formal Semisimplicity, is

the quantum cohomology algebra (HX ⊗ k,∗) is semisimple. (24)

The second condition, which we call Genus-Zero Convergence, is

the genus-zero Gromov–Witten potential F 0
X converges in the sense

of Section 2.3.
(25)

Let M ⊂ HX ⊗C be a neighborhood (4) of the large-radius limit point. If Genus-
Zero Convergence holds, then, as discussed in Section 4, the genus-zero Gromov–
Witten theory of X defines on M the structure of an analytic Frobenius manifold
over C. The third condition, which we call Analytic Semisimplicity, is

this analytic Frobenius manifold is generically semisimple. (26)

Remark 6.1. Formal Semisimplicity (24) and Genus-Zero Convergence (25) to-
gether imply Analytic Semisimplicity (26), and Genus-Zero Convergence (25)
and Analytic Semisimplicity (26) together imply Formal Semisimplicity (24).

Remark 6.2. All three conditions are satisfied when X is a smooth projective
toric variety; this follows from mirror symmetry for toric varieties [17; 24; 25].
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Remark 6.3. If both Genus-Zero Convergence (25) and Analytic Semisimplicity
(26) hold, then we can define the abstract ancestor potential Aabs

an as in Section 4.
The subscript “an” here is to emphasize that we are working in the analytic setting.

In Section 6.1 we will show that if Formal Semisimplicity holds, then we can
apply Teleman’s theorem to the Gromov–Witten theory of X, thereby recovering
the total ancestor potential AX from the quantum cohomology. In Section 6.2
we show that if both Genus-Zero Convergence and Analytic Semisimplicity hold,
then the total ancestor potential AX is convergent in the sense of Definition 3.13,
and is equal to the abstract ancestor potential Aabs

an .

6.1. Applying Teleman’s Theorem in the Formal Setting

Recall that k denotes the algebraic closure of the fraction field of �[[t]]. The
quantum cohomology (HX ⊗ k,∗) over k is equipped with the element

E = t0φ0 + c1(X) +
N∑

i=r+1

(
1 − 1

2
degφi

)
t iφi (27)

corresponding to the Euler vector field (5). If Formal Semisimplicity (24) holds,
then we have the decomposition

HX ⊗ k =
N⊕

i=1

kδi, δi ∗ δj =
{

δi if i = j ,

0 otherwise,

and (E∗) is a semisimple operator with eigenvalues u0, . . . , uN ∈ k such that
E ∗ δi = uiδi . We define �i ∈ k by

�i = 1

g(δi, δi)
,

where g stands for the Poincaré pairing. Then, as in Proposition 5.1, the differen-
tial equation (

z
∂

∂z
+ 1

z
E ∗ +μ

)
S = 0

has a unique solution of the form S = �ReU/z such that:

(1) � ∈ Hom(kN+1,HX ⊗ k) sends the ith standard basis vector in kN+1 to the
ith normalized idempotent

√
�iδi ,

(2) R ∈ End(kN+1, kN+1)[[z]] with R ≡ Id mod z,
(3) U = diag(u0, . . . , uN).

Hence, we can define the abstract ancestor potential as

Aabs
formal = e−(1/48)

∑
i log�i

�̂R̂(T )

(cf. Definitions 4.2 and 5.2). Aabs
formal is a rational element of Fock(HX ⊗ k,φ0)

with discriminant det(−q1∗). We will further see that it arises from a formal
Frobenius manifold over k as the ancestor potential at the origin.
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Theorem 6.4 (Teleman [36]). Let X be a smooth projective variety such that For-
mal Semisimplicity (24) holds. Recall the definition of the total ancestor potential
AX in equation (10) and the definition of the ring ϒ in Remark 3.12. We have:

AX = Aabs
formal.

In particular, AX is a rational element of Fock(HX ⊗ ϒ,φ0) with discriminant
det(−q1∗).

Proof. This is a direct consequence of Teleman’s result. We spell out how the
Gromov–Witten theory of X defines both a Deligne–Mumford field theory (DMT)
over k and a formal Frobenius manifold over k. This formal Frobenius manifold
induces at the origin the data defined before: the Frobenius algebra (HX ⊗k,∗, g)

together with E and μ.
Step 1: A DMT over k. We first make minor adjustments to the formal setup in

Teleman [36]. Recall that a DMT is a family of maps:

Zn
g : H⊗n

X −→ H •(Mg,n), 2g − 2 + n > 0,

satisfying certain factorization axioms and a vacuum axiom. Pulling back coho-
mology classes along the maps evi : Xg,n,d → X, capping with the virtual funda-
mental class, and then pushing forward along the canonical map Xg,n,d → Mg,n

defines maps

GWn
g,d : H⊗n

X −→ H •(Mg,n), 2g − 2 + n > 0,

and setting

Zn
g =

∑
d∈NE(X)

GWn
g,dQd

defines a DMT over �. Let t ∈ HX be t = t0φ0 + · · · + tNφN as before. Setting

tZ
n
g(x1, . . . , xn)

=
∑
m≥0

1

m!
∫ Mg,n

Mg,n+m

Zn+m
g (x1, . . . , xn, t, . . . , t), 2g − 2 + n > 0,

where the integral denotes the push-forward along the canonical map Mg,n+m →
Mg,n, defines a formal family of DMTs over �, parameterized by Spf�[[t]]; cf.
[36, Sect. 7]. We regard this as a single DMT over the field k.

Step 2: A formal Frobenius manifold over k. We now deform this DMT to con-
struct a family of DMTs parameterized by Spfk[[s0, . . . , sN ]] and hence a formal
Frobenius manifold over k. (The genus-zero part of any DMT is a tree-level coho-
mological field theory in the sense of [33, Chap. III, Sect. 4] and thus determines
a formal Frobenius manifold.) Define

s,tZ
n
g(x1, . . . , xn)

=
∑
m≥0

1

m!
∫ Mg,n

Mg,n+m

tZ
n+m
g (x1, . . . , xn, s, . . . , s), 2g − 2 + n > 0,
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where s ∈ HX is s = s0φ0 + · · · + sNφN . As in [36, Sect. 7], this defines a family
of DMTs over k, parameterized by Spfk[[s0, . . . , sN ]]. It is easy to check that this
family is homogeneous5 of weight D = dimC X with respect to the Euler vector
field E on Spfk[[s0, . . . , sN ]]:

E = ρ1 ∂

∂s1
+ · · · + ρr ∂

∂sr
+

i=N∑
i=0

(
1 − degφi

2

)
(si + t i )

∂

∂si
,

where c1(X) = ρ1φ1 + · · · + ρrφr ; note the shift compared to the Euler field
in equation (5). The formal Frobenius manifold over k defined by the DMT is
therefore conformal with Euler vector field E . The Euler vector field E induces
the element (27) at the origin and defines the grading operator μ by

μ =
(

1 − D

2

)
Id−∇LCE .

Formal Semisimplicity (24) guarantees that this formal Frobenius manifold in-
duces a semisimple Frobenius algebra (HX ⊗ k,∗, g) at the origin.

Step 3: Applying Teleman’s Theorem. Teleman’s theorem now implies that the
ancestor potential for the family of DMTs constructed in Step 2 coincides with
the abstract ancestor potential for the formal Frobenius manifold constructed in
Step 2. On setting s = 0, the ancestor potential for the family of DMTs becomes
the geometrically defined ancestor potential AX (see equation (10)). Thus,

AX = Aabs
formal.

