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On Stable Conjugacy of Finite Subgroups
of the Plane Cremona Group, II

YURI PROKHOROV

ABSTRACT. We prove that, except for a few cases, stable linearizability
of finite subgroups of the plane Cremona group implies linearizability.

1. Introduction

This is a follow-up paper to [ ]. Let k be an algebraically closed field of
characteristic 0. Recall that the Cremona group Cr, (k) is the group of birational
automorphisms Bir(PP") of the projective space P"* over k. Subgroups G C Cr,, (k)
and G’ C Cry, (k) are said to be stably conjugate if, for some N > n,m, they
are conjugate in Cry(k), where the embeddings Cr,(k), Cr,, (k) C Cry (k) are
induced by birational isomorphisms PV ——» P x PN=7 5 P 5 pPN—7,

Any embedding of a finite subgroup G C Cr, (k) is induced by a biregular
action on a rational variety X. A subgroup G C Cr, (k) is said to be linearizable
if one can take X = P". A subgroup G C Cr, (k) is said to be stably linearizable
if it is stably conjugate to a linear action of G on a vector space k™.

The following question is a natural extension of the famous Zariski cancella-
tion problem [ ] to the geometric situation.

QuEsTION 1.1. Let G C Cra(k) be a stably linearizable finite subgroup. Is it true
that G is linearizable?

In this paper, we give a partial answer by finding a (very restrictive) list of all
subgroups G C Crp(k) that potentially can give counterexamples to the question.

It is easy to show (see [ ]) that the group H'(G,Pic(X)) is a sta-
ble birational invariant. In particular, if G C Cr, (k) is stably linearizable, then
H! (G1,Pic(X)) =0 for any subgroup G| C G (then we say that G C Cr, (k) is
H'-trivial). Any finite subgroup G C Cry(k) is induced by an action on either a
del Pezzo surface or a conic bundle [ ]. In the first case, our main result is the
following theorem, which is based on a computation of H'!(G, Pic(X)) in [ ]
(see Theorem 2.9).

THEOREM 1.2. Let X be a del Pezzo surface, and let G C Aut(X) be a finite

subgroup such that the pair (X, G) is minimal. Then the following are equivalent:
(i) HY(G1,Pic(X)) =0 for any subgroup G| C G,

(ii) any element of G does not fix a curve of positive genus,
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(iii) either
(a) K} >5,0r
(b)' X is a quartic del Pezzo surface given by
x12+§3x22+§32x§+xf=x%+§32x%+§3x32+x§=0, (1.1
where {3 = exp(2mi/3), and G = (Z/37) x (Z /A7) is generated by the
following two transformations:

) 2
v 1 (X1, X2, X3, X4, X5) —> (X2, X3, X1, §3X4, {5 X5), (12)

ﬂ/ : (x11x21x39x4»x5) > (xl»x37 X2, _.XS,)C4).

The conic bundle case is considered in Section &. The main results are Theo-
rems 8.5 and .

Note that there are only a few subgroups G C Cr, (k) that are not linearizable
and satisfy the equivalent conditions (i)—(iii) of the theorem (see [ §8]).

The plan of the proof of Theorem 1.2 is the following. The most difficult part of
the proof is the implication (i1)=>(iii). It is proved in Sections 4—7. The implication
(1)=(i1) is exactly the statement of Corollary , and (iii)=>(i) is a consequence
of Proposition 3.4 and Corollary

We tried to make the paper self-contained as much as possible, so in the proofs,
we do not use detailed lists from the classification of finite subgroups of Cry (k)
[ ]. Instead, we tried to use just general facts and principles of this classifica-
tion.

2. Preliminaries

NOTATION 2.1. e &, is the symmetric group.

e sgn: G, — {£1} is the sign map.

e 2, is the alternating group.

e ©, is a dihedral group of order 2n, n > 2 (in particular, D, =~ (Z/2Z)2). We
will use the following presentation:

Dp=(rs|rm=s>=1,srs=r"1). 2.1

e 0 :®, — {£l1}is the homomorphism defined by o (r) =1, o (s) = —1.

e 9, is the binary dihedral group (see e.g. [ 1). We identify D, with the
subgroup of SL, (k) generated by the matrices

~ §2n 0 ~ 0 i
() ) e

Note that 7{)” is a nontrivial central extension of ©, by Z/2Z.
e (, is a primitive nth root of unity.
e &, (2) is the nth cyclotomic polynomial.

I This case is missing in [ Th. 6.9]. This is because the arguments on p. 489 (case 3) are incorrect.
However, X has an equivariant rational curve fibration (see Remark 4.8). So, the description of
the group appears in [ Th. 5.7]. Note that the groups (Z/ZZ)Z.G3 and (Z/2Z)3.63 are
also missing in [ Thm. 6.9].
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e Eu(X) is the topological Euler number of X.
e diag(ay, ..., a,) is the diagonal matrix.
e X is the fixed point locus of an action of G on X.

2.1. G-varieties

Throughout this paper, G denotes a finite group. We use the standard language
of G-varieties (see e.g. [ ). In particular, we systematically use the follow-
ing fact: for any projective nonsingular G-surface X, there exists a birational G-
equivariant morphism X — Xpin such that the G-surface X, is G-minimal, that
is, any birational G-equivariant morphism f : Xpyin — Y is an isomorphism. In
this situation, Xmnin is called G-minimal model of X . If the surface X is addition-
ally rational, then one of the following holds [ ]:

e Xpin is a del Pezzo surface whose invariant Picard number Pic(Xmin)C is of
rank 1, or

e X admits a structure of G-conic bundle, that is, there exists a surjective G-
equivariant morphism f : Xmin — P! such that f«Ox, .. = Op, —Kx_. 1is
f-ample, and rk Pic(X min)¢ = 2.

2.2. Stable Conjugacy

We say that G-varieties (X, G) and (Y, G) are stably birational if for some n
and m, there exists an equivariant birational map X x P" --» ¥ x P, where
actions on IP" and P are trivial. This is equivalent to the conjugacy of subgroups
G CkX)(t,...,tp) and G Ck(Y)(t1, ..., tn)-

By the no-name lemma we have the following.

REMARK 2.2. Let V, W be faithful linear representations of G. Then the G-
varieties (V, G) and (W, G) are stably conjugate. Indeed, let n :=dimV, m :=
dim W. Consider trivial linear representations V' and W’ with dim V’ = n and
dim W' = m. According to the no-name lemma (see e.g. [ App. 3]) we can
choose invariant coordinates for semilinear action of G on V ® k(W). This means
that two embeddings G C Cry 4, (k) induced by actions on V x W and V' x W
are conjugate. Similarly, the embeddings G C Cr,, 4, (k) induced by actions on
V x W and V x W’ are also conjugate. Hence, (V, G) and (W, G) are stably
conjugate.

DEFINITION 2.3. We say that a G-variety (X, G) (or, by abuse of language, a
group G) is stably linearizable if it is stably birational to (V, G), where V =k
is some faithful linear representation.

REMARK 2.4. One can define stable linearizability is several other ways:
(i) if (X, G) is stably birational to (PV, G) for some N;
(i) if (X, G) is stably birational to (PV, G) for N = dim X;
(iii) if there exists a G-birational map X x P" --» PV for some N where the
action on P" is trivial.
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In view of Remark 2.2, our Definition seems to be a most natural one. Clearly,
we have the following implications:

Definition 2.3 == (iii) == (i), (1) = (i).

The example below shows that, in general, the implications (1), (ii), (ii1)) = Def-
inition do not hold.

ExaMPLE 2.5. Let Qg be the quaternion group of order 8, and let V be its faith-
ful two-dimensional irreducible representation. Then, for any r, the (2r — 1)-
dimensional projective space P(V®") is a G-variety, where G = Qg/[Qg, Qg] =~
(Z/27)?. 1t is easy to see that there is no fixed point on this P(V®"). Applying
Lemma (below), we can see that the G-variety (P¥ =1, G) is not stably lin-
earizable. Similar examples can be constructed for the group G = (Z/nZ)? (e.g.,
instead of Qg, we can start with the Heisenberg group of order p?).

LEMmA 2.6 (see [ 1). For any finite Abelian group G and any G-birational
map X --» Y of complete G-varieties, the set X© is nonempty if and only if so is
Yo.