The right-hand side here is a priori a formal power series in the variables y
β
j

with coefficients in k, but since it coincides with the left-hand side, we know
from Remark 3.12 that it is in fact a formal power series in the variables y

β
j

with coefficients in ϒ . Moreover, Aabs
formal is rational over k with discriminant

det(−q1∗); this implies that AX is rational over ϒ with discriminant det(−q1∗).
�

6.2. Convergence of the Total Ancestor Potential

Theorem 6.5. Let X be a smooth projective variety such that Genus-Zero Con-
vergence (25) and Analytic Semisimplicity (26) hold. The total ancestor potential
AX is convergent in the sense of Definition 3.13; more precisely, AX is a ratio-
nal element of Fock(HX ⊗ ϒε,φ0) for some ε > 0, with discriminant det(−q1∗).
Moreover, we have

AX|Q1=···=Qr=1 = Aabs
an .

Proof. Let Frac denote the fraction field and overline denote the algebraic closure,
so that

k = Frac�[[t]].
5See [36, Def. 7.16].
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Let

k1 = FracQ[[t0,Q1et1
, . . . ,Qretr , t r+1, . . . , tN ]],

k2 = FracQ[[t0, et1
, . . . , etr , t r+1, . . . , tN ]],

k3 = FracQ{t0, et1
, . . . , etr , t r+1, . . . , tN },

k4 = Q[[t0, et1
, . . . , etr , t r+1, . . . , tN ]],

k5 = Q{t0, et1
, . . . , etr , t r+1, . . . , tN }.

Lemma 6.6 will show that k3 ∩ k4 = k5.
The divisor equation implies that all of the ingredients �i , � , and R used to

define Aabs
formal (in Sect. 6.1) are defined over k1 and therefore that Aabs

formal is an
element of Fock(HX ⊗ k1, φ0). The specialization Q1 = · · · = Qr = 1 defines an
isomorphism k1 ∼= k2, and thus Aabs

formal|Q1=···=Qr=1 is a well-defined element of
Fock(HX ⊗ k2, φ0).

On the other hand, all of the ingredients �i(t), �t , and Rt used to de-
fine Aabs

an (in Sect. 4) are defined over k3, and therefore Aabs
an is an element of

Fock(HX ⊗ k3, φ0). Note that k3 is contained in k2. Because the two sets of ingre-
dients (�i(t),�t ,Rt ) and (�i,�,R) coincide under the maps between ground
fields k3 → k2 and k1 → k2, it follows that

Aabs
an = Aabs

formal|Q1=···=Qr=1 (28)

as elements of Fock(HX ⊗ k2, φ0).
By Theorem 6.4 the right-hand side of (28) equals AX|Q1=···=Qr=1 and is an

element of Fock(HX ⊗ k4, φ0). Note that k4 is contained in k2. Since the left-hand
side of (28) is defined over k3 ⊂ k2, it follows that Aabs

an , Aabs
formal|Q1=···=Qr=1, and

AX|Q1=···=Qr=1 (which are all equal) are all defined over k3 ∩ k4 = k5, that is, all
three are elements of Fock(HX ⊗ k5, φ0).

Because M is a neighborhood (4) of the large-radius limit point, it contains
the set

{(t0, . . . , tN ) | (t0, et1
, . . . , etr , t r+1, . . . , tN ) ∈ Bε}

for some ε > 0, where Bε = {(z0, . . . , zN) ∈ CN+1 | |zi | < ε}. By Remark 4.4,
Aabs

an is also an element of Fock(HX ⊗ O(Bss
ε ), φ0) where Bss

ε ⊂ Bε ∩ (C ×
(C×)r × CN−r ) denotes the semisimple locus. Therefore, when expanding
logAabs

an in variables y
β
j and h̄, each coefficient is analytic function on Bss

ε that
extends to a neighborhood of the origin in Bε . Observe that Z = Bε \ Bss

ε is
a locally finite union of irreducible analytic subvarieties. Thus, there exists ε′
such that 0 < ε′ < ε and that Bε′ does not meet any irreducible component of Z

that is away from the origin. Every coefficient (of the expansion of logAabs
an in

variables y
β
j and h̄) extends to a holomorphic function on Bε′ . This shows that

AX|Q1=···=Qr=1 is convergent in the sense of Definition 3.13 or, in other words,

AX|Q1=···=Qr=1 ∈ Fock(HX ⊗ ϒε′, φ0).
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Finally, the rationality of AX|Q1=···=Qr=1 follows from the rationality of Aabs
an and

the fact that the discriminant det(−q1∗) is an element of ϒε′ [q0
1 , . . . , qN

1 ]. �

Lemma 6.6. Consider the intersections

FracC{x1, . . . , xn} ∩C[[x1, . . . , xn]] ⊂ FracC[[x1, . . . , xn]],
FracQ{x1, . . . , xn} ∩Q[[x1, . . . , xn]] ⊂ FracQ[[x1, . . . , xn]].

We have:

1. FracC{x1, . . . , xn} ∩C[[x1, . . . , xn]] = C{x1, . . . , xn},
2. FracQ{x1, . . . , xn} ∩Q[[x1, . . . , xn]] = Q{x1, . . . , xn}.
Proof. Statement (1) immediately implies statement (2). We prove (1). Let

P(x1, . . . , xn, y) = f0(x1, . . . , xn)y
k +f1(x1, . . . , xn)y

k−1 +· · ·+fk(x1, . . . , xn),

where fi ∈ C{x1, . . . , xn}. Assume that the equation P(x1, . . . , xn, y) = 0 has a
solution y = g(x1, . . . , xn) with g ∈ C[[x1, . . . , xn]], so that

P(x1, . . . , xn, g(x1, . . . , xn)) = 0.

We will show that g ∈ C{x1, . . . , xn}. Without loss of generality we may assume
that g(0, . . . ,0) = 0 and therefore that P(0,0, . . . ,0,0) = 0.

Suppose first that P(0,0, . . . ,0, y) is not identically zero. Then the Weierstrass
preparation theorem implies that

P(x1, . . . , xn, y) = W(x1, . . . , xn, y)h(x1, . . . , xn, y),

where h is a unit in the local ring at the origin and W is a Weierstrass polynomial:

W(x1, . . . , xn, y) = yl +
l−1∑
j=0

wj(x1, . . . , xn)y
j

with wj(0, . . . ,0) = 0. Then W(x1, . . . , xn, g(x1, . . . , xn)) = 0. A theorem of
Aroca [2] implies that there exist vectors

v1, . . . , vn ∈ Qn, vi = (v1
i , . . . , v

n
i ),

such that v1, . . . , vn span a strictly convex cone containing the positive orthant,
that the Z≥0-span of v1, . . . , vn contains (Z≥0)

n, and that after the monomial
change of variables,

zi = x
v1
i

1 · · ·xvn
i

n , i = 1,2, . . . , n,

there exists a convergent power series yc ∈ C{z1, . . . , zn} such that

W(x1, . . . , xn, yc(z1, . . . , zn)) = 0.

We can therefore factorize W over the ring C{z1, . . . , zn}:

W(x1, . . . , xn, y) = (y − yc)

(
yl−1 +

l−2∑
j=0

w′
j (z1, . . . , zn)y

j

)
.
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This equation makes sense over the ring C[[z1, . . . , zn]] that contains the solution
y = g(x1, . . . , xn). Thus, either yc = g, in which case g ∈ C{x1, . . . , xn}, or we
can apply Aroca’s theorem again with W(x1, . . . , xn, y) replaced by the Weier-
strass polynomial

yl−1 +
l−2∑
j=0

w′
j (z1, . . . , zn)y

j

of lower degree. By induction, we conclude that g ∈C{x1, . . . , xn}.
It remains to consider the case where P(0,0, . . . ,0, y) is identically zero. Con-

sider the coordinate change

x′
i = xi − aiy, 1 ≤ i ≤ n,

where we choose (a1, . . . , an) ∈ Cn such that P(x1, . . . , xn, y) is not identically
zero on the line x′

1 = · · · = x′
n = 0 and dg(0,0...,0)(a1, . . . , an) �= 1. Writing the

solution y = g(x1, . . . , xn) in the new coordinate system, we find

y = g(x′
1 + a1y, x′

2 + a2y, . . . , x′
n + any).