2.3. Stable Conjugacy and HY(G, Pic(X))

DEFINITION 2.7. We say that a nonsingular G-variety (X, G) is H!-trivial if
H' (G, Pic(X)) =0 for any subgroup G| C G.

THEOREM 2.8 [ 1. Let (X, G) be a smooth projective G-variety. If (X, G) is
stably linearizable, then (X, G) is H Utrivial.

Note that the inverse implication is not true in general (see Remark ). Note
also that the assertion of the theorem holds for any other definition of stable lin-
earizability Remark 2.4(1)—(ii1).

Our basic tool is the following theorem proved in [ ].

THEOREM 2.9 [ . Let (X, G) be a nonsingular projective rational G-surface,
where G is a cyclic group G of prime order p. Assume that G fixes (pointwise) a
curve of genus g > 0. Then

H'(G,Pic(X)) ~ (Z/ pZ)*8.
Ile (G, Pic(X)) =0, then (X, G) is linearizable.
CoRrOLLARY 2.10. Let (X, G) be a nonsingular projective rational G-surface,

where G is an arbitrary finite group. If (X, G) is H'-trivial, then any nontrivial
element of G does not fix a curve of positive genus.

3. Group Actions on del Pezzo Surfaces

NortaTION 3.1. Let X be a del Pezzo surface of degree d < 6, that is, K 2 —d. It
is well known that X can be realized as the blowup X — P2 of r := 9 — d points
in general position. The group Pic(X) >~ 7'+ has a basis h, er,...,e € Pic(X),
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where h is the pull-back of the class of a line on P? and the e; are the classes of
exceptional curves.

Put

A, :={x€Pic(X) | x> =—-2,x- Ky =0}.
Then A, is a root system in the orthogonal complement to Kx in Pic(X) ® R.
Depending on d, the type of A, is the following [ ]:

d 1 2 3 4 5 6

Ar Eg E7 E6 D5 A4 A1 X A2

REMARK 3.2. There is a natural homomorphism

o Aut(X) — W(A,), 3.1
where W(A,) is the Weyl group of A,. This homomorphism is injective if d <5
(seee.g. [ Corollary 8.2.32]).

Denote by O = Q(A,) the sublattice of Pic(X) generated by the roots. Clearly,
Q(A,) coincides with the lattice of integral points in K )Jg C Pic(X) @ R.

For an element § € W(A,) or Aut(X), denote by tr(5) its trace on Q. Let
G C Aut(X) be a (finite) subgroup, and let n be the order of G. Computing the
character of the trivial subrepresentation, we get

1
rkPic(X) =1+ = " tr(8). (3.2)
n
seG
On the other hand, since Try2x gy(8) =1+ tr(8), by the Lefschetz fixed point
formula we have
Eu(X®) = tr(§) + 3. (3.3)
Now we prove the implication (ii1)=(i) of Theorem .By [ Prop.
31.3] we have the following.

COROLLARY 3.3. Let (X, G) be a projective G-surface. Let {C;} be a finite G-
invariant set of irreducible curves whose classes generate Pic(X). If G acts on
{C;) transitively, then H' (G, Pic(X)) = 0.

ProposITION 3.4. Let (X, G) be a projective nonsingular rational surface with
K% > 5. Then H'(G,Pic(X)) =0.

Proof. To show that H'(G,Pic(X)) = 0, we may assume that (X, G) is G-
minimal (otherwise, we replace X with its minimal model). If K )2( > 8, then X
is either P? or a Hirzebruch surface F,, and G acts on Pic(X) by (possibly triv-
ial) permutation of the extremal rays. Hence, Pic(X) is a permutation G-module,
and H'(G, Pic(X)) = 0. Thus, K)z( =6 or 5, and X is a del Pezzo surface with
tkPic(X)% =1 (see [ D.
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If K)z( = 6, then X contains exactly six lines C1, ..., C¢ C X. Since Pic(X)C =
Z - Ky, these lines form one G-orbit. By Corollary we conclude that
H' (G, Pic(X)) =0.

Finally, consider the case K)Z( = 5. Then Aut(X) ~ W(A4) >~ G5 (see e.g.
[ Thm. 8.5.8]). Let ¥ :={L1,..., Lo} be the set of lines on X. The ac-
tion of G on .Z is faithful (see Remark 3.2). Let £ = O; U --- U O; be the
decomposition in G-orbits, and let r; be the cardinality of O;. Then ) r; = 10.
Since Pic(X)¢ = Z - Kx, each number r; is divisible by 5. By Corollary we
have only one possibility, r; = ro = 5. In particular, the order of G is divisible
by 5. Then both O; and O, form anticanonical divisors, and the corresponding
dual graphs are combinatorial cycles. In this case, G contains no elements of
order 3. Hence, the order of G divides 20, and G has a normal subgroup (§) of or-
der 5. Since tr(6) = —1, by the Lefschetz fixed point formula Eu(X 8y = 2. Write
X=v,U Vo, where Vo NV =@, dim Vy = 0, and V] is of pure dimension one.
The action of G preserves this decomposition. If V| # 4, then V| meets the cy-
cle of lines corresponding to O;. But then § acts on O trivially, a contradiction.
Hence, V| # J, and so § has exactly two isolated fixed points P;, P, € X. By
blowing {P;, P>} up we get a cubic surface X containing a G-invariant pair of
skew lines. Then a well-known classical construction gives us a birational equi-
variant transformation X --» P! x P! (cf. [ §8]). Then by the considered
case K)z( =8 we have H'(G, Pic(X)) =0. O

COROLLARY 3.5. Let (X, G) be a G-del Pezzo surface described in (1.1) and
(1.2). Then (X, G) is H'-trivial.

Proof. If G’ C G is a proper subgroup, then (X,G’) is not minimal, and
HY(G,Pic(X))=0 by Proposition 3.4. It is easy to see that the set of lines on X
has exactly two G-orbits consisting of 4 and 12 elements. Then H 1(G, Pic(X)) =
0 by [ Ch. 4, Sect. 31, Table 2]. O

The implication (ii)=>(iii) of Theorem is an immediate consequence of the
following proposition which will be proved in Sections 4—7.

PROPOSITION 3.6. Let (X, G) is a minimal G-del Pezzo surface of degree < 4
such that any nonidentity element of G does not fix a curve of positive genus.
Then (X, G) is isomorphic to a G-surface described in (1.1) and (1.2).

4. Quartic del Pezzo Surfaces

NoTATION 4.1. Throughout this section, let X be a del Pezzo surface of degree 4.
It is well known that the anticanonical linear system embeds X to P* so that the
image is a complete intersection of two quadrics. In a suitable coordinate system
in P4, the equations of X can be written in the form

4 4
Y oxi=) 6ix =0, 4.1)
i=0 i=0
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where the 6; are distinct constants (see e.g. [ Lemma 8.6.1]). We regard
these constants ; € k as points of a projective line. In other words, quadrics pass-
ing through X form a pencil 2 and the points 6; correspond to degenerate mem-
bers of 2. Five commuting involutions 7; : x; — —x; generate a normal Abelian
subgroup A C Aut(X) with a unique relation t; - - - 75 = id. Thus,

A={l, 5, urj |1 <k<51<i<j<5}, A~ (Z)27)*.

4.1. Root System Ds

It is well known (see e.g. [ ]) that the root system of type D5 can be realized
as the set £r; £ r;, where ry, ..., rs is the standard basis of RS, The Weyl group
W(Ds) is the semidirect product (Z)27)* x &5, where (Z/27)* acts on R’ by
r; > (£1);r; so that [[,(£1); =1, and &5 acts on R3 by permutations of the r;.

The image p(A) C W(Ds) under the injection (3.1) coincides with (Z/ZZ)4 C
(Z)27)* x &5. Thus, we identify p(A) with (Z/27)* and p(t;) with 7;. Note the
fixed point locus of each 7; is an elliptic curve that cuts out on X by the hyperplane
{x; =0} (and so the 7; are de Jonquieres involutions of genus 1). The fixed point
loci of other involutions in A consist of exactly four points. Therefore,

w(m)=-3 Vi, w(ur)=1 Vi#j 4.2)

Another, intrinsic description of the t; is as follows. On X, there are 10 pencils
of conics 1, ..., %5, %], ..., €, satisfying the conditions ¢; - ¢/ =2, ¢; - ¢} =
%, - %}’ =1for i # j and €; + 6] ~ —Kx. Two “conjugate” pencils %; and €7
define a double cover 1; : X — P! x P'. Then 1; is the Galois involution of ;.
Note that y; coincides with the projection of X from the vertex of a singular
quadric of the pencil generated by (4.1). Thus, there are the following canonical
bijections:

{ti} «— Wi} «— {6, €} «— {6}, i=1,...,5. 4.3)

The group Aut(X) acts on the pencil of quadrics .2, in P* generated by (4.1)
so that the set of degenerate quadrics corresponding to the values A = 6;, i =
1,...,5, is preserved. Hence, there exist homomorphisms

p1: Aut(X) - PGLy(Kk), 02 Aut(X) - Ss

with ker(p1) = ker(p2) = A. This immediately gives us the following possibilities
for the group Aut(X)/A (see [ Sect. 6]):

(1}, 2)27,7.)37, 7.)AZ7., 7./57., G3, Ds. 4.4)

4.2. Assumption

Now let a finite group G faithfully act on X so that (X, G) is minimal (i.e.
Pic(X)¢ ~ Z) and any nonidentity element of G does not fix a curve of posi-
tive genus. Denote Ag := G N A. For short, we identify p(G) with G.
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Recall that K)z( =4. Let ¥ :={L1,...,Lic} be the set of lines on X. Let
¥ =01 U---U O be the decomposition in G-orbits, and let r; be the cardinality
of O;. Then Y _r; = 16. Since Pic(X)G = Z- Kx, each number r; is divisible by 4.

By our assumption in 4.2 we have the following.

COROLLARY 4.2. G ¥t fori=1,...,5.
The following lemma is an immediate consequence of the description of A.

LEMMA 4.3. There are two kinds of nontrivial subgroups A’ C A satisfying the
property A' Ft; fori=1,...,5:

o A;j={l,7it;|i#j}, and

o Apim ={Ll, T, UTw, kT | kK #1 #m #k}.

REMARK 4.4. Note that if Ag = A; j, then Ag is contained in the center of G.
Using (4.2), we immediately conclude that

6 ifAg=A; ;.
Y w@y={_ 1 CT (4.5)
8 if AG = Ak,l,m-

For G/Ag, we have the same possibilities (4.4) as for Aut(X)/A. Consider these
possibilities case by case. By (4.5) and (3.2), G # Ag.

4.3. Cases G/Ac ~7Z/57 and D5

The order of G divides 40. By Sylow’s theorem the Sylow 5-subgroup G5 C G
is normal. By Assumption we see that r; 20 mod 5 for all i. Hence, G5 is
contained in the stabilizer of any line L € .Z. But then the action of G on .Z and
on Pic(X) is not faithful, a contradiction.

4.4. Case G/Ag =7Z/3Z

For convenience of the reader, we reproduce here the following fact from [
Sect. 6]:

LEMMA 4.5 [ Sect. 6]. Let X be a quartic del Pezzo surface, and let y €
Aut(X) be an element of order 3. Then X is isomorphic to the surface given
by (1.1). Moreover, Aut(X) >~ A x S3. The center of Aut(X) is of order 2 and
generated by an element of the form t;t;, 1 # j.

Proof. Since X contains exactly 16 lines, there exists at least one y -invariant line
LCX.LetLy,...,Ls C X be (skew) lines meeting L, and let f : X — P2 be
the contraction of L1, ..., Ls.Let C := f(L) and P; = f(L;). Then the action of
y on X is induced by one on C C IP?. Up to permutation of Ly, ..., Ls, we may
assume that y fixes P; and P> and permutes Pz, P4, Ps. Then the set { Py, ..., Ps}
is unique up to projective equivalence. Hence, X is unique up to isomorphism. On
the other hand, it is easy to see that the surface (1.1) admits an isomorphism y of
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order 3 given by (1.2). Moreover, Aut(X) contains the group A x &3 generated
by A, y, and

B (x1,x2, X3, X4, X5) > (X1, X3, X2, X5, X4).
By (4.4) we see that Aut(X) = A x G3. O

COROLLARY 4.6. Let y € Aut(X) be an element of order 3. Then XV consists of
exactly five points.

By Corollary the exists a G-fixed point P € X. Since in a neighborhood of
P the action of (Z/ 27)? cannot be free in codimension one, we have Ag = A
for some i # j. Hence, G is cyclic of order 6. Since the cardinality of any orbit
O; C .Z must be divisible by 4, we get a contradiction.

4.5. Case G/Ag = G3

We show that only the possibility (iii)(b) of Theorem occurs here. Let G3
(resp. G2) be a Sylow 3-subgroup (resp. 2-subgroup) of G. Clearly, G, D Ag
and G2/Ag ~ Z/27Z. By Lemma 4.5, X is isomorphic to the surface given by
(1.1), Aut(X) ~ A x G3, and the center of Aut(X) is generated by an element

Titj, i 75]

LEMMA 4.7. In the above settings, the image of the natural representation
P Aut(X) — W(Ds5) C GL(Q) is contained in SL(Q).

Proof. By the description of D5 in 4.1 we can write the elements of A in a diago-
nal form so that A C SL(Q) and the determinant of any element of W(Ds) equals
+1. The fixed point locus of B consists of a smooth rational curve and a pair of
isolated points. Hence, tr(8) = 1, and so det(8) = 1. This implies that the image
of the whole group Aut(X) is contained in SL(Q). O

4.5.1 Assume that Ag = A; j k. Since elements of Ag and G3 do not commute,
G3 is not normal in G. By Sylow’s theorem the number of Sylow 3-subgroups
equals to 4. The action on the set of these subgroups induces an isomorphism
G =~ G4. By Corollary for the elements y € G of order 3, we have tr(y) =2.
Hence, by (4.5) and (3.2)

Y t(v) =24, 3 ) =-24.
UEQM U664\914
Since Eu(X") > 0 for all v € G, we have tr(v) = —2 for all v € G4 \ 4. In our

case, dim Q = 5. Hence, tr(v) must be odd for an element of order 2, a contradic-
tion.

4.5.2 Thus, Ag = A; ;. Then G3 is normal in G, and so G is a semi-direct
product G = G3 x G that is not a direct product because G is not abelian.
For short, we identify G with its image in W(D5) C GL(Q). We claim that
G, is cyclic. Indeed, otherwise G >~ &3 x (Z/2Z). 1t is easy to check that in
this case, Q must contain a trivial G-representation (because G C SL(Q) by
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Lemma 4.7). Since Pic(X)% ~ Z, this is impossible. Therefore, G, ~ Z /47 and
G ~ (Z/37Z) x (Z/AZ). Up to permutations of coordinates, we may assume that
the center of Aut(X) is generated by

8 =1475 1 (X1, X2, X3, X4, X5) —> (X1, X2, X3, —X4, —X5).

Clearly, the center of G commutes with all elements of Aut(X). Thus, § € G.
Now let B° (resp. y*®) be an element of G of order 4 (resp. 3) whose image in
&3 coincides with g (resp. y). Thus, B®(x;) = £8(x;) and y*(x;) = £y (x;) for
all i. Since y*3 = id, replacing x; with +x;, we may assume that y* = y. Since
()2 =6 and B*yB* ! =y, as before, we get f* = B’. Thus, our group G
coincides with that constructed in (1.1) and (1.2). It remains to show that this
group is minimal. Let v € G be an element of even order 2k. Then v* = §, and so
XV = (X®)". Recall that X? is a set of four points. Then one can easily see that
Eu(XV) =1 (resp. 2) if k =3 (resp. 2). Thus, we have

> ) =5+1+42.2-2.2-6-1=0.

veG

By (3.2) we have tkPic(X)% =1, that is, G is minimal.

REMARK 4.8. Note that our group G acts on X3 and by Corollary there
is a G-fixed point P € X3 such that P does not lie on any line. Let X—> X
be the blowup of P. Then X is a cubic surface admitting an action of G such
that rk Pic(X)% = 2. The exceptional divisor is an invariant line L C X, and the
projection from L gives a structure of G-equivariant conic bundle X — P!, Thus,
we are in the situation described further in Theorem and Construction
(with n = 3).