This equation has a unique power series solution y = G(x′
1, . . . , x

′
n), and the

argument in the preceding paragraph shows that G ∈ C{x′
1, . . . , x

′
n}. To recover

g(x1, . . . , xn) from G(x′
1, . . . , x

′
n), we solve the equation

y = G(x1 − a1y, x2 − a2y, . . . , xn − any).

This also has a unique power series solution y = g(x1, . . . , xn) because the condi-
tion dg(0,0...,0)(a1, . . . , an) �= 1 implies that dG(0,0...,0)(a1, . . . , an) �= −1. On the
other hand, the implicit function theorem shows that there is a unique analytic
solution y = v(x1, . . . , xn) such that v(0, . . . ,0) = 0. The power series expansion
of v at the origin must coincide with g(x1, . . . , xn); thus, g ∈ C{x1, . . . , xn}. The
lemma is proved. �

Remark 6.7. The same argument proves Givental’s statements (A) and (B) for
the ancestor potential of a compact toric orbifold. We need:

• the fact that orbifold Gromov–Witten theory defines a DMT (combine [36,
Sect. 1.7] with [1]);

• analyticity, semisimplicity, and tameness of the corresponding Frobenius man-
ifold.

This last point would follow from an appropriate mirror theorem for toric orb-
ifolds. Such a mirror theorem has been formulated as the Coates–Corti–Iritani–
Tseng conjecture (see [26, Sect. 4]), which was proved for weighted projective
spaces in [8] and will be proved for general toric orbifolds X in [7].

Tseng has announced a proof of statements (A) and (B) for compact toric orb-
ifolds using localization in equivariant Gromov–Witten theory [34]. His version
is somewhat stronger than ours since it applies in the equivariant setting where
the Frobenius manifold is not conformal.
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7. NF-Convergence of Gromov–Witten Potentials: Statements

Definition 7.1. The genus-g ancestor potential F̄g
t is said to be NF-convergent

if the power series (9) converges absolutely and uniformly on an infinite-
dimensional polydisc of the form⎧⎪⎨⎪⎩

|yα
i | < εi!/Ci, 0 ≤ i < ∞, 0 ≤ α ≤ N ,

|tα| < ε, 0 ≤ α ≤ N ,

|Qj | < ε, 1 ≤ j ≤ r ,

(29)

for some C,ε > 0. The total ancestor potential AX is said to be NF-convergent if
the power series (9) defining each genus-g ancestor potential F̄g

t converges abso-
lutely and uniformly on a polydisc of the form (29) for some uniform C,ε > 0.

Remark 7.2. “NF” here stands for “nuclear Fréchet”: see Remark 7.6.

Theorem 7.3. If the total ancestor potential AX is convergent in the sense of
Definition 3.13, then it is NF-convergent in the sense of Definition 7.1.

Remark 7.4. NF-convergence of the total ancestor potential (Def. 7.1) is weaker
than convergence of the total ancestor potential (Def. 3.13). The rationality and
the tameness in Definition 3.13 do not follow from NF-convergence.

Theorem 6.5 and Theorem 7.3 together immediately imply Theorem 1.4.

7.1. Convergence of the Descendant Potential

Definition 7.5. The genus-g descendant Gromov–Witten potential Fg
X is said to

be NF-convergent if the power series (6) converges absolutely and uniformly on
an infinite-dimensional polydisc of the form{

|tαi | < εi!/Ci, 0 ≤ i < ∞, 0 ≤ α ≤ N ,

|Qj | < ε, 1 ≤ j ≤ r,
(30)

for some C,ε > 0. We say that the total descendant Gromov–Witten potential
ZX is NF-convergent if the power series (6) defining each genus-g descendant
potential Fg

X converges absolutely and uniformly on a polydisc of the form (30)
for some uniform C,ε > 0.

Remark 7.6. A holomorphic function on a locally convex topological vector
space over C can be defined as a complex Gâteaux-differentiable continuous func-
tion [12; 5]. If Fg

X is NF-convergent, then it defines a holomorphic function on an
ε-ball of the Banach space

lC∞(HX) =
{

t(z) ∈ HX ⊗C[[z]] : sup
i,α

( |tαi |Ci

i!
)

< ∞
}

(31)
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equipped with the weighted l∞-norm

‖t‖∞,logC = sup
i,α

( |tαi |Ci

i!
)

. (32)

If Fg
X is NF-convergent, then we can also view it as a holomorphic function on a

neighborhood of the origin of the nuclear Fréchet space

H+ =
{

t(z) ∈ HX ⊗C[[z]] : sup
i,α

( |tαi |ein

i!
)

< ∞ for all n ≥ 0

}
⊂ lC∞(HX). (33)

The topology on H+ is defined by countably many norms

‖t‖∞,n = sup
i,α

( |tαi |eni

i!
)

, n = 0,1,2, . . . .

This viewpoint is perhaps more natural. As we will see in Lemma 8.9, a holo-
morphic function on a neighborhood of zero in H+ automatically extends to a
holomorphic function on a neighborhood of zero in lC∞(HX) for some C > 0.

Remark 7.7. In unpublished work, Iritani has shown that the Gromov–Witten
potential Fg

X converges on a polydisc of the form (30) whenever the target space
X admits a torus action with isolated fixed points and isolated one-dimensional
orbits [27].

Theorem 7.8. If the nondescendant genus-zero potential F 0
X is convergent in

the sense of Section 2.3, then the genus-zero descendant potential F0
X is NF-

convergent in the sense of Definition 7.5.

Theorem 7.9. If the total ancestor potential AX is convergent in the sense of
Definition 3.13, then the total descendant potential ZX is NF-convergent in the
sense of Definition 7.5.

Theorem 6.5 and Theorem 7.9 together immediately imply Theorem 1.1.

8. NF-Convergence of Gromov–Witten Potentials: Proofs

In this section we prove the results about NF-convergence of descendant and an-
cestor potentials stated in Section 7. The key ingredients are the Kontsevich–
Manin ancestor-descendant relation, the Nash–Moser inverse function theorem,
and a version of Givental’s symplectic space based on a nuclear Fréchet space
(see Sect. 8.4), which may be of independent interest.

8.1. Setting Q1 = · · · = Qr = 1 Makes Sense when Fg
X is NF-Convergent

Making the argument explicit, we write the genus-g descendant potential Fg
X as

Fg
X(q,Q1, . . . ,Qr),
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where q is the dilaton-shifted coordinate appearing in Section 2.6 and Q1, . . . ,Qr

are Novikov variables. The divisor equation [1, Thm. 8.3.1] implies that

Fg
X([e−δ/zq(z)]+,Q1, . . . ,Qr) = Fg

X(q(z), eδ1Q1, . . . , e
δr Qr)

+ δg,0

2
�(e−δ/zq(z), [e−δ/zq(z)]+)

− δg,1

24

∫
X

δ ∪ cD−1(X), (34)

where δ = ∑r
α=1 δαφα ∈ H 2(X), D = dimX, [· · · ]+ denotes the power series

truncation of a Laurent series in z, and � is Givental’s symplectic form in (18)
(with V = HX). The formula follows by integrating [9, Eq. (8)] and using [19,
Prop. 5.3]. Equation (34) is an equality between formal power series in the vari-
ables tαi , Qi , and δα , where

tαi =
{

qα
i + 1 if (i, α) = (1,0),

qα
i otherwise.