4.6. Case G/Ag ~ 7,27

Since Pic(X)¢ ~ Z, Ag # {1}. Assume that Ag = A; ; for some i, j. Then by
(4.5) we have ZaeG\AG tr(6) = —6. Hence, there exists § € G \ Ag such that
Eu(X?%) < 0. Since X® # @, the element 8§ fixes pointwise a curve of positive
genus. This contradicts Assumption . Therefore, Ag = A; j ; for some i, j,
k. In particular, G is a (noncyclic) group of order 8. Again by (4.5) we have
Y sec\ag r(8) = —8 and Bu(X®) > 0 forall § € G \ Ag. Hence, Bu(X®) =1 for
all § € G \ Ag. This means that any element 6 € G \ A has a unique fixed point
and the action of G on X is free in codimension 1. Applying the holomorphic
Lefschetz fixed point formula, we obtain that any 6 € G \ Ag has at least two
fixed points, a contradiction.

4.7. Case G/Ag =7/AZ

Note that the stabilizer of A; ; (and Ag ;) in &5 = W(D5)/A is the group G, x
G3. Hence, neither A; j nor Ay, can be a normal subgroup of G. Thus, Ag =
{1}. Again we have 0 = 5 + tr(8%) 4 2tr(8), where tr(8), tr(8%) > —2 by (3.3)
because G does not fix a curve of positive genus. We get only one possibility:
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tr(8%) = —1, tr(8) = —2. Hence, X is a point, say P, and X% is either a smooth
rational curve or a pair of points. On the other hand, X 5 5 P and G acts on X’
fixing P, a contradiction.

Thus, Proposition 3.6 is proved in the case K2 = 4.

5. Cubic Surfaces

NotaTION 5.1. Throughout this section, X denotes a cubic surface X C P3. Let
G C Aut(X) be a subgroup such that (X, G) is minimal and any nonidentity ele-
ment of G does not fix a curve of positive genus. Since the embedding X C P? is
anticanonical, it is G-equivariant. By our assumption, for any element 1 # 8 € G,
the set (IED3)‘S does not contain any hyperplane. Let ¥ (x1, x2, x3, x4) = 0 be the
equation of X. We choose homogeneous coordinates in P3 so that § has a diago-
nal form.

CLAIM 5.2. Let T € G be an element of order 2. Then in suitable coordinates, its
action on P3 has the form v = diag(1, 1, —1, —1), and

V= 3(x1, x2) + x192(x3, x4) + X295 (x3, x4),

where deg Y3 = 3, deg ¥, = deg ¥} = 2, and 3 has no multiple factors. Further-
more, X* = L(t)U{Py, Py, P3}, where L(t) :={x] =x, =0}and {Py, P2, P3} =
X N {x3 = x4 =0}. In particular, BEu(X") = 5.

Proof. Since (P3)7 does not contain any hyperplane, we can write T = diag(1, 1,
—1, —1). Replacing t with —t, we may assume that v is invariant. The rest is
obvious. (]

CramM 5.3. Let t € G be an element of order 3. Then the fixed point locus X© is
zero-dimensional, and Eu(X%) > 3.

Proof. Up to permutations of coordinates, we may assume that § has the form
diag(1, 1, &3, ¢&3) or diag(1, 1, &3, §3_l). Assume that dim X* = 1. By the preced-
ing there exists a line L C XT. It is well known that a given line L on a cubic sur-
face meets exactly 10 other lines L1, ..., Lo and up to reenumeration one can as-
sume that the lines {L1, ..., Ls} (resp. {Lg, ..., L1o}) are mutually disjoint. Then
each line L; must be §-invariant (because L; N L is a fixed point). In this case, the
classes of Ly, ..., Ls are contained in Pic(X )’S and linearly independent there.
Since the canonical class Kx is also §-invariant, we see that the action of § on
Pic(X) must be trivial. This contradicts the injectivity of p : Aut(X) — W(E¢)
(see Remark 3.2).

Thus, dim X* = 0. On the other hand, X* # @ and tr(7) = 3, 0, or —3. Hence,
Eu(X%) =6 or 3. O

LEMMA 5.4. For any element § € G, we have tr(8) > 0 except for the following
case:
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(*) ord(8) = 6, tr(8) = —1, X? consists of two points X® = L(8%)° = {Ry, R»},
where L(83) is the line introduced in Claim 5.2. Moreover, in the local coor-
dinates near R;, the action of 8% is given by a scalar matrix.

Proof. By [ ] the orders of elements of W(Eg) are as follows: 1, 2, 3, 4,
5,6, 8,9, 10, 12. Consider the possibilities for § € G. Let x (t) be the character-
istic polynomial of § on Q. Clearly, deg x = 6, and yx is a product of cyclotomic
polynomials ®,, where d divides ord(6).

If ord(§) < 3, then tr(§) > 0 by Claims and 5.3. Thus, we may assume that
ord(§) > 4. If ord(§) = 5, then the only possibility is x = <I>5<I>% =0 —rP —r+
1 and tr(§) = 1. If ord(§) = 9, then again we have y = ®g = 4+ +1and
tr(6) =0.

It remains to consider the case where the order of § is even, so ord(§) = 2m,
m=2,3,4, 5, or 6. Then 8" is described in Claim 5.2, and so

X, =L U{P, P, P3)°,

where L := L(8™), and the points P;, P>, P3 lie on one line in P3. Here L? either
is a couple of points or coincides with L. Hence, Eu(L®) =2 and {P;, P, P3}’ =
¢ if and only if § permutes all the P;. Thus, Eu(Xa) <2onlyifm =3,tr(§) =—1,
and X% = L%. Consider the blow-down X — X’ of L to a point, say R. Since §°
acts on X freely in codimension one (see Claim 5.3), in the local coordinates near
R, the action of 8% can be written as diag(¢3, {3 1). Then it is easy to see that

in the local coordinates near R;, the action can be written as diag(§3k , {é‘ ), k=1
or 2. O

Proof of Proposition in the case K)z( =3. Since (X, G) is minimal, we have
Y seq tr(8) = 0 by (3.2). Hence, tr(8) < 0 for some § € G. By Lemma we
have ord(§) = 6 and tr(§) = —1. Let G1,..., G, C G be all cyclic subgroups
generated by such elements §; of order 6. We claim that 8;7’ #+ 83? fori # j. Assume
the converse: 8? =83 := 1. The element 7 is described in Claim 5.2. Put L :=
L(t). The projection from L defines a (§;, § j)-equivariant conic bundle structure
f: X — P! so that the restriction f|; : L — P! is a double cover. It has two
ramification points Ry, Ry € L. Since each §; has exactly two fixed points, we
have X% = X% ={Ry, Ry}.

Replacing §; with 8?1, we may assume that the action of 8? and 3? on Tg, x
has the form diag(¢3, ¢3). Hence, 8l.2 = 8?, and so §; = §;, which proves our claim.
In particular, we see that for i # j, the intersection G; N G; does not contain any
elements of order 2. Then by (3.2)

0= "t(8) > Y (tr(8;) +tr(5;") + tr(8?)) =0.

seG i=1

The contradiction proves Proposition in the case K )2( =3. O
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6. Del Pezzo Surfaces of Degree 2

NortaTION 6.1. Throughout this section, X denotes a del Pezzo surface of degree
2. Recall that the anticanonical map is a double cover X — P? branched over
a smooth quartic R C P2, Let ¥ (xp, x1, x2) = 0 be the equation of R. Then X
can be given by the equation y> = ¥ (xg, x1, x2) in the weighted projective space
P(1, 1, 1,2). The Galois involution y : X — X of the double cover X — P2 is
called the Geiser involution. It is contained in the center of Aut(X), and XV is
a curve of genus 3. For any x € Pic(X), the element x + y*x is the pull-back of
some element of Pic(P?).

By (3.2) (cf. proof of Proposition in the case K )2( = 3) to establish Proposi-
tion in the case K )2( =2, it is sufficient to prove the following.

LEMMA 6.2. Let G C Aut(X) be a finite subgroup such that any nonidentity ele-
ment of G does not fix a curve of positive genus. Then tr(§) > 0 for any § € G.

Proof. Tt is known that the center of W(E7) is a cyclic group of order 2 gener-
ated by the element y induced by the Geiser involution of X and acting as minus
identity on Q(E7). The quotient W(E7)/(y) is the (unique) simple group of or-
der 1,451,520 isomorphic to PSp¢(F2). Let G be the image of G in W(E7)/(y).
By our assumption the group G does not contain y. Hence, G ~ G. Using the
description of conjugacy classes in PSpg([F2) (see [ ]), we obtain that the
order of any element of G is one of the following numbers: 1, 2, 3, 4, 5, 6, 7,
8,9, 10, 12, 15. Consider these possibilities case by case. Let x;s(t) denote the
characteristic polynomial of the action of 6 € G on Q ® Q.

6.1. Case: G Has an Element of Order 2
Let T € G be an element of order 2. For the action on P2, we have only one
possibility 7 : (xg : x1 : x2) —> (—x¢ : x1 : x2), and then ¥ has the form x(‘)t +
xozt/fz(xl, x2) + Ya(x1, x2) = 0, where ¥4 has no multiple factors (because B is
smooth). For the action on X, we have two possibilities:

T:(xo:x1:x2:y) > (—=x0:x1:X2:Y), (6.1)
T:(xp:x1:x2:y) > (—xp:x1:Xx2:—Y). (6.2)
Since X7 is an elliptic curve in the case (0.1), this case does not occur. Thus, we

are in the situation of (6.2). Then X® consists of four points. By (3.3) we have
tr(t) = 1. Moreover, x; = CD‘I‘QD%.

6.2. Case: G Has an Element of Order 4
Assume that G contains an element § of order 4. Then §2 = , where 7 is de-

scribed in . On the other hand, xs = CI>§<I>§<I>’{’, where k > 0. Then x; =

@%kcbzfzk. This contradicts . Thus, G does not contain any elements of or-
der divisible by 4.
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6.3. Case: G Has an Element of Order 3
Let 6 € G be an element of order 3. We have two possibilities for the action on X:
0: (xpg:x1:x2:y)— ({3x0:X1:X2:Y),

Y =Xy (x1, x2) 4+ Yalxr, x2),

0: (xp:x1:x2:y) —> (x0:§3x] :§32x2:y),
4 2 3 3 2.2 (64)
Y = x; + axxgx1x2 + xox] + x0x5 + aoxjyx;.

(6.3)

In the case (6.3), the intersection X N {xo = 0} is an elliptic curve of fixed points.
This contradicts our assumption.

Thus, we have case (6.4). Then X? consists of four points, and so tr(6) = 1.
Hence, xyp = d>? @%.

6.4. Case: G Has an Element of Order 6

Let § € G be an element of order 6. Then § = 76, where t (resp. 6) is described
in the case (resp. 6.3). Hence, tr(§) = —5 or 1. But in the first case, Eu(X?%) =
—2, and so dim X% = 1. On the other hand, X® c X7, where dim X° = 0. The
contradiction shows that tr(§) = 1.

6.5. Case: G Has an Element of Order 9

Let 6 € G be an element of order 9. Since y; is divisible by the cyclotomic poly-
nomial ®g, we have x5 = ®9®Py, and so tr(§) = 1. The same arguments show that
tr(8) > 0 if § is an element of order 5 or 7.

6.6. Case: G Has an Element of Order 15

Let § € G be an element of order 15. As in case 6.5, we see that x5 = ®5P3Dy.
Hence, 55 = @3 CI>? . This contradicts the result of
This finishes the proof of Lemma 6.2. U

7. Del Pezzo Surfaces of Degree 1

NotaTiON 7.1. Throughout this section, let X be a del Pezzo surface of degree
1. Recall that in this case, the linear system |—2Ky| determines a double cover
X — Y C P3, where Y is a quadratic cone. The corresponding Galois involution
B : X — X is called the Bertini involution. Its fixed point locus X# is the union
of a curve of genus 4 and a single point P. As in the case K)Z( =2, B is contained
in the center of Aut(X), and —p8 acts on Pic(X) as the reflection with respect to
0=Kj.

The linear system |— K x| is an elliptic pencil whose base locus coincides with
P (asingle point). The natural representation Aut(X) — GL(Tp x) is faithful. Let
7 : X --» B =P! be the map given by |— K x|. Here B can be naturally identified
with P(Tp x). Every singular member F of |-Kx]| is an irreducible curve of
arithmetic genus 1. Hence, F is a rational curve with a unique singularity R,
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which is either a node or a simple cusp. Computing the topological Euler number,
we obtain the following.

LEMMA 7.2. Let #node (resp. #cusp) be the number of nodal (resp. cuspidal rational
curves) in the pencil |—Kx|. Then

#node + 2#cusp =12.
LEMMA 7.3. Any element 1 € Aut(X) of order 2 fixes a curve of positive genus.

Proof. There are two choices for the action of ¢ on Tp y: diag(—1, —1) and
diag(—1, 1). In the first case, the action coincides with the action on Tp x of
the Bertini involution 8. Hence, ¢ o 8! acts trivially on Tp x, and so ¢ o 7! is
the identity map. In this case, X* contains a curve of genus 4. Assume that ¢ acts
on Tp x as diag(—1, 1). Then the fixed point locus of ¢ contains a smooth curve
C passing through P, and the action on B >~ P(Tp x) is not trivial. Then the re-
striction 7 |¢ : C — B cannot be dominant. Hence, C is a fiber of 7, and so C is
an elliptic curve. (]

LEMMA 7.4. Let G = (8) C Aut(X) be a group of order 3. Assume that the repre-
sentation of G in GL(Tp x) is given by a scalar matrix. Then the pair (X, G) is
minimal, and X© contains a curve of genus 2.

Proof. Clearly, the action of § on B >~ P(Tp x) is trivial. We claim that X 8 s
the union of a smooth irreducible curve C and P. Indeed, if X® contains an iso-
lated point R # P, then m is well defined at R, and the action of § on Tg x in
suitable coordinates has the diagonal form diag(¢3, §3il). Let F =7~ (7w (R)) be
the fiber of = passing through R. Since the action on B is trivial, the differen-
tial dmr : Tr x — Ty(r),B is not surjective. Hence, R € F is a singular point. Let
v : F’ — F be the normalization. If R € F is a node, then the cyclic group G has
three fixed points v_l(R) and P on F’ ~ P!, a contradiction. Hence, R € F is a
cusp. Then locally near R the map v is given by 7 > (¢, #3). So the action near
R is not free in codimension one. Again we get a contradiction.

Thus, X? consists of P and a smooth curve C. Since P ¥ C, C contains no
fibers of m. Let F| be a degenerate fiber of m. The action of G on F] has ex-
actly two fixed points: P and R := Sing(F). Hence, C N F1 = R, and so C is
connected. Since C is smooth, it must be irreducible.

Denote 7 :=rk Pic(X)%. By (3.2) and (3.3)

1
Eu(X®)=1+2—-2¢(C)=3+tu@)=2+4r— 5O =n).
The only solution is r = 1, g(C) = 2. Then (X, G) is minimal. O

LEMMA 7.5. Let {1} #£ G C Aut(X) be a group such that the induced action on the
pencil B is trivial. Then some nonidentity element of G fixes a curve of positive
genus.
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Proof. The group G is contained in the kernel of the composition
G — GL(TP’X) —> PGL(TP’X).

Hence, the image of G in GL(Tp x) consists of scalar matrices, and so G is a
cyclic group. Let § € G be a generator, and let m > 1 be its order.

The group G acts faithfully on the general member of |—K x|, which is an
elliptic curve, and P is a fixed point. Then G must contain an element § of order
m =2 or 3. Since the representation G — GL(Tp, x) is faithful, § must be either
the Bertini involution § or an element of order 3 described in Lemma 7.4. The
assertion follows. O

COROLLARY 7.6. Let G C Aut(X) be a subgroup such that the natural homomor-
phism G — Aut(B) is not injective. Then some nonidentity element of G fixes a
curve of positive genus.

Proof. Apply Lemma 7.5 to the kernel of G — Aut(B). U

Now we are ready to finish the proof of Proposition in the case K )2( = 1.
Assume that any nonidentity element of G does not fix a curve of positive genus.
By Corollary 7.6 the group G acts faithfully on B. By Lemma 7.3 the order of G is
odd. Hence, by the classification of finite subgroups of PGL> (k) (see e.g. [ ;

1) G is a cyclic group. Let § € G be its generator. Then the pencil |—K x|
has exactly two invariant members, say C1 and C,. We claim that G faithfully
acts on Cp and Cj. Indeed, otherwise some nonidentity element § € G fixes C;
(pointwise). By our assumption C; has a (unique) singular point, say P;. Then
Tp, c; = Tp, x, and so the action of G on C; must be faithful, a contradiction.
Therefore, G faithfully acts on C; and C;.