Note that the specialization Q1 = · · · = Qr = 1 of the right-hand side of
(34) makes sense as an analytic function on a region {(q(z) = t(z) − φ0z, δ) :
‖t‖∞,logC < ε, |eδα | < ε} ⊂ lC∞(HX) × H 2(X;C) if Fg

X is NF-convergent (see
(31), (32) for the Banach space lC∞(HX)).

Lemma 8.1. Assume that the genus-g descendant potential Fg is NF-convergent
in the sense of Definition 7.5. Then the specialization Q1 = · · · = Qr = 1 of the
right-hand side of (34) depends only on the point [e−δ/zq(z)]+ ∈ HX ⊗C[[z]].
Proof. Suppose [e−δ/zq(z)]+ = [e−δ′/zq′(z)]+. We need to show that the spe-
cialization Q1 = · · · = Qr = 1 of the right-hand side of (34) has the same
value at (q, δ) and (q′, δ′). This follows by applying (34) itself to the relation
q′(z) = [e(δ′−δ)/zq(z)]+. �

The lemma allows us to define a holomorphic function Fg
X,an as follows.

Definition–Proposition 8.2. Assume that the genus-g descendant potential Fg

is NF-convergent in the sense of Definition 7.5. Recall the definition of the Banach
space lC∞(HX) in Remark 7.6 and set

Bε(l
C∞(HX)) = {t(z) ∈ lC∞(HX) : ‖t‖∞,C < ε}.

Then there exists a holomorphic function

Fg
X,an :

⋃
δ∈H 2(X;C),
�(δi )<log ε

[e−δ/z(−φ0z + Bε(l
C∞(HX)))]+ → C (35)
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such that

Fg
X,an([e−δ/zq(z)]+) = Fg

X(q, eδ1 , . . . , eδr )

+ δg,0

2
�(e−δ/zq(z), [e−δ/zq(z)]+)

− δg,1

24

∫
X

δ ∪ cD−1(X). (36)

We refer to Fg
X,an as the specialization of Fg

X to Q1 = · · · = Qr = 1.

8.2. Fundamental Solution

Recall the definition of the Dubrovin connection ∇ in Section 2.4. Consider the
fundamental solution L ∈ End(HX) ⊗ �[[t]][[z−1]] defined by

L(t, z)v = v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!
〈

v

z − ψ
, t, . . . , t, φε

〉X
0,n+2,d

φε (37)

for v ∈ HX . The expression v/(z−ψ) in the correlator should be expanded in the
series

∑∞
n=0 vψnz−n−1. The fundamental solution satisfies

∇∂/∂ti (L(t, z)z−μz−ρv) = 0 and

∇z∂/∂z(L(t, z)z−μz−ρv) = 0

for all v ∈ HX , where ρ = c1(X), and the endomorphisms z−μ and z−ρ of HX

are defined by z−μ = exp(−μ log z) and z−ρ = exp(−ρ log z). The fundamental
solution also satisfies

(L(t,−z)v,L(t, z)w) = (v,w)

for v,w ∈ HX , where (·, ·) denotes the Poincaré pairing of HX , and so the inverse
fundamental solution M(t, z) = L(t, z)−1 coincides with the adjoint of L(t,−z):

M(t, z)v := v +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

Qd

n!
〈

φε

−z − ψ
, t, . . . , t, v

〉X
0,n+2,d

φε. (38)

The divisor equation for descendant invariants [1, Thm. 8.3.1] implies that

L(t, z)v = eδ/zv +
∑

d∈NE(X)

∞∑
n=0

N∑
ε=0

ed·δQd

n!
〈

eδ/zv

z − ψ
, t ′, . . . , t ′, φε

〉X
0,n+2,d

φε,

(39)

where t = δ + t ′, δ ∈ H 2(X), t ′ ∈⊕
p �=1 H 2p(X).

If the genus-zero Gromov–Witten potential F 0
X converges in the sense of Sec-

tion 2.3, then the fundamental solution with Q1 = · · · = Qr = 1 depends analyti-
cally on both t and z, where t lies in a neighborhood (4) of the large-radius limit
point, and z is any point of C×.
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8.3. Ancestor–Descendant Relation

In this section we distinguish the variables for descendant potentials and ancestor
potentials. Let x = (x0, x1, x2, . . . ) be a sequence of variables in HX with xi =∑N

α=0 xα
i φα ∈ HX . Let q = (q0, q1, q2, . . . ) be a sequence of variables in HX

with qi =∑N
α=0 qα

i φα ∈ HX as before. We consider the change of variables

q(z) = [M(t, z)x(z)]+ (40)

between x and q for some t ∈ HX . Here [· · · ]+ denotes the truncation of a z-series,
x(z) = ∑∞

i=0 xiz
i , q(z) = ∑∞

i=0 qiz
i , and M(t, z) is the inverse fundamental so-

lution given in (38). We relate the variables q, x with the variables t, y by the
dilaton shift (cf. Section 2.6):

q(z) = t(z) − φ0z, x(z) = y(z) − φ0z. (41)

As in Section 2.5, we use t as arguments for the descendant potential Fg
X and ZX

and use t , y as arguments for the ancestor potential F̄g
X and AX , that is, ZX is a

formal power series in t, and AX is a formal power series in t and y.

Theorem 8.3 (Kontsevich–Manin [30, Thm. 2.1], Givental [19, Sect. 5], Coates–
Givental [9, App. 2]). Let Fg and F̄g

t denote the genus-g descendant and ances-
tor potentials of a smooth projective variety X. We have:

Fg(q) =
{

F 1(t) + F̄1
t (x) if g = 1,

F̄g
t (x) if g ≥ 2,

under the change of variables given in (40). Here F 1 is the nondescendant genus-
1 potential.

Remark 8.4. In terms of the dilaton-shifted coordinates (41), the change of vari-
ables (40) can be written as

t0 = t + y0 + M1(t)y1 + M2(t)y2 + · · · ,

t1 = y1 + M1(t)y2 + M2(t)y3 + · · · ,

t2 = y2 + M1(t)y3 + M2(t)y4 + · · · ,

...

(42)

Here we write M(t, z) = Id+∑∞
n=1 Mn(t)z

−n and use [M(t, z)(−φ0z)]+ =
−φ0z + t . This defines an isomorphism

�[[t]][[t]] ∼=−→ �[[y]][[t]]
because Mn(0) ≡ 0 modulo (Q1, . . . ,Qr) for n ≥ 1.
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8.4. Analytic Preliminaries

Consider the following family of Hilbert norms ‖ · ‖n, n = 0,1,2, . . . , on
C[[z, z−1]]:

‖a(z)‖n =
(∑

j∈Z

|aj |2
|�(1/2 + j)|2 e2nj

)1/2

for a(z) =
∑
j∈Z

aj z
j

and set

C{{z, z−1}} = {a(z) ∈C[[z, z−1]] : ‖a(z)‖n < ∞ for all n � 0}.
We write

C{{z}} =C[[z]] ∩C{{z, z−1}} = {a(z) ∈C[[z]] : ‖a(z)‖n < ∞ for all n ≥ 0},
C{{z−1}} =C[[z−1]] ∩C{{z, z−1}}

= {a(z) ∈ C[[z−1]] : ‖a(z)‖n < ∞ for some n ≥ 0}.
Note that the norms are increasing on C{{z}} (‖ · ‖0 ≤ ‖ · ‖1 ≤ ‖ · ‖2 ≤ · · · ), and
C{{z}} is a nuclear Fréchet space with topology defined by these norms. The norms
are decreasing on C{{z−1}} (‖ · ‖0 ≥ ‖ · ‖1 ≥ ‖ · ‖2 ≥ · · · ), and C{{z−1}} is an
inductive limit of Hilbert spaces; C{{z−1}} with the inductive limit topology is the
strong dual of C{{z}} and is a nuclear (DF) space. The following lemma shows
that C{{z, z−1}} is a topological ring.