First, we assume that both C1 and C, are smooth elliptic curves. Then G =~
Z,/37Z, and by Lemma 7.4 the element é acts on Tp_x as diag(¢3, ;;1). The fixed
point locus XG consists of five points P, P;, P, € C1\ Cy and P3, Py € C> \ Cy.
Then by (3.3) we have tr(§) = tr(8%) =2, and so (X, G) is not minimal by (3.2).

Now we assume that C; has a singular point, say P;. Since G is cyclic, P
cannot be an ordinary double point. Hence, P; € Cj is a cusp. Locally near P
the normalization is given by 7 — (¢2, £3). Since the action of G on X is free in
codimension one near Pp, the order of G is coprime to 3. Then C; cannot be an
elliptic curve, so C» is also a cuspidal rational curve. Then G permutes singular
members of |[—K x| other than C| and C,. By Lemma the order of G divides
12 — 4 =8, a contradiction.

8. Conic Bundles

In this section, we consider G-surfaces admitting a conic bundle structure. The
convenience of the reader, we recall definitions and basic facts (see [ D.
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8.1. Setup

Let X be a projective nonsingular surface, and let f : X — B be a dominant
morphism, where B is a nonsingular curve. We say that the pair f is a conic
bundle if f,Ox = Op (i.e., f has connected fibers) and —Kx is f-ample. Then
any fiber X, b € B, is isomorphic to a reduced conic in P2. Let G be a finite group
acting on X and B. We say that f is a G-conic bundle if f is G-equivariant. We
say that a G-conic bundle f : X — B is relatively G-minimal if tk Pic(X/B)¢ =
1. In this section, we assume that B ~ P! (because X is a rational surface). By
Noether’s formula the number of degenerate fibers equals 8§ — K )2( In particular,
K% <8.

8.1.1 Moreover, if a G-conic bundle f : X — Pl is relatively G-minimal, then
K )2( # 7. From now on f : X — B denotes a relatively G-minimal conic bundle
with B ~PL If K )2( =38, then fisa Pl_bundle, that is, X is a Hirzebruch surface
F,,. In this case, the action of G on Pic(X) is trivial, and so H'(G, Pic(X)) = 0.
For K )2( =3, 5, and 6 the pair (X, G) is not minimal: there exists an equivariant
birational morphism to a G-del Pezzo surface X’ with Pic(X’ )G ~7Z and K }2(, >
K)z( [ ]. This case was investigated in the previous sections.
Thus we have the following:

PROPOSITION 8.1. Let f: X — P! be a G-conic bundle with K)Q( > 5. Assume
that the surface X is G-minimal. Then K% =8 and X ~T,, where n % 1. More-
over, X is H-trivial.

REMARK 8.2. Assume that in the notation of 8.1, the group G is abelian. Then
it is linearizable if and only if it is stably linearizable and if and only if G has a
fixed point (see [ Sect. 8] and Lemma 2.6)

From now on we assume that Kf( <4.

8.1.2 Let G be the largest group that acts trivially on B. We have an exact
sequence

l—>GF—>Gi>GB—>1,

where Gp acts faithfully on B, and G acts faithfully on the generic fiber X,.
We also have a natural homomorphism

p: G — Aut(Pic(X)).

Since B ~ P! and K)z( < 5, the group ker(p) fixes pointwise any section with
negative self-intersection. In particular, this implies that ker(p) C G r and ker(p)
is a cyclic group.

NoTATION 8.3. Let f : X — B ~ P! be a relatively G-minimal G-conic bundle,
and let F be a typical fiber. Let Fy, ..., F;, be all the degenerate fibers, let R; be
the singular point of F;, and let P; := f(F;). Thus, F; = f~1(P;) = F!+ F/" and
F!NF/"={R;}.Let A:={Py,..., Py} be the discriminant locus.
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LEMMA 8.4 (cf. [ Lemmas 3.9 and 3.10]). In the notation of 8.3, assume
that any nonidentity element of G does not fix a curve of positive genus. Let § € G
be an element of order n > 1. Then one of the following holds:

(1) 8 does not switch components of any degenerate fiber,
(i) there are exactly two degenerate fibers whose components are switched by §,
or
(iii) & switches components of exactly one degenerate fiber, say F. In this case,
8% acts on B trivially, and & acts on B nontrivially. Moreover, 82 switches
components of exactly two degenerate fibers (other than F1).

Proof. Let Fy, ..., F, be all the degenerate fibers whose components are switched
by 5. We assume that r > O (otherwise, we are in the situation of (i)).

First, we consider the case where the action of § on B is trivial. Then § has
exactly two fixed points on any smooth fiber. Hence, X? contains a (smooth)

curve C.Fori € {1, ..., r}, each intersection point C N F; is a single point, which
must coincide with R; = Sing(F;). So, C is connected, and the ramification locus
of the double cover fc : C — B coincides with {Py, ..., P.}. In particular, r is

even. If r > 2, then C is a curve of genus (r — 2)/2 > 0, a contradiction. Hence,
r=2.

Now consider the case where the action of § on B is nontrivial. Since § has ex-
actly two fixed points on B, we have r <?2. Assume that » = 1. If any element of
the group (8) does not switch components of any fiber except for Fp, then we can
run a relative (§)-minimal model program on X so that the resulting surface has
a relatively (§)-minimal conic bundle structure over B with exactly one degen-
erate fiber. It is easy to see (see e.g. [ Lemma 5.1]) that this is impossible.
Hence, some element 8%, where k > 1, switches components of a fiber F> # F.
Take k to be minimal possible. The points f(F») and f(F;) are fixed by 8. By
our assumption r = 1, the point f(F>) is not fixed by . This is possible only if
8k acts trivially on B. According to the previously considered case, 8¢ switches
components of exactly two fibers, so the (§)-orbit of F, consists of two elements.
Therefore, k = 2. ]

Now we are going to classify H !-trivial G-conic bundles with K }2( < 4. There are
two essentially different cases: ker(p) = {1} and # {1}.

Case ker(p) = {1}.

THEOREM 8.5. Let f : X — B =P! be a relatively G-minimal G-conic bundle
with K}z{ < 4. Assume that (X, G) is H'-trivial and ker(p) = {1}. Then G ~ D,
where n =6 — K)z( isodd, Ggp ~7/27 is the center of G, G/GF >~ 3, and the
action is given further by Construction

2Forn = 5, see also [ Thm. 6.5].
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REMARK 8.6. In the case n = 3, the surface X is not G-minimal: contracting an
invariant horizontal (—1)-curve, we get a quartic del Pezzo surface (see (1.1),
(1.2) and Remark 4.8).

CoNSTRUCTION 8.7 (cf. [ 5.12], [ 3.2]). Let n > 3 be an odd integer.
The representation (2.2) induces a faithful action o1 : ©,, —> Aut(P!). Consider
another faithful action o3 : ©, —> Aut(P!):

~ & 0 - 0 -1
(5 2 (D)
Clearly, we have A o o1 = 03 o A, where the map A : P! — P! is given by A : x >
x2. Consider also the action
o=0xX0p:9, — Aut(I[”l X IP’l).
The curves
Fi={(x,y) eP! xP'|x? =y},
L:={@.y) P! xP' |y =1)
are ®,-invariant. Let Ly :={(x,y) | y = ;,]l‘} be a component of L. Itis easy to see
that Ly meets I" transversally at two points. Now we explicitly construct a double
cover 7 : ¥ — P! x P! branched over I + L. In homogeneous coordinates on
P! x P!, the curve I' 4 L is given by
¢ = (xfyo —xgyD O] — ¥p) =0.
For short, we put ¢ := (n 4+ 1)/2. Let v : P! x P! — P"*2 be the Segre embed-
ding
v ((x0:x1), (Yo, y1)) —> (0,0, - - -5 10,45 11,0, - - - » 1,9)
where f; = xé_“xi’yg_byf, 0<a<1,0<b<gq.

Clearly, ¢ can be written as a homogeneous polynomial of degree 2 in the ¢, p.
Thus, we can exhibit ¥ € P"*3 as the intersection of the hypersurface

2
ZZ=¢(t0,0, ..., 1.,q)
with the projective cone that is the preimage of v(P' x P!) under the projection
PP ou®! P, (@00 00s--) > (00 T0,1 ).

Leto : ©, — {£1} be as in 2.1. Consider the group
{3.0) €Dy x (@a) |0 (8) = ).

This group is a nontrivial central extension of ©,, by Z/27Z, and it is isomorphic
to D,,. By the previous construction we see that D, acts on Y so that 7 is equi-
variant. The projection of P! x P! to the second factor induces a rational curve
fibration ¥ — P! whose fibers are irreducible except for those corresponding to
two ramification points of the double cover I' — P!, Let Li .=~ Y(Ly). There
are exactly 2n nodes Q7, 0, ..., Q;, O, € Y, where {Q}, 0/} = (N Ly).
Let Y — Y be the minimal resolution, and let Y — X the contraction of all f,k,
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the proper transforms of the L. Then f: X — P! is a D,-conic bundle with

n + 2 degenerate fibers fitting to the following commutative diagram:
y—————————>Y
l \Ln 8.1)

X<——— P xP!

Proof of Theorem 5.5. Assume that p is injective. Then so is pr: Gr —
Aut(Pic(X)).

LeEmMmA 8.8. G # {1}.

Proof. Indeed, otherwise G faithfully acts on B = P'. For any degenerate fiber
F;, there exists an element § € G switching the components of F;. In particular,
ord(8) = 2k for some k. Clearly, we may assume that k = 2/. By Lemma & 4 there
exists exactly one more degenerate fiber F; # F; whose components are switched
by 8. Thus, X° = (R;, R j}. If k =1, then the holomorphic Lefschetz fixed point
formula implies that the cardinality of X® equals 4, a contradiction. Hence, k > 1.
Put y := 8F. It is easy to see that XV = Fiy u F}’. Since XV is §-invariant and
smooth, we can see that it is zero-dimensional and consists of exactly six points.
Again, we get a contradiction by the holomorphic Lefschetz fixed point formula.
This proves our lemma. (]

The group G r interchanges pairwise components of (some) degenerate fibers. So,
there exists an embedding

GF‘—>62X~--X62.

On the other hand, Gr acts faithfully on a typical fiber, so there exists an
embedding Gr <> PGL;(k). This immediately gives us either Gr ~ Z/2Z or
Gr >~ (Z)27)? (see [ Thm. 5.7]).

Consider the case G ~ (Z/2Z)?. Then G = {1, 11, 12, 13}, where the Tj are
distinct elements of order 2. Fix i € {1, ..., m}. The point R; is fixed by GF.
The actions of all the t; on Tk, x cannot have the (same) form diag(—1, —1).
Hence, at least one of them, say 71, is of type diag(1, —1) (in suitable coordinates).
Then t; must switch the components of F;. Indeed, otherwise 1 fixes pointwise a
component of F;. But this is impossible because t acts trivially on B. Moreover,
for each singular fiber F;, exactly two elements of G switch the components
of F;. Taking Lemma into account, we see that A consists of three elements.
This contradicts our assumption K )2( <4.

Therefore, Gy >~ 7Z/27Z. Let T € G be the element of order 2. Since p(7) #
id, by Lemma 8.4 the element 7 switches components of exactly two degenerate
fibers, say F,_1 and F,. By our assumption K)Z( < 4, we have r > 2. Then the set
{P-_1, P} is G p-invariant. This is possible only if G p is either cyclic or dihedral.
Let C be the one-dimensional part of X*. As in the proof of Lemma 8.4, we see
that C is a smooth rational curve and f¢ : C — B is a double cover ramified
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over { P._1, P,}. The group Gp = G/ G F faithfully acts on C so that f¢ is Gp-
equivariant.

Let 6 € G be an element that switches the components of Fj. If § does not
permute F,_; and F,, then & fixes three points P._1, P, P} € B = P!, So, it
trivially acts on B, that is, § € G, a contradiction. Thus, § permutes F,_; and
F;. Let v € Aut(C) be the Galois involution of f¢, and let G¢ C Aut(C) be the
(isomorphic) image of G p. Since G p faithfully acts on B, v ¢ G¢. On the other
hand, v commutes with any element of G¢. Hence, G ¢ and v generate a subgroup
G/C =Gc x (v) C Aut(C), sothattheset {R,_1, R} C Cis G/C-invariant. By the
classification of finite subgroups of Aut(P') we see that G}~ ~ ©,,,, where n must
be odd (because v ¢ D, C D»,). In particular, Gg ~9,.Fori =1,...,r —2,we
have CN F/ = {R]} and CN F{" = {R}, where the points R, and R/’ are permuted
by v and have nontrivial stabilizers in G¢. There are only three nontrivial orbits
of Dy, on C ~PL: 0y, 05’1, and O [ ; ]. They have 2n, 2n, and 2
elements, respectively. Since v cannot fix any element of Oy, and O}, , we may
assume that O}, form one ©,-orbit and Oy, splits in the union of two D, -orbits.
Then O, coincides with C N (U?;]2 F;), and so n = r — 2. Recall that n is odd
and G is a central extension of Gp ~®, by G >~ Z/27. We claim that G >~ @n.
Indeed, otherwise G = Gp X Gg ~®, x Z/27Z. Take § as before. Then § fixes
Py. Since G =D, x Z/27, we have ord(§) = 2. The action of § on Ty, x has the
form diag(1, —1). Hence, § fixes pointwise a (smooth) curve D passing through
R;. Since § switches the components of Fy, D is not a component of F|. Hence,
D dominates B and § € G, a contradiction. Thus, G — G p is not split, and so
G~ @n.

Now we construct the following G-equivariant commutative diagram:

I

— X/(7) F,

Here X/(r) has n = r — 2 nodes, which are images of Rj,...,R,, u is
the minimal resolution, and v is the contraction of the proper transforms of
R, R{,..., R}, R). Itis easy to see that the image of v must be a smooth ge-
ometrically ruled surface. On the other hand, to arrive at F, from X, we can
first blowup the points Ry, ..., R,. We get Y. The action of G lifts to )7, and
Y > Y — I, is the Stein factorization. Let E1, ..., E, be u-exceptional divisors,
and let Ly := v(E). Let Co C F, be the proper transform of C/(t) C X /(7).
Clearly,  is a double cover branched over Co + L1 + - - - + L,,. Comparing (8.2)
and (8.1), we see that it remains to show that e = 0, that is, F, ~ P! x P!. We can
write Co ~ 25 +aF,, where s is the minimal section, and F, is a fiber of IF,.. Since
C, is an irreducible smooth rational curve, we get two possibilities: (e, a) = (0, 1)
and (1, 2). Since the branch divisor Cq + L| + - - - + L,, is divisible by 2 and n is
odd, we see that the second case is impossible. This proves Theorem &.5. U
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Case ker(p) # {1}

DEFINITION 8.9 [ 1. A conic bundle f : X — P! is said to be exceptional if
for some positive integer g, the number of degenerate fibers equals 2g + 2 and
there are two disjoint sections C; and C, with C12 = Cg =—(g+D.

THEOREM 8.10. Let f : X — P! be a relatively G-minimal G-conic bundle with
K}z{ =6 —2g < 4. Assume that (X, G) is H'-trivial and ker(p) # {1}. Then we
have:

(1) f is exceptional, in particular, K )2( is even;

(i) Gr =ker(p), and it is a nontrivial cyclic group;
(iii) either Gp ~®, or Gg >~ Gy,
(iv) the action of G on X is given by Construction

The following is a particular case of the general construction [ Sect. 5.2].

CONSTRUCTION 8.11 [ Sects. 5.2 and 5.3]. First, we fix some data. Let G B C
SL,(k) be a finite noncyclic subgroup, and let Gz = G p/{=£id} be its image in
PSLy (k). Fix two homomorphisms o, xp : Ggp — {£1}, where xp is surjective
(we assume that such a homomorphism xp exists). We also regard ¢ and xp
as characters defined on G . Let g > 1, and let ¥ be the hypersurface in P(g +
1,g+1,1,1) given by x1x2 = ¥ (y1, ¥2), where ¥ (y1, y2) is a homogeneous (~;3-
semiinvariant of degree 2g + 2 and weight o. Thus, §(Y) = o (§)y forall § € GB.
We assume also that ¥ has no multiple factors. Put

[ :={(h,8) € GLa(k) x Gp | h(x1x2) = 0 (8)x1x2}.