Lemma 8.5. For a(z), b(z) ∈ C{{z, z−1}}, the product a(z)b(z) converges. More-
over, we have:

‖[a(z)b(z)]+‖n−1 ≤ 5(‖a(z)‖n+2 + ‖a(z)‖n−2)(‖b(z)‖n+2 + ‖b(z)‖n−2),

‖[a(z)b(z)]−‖n+1 ≤ 5(‖a(z)‖n+2 + ‖a(z)‖n−2)(‖b(z)‖n+2 + ‖b(z)‖n−2),

where [· · · ]+ and [· · · ]− denote respectively the nonnegative and strictly negative
truncations of a power series in z and z−1. In particular, if a(z) ∈ C{{z−1}} and
b(z) ∈ C{{z}}, then:

‖[a(z)b(z)]+‖n−1 ≤ 20‖a(z)‖n−2‖b(z)‖n+2,

‖[a(z)b(z)]−‖n+1 ≤ 20‖a(z)‖n−2‖b(z)‖n+2.
(43)

Proof. Observe first that∣∣∣∣�(j + 1/2)�(k + 1/2)

�(j + k + 1/2)

∣∣∣∣≤ πe2|j |+2|k|

for all j, k ∈ Z. Setting c(z) =∑
l∈Z clz

l = a(z)b(z), we have∣∣∣∣ cl

�(l + 1/2)

∣∣∣∣≤ ∑
j+k=l

|ajbk|
|�(l + 1/2)|

≤
∑

j+k=l

|aj |
|�(j + 1/2)|

|bk|
|�(k + 1/2)|

∣∣∣∣�(j + 1/2)�(k + 1/2)

�(j + k + 1/2)

∣∣∣∣
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≤ πe−nl
∑

j+k=l

|aj |
|�(j + 1/2)|e

nj+2|j | |bk|
|�(k + 1/2)|e

nk+2|k|

≤ πe−nl(‖a(z)‖n+2 + ‖a(z)‖n−2)(‖b(z)‖n+2 + ‖b(z)‖n−2),

where we used the Cauchy–Schwarz inequality in the last step. The conclusion
follows. �

Remark 8.6. Let τ be the coordinate Laplace-dual to z−1, and let (j∗OCτ
)∞ de-

note the space of germs of holomorphic functions f defined on a small punctured
neighborhood

{τ ∈ C : Rf < |τ | < ∞}
of τ = ∞. Here j : Cτ ↪→ P1

τ is the natural inclusion. A calculation similar to that
in the proof of Lemma 8.5 shows that the ring C{{z, z−1}} acts on (j∗OCτ

)∞ as
microdifferential operators

f (τ) �→ τ 1/2a(∂−1
τ )τ−1/2f (τ) for a(z) ∈C{{z, z−1}}.

Here τ−1/2 was put to make the action well defined. The positive part C{{z}}
preserves the space of entire functions O(Cτ ) ⊂ (j∗OCτ

)∞, and the negative
part C{{z−1}} preserves the space of germs of holomorphic functions (OP1

τ
)∞ ⊂

(j∗OCτ
)∞ at τ = ∞.

Definition 8.7 (cf. [21]). We now define a nuclear version of Givental’s sym-
plectic space. This is the vector space

H = HX ⊗C{{z, z−1}}
equipped with Givental’s symplectic form

� : H×H −→ C,

(f(z),g(z)) �−→ Resz=0〈f(−z),g(z)〉HX
dz.

It has the standard polarization H = H+ ⊕H−, where6

H+ := HX ⊗C{{z}} and H− := HX ⊗ z−1C{{z−1}}.
The symplectic form � identifies H− with the strong dual of H+ and identifies
H+ with the strong dual of H−. The spaces H, H± are fully nuclear; H+ is
Fréchet, and H− is (DF).

Lemma 8.8. Assume that the genus-zero nondescendant potential F 0
X converges

as in Section 2.3. Let L(t, z) be the fundamental solution (37), and let M(t, z)

be the inverse fundamental solution (38). Then there exist ε > 0, n ≥ 0, and
R = R(α1, . . . , αl, j1, . . . , jm) > 0 such that for |tα| < ε and |Qi | < ε, the ma-
trix entries of

∂l+mL(t, z)

∂tα1 · · · ∂tαl ∂Qj1 · · · ∂Qjm

and
∂l+mM(t, z)

∂tα1 · · · ∂tαl ∂Qj1 · · · ∂Qjm

6H+ here coincides with the previous formula (33).
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lie in the bounded subset

{a(z) ∈C{{z−1}} : ‖a(z)‖n < R}.
Proof. Writing qm = (t0)m0(Q1e

t1
)m1 · · · (Qre

tr )mr (tr+1)mr+1 · · · (tN )mN , we
can expand the inverse fundamental solution as

M(t, z) = e−t/z
∞∑
i=0

∑
m

Mm,iq
mz−i

with Mm,i ∈ End(HX). It was shown7 in [25, Lemma 4.1] that Mm,i satisfies

‖Mm,i‖ ≤ AC|m|+i 1

i!
for some A,C > 0. The conclusion about the partial derivatives of M(t, z) follows
from this. The same argument as [25, Lemma 4.1] shows the same estimates for
the coefficients of L(t, z). This implies the conclusion about the partial derivatives
of L(t, z). �

Let C{{z}}n∞ be the local Banach space of the Fréchet space C{{z}} associated to
the norm ‖a(z)‖∞,n = supj (|aj |enj /j !), that is,

C{{z}}n∞ =
{

a(z) ∈C[[z]] : sup
j

( |aj |enj

j !
)

< ∞
}

⊃ C{{z}}.

Then lC∞(HX) ∼= HX ⊗C{{z}}n∞ for C = en: see (31).

Lemma 8.9. (1) Let F(a) be a holomorphic function defined on a neighborhood
of the origin of the Fréchet space C{{z}}. Consider the monomial Taylor expansion∑

m=(m0,m1,m2,... )

1

m0!m1!m2! · · ·
∂ |m|F

∂a
m0
0 ∂a

m1
1 ∂a

m2
2 · · · (0)a

m0
0 a

m1
1 a

m2
2 · · · , (44)

where m = (m0,m1,m2, . . . ) is a sequence of nonnegative integers such that
mi = 0 for i � 0, and |m| = ∑

i mi . There exist n ≥ 0 and ε > 0 such that the
monomial Taylor expansion (44) converges absolutely and uniformly on the ε-ball

Bε(C{{z}}n∞) = {a ∈C{{z}}n∞ : ‖a‖∞,n < ε}
in the Banach space C{{z}}n∞ and coincides with F(a) for a ∈ C{{z}} ∩
Bε(C{{z}}n∞).

(2) If F(a) is uniformly continuous with respect to the norm ‖ · ‖∞,p and holo-
morphic on the ball {a(z) ∈ C{{z}} : ‖a(z)‖∞,p < ρ}, then the monomial Taylor

expansion (44) converges absolutely and uniformly on the ball Bρ/3(C{{z}}p+2∞ ).

Proof. Let us write the monomial Taylor expansion (44) as∑
m

1

m!F
(m)(0)am.

7Note that in [25] M(t, z) is denoted by L(t,−z).
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There exist η > 0 and n ≥ 0 such that F is holomorphic on

{a ∈C{{z}} : ‖a‖∞,n < 2η}.
Decreasing η and increasing n if necessary, we can assume that F is bounded on

{a ∈ C{{z}} : ‖a‖∞,n ≤ η}
since F is continuous. Set Rj = j !e−nj η. By the Cauchy integral formula applied
to F(a0, . . . , al,0,0, . . . ) we obtain for m = (m0, . . . ,ml,0,0, . . . ):∣∣∣∣ 1

m!F
(m)(0)

∣∣∣∣= ∣∣∣∣ 1

(2πi)l+1

∫
|aj | = Rj , 0 ≤ j ≤ l

F(a0, . . . , al,0, . . . )

a
m0+1
0 · · ·aml+1

l

da0 · · ·dal

∣∣∣∣
≤ Me

n
∑

j jmj

η|m|∏
i (i!)mi

,

where M is the supremum of |F(a)| over {‖a‖∞,n ≤ η}. Set η = eε. Then if
‖a‖∞,n+1 < ε, then we have∣∣∣∣ 1

m!F
(m)(0)am

∣∣∣∣≤ Me−∑
i (i+1)mi .

The right-hand side is absolutely convergent because∑
m

e−∑
i (i+1)mi =

∞∏
i=0

1

1 − e−i−1
< ∞.

Hence, the monomial Taylor expansion (44) converges absolutely and uniformly
in the ball Bε(C{{z}}n+1∞ ). The Taylor series and F(a) match for a ∈ C{{z}} with
‖a‖∞,n+1 < ε since both are continuous and they match on the dense subset {a ∈
C[z] : ‖a‖∞,n+1 < ε}. This proves Part (1).

Part (2) can be proved by a small modification of the previous argument. Be-
cause F is uniformly continuous with respect to ‖ · ‖∞,p , it extends uniquely to a
‖ · ‖∞,p-continuous function on the ball

B = {a(z) ∈C{{z}}p∞ : ‖a(z)‖∞,p < ρ}.
In view of the preceding, it suffices to show, under the hypotheses of Part (2), that
F is bounded on

B ′ =
{

a(z) ∈ C{{z}} : ‖a(z)‖∞,p+1 ≤ e
ρ

3

}
.

Suppose on the contrary that F is not bounded on B ′. Then there exists a sequence
(al)

∞
l=1 in B ′ such that liml→∞ |F(al )| = ∞. Because (al )

∞
l=1 is bounded in the

norm ‖ · ‖∞,p+1, we can find a subsequence (aln )
∞
n=1 that converges to an element

in B in the norm ‖ · ‖∞,p . But F extends to a continuous function on B , so this is
a contradiction. �

Remark 8.10. In infinite dimensions there are two different Taylor expansions:
monomial expansion as before and the expansion

∑∞
m=0 Pm(a, . . . ,a) by m-linear

forms Pm = 1
m!D

m
0 F . For a holomorphic function on C{{z}}n∞, the monomial

expansion does not necessarily converges, whereas
∑∞

m=0 Pm(a, . . . ,a) always
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does; see [10] and references therein. On the other hand, Boland and Dineen [4]
showed that monomials form an absolute basis of the space of holomorphic func-
tions on the open set {a ∈ C{{z}} : ‖a‖∞,n < ε} in C{{z}} with respect to a certain
topology τω.

8.5. NF-Convergence of the Genus-Zero Descendant Potential

In this section we prove Theorem 7.8: that Genus-Zero Convergence (25), which
is a convergence assumption on the nondescendant genus-zero potential F 0

X , im-
plies the NF-convergence of the descendant genus-zero potential F0

X . The main
ingredients are the Nash–Moser inverse function theorem and the reconstruction
theorem of Dubrovin [13] and Dijkgraaf and Witten [11], which determines de-
scendant genus-zero invariants from primary genus-zero invariants.

We introduce a sequence of variables p = (p0,p1,p2, . . . ) in HX with pi =∑N
α=0 pi,αφα and a generating function

p(z) =
∞∑
i=0

N∑
α=0

pi,α

φα

(−z)i+1

taking values in z−1HX[[z−1]]. Let M(t, z) denote the inverse fundamental so-
lution (38). Consider the ancestor variable x = (0, x1, x2, . . . ) with x0 = 0 and
set

q(z) + p(z) = M(t, z)x(z) (45)

(cf. equation (40)), where q(z) is the nonnegative part, and p(z) is the strictly
negative part. Recall that x and y are related by the dilaton shift (41). Because the
0th ancestor variable x0 = y0 is now set to equal zero, the map

(t,x(z)) �→ q(z) = [M(t, z)x(z)]+ (46)

defines an isomorphism between the formal neighborhoods of y≥1 = t = 0 and
t = 0,

�[[t]] ∼=−→ �[[y≥1]][[t]].
(This is clear from equation (42).) Equation (45) determines p, q as formal power
series in y≥1 and t . Via that isomorphism, we can regard pi,α as a formal power
series in t, that is, as an element of �[[t]].
Theorem 8.11 (Dubrovin [13], Dijkgraaf and Witten [11]). The descendant
Gromov–Witten potential F0

X is given by

F0
X = 1

2
�(p(z),q(z)) = 1

2

∞∑
i=0

N∑
α=0

pi,αqα
i .

Here � is Givental’s symplectic form defined in (18).

Proof. Note that the right-hand side converges in the adic topology of �[[t]] be-
cause v(qα

i ) = i + 1 for i ≥ 2. We use a reformulation by Givental [19, Sect. 5],
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proven in Appendix 2 of [9]. The inverse of the coordinate change (46) is given
by the fundamental solution L(t, z) in (37) as

0 = [L(t, z)q(z)]0, x(z) = [L(t, z)q(z)]≥1,

where [· · · ]0 means the coefficient of z0, and [· · · ]≥1 means the strictly positive
truncation of a power series in z. The first equation implicitly determines t as a
function t (q) of q. We have

1

2
�(p(z),q(z)) = 1

2
�([M(t, z)x(z)]−, [M(t, z)x(z)]+)

= 1

2
�(M(t, z)[L(t, z)q(z)]+,q(z))

= 1

2
�([L(t, z)q(z)]+,L(t, z)q(z))

with t = t (q). This coincides with Wt(q,q)/2 in [19, Prop. 5.3]. �

Proof of Theorem 7.8. We set:

H≥1 = {x(z) ∈H+ : x0 = 0},
�ε = {a ∈C : |a| < ε}.

By Lemma 8.8 and our convergence assumption for F 0
X , there exist n ≥ 0 and

ε > 0 such that all the matrix entries of M(t, z) with |tα| < ε and |Qi | < ε are
bounded with respect to the norm ‖ · ‖n. Therefore, if x ∈ H≥1, |tα| < ε, and
|Qi | < ε, then (p,q) defined by equation (45) lies in H− × H+ by Lemma 8.5,
and the sum

∑∞
i=0

∑N
α=0 pi,αqα

i converges. Moreover, the map

H≥1 × �N+1+r
ε →H− ×H+,

(x, t,Q) �→ (p,q)

given by (45) is continuous because

‖M(t, z;Q)x(z) − M(t ′, z;Q′)x′(z)‖n ≤ A‖(t,Q) − (t ′,Q′)‖‖x(z)‖n+3

+ B‖x(z) − x′(z)‖n+3

for n � 0 and some A,B > 0. This follows from estimate (43) and the uniform
estimate of the derivatives of M(t, z;Q) in Lemma 8.8. The map

(x, t,Q) �→ 1

2
�(p(z),q(z))

is obviously Gâteaux-differentiable and therefore defines a holomorphic function
of (x, t,Q) ∈ H≥1 × �N+1+r

ε (see Remark 7.6). This gives the genus-zero de-
scendant potential F0

X by Theorem 8.11.
In view of Lemma 8.9, it now suffices to show that the map (x, t,Q) �→

(q,Q) given by (46) defines a local isomorphism between a neighborhood of
(x, t,Q) = (−φ0z,0,0) in H≥1 × CN+1+r and a neighborhood of (q,Q) =
(−φ0z,0) in H+ × Cr . We apply the Nash–Moser inverse function theorem
[22, Part III, Thm. 1.1.1]. We need to show that there exists a neighborhood
U ⊂ H≥1 ×CN+1+r of (x, t,Q) = (−φ0z,0,0) such that:
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• the map (x, t,Q) �→ (q,Q) is smooth tame [22, Part II, §2.1] on U ;
• the linearized operator Dx,t,Q(q,Q) is invertible at every (x, t,Q) ∈ U ;
• the inverse (Dx,t,Q(q,Q))−1 is continuous and tame as a map U × (H+ ×
Cr ) →H≥1 ×CN+1+r (see [22, Part II, Thm. 3.1.1]).