It is easy to see that I" naturally acts on Y and the kernel of the action coincides
with

K := (((=D%*t1id, —id)).

Thus, Aut(Y) D I'/K. Denote by p : Aut(Y) — G p the homomorphism induced
by the projection to the second factor. The surface Y has two singular points,
1

which are of type pEs} (1, 1). Let X — Y be the minimal resolution. The projection

(x1:x2:y1:y2) -——» (y1 : ¥2) induces a conic bundle structure f : X — Pl =B
whose degenerate fibers correspond to the zeros of . In particular, K2 = 6 — 2g.
The action on the set Sing(¥Y) ={(1:0:0:0),(0:1:0:0)} defines a homo-
morphism y : Aut(Y) — {Z1}. Now, take a subgroup G C I'/K such that the
restriction xg : G — {£1} and the projection pg : G — G p are surjective, and
ker(p) NG C ker(x). Thus, x descends to a character xp : Gp — {£1]}.
There are the following possibilities:



On Stable Conjugacy of Finite Subgroups 315

No. g Gp ) o XB
1° 2 G Ve sgn sgn
20 5 Sy Y12 1 sgn
3¢ 8 G4 Ye12 sgn sgn
47 >1 Dy )’fgﬂ - y22g+2 £-087! oorg
50 >1 Dgii y%g+2 . y2g+2 o8 o
2 2 _
6° =1 Dy oy -»n% &0t &

Here y¢ = ylyz(yf — y§) and Yr1p = yllz — 33y§y§ — 33yf'y§ + y212, and, for even
n, the homomorphism & : ©, — {£1} is defined by £(r) = —1, &(s) = —1.

Proof of Theorem (7). Since ker(p) # {0}, the conic bundle f is exceptional
by [ Prop. 5.5]. In particular, we can write m =2g + 2, where g € Z~o. U

Let C; and C; be disjoint —(g + 1)-sections (see Definition 8.9).

Proof of Theorem (i7). Recall that ker(p) C G (see ). If there exists
an element § € G that switches C| and C3, then § switches components of all
degenerate fibers. Since the number of degenerate fibers equals 2g + 2 > 4, this
contradicts Lemma &.4. Hence, both C| and C, are G p-invariant, and then any
component of a degenerate fiber also must be G g-invariant. Since Ky and the
components of the fibers generate a subgroup of index 2 in Pic(X), we have G =
ker(p). Finally, the action of G on a typical fiber F has two fixed points C1 N F
and C> N F. Then G r must be cyclic. O

COROLLARY 8.12. Let x : G — {£1} be the (surjective) homomorphism induced
by the action on {C1, C2}. Then G C ker(x). Thus, x passes through a surjective
homomorphism xp : Gp — {£1}.

Proof of Theorem (iii). Suppose that Gp is cyclic. By (ii) of our theorem
Gp # {1}. Thus, Gp has exactly two fixed points P’, P” € B and acts freely
on B\ {P’, P"}. For any degenerate fiber F;, there exists an element § € G that
switches components of F;. Then P; = f(F;) must coincide with P’ or P”.
Hence, f has at most two degenerate fibers, a contradiction. Thus, G p is not
cyclic.

Recall that Gp C PGLy(k). By the classification of finite subgroups in
PGLy(k) (seee.g. [ ; ]) we have Gp ~©,,, 4, G4, or As. By Corol-
lary we have G p % 2y, As. O

LeEmMA 8.13. For P; = f(F;), let Gi C Gp be its stabilizer. Then G; is a cyclic
group generated by an element t; such that xp(t;) = —1.

Proof. Since the representation of G; on Tp, p is faithful, G; is cyclic. The com-
ponents of F; are switched by some element §; € G. Then x(§;) = —1, and the
image of §; is contained in G;. ]
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Proof of Theorem (iv). Basically, this is the third construction of exceptional
conic bundles in [ 5.2]. We have to prove only 1°-6°.
Define a homogeneous semiinvariant ¥ (yy, y2) that vanishes at Py, ..., Pygq2 €

IP’; 1.y, With multiplicity one and does not vanish everywhere else.

LEMMA 8.14. Let G; C Gp be the stabilizer of P; = f(F;), and let t; be its
generator. Then the set A :={Py, ..., Pygy2} satisfies the following property:

e the fixed point locus B" is contained in A.

In particular, A is the union of some nontrivial G g-orbits.

Proof. Let T; € G be a preimage of ;. By construction, 7; switches compo-
nents of F;. If F; is the only fiber whose components are switched by 7;,
then 7; is as in Lemma 8.4(iii). But then fiz € Gr = ker(o), and so fiz does
not switch components of any fiber. This contradicts Lemma 8.4(iii). Hence, 7;
switches the components of two fibers: F; and F; # F;. Therefore, B¥ = { f (F}),
fFpYCA. O

Consider the case Gp >~ G4. Then x coincides with the sign map sgn : &4 —
{=£1}. There are only three nontrivial orbits of G4 on P': 012, Og, and Og (see
e.g. [ ; 1). They have 12, 8, and 6 elements, respectively. The corre-
sponding semiinvariants have the forms ¥, = yl12 - 33yig yg — 33yi‘y§ + y212,
Yg = yf + 14y?y§ + yg, and Ye = ylyg(y? - yg). By Lemma , for any point
P; € A, its stabilizer G; C G p is generated by an odd permutation. So, the order
of G; equals 2 or 4, and Og ¢ A. Hence, there are the following possibilities:
A =012, A= 0g,and A = Og U Oq>.

Now consider the case Gp >~ ©,,. We use the presentation (2.1). There are only
three nontrivial orbits of ©,, on P!: O,, 0, and Oy [ ; ]. They have
n, n, and 2 elements, respectively. The corresponding semiinvariants of ©, have
the form v, = yi — ¥%, ¥, = y] + ¥, ¥2 = y1y2. Since A contains at least four
points, A # O;. Thus, we may assume that O, C A. Assume that A D 0, U O,.
Then any element T € ®, \ (r) generates the stabilizer of some point P; € A.
By Lemma the character x takes value —1 on ©, \ (r). Hence, x(r) =1, r
cannot generate the stabilizer of a point of A, and so O, ¢ A. Thus, for A, we
have the following possibilities: A = O,, 0, U O}, and O, U O2, corresponding
to 49,59, and 69, respectively. Finally, xp can be computed by using Lemma
This proves Theorem . (]

COROLLARY 8.15. Let f : X — B =P! be a relatively G-minimal G-conic bun-
dle, where G is an Abelian group. Assume that f has at least one degenerate fiber
and that (X, G) is G-minimal and H"-trivial. Then the following assertions hold:

° K% =4,G~7/AZ ® 727, f has exactly four degenerate fibers.

o The image of G in Aut(B) is isomorphic to /27 ® 7Z/2Z, and f is an excep-
tional conic bundle with g = 1.

e There are two disjointed sections C1 and C; that are (—2)-curves. Moreover,
X is a weak del Pezzo surface, that is, — K x is nef and big.
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e The anticanonical model X C P* is an intersection of two quadrics whose sin-
gular locus consists of two ordinary double points and the line joining them
does not lie on X.

REMARK 8.16. The surface X and group G described before are extremal in many
senses. According to [ Sect. 7], G is the only finite Abelian subgroup of
Cr>(k) that is not conjugate to a group of automorphisms of P? or P! x P! but
whose nontrivial elements do not fix any curve of positive genus. The intersection
of two quadrics X C P* as before is called the Iskovskikh surface | ]. This
is the only intersection of two quadrics in P* for which the clean Hasse principle
can fail [ ; ].

REMARK 8.17. In the notation of Corollary , it is easy to see that the group
G =7/47 & 7Z./27 has no any fixed points on X. Hence, (X, G) is not stably
linearizable (see Lemma 2.6). Moreover, (X, G) is not stably conjugate to (P%, G)
for any action of G on P2,
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