The proof of smoothness is similar to the previous proof of continuity and is
omitted. Because q is linear in x, the smooth-tameness of (x, t,Q) �→ q follows
from the inequality

‖[∂v1 · · · ∂vl
M(t, z)x(z)]+‖n ≤ A‖x‖n+3 (47)

for all (t,Q) ∈ �N+1+r
ε , n � 0, and some A > 0 (A can depend on v1, . . . , vl).

Here ∂vj
denotes the partial derivative along �N+1+r

ε . Inequality (47) follows
directly from estimate (43) and Lemma 8.8.

The linearized operator is given by

(Dx,t,Q(q,Q))(dx, dt, dQ)

=
(

[M(t, z)(−z−1 dt ∗ x + dx)]+ +
r∑

i=1

dQi

[
∂M

∂Qi

(t, z)x
]

+
, dQ

)
,

where ∗ denotes the analytic quantum product depending on (t,Q). Equating this
with (dq, dQ), we get

−z−1 dt ∗ x + dx =
[
L(t, z)

(
dq −

r∑
i=1

dQi

[
∂M

∂Qi

(t, z)x
]

+

)]
+
.

The right-hand side is continuous and tame as a map from ((x, t,Q), (dq, dQ)) ∈
(H≥1 × �N+1+r

ε ) × (H+ × Cr ) to H+ for the same reason as before. Equating
the left-hand side with v = (v0,v≥1) yields

v0 = −dt ∗ x1, v≥1 = z−1 dt ∗ x≥2 + dx.

When x0 is sufficiently close to −φ0, the first equation can be inverted, and we
obtain the inverse map ((x, t,Q),v) �→ (dx, dt) given by

dt = −(x1∗)−1v0, dx = v≥1 + z−1((x1∗)−1v0) ∗ x≥2.

This map is continuous and tame. Hence, the linearized operator admits a con-
tinuous and tame inverse in a neighborhood of (−φ0z,0,0). The Nash–Moser
theorem now applies. �

An Analytic Version of Theorem 8.11. We saw in Section 8.1 that whenever F0
X

converges, we can define the specialization F0
X,an of F0

X to Q1 = · · · = Qr = 1.
We now show that the Dubrovin–Dijkgraaf–Witten reconstruction theorem (The-
orem 8.11) holds for this F0

X,an. Genus Zero Convergence (25) implies that
M(t, z)|Q1=···=Qr=1 depends analytically on (t, z) where z ∈ C× and t lies in a
neighborhood (4) of the large-radius limit point. Set H≥1 = {x(z) ∈ H+ : x0 = 0}.
We define q and p by a formula analogous to (45):

q(z) + p(z) = M(t, z)|Q1=···=Qr=1x(z), (48)
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where x(z) ∈ H≥1 and

q(z) = [M(t, z)|Q1=···=Qr=1x(z)]+.

Arguing as in the proof of Theorem 7.8 shows that we get a continuous mapping
(t,x) �→ (p,q) ∈ H− ×H+ and that the map

H≥1 × HX →H+,

(x, t) �→ q(z)

gives a local isomorphism between H≥1 × HX and H+ for t in a neighborhood
(4) of the large-radius limit point and x in a neighborhood of −φ0z. Therefore,
for any chosen point t ∈ HX ⊗ C in a neighborhood (4) of the large-radius limit
point, the sum 1

2

∑∞
i=0

∑∞
α=0 pi,αqα

i can be regarded as a holomorphic function
on a neighborhood of q(z) = [M(t, z)(−φ0z)]+ = t − φ0z in H+.

Theorem 8.12 (Analytic version of Theorem 8.11). Assume that the genus-zero
descendant Gromov–Witten potential F0

X is NF-convergent in the sense of Defi-
nition 7.5. Then its specialization F0

X,an to Q1 = · · · = Qr = 1 (see (35)) is given
by

F0
X,an = 1

2
�(p,q) = 1

2

∞∑
i=0

N∑
α=0

pi,αqα
i .

The right-hand side here is, as discussed in the preceding paragraph, a holomor-
phic function defined on a neighborhood of q(z) = t − φ0z in H+, where t is a
point in the neighborhood (4) of the large-radius limit point.

Proof. We write the right-hand side as

C(0)(q) := 1

2
�(p,q).

The divisor equation shows that (cf. equation (39))

M(t − δ, z)|Q1=eδ1 ,...,Qr=eδr = eδ/zM(t, z)|Q1=···=Qr=1,

where δ =∑r
α=1 δαφα . Therefore, by (48), for x = (0, x1, x2, . . . ),

M(t − δ, z)x(z)|Q1=eδ1 ,...,Qr=eδr = eδ/z(p(z) + q(z)).

Assume now that �(δi) � 0 and that (t − δ,x) is sufficiently close to (0,−φ0z).
Setting

q̃(z) = [M(t − δ, z)x(z)]+|Q1=eδ1 ,...,Qr=eδr = [eδ/zq(z)]+,

p̃(z) = [M(t − δ, z)x(z)]−|Q1=eδ1 ,...,Qr=eδr ,

we have from the definition of C(0) and the original reconstruction Theorem 8.11
that

C(0)(q) = 1

2
�(p,q) = 1

2
�(eδ/zp, eδ/zq) = 1

2
�(p̃ − [eδ/zq]−, q̃ + [eδ/zq]−)

= 1

2
�(p̃, q̃) − 1

2
�([eδ/zq]−, q̃) = 1

2
�(p̃, q̃) − 1

2
�(eδ/z[e−δ/zq̃]+, q̃)
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= F0
X(q̃, eδ1, . . . , eδr ) + 1

2
�(e−δ/zq̃, [e−δ/zq̃]+).

Applying (36), we see that the right-hand side coincides with F0
X,an(q). �

8.6. The Proof of Theorem 7.9

The genus-zero ancestor potential F̄0
X contains as a subseries

∑
d∈NE(X)

∞∑
n=0

∑
0≤α,β,γ≤N

Qd

3!n! 〈y
α
0 φα, y

β

0 φβ, y
γ

0 φγ ;
n︷ ︸︸ ︷

t, . . . , t〉X0,3+n,d ,

and our convergence assumption implies that the coefficient of yα
0 y

β

0 y
γ

0 converges
as a power series in t and Q. This shows that all third derivatives of the nonde-
scendant genus-zero potential F 0

X are convergent and thus that F 0
X itself is con-

vergent. Theorem 7.8 then implies that the genus-zero descendant potential F0
X is

NF-convergent.
A similar argument shows that the genus-one nondescendant potential F 1

X(t)

converges. All derivatives of F 1
X(t) appear as subseries of F̄1

t and hence are con-
vergent. Thus, F 1

X(t) is also convergent. Now the ancestor–descendant relation
(Theorem 8.3) leads to the NF-convergence of higher-genus descendant poten-
tials. Under our convergence assumptions, the ancestor potential F̄g

t (x) with x0
set to equal zero depends:

• analytically on t i , Qi in a region (17), for some ε > 0,
• rationally on x1, and
• polynomially on x2, x3, . . . .

In particular, it is holomorphic in a small neighborhood of (x, t,Q) = (−φ0z,0,0)

in the Fréchet space H≥1 × CN+1+r ; moreover, for every n ≥ 0, it is uni-
formly continuous with respect to the norm ‖ · ‖n in a ‖ · ‖n-neighborhood of
(−φ0z,0,0). On the other hand, in the proof (Section 8.5) of Theorem 7.8, we
used the Nash–Moser inverse function theorem to show that the coordinate change
(x, t,Q) �→ (q,Q) defined by (46) is an isomorphism between a neighborhood
of (−φ0z,0,0) in H≥1 ×CN+1+r and a neighborhood of (−φ0z,0) in H+ ×Cr .
The Nash–Moser theorem [22, Part III, Thm. 1.1.1] moreover asserts that the in-
verse map (q,Q) �→ (x, t,Q) is smooth tame. Therefore, there exist m ≥ n ≥ 0
such that the inverse map is defined on a ‖ · ‖m-neighborhood of (−zφ0,0) and is
(‖ · ‖m,‖ · ‖n)-Lipschitz continuous8 there, that is, there exists C > 0 such that

‖(x′, t ′,Q′) − (x, t,Q)‖n ≤ C‖(q′,Q′) − (q,Q)‖m

for all (q,Q) and (q′,Q′) in a ‖·‖m-neighborhood of (−zφ0,0), where (x′, t ′,Q′)
and (x, t,Q) are the inverse images of (q′,Q′) and (q,Q), respectively. By
the ancestor-descendant relation (Theorem 8.3) the descendant potentials Fg(q),
g ≥ 1 are the pull-backs of the ancestor potentials F̄g

t (x) + δg,1F
1(t) under the

inverse map (q,Q) �→ (x, t,Q). Therefore, Fg(q), g ≥ 1, are holomorphic and

8To show this, we apply [22, Part II, Lemma 2.1.7] to the derivative of the inverse map.



628 Tom Coates & Hiroshi Iritani

uniformly continuous with respect to ‖ · ‖m on a common (i.e., independent of
g) ‖ · ‖m-neighborhood of (−zφ0,0) in H+ ×Cr . Because ‖ · ‖m ≤ C‖ · ‖∞,m+1
for some C > 0, the same holds for the norm ‖ · ‖∞,m+1. By Lemma 8.9 (2), the
monomial Taylor expansions of Fg(q), g ≥ 1, converge uniformly and absolutely
on a common Banach ball for the norm ‖ · ‖∞,m+3. The conclusion follows.

8.7. The Proof of Theorem 7.3

By Theorem 7.9 the total descendant potential ZX is convergent in the sense of
Definition 7.5. In particular, the genus-zero nondescendant potential F 0

X is conver-
gent. In this case the coordinate change (40) appearing in the ancestor–descendant
relation (Theorem 8.3) is an isomorphism between a neighborhood of (x, t,Q) =
(−φ0z,0,0) in H+ ×CN+1+r and a neighborhood of (q, t,Q) = (−φ0z,0,0) in
H+ × CN+1+r . (See equation (33) for H+.) This follows from the Nash–Moser
inverse function theorem using almost the same argument as in the proof of The-
orem 7.8. Therefore, the genus-g ancestor potentials F̄g

t (x) for all g ≥ 1 are holo-
morphic on a common neighborhood of (x, t,Q) = (−φ0z,0,0) and thus are NF-
convergent by Lemma 8.9. (We will prove in the next paragraph that the constants
C and ε defining the radius of NF-convergence here can be taken to be indepen-
dent of g.) At genus zero, the ancestor-descendant relation takes the form [19,
Prop. 5.3]

F0(q) = F̄0
t (x) + 1

2
Wt(q,q),

where the quadratic form Wt(q,q) appeared in the proof of Theorem 8.11; it is
convergent and holomorphic if q lies in H+ and |tα|, |Qi | are sufficiently small
(cf. the proof of Theorem 7.8). The NF-convergence of F̄0

t (x) follows.
For the uniformity of the constants C, ε > 0, we use an argument similar to

the proof (Section 8.6) of Theorem 7.9. We know that Fg(q) is uniformly con-
tinuous for ‖ · ‖n on a common (i.e., independent of g ≥ 1) ‖ · ‖n-neighborhood
of (q, t,Q) = (−zφ0,0,0) for some n ≥ 0 and that the map (x, t,Q) �→ (q, t,Q)

is smooth tame; thus, the pull-backs of Fg(q) by (x, t,Q) �→ (q, t,Q) are uni-
formly continuous for ‖ · ‖m on a common ‖ · ‖m-neighborhood of (x, t,Q) =
(−φ0z,0,0) for some m ≥ n. Then we apply part 2 of Lemma 8.9 to find that the
monomial Taylor expansion of F̄g

t (x) converges uniformly and absolutely on a
common ‖ · ‖∞,m+3-neighborhood of (−φ0z,0,0).

9. Negative Line Bundles Over Compact Toric Varieties

We now prove Corollary 1.3. Let Y be a compact toric variety, and let X be the
total space of a direct sum E = ⊕j=r

j=1 Ej of line bundles Ej over Y such that
c1(Ej ) · d < 0 whenever d is the degree of a holomorphic curve in Y . In what fol-
lows, we take r = 1, leaving the proof of the general case (which is very similar)
to the reader. Let X denote the projectivization X = P(E ⊕C), and let X∞ ⊂ X

denote the infinity section. The inclusion i : X → X induces a map

i� : H2(X;Z) → H2(X,Z),
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and e ∈ H2(X,Z) satisfies e = i�(d) if and only if e · [X∞] = 0. Thus, since
E → X is negative, any nonconstant holomorphic curve in X in the class i�(d)

lies entirely inside the zero section of X. It follows that

〈a1ψ
i1
1 , . . . , anψ

in
n 〉Xg,n,i�(d) = 〈i�(a1)ψ

i1
1 , . . . , i�(an)ψ

in
n 〉Xg,n,d , d �= 0,

where the right-hand side is defined as a local Gromov–Witten invariant [6], and
hence that the total descendant potential ZX occurs as a subseries of the total
descendant potential ZX . (Note that the degree-zero Gromov–Witten invariants
of X are not defined because the relevant moduli spaces of stable maps are not
compact, and hence degree-zero terms are omitted in the definition of ZX .) Corol-
lary 1.2 implies that the total descendant potential ZX is NF-convergent in the
sense of Definition 7.5, and it follows that ZX is NF-convergent too. The proof of
Corollary 1.3 is complete.

Proposition 9.1. Let X be a compact toric variety or a complete flag variety.
The total ancestor potential AX is convergent in the sense of Definition 3.13 and
is NF-convergent in the sense of Definition 7.1.

Proof. Combine the argument in the proof of Corollary 1.2 with Theorem 1.4.
�

Proposition 9.2. Let Y be a compact toric variety, and let X be the total space
of a direct sum E =⊕j=r

j=1 Ej of line bundles Ej over Y such that c1(Ej ) · d < 0
whenever d is the degree of a holomorphic curve in Y . The total ancestor potential
AX is convergent in the sense of Definition 3.13 and is NF-convergent in the sense
of Definition 7.1.

Proof. Argue as in the proof of Corollary 1.3, but use Proposition 9.1 in place of
Corollary 1.2. �
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